Circadian force and EMG activity in hindlimb muscles of rhesus monkeys
NASA Technical Reports Server (NTRS)
Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.;
2001-01-01
Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different animals during normal cage activity.
Human muscle fascicle behavior in agonist and antagonist isometric contractions.
Simoneau, Emilie M; Longo, Stefano; Seynnes, Olivier R; Narici, Marco V
2012-01-01
The aim of this study was to compare, at a given level of electromyographic (EMG) activity, the behavior of dorsiflexor and plantarflexor muscles as assessed via their architecture (pennation angle and fiber length) during agonist or antagonist isometric contractions. Real-time ultrasonography and EMG activity of gastrocnemius medialis (GM) and tibialis anterior (TA) muscles were obtained while young males performed ramp isometric contractions in dorsi- and plantarflexion. For both muscles, at a similar level of EMG activity, fiber length was longer, and pennation angle was smaller, during antagonist than during agonist contractions. These results indicate that, at similar levels of EMG activity, GM and TA muscles elicit a higher mechanical output while acting as an antagonist. These findings have important implications for muscle function testing. They show that estimation of antagonistic force using the common method based on the EMG/net torque relationship yields underestimated values. Copyright © 2011 Wiley Periodicals, Inc.
Minakuchi, Hajime; Sakaguchi, Chiyomi; Hara, Emilio S; Maekawa, Kenji; Matsuka, Yoshizo; Clark, Glenn T; Kuboki, Takuo
2012-12-01
Small, self-contained electromyographic (EMG) detector/analyzer (D/A) devices have become available for the detection of jaw muscle activity events above threshold. These devices claim to be less intrusive to the subjects sleep so it is less prone to induce disturbed sleep. The objective of this study was to evaluate for night-to-night variability and examine for a systematic alteration on the first night in EMG levels. Ten asymptomatic healthy volunteers (mean age, 26.8 ± 3.78) were recorded for six sequential nights in their home environment using EMG D/A system. The device yields a nightly EMG level above threshold score on a 0-4 level. Because the data are categorical and nonparametric, the data of the ten subjects across six nights were submitted to a Friedman repeated measures ANOVA. The significant level was set as alpha equal to 0.05. The median and mode values of the subjects were tabulated and analyzed and we did not find a significant difference in EMG D/A level across the six nights (p = 0.287, Kendall's coefficient of concordance = 0.124, Friedman two-way repeated measures ANOVA). The data did show clear and substantial night-to-night variability. Substantial night-to-night variability in masseter EMG activity levels was clearly observed in our subjects. There was no evidence of a suppressed or elevated first-night effect-like variability on masseter muscle EMG level seen in these subjects using a small portable self-contained EMG detector/analyzer. These data suggest that recordings should be at least 5-6-nights duration to establish a reasonable measure of an individual's average nightly masseter EMG level.
Modeling Nonlinear Errors in Surface Electromyography Due To Baseline Noise: A New Methodology
Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith
2010-01-01
The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, “true” EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2 – 40 % maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low. PMID:20869716
Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B
2014-10-20
This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bicalho, Eduardo; Setti, João Antônio Palma; Macagnan, Jones; Cano, José Luis Rivas; Manffra, Elisangela Ferretti
2010-10-01
High-velocity spinal manipulation is commonly adopted for treating chronic low-back pain (CLBP) and has been associated with changes in muscle activity, but the evidence is controversial. The aim of this study was to analyse the immediate effects of high-velocity spine manipulation on paraspinal activity during flexion-extension trunk movements. Forty nonspecific CLBP patients were randomised into two groups, manipulation (n = 20) and control (n = 20). While the manipulation group received high-velocity spine manipulation at the L4-L5 level, the control group remained lying in the same position. EMG-related variables, perceived pain intensity (100 mm VAS) and finger-floor distance were collected before and after spinal manipulation at the L4-L5 level. EMG surface signals from the right and left paraspinal muscles (L5-S1 level) were acquired during trunk flexion-extension cycles. EMG activity during the static relaxation phase was significantly reduced following intervention for the manipulation group but not for the control group. The extension-phase EMG activity was also reduced after manipulation, but the flexion-phase EMG levels remained unchanged. Accordingly, the percent changes in FRR and ERR were significantly larger for the manipulation group compared to the control. The results suggest that a high-velocity spinal manipulation is able to acutely reduce abnormal EMG activity during the full-flexion static phase and activation during the extension phase. Copyright 2010 Elsevier Ltd. All rights reserved.
Spatial analysis of muscular activations in stroke survivors.
Rasool, Ghulam; Afsharipour, Babak; Suresh, Nina L; Xiaogang Hu; Rymer, William Zev
2015-01-01
We investigated the spatial patterns of electrical activity in stroke-affected muscles using the high density surface electromyogram (sEMG) grids. We acquired 128-channel sEMG signals from the impaired as well as contralateral Biceps Brachii (BB) muscles of stroke survivors and from healthy participants at various force levels from 20 to 60% of maximum voluntary contraction in an isometric non-fatiguing recording protocol. We found the spatial sEMG pattern to be consistent across force levels in healthy and stroke subjects. However, once compared across sides (left vs right in healthy and impaired vs. contralateral in stroke) we found stroke-affected sides to be significantly different in distribution pattern of sEMG from the contralateral side. The sEMG activity areas were significantly shrunk on the affected sides indicating muscle atrophy due to stroke.
Baba, Kazuyoshi; Haketa, Tadasu; Sasaki, Yoshiyuki; Ohyama, Takashi; Clark, Glenn T
2005-01-01
To examine whether any signs and symptoms of temporomandibular disorders were significantly associated with masseter muscle activity levels during sleep. One hundred three healthy adult subjects (age range, 22 to 32 years) participated in the study. They were asked to fill out questionnaires, undergo a calibrated clinical examination of their jaws and teeth, and perform 6 consecutive nightly masseter electromyographic (EMG) recordings with a portable EMG recording system in their home. The EMG data were considered dependent variables, while the questionnaire and examination data were considered independent variables. Multiple stepwise linear regression analysis was utilized to assess possible associations between these variables. Both gender and joint sound scores were significantly related to the duration of EMG activity. None of the other independent variables were found to be related to any of the muscle activity variables. The results suggest that both gender and clicking are significantly related to duration of masseter EMG activity during sleep.
Al Harrach, M; Afsharipour, B; Boudaoud, S; Carriou, V; Marin, F; Merletti, R
2016-08-01
The Brachialis (BR) is placed under the Biceps Brachii (BB) deep in the upper arm. Therefore, the detection of the corresponding surface Electromyogram (sEMG) is a complex task. The BR is an important elbow flexor, but it is usually not considered in the sEMG based force estimation process. The aim of this study was to attempt to separate the two sEMG activities of the BR and the BB by using a High Density sEMG (HD-sEMG) grid placed at the upper arm and Canonical Component Analysis (CCA) technique. For this purpose, we recorded sEMG signals from seven subjects with two 8 × 4 electrode grids placed over BB and BR. Four isometric voluntary contraction levels were recorded (5, 10, 30 and 50 %MVC) for 90° elbow angle. Then using CCA and image processing tools the sources of each muscle activity were separated. Finally, the corresponding sEMG signals were reconstructed using the remaining canonical components in order to retrieve the activity of the BB and the BR muscles.
Rukhadze, I; Kamani, H; Kubin, L
2011-12-01
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.
Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo
2014-01-01
The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669
Aho, A J; Lyytikäinen, L-P; Yli-Hankala, A; Kamata, K; Jäntti, V
2011-01-01
Entropy™, an anaesthetic EEG monitoring method, yields two parameters: State Entropy (SE) and Response Entropy (RE). SE reflects the hypnotic level of the patient. RE covers also the EMG-dominant part of the frequency spectrum, reflecting the upper facial EMG response to noxious stimulation. We studied the EEG, EMG, and Entropy values before and after skin incision, and the effect of rocuronium on Entropy and EMG at skin incision during sevoflurane-nitrous oxide (N₂O) anaesthesia. Thirty-eight patients were anaesthetized with sevoflurane-N₂O or sevoflurane-N₂O-rocuronium. The biosignal was stored and analysed off-line to detect EEG patterns, EMG, and artifacts. The signal, its power spectrum, SE, RE, and RE-SE values were analysed before and after skin incision. The EEG arousal was classified as β (increase in over 8 Hz activity and decrease in under 4 Hz activity with a typical β pattern) or δ (increase in under 4 Hz activity with the characteristic rhythmic δ pattern and a decrease in over 8 Hz activity). The EEG arousal appeared in 17 of 19 and 15 of 19 patients (NS), and the EMG arousal in 0 of 19 and 13 of 19 patients (P<0.01) with and without rocuronium, respectively. Both β (n=30) and EMG arousals increased SE and RE. The δ arousal (n=2) decreased both SE and RE. A significant increase in RE-SE values was only seen in patients without rocuronium. During sevoflurane-N₂O anaesthesia, both EEG and EMG arousals were seen. β and δ arousals had opposite effects on the Entropy values. The EMG arousal was abolished by rocuronium at the train of four level 0/4.
Westad, C; Westgaard, R H; De Luca, C J
2003-01-01
The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude (‘EMG pulse’) superimposed on a constant contraction at 4–7% of the surface electromyographic (EMG) response at maximal voluntary contraction (4–7% EMGmax). EMG pulses at 15–20% EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5% EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current (‘plateau potentials’). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns. PMID:14561844
NASA Astrophysics Data System (ADS)
Jordanić, Mislav; Rojas-Martínez, Mónica; Mañanas, Miguel Angel; Francesc Alonso, Joan
2016-08-01
Objective. The development of modern assistive and rehabilitation devices requires reliable and easy-to-use methods to extract neural information for control of devices. Group-specific pattern recognition identifiers are influenced by inter-subject variability. Based on high-density EMG (HD-EMG) maps, our research group has already shown that inter-subject muscle activation patterns exist in a population of healthy subjects. The aim of this paper is to analyze muscle activation patterns associated with four tasks (flexion/extension of the elbow, and supination/pronation of the forearm) at three different effort levels in a group of patients with incomplete Spinal Cord Injury (iSCI). Approach. Muscle activation patterns were evaluated by the automatic identification of these four isometric tasks along with the identification of levels of voluntary contractions. Two types of classifiers were considered in the identification: linear discriminant analysis and support vector machine. Main results. Results show that performance of classification increases when combining features extracted from intensity and spatial information of HD-EMG maps (accuracy = 97.5%). Moreover, when compared to a population with injuries at different levels, a lower variability between activation maps was obtained within a group of patients with similar injury suggesting stronger task-specific and effort-level-specific co-activation patterns, which enable better prediction results. Significance. Despite the challenge of identifying both the four tasks and the three effort levels in patients with iSCI, promising results were obtained which support the use of HD-EMG features for providing useful information regarding motion and force intention.
Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.
Gauda, E B; Carroll, J L; McColley, S; Smith, P L
1991-10-01
We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.
Pirauá, André Luiz Torres; Pitangui, Ana Carolina Rodarti; Silva, Juliana Pereira; Pereira dos Passos, Muana Hiandra; Alves de Oliveira, Valéria Mayaly; Batista, Laísla da Silva Paixão; Cappato de Araújo, Rodrigo
2014-10-01
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p=0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p=0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Emg Signal Analysis of Healthy and Neuropathic Individuals
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Sayed, Tabassum; Garg, Ridhi; Shreyam, Richa
2017-08-01
Electromyography is a method to evaluate levels of muscle activity. When a muscle contracts, an action potential is generated and this circulates along the muscular fibers. In electromyography, electrodes are connected to the skin and the electrical activity of muscles is measured and graph is plotted. The surface EMG signals picked up during the muscular activity are interfaced with a system. The EMG signals from individual suffering from Neuropathy and healthy individual, so obtained, are processed and analyzed using signal processing techniques. This project includes the investigation and interpretation of EMG signals of healthy and Neuropathic individuals using MATLAB. The prospective use of this study is in developing the prosthetic device for the people with Neuropathic disability.
RUKHADZE, I.; KAMANI, H.; KUBIN, L.
2017-01-01
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596
Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11
NASA Technical Reports Server (NTRS)
Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.
2000-01-01
Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.
NASA Technical Reports Server (NTRS)
Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.
1993-01-01
The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.
Naik, Ganesh R; Kumar, Dinesh K; Arjunan, Sridhar
2009-01-01
This paper has experimentally verified and compared features of sEMG (Surface Electromyogram) such as ICA (Independent Component Analysis) and Fractal Dimension (FD) for identification of low level forearm muscle activities. The fractal dimension was used as a feature as reported in the literature. The normalized feature values were used as training and testing vectors for an Artificial neural network (ANN), in order to reduce inter-experimental variations. The identification accuracy using FD of four channels sEMG was 58%, and increased to 96% when the signals are separated to their independent components using ICA.
EMG analysis tuned for determining the timing and level of activation in different motor units
Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.
2011-01-01
Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317
Hutcheson, Katherine A.; Hammer, Michael J.; Rosen, Sarah P.; Jones, Corinne A.; McCulloch, Timothy M.
2017-01-01
Objective To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Study Design Technical report. Methods Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Results Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Conclusion Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. PMID:28083946
EMG analysis tuned for determining the timing and level of activation in different motor units.
Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M
2011-08-01
Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.
Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.
Lobo-Prat, Joan; Janssen, Mariska M H P; Koopman, Bart F J M; Stienen, Arno H A; de Groot, Imelda J M
2017-08-29
Robotic arm supports aim at improving the quality of life for adults with Duchenne muscular dystrophy (DMD) by augmenting their residual functional abilities. A critical component of robotic arm supports is the control interface, as is it responsible for the human-machine interaction. Our previous studies showed the feasibility of using surface electromyography (sEMG) as a control interface to operate robotic arm supports in adults with DMD (22-24 years-old). However, in the biomedical engineering community there is an often raised skepticism on whether adults with DMD at the last stage of their disease have sEMG signals that can be measured and used for control. In this study sEMG signals from Biceps and Triceps Brachii muscles were measured for the first time in a 37 year-old man with DMD (Brooke 6) that lost his arm function 15 years ago. The sEMG signals were measured during maximal and sub-maximal voluntary isometric contractions and evaluated in terms of signal-to-noise ratio and co-activation ratio. Beyond the profound deterioration of the muscles, we found that sEMG signals from both Biceps and Triceps muscles were measurable in this individual, although with a maximum signal amplitude 100 times lower compared to sEMG from healthy subjects. The participant was able to voluntarily modulate the required level of muscle activation during the sub-maximal voluntary isometric contractions. Despite the low sEMG amplitude and a considerable level of muscle co-activation, simulations of an elbow orthosis using the measured sEMG as driving signal indicated that the sEMG signals of the participant had the potential to provide control of elbow movements. To the best of our knowledge this is the first time that sEMG signals from a man with DMD at the last-stage of the disease were measured, analyzed and reported. These findings offer promising perspectives to the use of sEMG as an intuitive and natural control interface for robotic arm supports in adults with DMD until the last stage of the disease.
Solheim, Jens Asmund Brevik; Bencke, Jesper
2017-01-01
Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and at angles similar to the joint angles at which peak hamstring activation occurs during sprinting, while cranes did not reach high levels of hamstring activation compared with sprinting. Level of Evidence 1b PMID:29181249
Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L
2013-02-01
The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low
Trunk muscle recruitment patterns in simulated precrash events.
Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P
2018-02-28
To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.
Electromyography variables during the golf swing: a literature review.
Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan
2012-12-01
The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity.
Carmichael, M S; Warburton, V L; Dixen, J; Davidson, J M
1994-02-01
To determine the psychophysiological correlates of hormonal response during sexual activity, systolic blood pressure (SBP), anal electromyography (EMG), and anal photoplethysmography (APG) were monitored continuously throughout testing in 13 women and 10 men. Each subject completed two or more tests of self-stimulation to 5 min beyond orgasm. Blood samples were obtained continuously for measurement of oxytocin (OT) levels. In both men and women, very high positive correlations were observed between the percentage change in levels from baseline through orgasm of: OT and SBP; OT and EMG intensity prior to and during orgasm; APG and EMG. The number of anal contractions and duration of orgasm were also highly correlated. Two patterns of orgasm were defined by the presence or absence of a quiescent period between orgasmic contractions. EMG and APG amplitudes correlated with the pattern of orgasm. Subjective orgasm intensity correlated significantly with increased levels of OT in multiorgasmic women only. The positive correlations between measures are consistent with a possible functional role for OT in human sexual response.
Job enlargement and mechanical exposure variability in cyclic assembly work.
Möller, Therése; Mathiassen, Svend Erik; Franzon, Helena; Kihlberg, Steve
2004-01-15
Cyclic assembly work is known to imply a high risk for musculoskeletal disorders. To have operators rotate between work tasks is believed to be one way of decreasing this risk, since it is expected to increase variation in mechanical and psychological exposures (physical and mental loads). This assumption was investigated by assessing mechanical exposure variability in three assembly tasks in an electronics assembly plant, each on a separate workstation, as well as in a 'job enlargement' scenario combining all three stations. Five experienced operators worked for 1 h on each station. Data on upper trapezius and forearm extensor muscle activity were obtained by means of electromyography (EMG), and working postures of the head and upper arms were assessed by inclinometry. The cycle-to-cycle variance of parameters representing the three exposure dimensions: level, frequency and duration was estimated using ANOVA algorithms for each workstation separately as well as for a balanced combination of all three. For a particular station, the variability of trapezius EMG activity levels relative to the mean was higher than for extensor EMG: between-cycles coefficients of variation (CV) about 0.15 and 0.10, respectively. A similar relationship between CV applied to the parameter describing frequency of EMG activity. Except for head inclination levels, the between-cycles CV was larger for posture parameters than for EMG. The between-cycles variance increased up to six fold in the job enlargement scenario, as compared to working at only one station. The difference in mean exposure between workstations was larger for trapezius EMG parameters than for forearm extensor EMG and postures, and hence the effect of job enlargement on exposure variability was more pronounced for the trapezius. For some stations, job enlargement even implied less cycle-to-cycle variability in forearm extensor EMG parameters than working at that station only. Whether the changes in exposure variability associated with job enlargement were sufficient to imply a decreased risk for musculoskeletal disorders is not known.
Analysis of surface EMG baseline for detection of hidden muscle activity
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhou, Ping
2014-02-01
Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.
Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity
Zhang, Xu; Zhou, Ping
2014-01-01
Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526
Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto
2016-01-01
Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing. PMID:27199773
Hutcheson, Katherine A; Hammer, Michael J; Rosen, Sarah P; Jones, Corinne A; McCulloch, Timothy M
2017-04-01
To examine feasibility of a simultaneous high-resolution pharyngeal manometry (HRM) and electromyography (EMG) experimental paradigm to detect swallowing-related patterns of palatal, laryngeal, and pharyngeal muscle activity during expiratory training. Technical report. Simultaneous HRM, surface submental, and intramuscular EMG were acquired in two healthy participants during five tasks: 10-cc water swallow, maximum expiratory pressure (MEP) testing, and expiratory muscle strength training (EMST) at three pressure levels (sham, 50%, and 75% MEP). Experimental conditions were feasible. Velopharyngeal closing pressure, palate EMG activity, and pharyngeal EMG activity increased as expiratory load increased. In contrast, thyroarytenoid EMG activity was low during the expiratory task, consistent with glottic opening during exhalation. Submental EMG patterns were more variable during expiratory tasks. Intraluminal air pressures recorded with HRM were correlated with measured expiratory pressures and target valve-opening pressures of the EMST device. Results suggest that a simultaneous HRM/EMG/EMST paradigm may be used to detect previously unquantified swallowing-related muscle activity during EMST, particularly in the palate and pharynx. Our approach and initial findings will be helpful to guide future hypothesis-driven studies and may enable investigators to evaluate other muscle groups active during these tasks. Defining mechanisms of action is a critical next step toward refining therapeutic algorithms using EMST and other targeted treatments for populations with dysphagia and airway disorders. 4. Laryngoscope, 127:797-804, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels
NASA Astrophysics Data System (ADS)
Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari
2010-10-01
A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Zev Rymer, William
2004-12-01
The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.
Wei, Shun-Hwa; Chiang, Jinn-Yen; Shiang, Tzyy-Yuang; Chang, Hsiao-Yun
2006-03-01
To test the hypothesis that recreational tennis players transmit more shock impact from the racket to the elbow joint than experienced tennis players during the backhand stroke. Also, to test whether recreational tennis players used higher electromyographic (EMG) activities in common wrist extensor and flexor around epicondylar region at follow-through phase. A repeated-measure, cross-sectional study. National College of Physical Education and Sports at Taipei, Taiwan. Twenty-four male tennis players with no abnormal forearm musculoskeletal injury participated in the study. According to performance level, subjects were categorized into 2 groups: experienced and recreational. Impact transmission and wrist extensor-flexor EMG for backhand acceleration, impact, and follow-through phases were recorded for each player. An independent t test with a significance level of 0.05 was used to examine mean differences of shock impact and EMG between the 2 test groups. One-way ANOVA associated with Tukey multiple comparisons was used to identify differences among different impact locations and EMG phases. Experienced athletes reduced the racket impact to the elbow joint by 89.2%, but recreational players reduced it by only 61.8%. The largest EMG differences were found in the follow-through phase (P<0.05). Experienced athletes showed that their extensor and flexor EMGs were at submaximal level for follow-through phase, whereas recreational players maintained their flexor and extensor EMGs at either supramaximal or maximal level. Our results support the hypothesis that recreational players transmit more shock impact from the racket to the elbow joint and use larger wrist flexor and extensor EMG activities at follow-through phase of the backhand stroke. Follow-through control is proposed as a critical factor for reduction of shock transmission. Clinicians or trainers should instruct beginners to quickly release their grip tightness after ball-to-racket impact to reduce shock impact transmission to the wrist and elbow.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu
2016-12-01
Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.
Influence of fatigue on upper limb muscle activity and performance in tennis.
Rota, Samuel; Morel, Baptiste; Saboul, Damien; Rogowski, Isabelle; Hautier, Christophe
2014-02-01
The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chernichenko, Natalya; Woo, Jeong-Soo; Hundal, Jagdeep S; Sasaki, Clarence T
2011-02-01
The aim of this study was to identify the response of the cricopharyngeus muscle (CPM) to esophageal stimulation by intraluminal mechanical distension and intraluminal acid and bile perfusion. In 3 adult pigs, electromyographic (EMG) activity of the CPM was recorded at baseline and after esophageal stimulation at 3 levels: proximal, middle, and distal. The esophagus was stimulated with 20-mL balloon distension and intraluminal perfusion of 40 mL 0.1N hydrochloric acid, taurocholic acid (pH 1.5), and chenodeoxycholic acid (pH 7.4) at the rate of 40 mL/min. The EMG spike density was defined as peak-to-peak spikes greater than 10 microV averaged over 10-ms intervals. In all 3 animals, the spike density at baseline was 0. The spike densities increased after proximal and middle distensions to 15.2 +/- 1.5 and 5.1 +/- 1.2 spikes per 10 ms, respectively. No change in CPM EMG activity occurred after distal distension. The spike density following intraluminal perfusion with hydrochloric acid at the distal level was 10.1 +/- 1.1 spikes per 10 ms. No significant change in CPM EMG activity occurred after acid perfusion at the middle and proximal levels. No change in CPM EMG activity occurred after intraluminal esophageal perfusion with either taurocholic acid or chenodeoxycholic acid. Proximal esophageal distension, as well as distal intraluminal acid perfusion, appeared to be important mechanisms in generation of CPM activity. Bile acids, on the other hand, failed to evoke such CPM activity. The data suggest that transpyloric refluxate may not be significant enough to evoke the CPM protective sphincteric function, thereby placing supraesophageal structures at risk of bile injury.
Wada, Naomi; Akatani, Junko; Miyajima, Noriko; Shimojo, Kengo; Kanda, Kenro
2006-05-23
To gain insight into the neural mechanisms controlling vertebral column movement and its role in walking, we performed kinematic and electromyographic (EMG) studies on cats during level and upslope treadmill walking. Kinematic data of the limbs and vertebral column were obtained with a high-speed camera synchronized with EMG recordings from levels T10, L1, and L5 of m. longissimus dorsi (Long). During a single-step cycle at all upslope angles, vertebral movement in the lateral (left-right), cranial-caudal (forward-backward), and dorsal-ventral (upward-downward) directions was observed. Lateral movements were produced by forelimb take-off and hindlimb landing, and forward and upward movements were produced by hindlimb extension. During the single-step cycle, each of the three epaxial muscles, m. multifidus, m. iliocostalis, and Long, showed two bilateral EMG bursts. The onset of the EMG bursts coincided with the left-right movements, suggesting that epaxial muscle activity depresses lateral movement. The termination of the EMG bursts correlated with the forward and downward phase of the step cycle, suggesting that contraction of the epaxial muscles produces forward and downward movements. EMG bursts of the epaxial muscles increase the stiffness and produce inwardly movements to decrease the lateral movements of the vertebral column and the termination of EMG bursts control the movements into cranial and ventral direction of the vertebral column. The results suggest that the rhythmic EMG bursts in the epaxial muscles are produced by pattern generators, and the timing of EMG bursts among the different levels of the epaxial muscles are altered by walking condition input via peripheral afferents and descending pathways.
Relationship between sleep stages and nocturnal trapezius muscle activity.
Müller, Christian; Nicoletti, Corinne; Omlin, Sarah; Brink, Mark; Läubli, Thomas
2015-06-01
Former studies reported a relationship between increased nocturnal low level trapezius muscle activity and neck or shoulder pain but it has not been explored whether trapezius muscle relaxation is related to sleep stages. The goal of the present study was to investigate whether trapezius muscle activity is related to different sleep stages, as measured by polysomnography. Twenty one healthy subjects were measured on four consecutive nights in their homes, whereas the first night served as adaptation night. The measurements included full polysomnography (electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG)), as well as surface EMG of the m. trapezius descendens of the dominant arm. Periods with detectable EMG activity of the trapezius muscle lasted on average 1.5% of the length of the nights and only in four nights it lasted longer than 5% of sleeping time. Neither rest time nor the length of periods with higher activity levels of the trapezius muscle did significantly differ between sleep stages. We found no evidence that nocturnal trapezius muscle activity is markedly moderated by the different sleep stages. Thus the results support that EMG measurements of trapezius muscle activity in healthy subjects can be carried out without concurrent polysomnographic recordings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reduced servo-control of fatigued human finger extensor and flexor muscles.
Hagbarth, K E; Bongiovanni, L G; Nordin, M
1995-01-01
1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624
Hamlyn, Nicolle; Behm, David G; Young, Warren B
2007-11-01
The purpose of this study was to examine the extent of activation in various trunk muscles during dynamic weight-training and isometric instability exercises. Sixteen subjects performed squats and deadlifts with 80% 1 repetition maximum (1RM), as well as with body weight as resistance and 2 unstable calisthenic-type exercises (superman and sidebridge). Electromyographic (EMG) activity was measured from the lower abdominals (LA), external obliques (EO), upper lumbar erector spinae (ULES), and lumbar-sacral erector spinae (LSES) muscle groups. Results indicated that the LSES EMG activity during the 80% 1RM squat significantly exceeded 80% 1RM deadlift LSES EMG activity by 34.5%. The LSES EMG activity of the 80% 1RM squat also exceeded the body weight squat, deadlift, superman, and sidebridge by 56, 56.6, 65.5, and 53.1%, respectively. The 80% 1RM deadlift ULES EMG activity significantly exceeded the 80% 1RM squat exercise by 12.9%. In addition, the 80% 1RM deadlift ULES EMG activity also exceeded the body weight squat, deadlift, superman, and sidebridge exercises by 66.7, 65.5, 69.3, and 68.6%, respectively. There were no significant changes in EO or LA activity. Therefore, the augmented activity of the LSES and ULES during 80% 1RM squat and deadlift resistance exercises exceeded the activation levels achieved with the same exercises performed with body weight and selected instability exercises. Individuals performing upright, resisted, dynamic exercises can achieve high trunk muscle activation and thus may not need to add instability device exercises to augment core stability training.
Impact of early life adversity on EMG stress reactivity of the trapezius muscle.
Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel
2016-09-01
Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies.
Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi
2016-06-01
This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG transfer function and EMG-EMG coherence function analyses may also be useful to diagnose the pathologically in-coordinated features in jaw and neck muscle activities in temporomandibular disorders and whiplash-associated disorders during critical chewing performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Alizadeh-Meghrazi, Milad; Masani, Kei; Zariffa, José; Sayenko, Dimitry G.; Popovic, Milos R.; Craven, B. Catharine
2014-01-01
Objective Traumatic spinal cord injury (SCI) results in substantial reductions in lower extremity muscle mass and bone mineral density below the level of the lesion. Whole-body vibration (WBV) has been proposed as a means of counteracting or treating musculoskeletal degradation after chronic motor complete SCI. To ascertain how WBV might be used to augment muscle and bone mass, we investigated whether WBV could evoke lower extremity electromyography (EMG) activity in able-bodied individuals and individuals with SCI, and which vibration parameters produced the largest magnitude of effect. Methods Ten male subjects participated in the study, six able-bodied and four with chronic SCI. Two different manufacturers' vibration platforms (WAVE® and Juvent™) were evaluated. The effects of vibration amplitude (0.2, 0.6 or 1.2 mm), vibration frequency (25, 35, or 45 Hz), and subject posture (knee angle of 140°, 160°, or 180°) on lower extremity EMG activation were determined (not all combinations of parameters were possible on both platforms). A novel signal processing technique was proposed to estimate the power of the EMG waveform while minimizing interference and artifacts from the plate vibration. Results WBV can elicit EMG activity among subjects with chronic SCI, if appropriate vibration parameters are employed. The amplitude of vibration had the greatest influence on EMG activation, while the frequency of vibration had lesser but statistically significant impact on the measured lower extremity EMG activity. Conclusion These findings suggest that WBV with appropriate parameters may constitute a promising intervention to treat musculoskeletal degradation after chronic SCI. PMID:24986541
EMG patterns during assisted walking in the exoskeleton
Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.
2014-01-01
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628
EMG patterns during assisted walking in the exoskeleton.
Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P
2014-01-01
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.
Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.
Hewson, D J; McNair, P J; Marshall, R N
2001-03-01
The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.
Lee, DongGeon; Kim, YouJeong; Yun, JiHyeon; Jung, MiHye; Lee, GyuChang
2016-01-01
[Purpose] To analyze the electromyographic (EMG) activities of several lower extremity muscles during ground walking and pedaling using the Pedalo Reha-Bar device. [Subjects and Methods] Fifteen healthy adults aged 20–29 year participated in this study. The subjects’ surface EMG signals while walking and Pedalo Reha-Bar riding were recorded. The subjects performed 20 steps on flat ground and 20 cycles on the Pedalo Reha-Bar. During the tasks, EMG signals of the rectus femoris, biceps femoris, tibialis anterior, soleus, and gastrocnemius within a 20-second period were recorded. The mean EMG signals within the 10 seconds from 6 to 15 seconds were used for the data analysis. [Results] There was a significant increase in the bilateral use of the rectus femoris and a significant decrease in the use of the left tibialis anterior and left soleus in pedaling using the Pedalo Reha-Bar device compared to ground walking. [Conclusion] Level walking and the Pedalo Reha-Bar riding utilize different types of muscles activities. These results suggest that Pedalo Reha-Bar riding may be used for neuromuscular activation, especially of the rectus femoris. PMID:27313354
Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís
2015-07-15
Most decisions that we make build upon multiple streams of sensory evidence and control mechanisms are needed to filter out irrelevant information. Sequential sampling models of perceptual decision making have recently been enriched by attentional mechanisms that weight sensory evidence in a dynamic and goal-directed way. However, the framework retains the longstanding hypothesis that motor activity is engaged only once a decision threshold is reached. To probe latent assumptions of these models, neurophysiological indices are needed. Therefore, we collected behavioral and EMG data in the flanker task, a standard paradigm to investigate decisions about relevance. Although the models captured response time distributions and accuracy data, EMG analyses of response agonist muscles challenged the assumption of independence between decision and motor processes. Those analyses revealed covert incorrect EMG activity ("partial error") in a fraction of trials in which the correct response was finally given, providing intermediate states of evidence accumulation and response activation at the single-trial level. We extended the models by allowing motor activity to occur before a commitment to a choice and demonstrated that the proposed framework captured the rate, latency, and EMG surface of partial errors, along with the speed of the correction process. In return, EMG data provided strong constraints to discriminate between competing models that made similar behavioral predictions. Our study opens new theoretical and methodological avenues for understanding the links among decision making, cognitive control, and motor execution in humans. Sequential sampling models of perceptual decision making assume that sensory information is accumulated until a criterion quantity of evidence is obtained, from where the decision terminates in a choice and motor activity is engaged. The very existence of covert incorrect EMG activity ("partial error") during the evidence accumulation process challenges this longstanding assumption. In the present work, we use partial errors to better constrain sequential sampling models at the single-trial level. Copyright © 2015 the authors 0270-6474/15/3510371-15$15.00/0.
Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.
Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E
2016-02-01
The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D
2014-01-29
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.
Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf
2014-01-01
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348
Watanabe, Kohei; Kouzaki, Motoki; Merletti, Roberto; Fujibayashi, Mami; Moritani, Toshio
2012-02-01
The aim of the present study was to compare spatial electromyographic (EMG) potential distribution during force production between elderly and young individuals using multi-channel surface EMG (SEMG). Thirteen elderly (72-79years) and 13 young (21-27years) healthy male volunteers performed ramp submaximal contraction during isometric knee extension from 0% to 65% of maximal voluntary contraction. During contraction, multi-channel EMG was recorded from the vastus lateralis muscle. To evaluate alteration in heterogeneity and pattern in spatial EMG potential distribution, coefficient of variation (CoV), modified entropy and correlation coefficients with initial torque level were calculated from multi-channel SEMG at 5% force increment. Increase in CoV and decrease in modified entropy of RMS with increase of exerted torque were significantly smaller in elderly group (p<0.05) and correlation coefficients with initial torque level were significantly higher in elderly group than in young group at moderate torque levels (p<0.05). These data suggest that the increase of heterogeneity and the change in the activation pattern are smaller in elderly individuals than in young individuals. We speculated that multi-channel SEMG pattern in elderly individual reflects neuromuscular activation strategy regulated predominantly by clustering of similar type of muscle fibers in aged muscle. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impact of early life adversity on EMG stress reactivity of the trapezius muscle
Luijcks, Rosan; Vossen, Catherine J.; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J.; Lousberg, Richel
2016-01-01
Abstract Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0–11 years) and adolescence (12–17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability. Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800
Spolaor, Fabiola; Sawacha, Zimi; Guarneri, Gabriella; Del Din, Silvia; Avogaro, Angelo; Cobelli, Claudio
2016-12-01
Diabetic peripheral neuropathy (DPN) causes motor control alterations during daily life activities. Tripping during walking or stair climbing is the predominant cause of falls in the elderly subjects with DPN and without (NoDPN). Surface Electromyography (sEMG) has been shown to be a valid tool for detecting alterations of motor functions in subjects with DPN. This study aims at investigating the presence of functional alterations in diabetic subjects during stair climbing and at exploring the relationship between altered muscle activation and temporal parameter. Lower limb muscle activities, temporal parameters and speed were evaluated in 50 subjects (10 controls, 20 with DPN, 20 without DPN), while climbing up and down a stair, using sEMG, three-dimentional motion capture and force plates. Magnitude and timing of sEMG linear envelopes peaks were extracted. Level walking was used as reference condition for the comparison with step negotiation. sEMG, speed and temporal parameters revealed significant differences among all groups of patients. Results showed an association between earlier activation of lower limb muscles and reduced speed in subjects with DPN. Speed and temporal parameters significantly correlated with sEMG (p<0.05). The findings of this study are encouraging and could be used to improve rehabilitation programs aiming at reducing falls risk in diabetic subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separation of electrocardiographic from electromyographic signals using dynamic filtration.
Christov, Ivaylo; Raikova, Rositsa; Angelova, Silvija
2018-07-01
Trunk muscle electromyographic (EMG) signals are often contaminated by the electrical activity of the heart. During low or moderate muscle force, these electrocardiographic (ECG) signals disturb the estimation of muscle activity. Butterworth high-pass filters with cut-off frequency of up to 60 Hz are often used to suppress the ECG signal. Such filters disturb the EMG signal in both frequency and time domain. A new method based on the dynamic application of Savitzky-Golay filter is proposed. EMG signals of three left trunk muscles and pure ECG signal were recorded during different motor tasks. The efficiency of the method was tested and verified both with the experimental EMG signals and with modeled signals obtained by summing the pure ECG signal with EMG signals at different levels of signal-to-noise ratio. The results were compared with those obtained by application of high-pass, 4th order Butterworth filter with cut-off frequency of 30 Hz. The suggested method is separating the EMG signal from the ECG signal without EMG signal distortion across its entire frequency range regardless of amplitudes. Butterworth filter suppresses the signals in the 0-30 Hz range thus preventing the low-frequency analysis of the EMG signal. An additional disadvantage is that it passes high-frequency ECG signal components which is apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. The new method was also successfully verified with abnormal ECG signals. Copyright © 2018. Published by Elsevier Ltd.
Shoulder Muscle Activation Levels During the Push-Up-Plus Exercise on Stable and Unstable Surfaces.
Torres, Rafaela J B; Pirauá, André L T; Nascimento, Vinícius Y S; Dos Santos, Priscila S; Beltrão, Natália B; de Oliveira, Valéria M A; Pitangui, Ana Carolina R; de Araújo, Rodrigo C
2017-07-01
The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA-MT and UT-LT pairs). No significant differences were observed in TB-BB and AD-PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.
NASA Astrophysics Data System (ADS)
Miralles, Francesc
2018-06-01
Objective. The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called ‘ideal case motor unit count’ (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. Approach. The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. Main results. MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. Significance. MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.
Lumbar spinal loads and muscle activity during a golf swing.
Lim, Young-Tae; Chow, John W; Chae, Woen-Sik
2012-06-01
This study estimated the lumbar spinal loads at the L4-L5 level and evaluated electromyographic (EMG) activity of right and left rectus abdominis, external and internal obliques, erector spinae, and latissimus dorsi muscles during a golf swing. Four super VHS camcorders and two force plates were used to obtain three-dimensional (3D) kinematics and kinetics of golf swings performed by five male collegiate golfers. Average EMG levels for different phases of golf swing were determined. An EMG-assisted optimization model was applied to compute the contact forces acting on the L4-L5. The results revealed a mean peak compressive load of over six times the body weight (BW) during the downswing and mean peak anterior and medial shear loads approaching 1.6 and 0.6 BW during the follow-through phases. The peak compressive load estimated in this study was high, but less than the corresponding value (over 8 BW) reported by a previous study. Average EMG levels of different muscles were the highest in the acceleration and follow-through phases, suggesting a likely link between co-contractions of paraspinal muscles and lumbar spinal loads.
Control of Leg Movements Driven by EMG Activity of Shoulder Muscles
La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.
2014-01-01
During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569
Control of Leg Movements Driven by EMG Activity of Shoulder Muscles.
La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P
2014-01-01
During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.
Functional compartmentalization of the human superficial masseter muscle.
Guzmán-Venegas, Rodrigo A; Biotti Picand, Jorge L; de la Rosa, Francisco J Berral
2015-01-01
Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle's motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF).
Functional Compartmentalization of the Human Superficial Masseter Muscle
Guzmán-Venegas, Rodrigo A.; Biotti Picand, Jorge L.; de la Rosa, Francisco J. Berral
2015-01-01
Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle’s motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20–60% MVBF). PMID:25692977
Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
Zhang, Qin; Hosoda, Ryo; Venture, Gentiane
2013-01-01
This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.
Preterm labor--modeling the uterine electrical activity from cellular level to surface recording.
Rihana, S; Marque, C
2008-01-01
Uterine electrical activity is correlated to the appearance of uterine contractions. forceful contractions appear at the end of term. Therefore, understanding the genesis and the propagation of uterine electrical activity may provide an efficient tool to diagnose preterm labor. Moreover, the control of uterine excitability seems to have important consequences in the control of preterm labor. Modeling the electrical activity in uterine tissue is thus an important step in understanding physiological uterine contractile mechanisms and to permit uterine EMG simulation. Our model presented in this paper, incorporates ion channel models at the cell level, the reaction diffusion equations at the tissue level and the spatiotemporal integration at the uterine EMG reconstructed level. This model validates some key physiological observation hypotheses concerning uterine excitability and propagation.
Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim
2002-07-01
This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.
Electrotactile EMG feedback improves the control of prosthesis grasping force
NASA Astrophysics Data System (ADS)
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).
Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio
2017-01-01
This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883
Anticipatory and compensatory postural adjustments in sitting in children with cerebral palsy.
Bigongiari, Aline; de Andrade e Souza, Flávia; Franciulli, Patrícia Martins; Neto, Semaan El Razi; Araujo, Rubens Correa; Mochizuki, Luis
2011-06-01
The aim of this study was to examine postural control in children with cerebral palsy performing a bilateral shoulder flexion to grasp a ball from a sitting posture. The participants were 12 typically developing children (control) without cerebral palsy and 12 children with cerebral palsy (CP). We analyzed the effect of ball mass (1 kg and 0.18 kg), postural adjustment (anticipatory, APA, and compensatory, CPA), and groups (control and CP) on the electrical activity of shoulder and trunk muscles with surface electromyography (EMG). Greater mean iEMG was seen in CPA, with heavy ball, and for posterior trunk muscles (p<.05). The children with CP presented the highest EMG and level of co-activation (p<.05). Linear regression indicated a positive relationship between EMG and aging for the control group, whereas that relationship was negative for participants with CP. We suggest that the main postural control strategy in children is based on corrections after the beginning of the movement. The linear relationship between EMG and aging suggests that postural control development is affected by central nervous disease which may lead to an increase in muscle co-activation. Copyright © 2011 Elsevier B.V. All rights reserved.
Hight, Darren F; Voss, Logan J; García, Paul S; Sleigh, Jamie W
2017-08-01
During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (C e MAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher C e MACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined C e MAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-C e MAC (occurring higher or lower than 0.07 C e MAC). Low-C e MAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-C e MAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher C e MAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low C e MAC, and is closely temporally associated with return of consciousness.
Electromyographic reflexes evoked in human flexor carpi radialis by tendon vibration.
Cody, F W; Goodwin, C N; Richardson, H C
1990-10-01
The rectified, electromyographic (EMG) reflexes evoked in the voluntarily contracting flexor carpi radialis (FCR) muscle by vibration of its tendon were studied in healthy human subjects. Responses comprised a prominent, transient, short-latency (SL, 20-25 ms) increase in EMG, attributed to Ia mono- and/or oligo-synaptic action, followed by a series of less pronounced troughs and peaks of activity. Evidence of continuing Ia mono- or oligo-synaptic action was indicated by (i) the presence of small subpeaks, at vibration frequency, superimposed upon the excitatory components and (ii) the occurrence of a separate reduction in EMG, of consistent latency (ca. 30 ms), after cessation of stimulation. Progressively shortening the train of vibration from 29 cycles (at 145 Hz) to a single cycle significantly reduced net, excitatory reflex activity. Gradually increasing the level (10-50% maximum) of pre-existing voluntary contraction on top of which reflexes were elicited, by moderately prolonged (29 cycles) trains of vibration, resulted in small increases, in absolute terms, in SL peaks and in later, excitatory EMG activity. Excitatory reflexes, when normalised for pre-stimulus EMG, however, declined in an approximately hyperbolic manner with increasing background activity over this range. Thus, effective "automatic gain compensation" does not operate for vibration reflexes in FCR.
Core muscle activity in a series of balance exercises with different stability conditions.
Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C
2015-07-01
Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping
2015-05-01
Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.
Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping
2014-01-01
Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239
Liu, Jie; Ying, Dongwen; Zhou, Ping
2014-01-01
Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536
Sensorimotor adaptations to microgravity in humans.
Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R
2001-09-01
Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.
Sensorimotor adaptations to microgravity in humans
NASA Technical Reports Server (NTRS)
Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.
2001-01-01
Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.
Ormeño, G; Miralles, R; Santander, H; Casassus, R; Ferrer, P; Palazzi, C; Moya, H
1997-10-01
This study was conducted in order to determine the effects of body position on electromyographic (EMG) activity of sternocleidomastoid and masseter muscles, in 15 patients with myogenic cranio-cervical-mandibular dysfunction undergoing occlusal splint therapy. EMG activity was recorded by placing surface electrodes on the sternocleidomastoid and masseter muscles (contralateral to the habitual sleeping side of each patient). EMG activity at rest and during swallowing of saliva and maximal voluntary clenching was recorded in the following body positions: standing, supine and lateral decubitus. In the sternocleidomastoid muscle significant higher EMG activities at rest and during swallowing were recorded in the lateral decubitus position, whereas during maximal voluntary clenching EMG activity did not change. In the masseter muscle significant higher EMG activity during maximal voluntary clenching in a standing position was observed, whereas EMG activity at rest and during swallowing did not change. The opposite pattern of EMG activity supports the idea that there may exist a differential modulation of the motor neuron pools of the sternocleidomastoid and masseter muscles, of peripheral and/or central origin. This suggests that the presence of parafunctional habits and body position could be closely correlated with the clinical symptomatology in these muscles in patients with myogenic craniomandibular dysfunction.
Lobo-Prat, Joan; Nizamis, Kostas; Janssen, Mariska M H P; Keemink, Arvid Q L; Veltink, Peter H; Koopman, Bart F J M; Stienen, Arno H A
2017-07-12
Adults with Duchenne muscular dystrophy (DMD) can benefit from devices that actively support their arm function. A critical component of such devices is the control interface as it is responsible for the human-machine interaction. Our previous work indicated that surface electromyography (sEMG) and force-based control with active gravity and joint-stiffness compensation were feasible solutions for the support of elbow movements (one degree of freedom). In this paper, we extend the evaluation of sEMG- and force-based control interfaces to simultaneous and proportional control of planar arm movements (two degrees of freedom). Three men with DMD (18-23 years-old) with different levels of arm function (i.e. Brooke scores of 4, 5 and 6) performed a series of line-tracing tasks over a tabletop surface using an experimental active arm support. The arm movements were controlled using three control methods: sEMG-based control, force-based control with stiffness compensation (FSC), and force-based control with no compensation (FNC). The movement performance was evaluated in terms of percentage of task completion, tracing error, smoothness and speed. For subject S1 (Brooke 4) FNC was the preferred method and performed better than FSC and sEMG. FNC was not usable for subject S2 (Brooke 5) and S3 (Brooke 6). Subject S2 presented significantly lower movement speed with sEMG than with FSC, yet he preferred sEMG since FSC was perceived to be too fatiguing. Subject S3 could not successfully use neither of the two force-based control methods, while with sEMG he could reach almost his entire workspace. Movement performance and subjective preference of the three control methods differed with the level of arm function of the participants. Our results indicate that all three control methods have to be considered in real applications, as they present complementary advantages and disadvantages. The fact that the two weaker subjects (S2 and S3) experienced the force-based control interfaces as fatiguing suggests that sEMG-based control interfaces could be a better solution for adults with DMD. Yet force-based control interfaces can be a better alternative for those cases in which voluntary forces are higher than the stiffness forces of the arms.
Ferreira, Ana Paula de Lima; Costa, Dayse Regina Alves da; Oliveira, Ana Izabela Sobral de; Carvalho, Elyson Adam Nunes; Conti, Paulo César Rodrigues; Costa, Yuri Martins; Bonjardim, Leonardo Rigoldi
2017-01-01
To investigate the short-term effect of transcutaneous electrical nerve stimulation (TENS) by examining pain intensity, pressure pain threshold (PPT) and electromyography (EMG) activity in patients with temporomandibular disorder (TMD). Forty patients with myofascial TMD were enrolled in this randomized placebo-controlled trial and were divided into two groups: active (n=20) and placebo (n=20) TENS. Outcome variables assessed at baseline (T0), immediately after (T2) and 48 hours after treatment (T1) were: pain intensity with the aid of a visual analogue scale (VAS); PPT of masticatory and cervical structures; EMG activity during mandibular rest position (MR), maximal voluntary contraction (MVC) and habitual chewing (HC). Two-way ANOVA for repeated measures was applied to the data and the significance level was set at 5%. There was a decrease in the VAS values at T1 and T2 when compared with T0 values in the active TENS group (p<0.050). The PPT between-group differences were significant at T1 assessment of the anterior temporalis and sternocleidomastoid (SCM) and T2 for the masseter and the SCM (p<0.050). A significant EMG activity reduction of the masseter and anterior temporalis was presented in the active TENS during MR at T1 assessment when compared with T0 (p<0.050). The EMG activity of the anterior temporalis was significantly higher in the active TENS during MVC at T1 and T2 when compared with placebo (p<0.050). The EMG activity of the masseter and anterior temporalis muscle was significantly higher in the active TENS during HC at T1 when compared with placebo (p<0.050). The short-term therapeutic effects of TENS are superior to those of the placebo, because of reported facial pain, deep pain sensitivity and masticatory muscle EMG activity improvement.
NASA Astrophysics Data System (ADS)
Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi
Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.
Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions.
Doorenbosch, Caroline A M; Joosten, Annemiek; Harlaar, Jaap
2005-08-01
In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. Isokinetic knee flexion and extension contractions were performed by healthy subjects at five different velocities and at three contraction levels (100%, 75% and 50% of MVC). Joint angle, angular velocity, joint moment and surface EMG of five knee muscles were recorded. Individual calibration values were calculated according to [C.A.M. Doorenbosch, J. Harlaar, A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament, Clinical Biomechanics 18 (2003) 142-149] for each contraction level. First, the output of the model, calibrated with the 100% MVC was compared to the actually exerted net knee moment at the dynamometer. Normalized root mean square errors were calculated [A.L. Hof, C.A.N. Pronk, J.A. van Best, Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping, Journal of Biomechanics 20 (1987) 167-187] to compare the estimated moments with the actually exerted moments. Mean RMSD errors ranged from 0.06 to 0.21 for extension and from 0.12 to 0.29 for flexion at the 100% trials. Subsequently, the calibration results of the 50% and 75% MVC calibration procedures were used. A standard signal, representing a random EMG level was used as input in the EMG force model, to compare the three models. Paired samples t-tests between the 100% MVC and the 75% MVC and 50% MVC, respectively, showed no significant differences (p>0.05). The application of submaximal contractions of larger than 50% MVC is suitable to calibrate a simple EMG to force model for knee extension and flexion. This means that in clinical practice, the EMG to force model can be applied by patients who cannot exert maximal force.
EMG normalization to study muscle activation in cycling.
Rouffet, David M; Hautier, Christophe A
2008-10-01
The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.
Force Control Is Related to Low-Frequency Oscillations in Force and Surface EMG
Moon, Hwasil; Kim, Changki; Kwon, Minhyuk; Chen, Yen Ting; Onushko, Tanya; Lodha, Neha; Christou, Evangelos A.
2014-01-01
Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07±2.76 years, 7 women) performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) power spectrum of force below 2 Hz; 3) EMG bursts; 4) power spectrum of EMG bursts below 2 Hz; and 5) power spectrum of the interference EMG from 10–300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R 2 = 0.82). For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0–0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68). The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R 2 = 0.51). Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35–60 Hz (R 2 = 0.95). In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz. PMID:25372038
Uses of electromyography in dentistry: An overview with meta-analysis.
Nishi, Shamima Easmin; Basri, Rehana; Alam, Mohammad Khursheed
2016-01-01
The purpose of this study was to review the uses of electromyography (EMG) in dentistry in the last few years in related research. EMG is an advanced technique to record and evaluate muscle activity. In the previous days, EMG was only used for medical sciences, but now EMG playing a tremendous role in medical as well as dental sector. Several electronic databases such as Google Scholar, PubMed, Science Direct, and Web of Science were systematically searched for studies published until July 2015. EMG can be used in both diagnosis and treatment purpose to record neuromuscular activity. In dentistry, we can utilize EMG to evaluate muscular activity in function such as chewing and biting or parafunctional activities such as clenching and bruxism. In case of TMJ and myofascial pain disorders, EMG widely is used in the last few years. EMG is one of biometric tests that occur in the modern evidence-based dentistry practice.
Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H
1987-12-01
Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.
Rice, David A; McNair, Peter J; Lewis, Gwyn N
2011-01-01
A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population.
2011-01-01
Introduction A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Methods Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Results Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P < 0.001) and EMG amplitude (P ≤0.001) decreased significantly in the control group but did not change in the OA group (all P > 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P < 0.011). No between-group differences were observed for the change in hamstrings torque or EMG (all P > 0.554). Conclusions γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population. PMID:21933392
Gaudreault, Nathaly; Arsenault, A Bertrand; Larivière, Christian; DeSerres, Sophie J; Rivard, Charles-Hilaire
2005-01-01
Background It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. Methods L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. Results No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. Conclusion The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters. PMID:15760468
The alpha-motoneuron pool as transmitter of rhythmicities in cortical motor drive.
Stegeman, Dick F; van de Ven, Wendy J M; van Elswijk, Gijs A; Oostenveld, Robert; Kleine, Bert U
2010-10-01
Investigate the effectiveness and frequency dependence of central drive transmission via the alpha-motoneuron pool to the muscle. We describe a model for the simulation of alpha-motoneuron firing and the EMG signal as response to central drive input. The transfer in the frequency domain is investigated. Coherence between stochastical central input and EMG is also evaluated. The transmission of central rhythmicities to the EMG signal relates to the spectral content of the latter. Coherence between central input to the alpha-motoneuron pool and the EMG signal is significant whereby the coupling strength hardly depends on the frequency in a range from 1 to 100 Hz. Common central input to pairs of alpha-motoneurons strongly increases the coherence levels. The often-used rectification of the EMG signal introduces a clear frequency dependence. Oscillatory phenomena are strongly transmitted via the alpha-motoneuron pool. The motoneuron firing frequencies do play a role in the transmission gain, but do not influence the coherence levels. Rectification of the EMG signal enhances the transmission gain, but lowers coherence and introduces a strong frequency dependency. We think that it should be avoided. Our findings show that rhythmicities are translated into alpha-motoneuron activity without strong non-linearities. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H; Jay, Kenneth; Andersen, Lars L
2012-08-01
Swiss ball training is recommended as a low intensity modality to improve joint position, posture, balance, and neural feedback. However, proper training intensity is difficult to obtain during Swiss ball exercises whereas strengthening exercises on machines usually are performed to induce high level of muscle activation. To compare muscle activation as measured by electromyography (EMG) of global core and thigh muscles during abdominal crunches performed on Swiss ball with elastic resistance or on an isotonic training machine when normalized for training intensity. 42 untrained individuals (18 men and 24 women) aged 28-67 years participated in the study. EMG activity was measured in 13 muscles during 3 repetitions with a 10 RM load during both abdominal crunches on training ball with elastic resistance and in the same movement utilizing a training machine (seated crunch, Technogym, Cesena, Italy). The order of performance of the exercises was randomized, and EMG amplitude was normalized to maximum voluntary isometric contraction (MVIC) EMG. When comparing between muscles, normalized EMG was highest in the rectus abdominis (P<0.01) and the external obliques (P<0.01). However, crunches on Swiss ball with elastic resistance showed higher activity of the rectus abdominis than crunches performed on the machine (104±3.8 vs 84±3.8% nEMG respectively, P<0.0001). By contrast, crunches performed on Swiss ball induced lower activity of the rectus femoris than crunches in training machine (27±3.7 vs 65±3.8% nEMG respectively, P<0.0001) Further, gender, age and musculoskeletal pain did not significantly influence the findings. Crunches on a Swiss ball with added elastic resistance induces high rectus abdominis activity accompanied by low hip flexor activity which could be beneficial for individuals with low back pain. In opposition, the lower rectus abdominis activity and higher rectus femoris activity observed in machine warrant caution for individuals with lumbar pain. Importantly, both men and women, younger and elderly, and individuals with and without pain benefitted equally from the exercises.
Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte
2016-04-23
This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player's performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive.
Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M. Charlotte
2016-01-01
This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features derived from the properties of two highest peaks as important predictors of personal shot effectiveness. Activation sequence profiles helped in analyzing muscle orchestration during golf shot, exposing a specific avalanche pattern, but data from more players are needed for stronger conclusions. Results demonstrate that information arising from an EMG signal stream is useful for predicting golf shot success, in terms of club head speed and ball carry distance, with acceptable accuracy. Surface EMG data, collected with a goal to automatically evaluate golf player’s performance, enables wearable computing in the field of ambient intelligence and has potential to enhance exercising of a long carry distance drive. PMID:27120604
Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.
Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W
2015-11-01
The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.
Beniczky, Sándor; Conradsen, Isa; Moldovan, Mihai; Jennum, Poul; Fabricius, Martin; Benedek, Krisztina; Andersen, Noémi; Hjalgrim, Helle; Wolf, Peter
2014-07-01
To investigate the characteristics of sustained muscle activation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), as compared to voluntary muscle activation. The main goal was to find surface electromyography (EMG) features that can distinguish between convulsive epileptic seizures and convulsive PNES. In this case-control study, surface EMG was recorded from the deltoid muscles during long-term video-electroencephalography (EEG) monitoring in 25 patients and in 21 healthy controls. A total of 46 clinical episodes were recorded: 28 generalized tonic-clonic seizures (GTCS) from 14 patients with epilepsy, and 18 convulsive PNES from 12 patients (one patient had both GTCS and PNES). The healthy controls were simulating GTCS. To quantitatively characterize the signals we calculated the following parameters: root mean square (RMS) of the amplitude, median frequency (MF), coherence, and duration of the seizures, of the clonic EMG discharges, and of the silent periods between the cloni. Based on wavelet analysis, we distinguished between a low-frequency component (LF 2-8 Hz) and a high-frequency component (HF 64-256 Hz). Duration of the seizure, and separation between the tonic and the clonic phases distinguished at group-level but not at individual level between convulsive PNES and GTCS. RMS, temporal dynamics of the HF/LF ratio, and the evolution of the silent periods differentiated between epileptic and nonepileptic convulsive seizures at the individual level. A combination between HF/LF ratio and RMS separated all PNES from the GTCS. A blinded review of the EMG features distinguished correctly between GTCS and convulsive PNES in all cases. The HF/LF ratio and the RMS of the PNES were smaller compared to the simulated seizures. In addition to providing insight into the mechanism of muscle activation during convulsive PNES, these results have diagnostic significance, at the individual level. Surface EMG features can accurately distinguish convulsive epileptic from nonepileptic psychogenic seizures, even in PNES cases without rhythmic clonic movements. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Bevilaqua-Grossi, Débora; Monteiro-Pedro, Vanessa; de Vasconcelos, Rodrigo Antunes; Arakaki, Juliano Coelho; Bérzin, Fausto
2006-01-01
Study design Controlled laboratory study. Objectives The purposes of this paper were to investigate (d) whether vastus medialis obliquus (VMO), vastus lateralis longus (VLL) and vastus lateralis obliquus (VLO) EMG activity can be influenced by hip abduction performed by healthy subjects. Background Some clinicians contraindicate hip abduction for patellofemoral patients (with) based on the premise that hip abduction could facilitate the VLL muscle activation leading to a VLL and VMO imbalance Methods and measures Twenty-one clinically healthy subjects were involved in the study, 10 women and 11 men (aged X = 23.3 ± 2.9). The EMG signals were collected using a computerized EMG VIKING II, with 8 channels and three pairs of surface electrodes. EMG activity was obtained from MVIC knee extension at 90° of flexion in a seated position and MVIC hip abduction at 0° and 30° with patients in side-lying position with the knee in full extension. The data were normalized in the MVIC knee extension at 50° of flexion in a seated position, and were submitted to ANOVA test with subsequent application of the Bonferroni multiple comparisons analysis test. The level of significance was defined as p ≤ 0.05. Results The VLO muscle demonstrated a similar pattern to the VMO muscle showing higher EMG activity in MVIC knee extension at 90° of flexion compared with MVIC hip abduction at 0° and 30° of abduction for male (p < 0.0007) and MVIC hip abduction at 0° of abduction for female subjects (p < 0.02196). There were no statistically significant differences in the VLL EMG activity among the three sets of exercises tested. Conclusion The results showed that no selective EMG activation was observed when comparison was made between the VMO, VLL and VLO muscles while performing MVIC hip abduction at 0° and 30° of abduction and MVIC knee extension at 90° of flexion in both male and female subjects. Our findings demonstrate that hip abduction do not facilitated VLL and VLO activity in relation to the VMO, however, this study included only healthy subjects performing maximum voluntary isometric contraction contractions, therefore much remains to be discovered by future research PMID:16817971
Leal de Godoy, Camila Haddad; Motta, Lara Jansiski; Garcia, Eugenio Jose; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Sfalcin, Ravana Angelini; Motta, Pamella de Barros; Politti, Fabiano; Bussadori, Sandra Kalil
2017-01-01
[Purpose] Problems involving the temporomandibular joint and associated structures can lead to temporomandibular disorder (TMD). The aim of the present study was to evaluate muscle activity in individuals with a diagnosis of TMD before and after treatment with low-level laser therapy (LLLT) through the use of electromyography (EMG). [Subjects and Methods] Male and female individuals aged 14 to 23 years were evaluated. TMD was determined by a clinical examination and the administration of the Research Diagnostic Criteria for Temporomandibular Disorders, followed by the evaluation of sensitivity to palpation of the masseter and anterior temporal muscles as well as the EMG determination of muscle activity. The participants were randomly allocated to an active LLLT group (n=9) and sham group (n=7). Twelve sessions of LLLT were conducted using a wavelength of 780 nm, energy density of 25 J/cm2, power of 50 mW, power density of 1.25 W/cm2 and a 20-second exposure time or sham LLLT. Muscle activity was determined prior to treatment and after the last session. [Results] During the isometric evaluation of the masseter and anterior temporal muscles, an increase in the mean EMG signal was found in the group submitted to active LLLT. When evaluated individually, some participants in the active LLLT group demonstrated a reduction in muscle activity, but no significant differences were found in the mean EMG signal between the initial and final evaluations. [Conclusion] Further studies with a larger sample size are needed to confirm the present findings. PMID:29643585
An Implanted Upper-Extremity Neuroprosthesis Using Myoelectric Control
Kilgore, Kevin L.; Hoyen, Harry A.; Bryden, Anne M.; Hart, Ronald L.; Keith, Michael W.; Peckham, P. Hunter
2009-01-01
Purpose The purpose of this study was evaluate the potential of a second-generation implantable neuroprosthesis that provides improved control of hand grasp and elbow extension for individuals with cervical level spinal cord injury. The key feature of this system is that users control their stimulated function through electromyographic (EMG) signals. Methods The second-generation neuroprosthesis consists of 12 stimulating electrodes, 2 EMG signal recording electrodes, an implanted stimulator-telemeter device, an external control unit, and a transmit/receive coil. The system was implanted in a single surgical procedure. Functional outcomes for each subject were evaluated in the domains of body functions and structures, activity performance, and societal participation. Results Three individuals with C5/C6 spinal cord injury received system implantation with subsequent prospective evaluation for a minimum of 2 years. All 3 subjects demonstrated that EMG signals can be recorded from voluntary muscles in the presence of electrical stimulation of nearby muscles. Significantly increased pinch force and grasp function was achieved for each subject. Functional evaluation demonstrated improvement in at least 5 activities of daily living using the Activities of Daily Living Abilities Test. Each subject was able to use the device at home. There were no system failures. Two of 6 EMG electrodes required surgical revision because of suboptimal location of the recording electrodes. Conclusions These results indicate that a neuroprosthesis with implanted myoelectric control is an effective method for restoring hand function in midcervical level spinal cord injury. Type of study/level of evidence Therapeutic IV. PMID:18406958
Bench press and push-up at comparable levels of muscle activity results in similar strength gains.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martin, Fernando; Tella, Victor; Andersen, Lars L
2015-01-01
Electromyography (EMG) exercise evaluation is commonly used to measure the intensity of muscle contraction. Although researchers assume that biomechanically comparable resistance exercises with similar high EMG levels will produce similar strength gains over the long term, no studies have actually corroborated this hypothesis. This study evaluated EMG levels during 6 repetition maximum (6RM) bench press and push-up, and subsequently performed a 5-week training period where subjects were randomly divided into 3 groups (i.e., 6RM bench press group, 6RM elastic band push-up group, or control group) to evaluate muscle strength gains. Thirty university students with advanced resistance training experience participated in the 2-part study. During the training period, exercises were performed using the same loads and variables that were used during the EMG data collection. At baseline, EMG amplitude showed no significant difference between 6RM bench press and band push-up. Significant differences among the groups were found for percent change (Δ) between pretest and posttest for 6RM (p = 0.017) and for 1 repetition maximum (1RM) (p < 0.001). Six repetition maximum bench press group and 6RM elastic band push-up group improved their 1RM and 6RM (Δ ranging from 13.65 to 22.21) tests significantly with similar gains, whereas control group remains unchanged. Thus, when the EMG values are comparable and the same conditions are reproduced, the aforementioned exercises can provide similar muscle strength gains.
Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients
Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.
2013-01-01
Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (p<.01) for women with myofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356
Barbero, Marco; Falla, Deborah; Mafodda, Luca; Cescon, Corrado; Gatti, Roberto
2016-12-01
To apply topographical mapping of the electromyography (EMG) amplitude recorded from the upper trapezius muscle to evaluate the distribution of activity and the location of peak activity during a shoulder elevation task in participants with and without myofascial pain and myofascial trigger points (MTrP) and compare this location with the site of the MTrP. Thirteen participants with myofascial pain and MTrP in the upper trapezius muscle and 12 asymptomatic individuals participated. High-density surface EMG was recorded from the upper trapezius muscle using a matrix of 64 surface electrodes aligned with an anatomic landmark system (ALS). Each participant performed a shoulder elevation task consisting of a series of 30 s ramped contractions to 15% or 60% of their maximal voluntary contraction (MVC) force. Topographical maps of the EMG average rectified value were computed and the peak EMG amplitude during the ramped contractions was identified and its location determined with respect to the ALS. The location of the MTrP was also determined relative to the ALS and Spearman correlation coefficients were used to examine the relationship between MTrP and peak EMG amplitude location. The location of the peak EMG amplitude was significantly (P<0.05) different between groups (participants with pain/MTrP: -0.32±1.2 cm at 15% MVC and -0.35±0.9 cm at 60% MVC relative to the ALS; asymptomatic participants: 1.0±1.3 cm at 15% MVC and 1.3±1.1 cm relative to the ALS). However, no correlation was observed between the position of the MTrP and peak EMG amplitude during the ramped contractions at either force level (15%: rs=0.039, P=0.9; 60%: rs=-0.087, P=0.778). People with myofascial pain and MTrP displayed a caudal shift of the distribution of upper trapezius muscle activity compared with asymptomatic individuals during a submaximal shoulder elevation task. For the first time, we show that the location of peak muscle activity is not associated with the location of the MTrP.
ERIC Educational Resources Information Center
Yang, Manshu; Chow, Sy-Miin
2010-01-01
Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…
The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance
Saeterbakken, Atle Hole; Mo, Dag-André; Scott, Suzanne; Andersen, Vidar
2017-01-01
Abstract The aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes. PMID:28713459
The Effects of Bench Press Variations in Competitive Athletes on Muscle Activity and Performance.
Saeterbakken, Atle Hole; Mo, Dag-André; Scott, Suzanne; Andersen, Vidar
2017-06-01
The aim of the study was to compare the EMG activity performing 6RM competition style bench press (flat bench-wide grip) with 1) medium and narrow grip widths on a flat bench and 1) inclined and declined bench positions with a wide grip. Twelve bench press athletes competing at national and international level participated in the study. EMG activity was measured in the pectoralis major, anterior and posterior deltoid, biceps brachii, triceps brachii and latissimus dorsi. Non-significant differences in activation were observed between the three bench positions with the exception of 58.5-62.6% lower triceps brachii activation, but 48.3-68.7% greater biceps brachii activation in the inclined bench compared with the flat and declined bench position. Comparing the three grip widths, non-significant differences in activations were observed, with the exception of 25.9-30.5% lower EMG activity in the biceps brachii using a narrow grip, compared to the medium and wide grip conditions. The 6-RM loads were 5.8-11.1% greater using a medium and wide grip compared to narrow grip width and 18.5-21.5% lower in the inclined bench position compared with flat and declined. Comparing the EMG activity during the competition bench press style with either the inclined and declined bench position (wide grip) or using a narrow and medium grip (flat bench), only resulted in different EMG activity in the biceps- and triceps brachii. The 6RM loads varied with each bench press variation and we recommend the use of a wide grip on a flat bench during high load hypertrophy training to bench press athletes.
Krause, David A; Dueffert, Lucas G; Postma, Jaclyn L; Vogler, Eric T; Walsh, Amy J; Hollman, John H
External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Quasi-experimental repeated-measures study. Level 5. A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side plank position is preferred as compared with standing or side lying.
New method of neck surface electromyography for the evaluation of tongue-lifting activity.
Manda, Y; Maeda, N; Pan, Q; Sugimoto, K; Hashimoto, Y; Tanaka, Y; Kodama, N; Minagi, S
2016-06-01
Elevation of the posterior part of the tongue is important for normal deglutition and speech. The purpose of this study was to develop a new surface electromyography (EMG) method to non-invasively and objectively evaluate activity in the muscles that control lifting movement in the posterior tongue. Neck surface EMG (N-EMG) was recorded using differential surface electrodes placed on the neck, 1 cm posterior to the posterior border of the mylohyoid muscle on a line orthogonal to the lower border of the mandible. Experiment 1: Three healthy volunteers (three men, mean age 37·7 years) participated in an evaluation of detection method of the posterior tongue lifting up movement. EMG recordings from the masseter, temporalis and submental muscles and N-EMG revealed that i) N-EMG was not affected by masseter muscle EMG and ii) N-EMG activity was not observed during simple jaw opening and tongue protrusion, revealing the functional difference between submental surface EMG and N-EMG. Experiment 2: Seven healthy volunteers (six men and one woman, mean age 27·9 years) participated in a quantitative evaluation of muscle activity. Tongue-lifting tasks were perfor-med, exerting a prescribed force of 20, 50, 100 and 150 gf with visual feedback. For all subjects, a significant linear relationship was observed bet-ween the tongue-lifting force and N-EMG activity (P < 0·01). These findings indicate that N-EMG can be used to quantify the force of posterior tongue lifting and could be useful to evaluate the effect of tongue rehabilitation in future studies. © 2016 John Wiley & Sons Ltd.
Electromyographic analysis of trunk and hip muscles during resisted lateral band walking.
Youdas, James W; Foley, Brooke M; Kruger, BreAnna L; Mangus, Jessica M; Tortorelli, Alis M; Madson, Timothy J; Hollman, John H
2013-02-01
The purpose of this study was to simultaneously quantify bilateral activation/recruitment levels (% maximum voluntary isometric contraction [MVIC]) for trunk and hip musculature on both moving and stance lower limbs during resisted lateral band walking. Differential electromyographic (EMG) activity was recorded in neutral, internal, and external hip rotation in 21 healthy participants. EMG signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz during three consecutive lateral steps. Gluteus medius average EMG activation was greater (p = 0.001) for the stance limb (52 SD 18% MVIC) than moving limb (35 SD 16% MVIC). Gluteus maximus EMG activation was greater (p = 0.002) for the stance limb (19 SD 13% MVIC) than moving limb (13 SD 9% MVIC). Erector spinae activation was greater (p = 0.007) in hip internal rotation (30 SD 13% MVIC) than neutral rotation (26 SD 10% MVIC) and the moving limb (31 SD 15% MVIC) was greater (p = 0.039) than the stance limb (23 SD 11% MVIC). Gluteus medius and maximus muscle activation were greater on the stance limb than moving limb during resisted lateral band walking. Therefore, clinicians may wish to consider using the involved limb as the stance limb during resisted lateral band walking exercise.
Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne
2017-06-01
The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.
Väätäinen, U; Airaksinen, O; Jaroma, H; Kiviranta, I
1995-01-01
The alterations in thigh muscle properties of chondromalacia patellae patients during isometric and dynamic endurance tests were studied using a variokinetic knee testing system linked to surface EMG. A total of 41 patients (chondromalacia group) with arthroscopically certified chondromalacia of the patella were studied. The control group consisted of 31 healthy adult volunteers with no history of knee pain or trauma. Peak torque values were 21% (p < 0.01) and force output values 25% (p < 0.05) lower on the symptomatic side of the chondromalacia group than in the control group. The decrease in the ratio between integrated EMG (IEMG) and measured force were found in all parts of the quadriceps femoris muscle in patients with chondromalacia of the patella in isometric extension. No change in the normalized IEMG levels of the thigh muscles were found between chondromalacia patients and controls in dynamic endurance test. The severity of the chondromalacia of the patella did not affect the level of electromyographic activation in thigh muscles. The ratio of normalized EMG levels of vastus medialis and vastus lateralis did not differ between the groups. The present study showed that chondromalacia patellae patients have reduced force and electromyographic activation levels of quadriceps femoris muscle. Especially, the explosive strength of the quadriceps femoris muscle is reduced.
Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro
2016-01-01
The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.
Fryer, Gary; Bird, Michael; Robbins, Barry; Johnson, Jane C
2017-07-01
This single group, randomized, cross-over study explored whether manual therapy alters motor tone of deep thoracic back muscles by examining resting electromyographic activity (EMG) after 2 types of manual therapy and a sham control intervention. Twenty-two participants with thoracic spinal pain (15 females, 7 males, mean age 28.1 ± 6.4 years) had dual fine-wire, intramuscular electrodes inserted into deep transversospinalis muscles at a thoracic level where tissues appeared abnormal to palpation (AbP) and at 2 sites above and below normal and non-tender to palpation (NT). A surface electrode was on the contralateral paraspinal mass at the level of AbP. EMG signals were recorded for resting prone, two 3-s free neck extension efforts, two 3-s resisted maximal voluntary isometric contractions (MVIC), and resting prone before the intervention. Randomized spinal manipulation, counterstrain, or sham manipulation was delivered and EMG re-measured. Participants returned 1 and 2 weeks later for the remaining 2 treatments. Reductions in resting EMG followed counterstrain in AbP (median decrease 3.3%, P = 0.01) and NT sites (median decrease 1.0%, P = 0.05) and for the surface electrode site (median decrease 2.0%, P = 0.009). Reduction in EMG following counterstrain during free neck extension was found for the surface electrode site (median decrease 2.7%, P < 0.01). Spinal manipulation produced no change in EMG, whereas counterstrain technique produced small significant reductions in paraspinal muscle activity during prone resting and free neck extension conditions. The clinical relevance of these changes is unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heald, Elizabeth; Hart, Ronald; Kilgore, Kevin; Peckham, P Hunter
2017-06-01
Previous studies have demonstrated the presence of intact axons across a spinal cord lesion, even in those clinically diagnosed with complete spinal cord injury (SCI). These axons may allow volitional motor signals to be transmitted through the injury, even in the absence of visible muscle contraction. To demonstrate the presence of volitional electromyographic (EMG) activity below the lesion in motor complete SCI and to characterize this activity to determine its value for potential use as a neuroprosthetic command source. Twenty-four subjects with complete (AIS A or B), chronic, cervical SCI were tested for the presence of volitional below-injury EMG activity. Surface electrodes recorded from 8 to 12 locations of each lower limb, while participants were asked to attempt specific movements of the lower extremity in response to visual and audio cues. EMG trials were ranked through visual inspection, and were scored using an amplitude threshold algorithm to identify channels of interest with volitional motor unit activity. Significant below-injury muscle activity was identified through visual inspection in 16 of 24 participants, and visual inspection rankings were well correlated to the algorithm scoring. The surface EMG protocol utilized here is relatively simple and noninvasive, ideal for a clinical screening tool. The majority of subjects tested were able to produce a volitional EMG signal below their injury level, and the algorithm developed allows automatic identification of signals of interest. The presence of this volitional activity in the lower extremity could provide an innovative new command signal source for implanted neuroprostheses or other assistive technology.
Gorassini, Monica A.; Norton, Jonathan A.; Nevett-Duchcherer, Jennifer; Roy, Francois D.; Yang, Jaynie F.
2009-01-01
Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury. PMID:19073799
Ro, U J; Kim, N C; Kim, H S
1990-08-01
The purpose of this study is to assess if EMG biofeedback training with progressive muscle relaxation training is effective in reducing the EMG level in patients with tension headaches. This study which lasted from 23 October to 30 December 1989, was conducted on 10 females who were diagnosed as patients with tension headaches and selected from among volunteers at C. University in Seoul. The process of the study was as follows: First, before the treatment, the baseline was measured for two weeks and the level of EMG was measured five times in five minutes. And then EMG biofeedback training was used for six weeks, 12 sessions in all, and progressive muscle relaxation was done at home by audio tape over eight weeks. Each session was composed of a 5-minute baseline, two 5-minute EMG biofeedback training periods and a 5-minute self-control stage. Each stage was followed by a five minute rest period. So each session took a total of 40 minutes. The EMG level was measured by EMG biofeedback (Autogenic-Cyborg: M 130 EMG module). The results were as follows: 1. The average age of the subjects was 44.1 years and the average history of headache was 10.6 years (range: 6 months-20 years). 2. The level of EMG was lowest between the third and the fourth week of the training except in Cases I and IV. 3. The patients began to show a nonconciliatory attitude at the first session of the fifth week of the training.
An EMG-CT method using multiple surface electrodes in the forearm.
Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru
2014-12-01
Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong
2013-11-01
We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p<0.001; OR 36.58; 95% CI 15.85-84.43). If the median CMAP amplitude was ≤ 2.1 mV, the rate of occurrence of spontaneous EMG activity was >95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of spontaneous activity in those CTS patients whose NCS reveals CMAP amplitudes between 2.1 mV and the lower normal limit (4.9mV in the present study). Using NCS, electromyographers can predict the presence of spontaneous EMG activity in CTS patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Carr, Jennifer A; Ellerby, David J; Marsh, Richard L
2011-10-15
Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length-tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length-tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length-tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may instead be related to promoting stability at the knee. The work required to lengthen the ILPO during stance is provided by co-contracting knee flexors. We suggest that this potentially energetically expensive co-contraction serves to stabilize the knee in early stance by increasing the mechanical impedance of the joint.
Rutkowska-Kucharska, Alicja; Szpala, Agnieszka
2018-01-01
The question that was asked in the study was whether a training routine based on curl-up exercises with a load provided by body mass of the person increases local muscle strength or local muscle endurance. The aim of this study was to evaluate the effect of 4 weeks training based on a small load and low movement velocity on electrical activity (EMG), cross-sectional area (CSA) of core stabilisers. The EMG activity was measured in the rectus abdominis (RA), obliquus abdominis externus and erector spinae (ES) muscles. CSA of the muscles: RA, anterolateral abdominal, psoas major, quadratus lumborum, ES, and multifidus at the level of L3-L4 were measured too. The training increased the CSA and thickness in most of the muscles studied. Statistically significant correlation was found only for the ES circumference (left side) and EMG activity for the right side (r= 0.627, p= 0.022) and left side (r= 0.624, p= 0.023). The training programme resulted in a increase in the number of curl-up repetitions revealing an endurance increase in abdominal muscles. Furthermore, there was a increase in the EMG activity of the RA. An increase of the CSA of all tested muscles showed an increase of muscle active force.
FERREIRA, Ana Paula de Lima; da COSTA, Dayse Regina Alves; de OLIVEIRA, Ana Izabela Sobral; CARVALHO, Elyson Adam Nunes; CONTI, Paulo César Rodrigues; COSTA, Yuri Martins; BONJARDIM, Leonardo Rigoldi
2017-01-01
Abstract Studies to assess the effects of therapies on pain and masticatory muscle function are scarce. Objective To investigate the short-term effect of transcutaneous electrical nerve stimulation (TENS) by examining pain intensity, pressure pain threshold (PPT) and electromyography (EMG) activity in patients with temporomandibular disorder (TMD). Material and Methods Forty patients with myofascial TMD were enrolled in this randomized placebo-controlled trial and were divided into two groups: active (n=20) and placebo (n=20) TENS. Outcome variables assessed at baseline (T0), immediately after (T2) and 48 hours after treatment (T1) were: pain intensity with the aid of a visual analogue scale (VAS); PPT of masticatory and cervical structures; EMG activity during mandibular rest position (MR), maximal voluntary contraction (MVC) and habitual chewing (HC). Two-way ANOVA for repeated measures was applied to the data and the significance level was set at 5%. Results There was a decrease in the VAS values at T1 and T2 when compared with T0 values in the active TENS group (p<0.050). The PPT between-group differences were significant at T1 assessment of the anterior temporalis and sternocleidomastoid (SCM) and T2 for the masseter and the SCM (p<0.050). A significant EMG activity reduction of the masseter and anterior temporalis was presented in the active TENS during MR at T1 assessment when compared with T0 (p<0.050). The EMG activity of the anterior temporalis was significantly higher in the active TENS during MVC at T1 and T2 when compared with placebo (p<0.050). The EMG activity of the masseter and anterior temporalis muscle was significantly higher in the active TENS during HC at T1 when compared with placebo (p<0.050). Conclusions The short-term therapeutic effects of TENS are superior to those of the placebo, because of reported facial pain, deep pain sensitivity and masticatory muscle EMG activity improvement. PMID:28403351
Graziadio, S; Tomasevic, L; Assenza, G; Tecchio, F; Eyre, J A
2012-12-01
Bilateral changes in the hemispheric reorganisation have been observed chronically after unilateral stroke. Our hypotheses were that activity dependent competition between the lesioned and non-lesioned corticospinal systems would result in persisting asymmetry and be associated with poor recovery. Eleven subjects (medium 6.5 years after stroke) were compared to 9 age-matched controls. The power spectral density (PSD) of the sensorimotor electroencephalogram (SM1-EEG) and electromyogram (EMG) and corticomuscular coherence (CMC) were studied during rest and isometric contraction of right or left opponens pollicis (OP). Global recovery was assessed using NIH score. There was bilateral loss of beta frequency activity in the SM1-EEGs and OP-EMGs in strokes compared to controls. There was no difference between strokes and controls in symmetry indices estimated between the two corticospinal systems for SM1-EEG, OP-EMG and CMC. Performance correlated with preservation of beta frequency power in OP-EMG in both hands. Symmetry indices for the SM1-EEG, OP-EMG and CMC correlated with recovery. Significant changes occurred at both cortical and spinomuscular levels after stroke but to the same degree and in the same direction in both the lesioned and non-lesioned corticospinal systems. Global recovery correlated with the degree of symmetry between corticospinal systems at all three levels - cortical and spinomuscular levels and their connectivity (CMC), but not with the absolute degree of abnormality. Re-establishing balance between the corticospinal systems may be important for overall motor function, even if it is achieved at the expense of the non-lesioned system. Copyright © 2012 Elsevier Inc. All rights reserved.
Fuentes, Aler D; Sforza, Chiarella; Miralles, Rodolfo; Ferreira, Cláudia L; Mapelli, Andrea; Lodetti, Gianluigi; Martin, Conchita
2017-05-01
The aim of this study was to investigate whether the presence of a natural mediotrusive contact influences electromyographic (EMG) pattern activity in patients with temporomandibular disorders (TMDs). Bilateral surface EMG activity of the anterior temporalis (AT), masseter (MM), and sternocleidomastoid (SCM) muscles was recorded in 43 subjects during unilateral chewing and tooth grinding. Thirteen patients had TMD and a natural mediotrusive contact (Group 1), 15 had TMD without a natural mediotrusive contact (Group 2), and 15 were healthy subjects without mediotrusive contacts (Group 3). All subjects were examined according to the Research Diagnostic Criteria for TMD (RDC/TMD). All EMG values were standardized as the percentage of EMG activity recorded during maximum isometric contraction on cotton rolls. EMG activity from all muscles measured showed no significant differences between groups during chewing and grinding. Overall, in all groups, the EMG activity during chewing was higher in the working side than the non-working side in AT and MM muscles. During grinding, these differences were only found in masseter muscles (mainly in eccentric grinding). SCM EMG activity did not show significant differences during chewing and grinding tasks. Symmetry, muscular balance, and absence of lateral jaw displacement were common findings in all groups. EMG results suggest that the contribution of a natural mediotrusive occlusal contact to EMG patterns in TMD patients is minor. Therefore, the elimination of this occlusal feature for therapeutic purposes could be not indicated.
Kafri, Michal; Zaltsberg, Nir; Dickstein, Ruth
2015-01-01
Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.
Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele
2012-08-01
To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z
2006-03-01
Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.
Electromyographic decoding of response to command in disorders of consciousness.
Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Schnakers, Caroline; Laureys, Steven; Noirhomme, Quentin
2016-11-15
To propose a new methodology based on single-trial analysis for detecting residual response to command with EMG in patients with disorders of consciousness (DOC), overcoming the issue of trial dependency and decreasing the influence of a patient's fluctuation of vigilance or arousal over time on diagnostic accuracy. Forty-five patients with DOC (18 with vegetative/unresponsive wakefulness syndrome [VS/UWS], 22 in a minimally conscious state [MCS], 3 who emerged from MCS [EMCS], and 2 with locked-in syndrome [LIS]) and 20 healthy controls were included in the study. Patients were randomly instructed to either move their left or right hand or listen to a control command ("It is a sunny day") while EMG activity was recorded on both arms. Differential EMG activity was detected in all MCS cases displaying reproducible response to command at bedside on multiple assessments, even though only 6 of the 14 individuals presented a behavioral response to command on the day of the EMG assessment. An EMG response was also detected in all EMCS and LIS patients, and 2 MCS patients showing nonreflexive movements without command following at the bedside. None of the VS/UWS presented a response to command with this method. This method allowed us to reliably distinguish between different levels of consciousness and could potentially help decrease diagnostic errors in patients with motor impairment but presenting residual motor activity. © 2016 American Academy of Neurology.
Muscle activity levels in upper-body push exercises with different loads and stability conditions.
Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan Carlos; Martin, Fernando; Rogers, Michael E
2014-11-01
Exercises that aim to stimulate muscular hypertrophy and increase neural drive to the muscle fibers should be used during rehabilitation. Thus, it is of interest to identify optimal exercises that efficiently achieve high muscle activation levels. The purpose of this study was to compare the muscle activation levels during push-up variations (ie, suspended push-ups with/without visual input on different suspension systems, and push-ups on the floor with/without additional elastic resistance) with the bench press exercise and the standing cable press exercise both performed at 50%, 70%, and 85% of the 1-repetition maximum. Young fit male university students (N = 29) performed 3 repetitions in all conditions under the same standardized procedures. Average amplitude of the electromyogram (EMG) root mean square for the rectus abdominis, external oblique, sternocostal head of the pectoralis major, anterior deltoid, long head of the triceps brachii, upper trapezius, anterior serratus, and posterior deltoid was recorded. The EMG signals were normalized to the maximum voluntary isometric contraction. The EMG data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Elastic-resisted push-ups induce similar EMG stimulus in the prime movers as the bench press at high loads while also providing a greater core challenge. Suspended push-ups are a highly effective way to stimulate abdominal muscles. Pectoralis major, anterior deltoid, and anterior serratus are highly elicited during more stable pushing conditions, whereas abdominal muscles, triceps brachii, posterior deltoid, and upper trapezius are affected in the opposite manner.
Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A
1990-10-01
The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.
Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients.
von Lewinski, Friederike; Hofer, Sabine; Kaus, Jürgen; Merboldt, Klaus-Dietmar; Rothkegel, Holger; Schweizer, Renate; Liebetanz, David; Frahm, Jens; Paulus, Walter
2009-01-01
EMG-triggered electrostimulation (EMG-ES) may improve the motor performance of affected limbs of hemiparetic stroke patients even in the chronic stage. This study was designed to characterize cortical activation changes following intensified EMG-ES in chronic stroke patients and to identify predictors for successful rehabilitation depending on disease severity. We studied 9 patients with severe residual hemiparesis, who underwent 8 weeks of daily task-orientated multi-channel EMG-ES of the paretic arm. Before and after treatment, arm function was evaluated clinically and cortical activation patterns were assessed with functional MRI (fMRI) and/or transcranial magnetic stimulation (TMS). As response to therapy, arm function improved in a subset of patients with more capacity in less affected subjects, but there was no significant gain for those with Box & Block test values below 4 at inception. The clinical improvement, if any, was accompanied by an ipsilesional increase in the sensorimotor cortex (SMC) activation area in fMRI and enhanced intracortical facilitation (ICF) as revealed by paired TMS. The SMC activation change in fMRI was predicted by the presence or absence of motor-evoked potentials (MEPs) on the affected side. The present findings support the notion that intensified EMG-ES may improve the arm function in individual chronic hemiparetic stroke patients but not in more severely impaired individuals. Functional improvements are paralleled by increased ipsilesional SMC activation and enhanced ICF supporting neuroplasticity as contributor to rehabilitation. The clinical score at inception and the presence of MEPs have the best predictive potential.
Intra-session repeatability of lower limb muscles activation pattern during pedaling.
Dorel, Sylvain; Couturier, Antoine; Hug, François
2008-10-01
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise. Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output=200+/-12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA). No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles. Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.
Belbasis, Aaron; Fuss, Franz Konstantin
2018-01-01
Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency ( R 2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle activity. In summary, the smart compression garment based on FMG is a valid alternative to EMG-garments and provides more accurate results at high-speed activity (avoiding the electro-mechanical delay), as well as clearly measures the progress of muscle fatigue over time.
Belbasis, Aaron; Fuss, Franz Konstantin
2018-01-01
Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency (R2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle activity. In summary, the smart compression garment based on FMG is a valid alternative to EMG-garments and provides more accurate results at high-speed activity (avoiding the electro-mechanical delay), as well as clearly measures the progress of muscle fatigue over time. PMID:29725306
Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra
Sezgin, Necmettin
2012-01-01
The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379
Salonen, M A; Raustia, A M; Huggare, J A
1994-10-01
A clinical stomatognathic, cephalometric and electromyographic (EMG) study was performed in relation to 14 subjects (10 women, 4 men), each with an edentulous maxilla and residual mandibular dentition before and six months after treatment with complete upper and partial lower dentures. The mean age of the subjects was 54.4 years (range 43-64 years). The mean period of edentulousness and age of dentures were 22.5 years (range 15-33 years) and 14.1 (range 1.5-30 years), respectively. Natural head position was recorded (using a fluid-level method) and measured from cephalograms. EMG activity was measured in relation to masseter and temporal muscles. A decrease in clinical dysfunction index was noted in 12 of 14 subjects (86%). There was no change in cervical inclination, but a slight extension of the head was noted after treatment. Rapid recovery of the masticatory muscles was reflected in increased EMG activity, especially when biting in the maximal intercuspal position. In cases of edentulous maxilla and residual mandibular anterior dentition, treatment with a complete upper and lower partial denture had a favorable effect on craniomandibular disorders and masticatory-muscle function.
Embroidered Electromyography: A Systematic Design Guide.
Shafti, Ali; Ribas Manero, Roger B; Borg, Amanda M; Althoefer, Kaspar; Howard, Matthew J
2017-09-01
Muscle activity monitoring or electromyography (EMG) is a useful tool. However, EMG is typically invasive, expensive and difficult to use for untrained users. A possible solution is textile-based surface EMG (sEMG) integrated into clothing as a wearable device. This is, however, challenging due to 1) uncertainties in the electrical properties of conductive threads used for electrodes, 2) imprecise fabrication technologies (e.g., embroidery, sewing), and 3) lack of standardization in design variable selection. This paper, for the first time, provides a design guide for such sensors by performing a thorough examination of the effect of design variables on sEMG signal quality. Results show that imprecisions in digital embroidery lead to a trade-off between low electrode impedance and high manufacturing consistency. An optimum set of variables for this trade-off is identified and tested with sEMG during a variable force isometric grip exercise with n = 12 participants, compared with conventional gel-based electrodes. Results show that thread-based electrodes provide a similar level of sensitivity to force variation as gel-based electrodes with about 90% correlation to expected linear behavior. As proof of concept, jogging leggings with integrated embroidered sEMG are made and successfully tested for detection of muscle fatigue while running on different surfaces.
Raphael, K G; Janal, M N; Sirois, D A; Dubrovsky, B; Wigren, P E; Klausner, J J; Krieger, A C; Lavigne, G J
2013-12-01
Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n = 124) with a demographically matched control group without TMD (n = 46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artefacts were removed. Results indicated that median background EMG during these non-SB event periods was significantly higher (P < 0·01) for women with myofascial TMD (median = 3·31 μV and mean = 4·98 μV) than for control women (median = 2·83 μV and mean = 3·88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0-10 numerical scale) on post-sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. © 2013 John Wiley & Sons Ltd.
RIEDE, TOBIAS
2014-01-01
Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862
Clarys, J P; Cabri, J; Bollens, E; Sleeckx, R; Taeymans, J; Vermeiren, M; Van Reeth, G; Voss, G
1990-01-01
The quadruple approach in the title refers to four different studies over a period of 3 years. The common factor in these studies is the methodology of the (Brussels) Electromyographic Signal Processing and Analysis System (ESPAS), a hardware and software EMG data acquisition system that has constantly been improved. Therefore, the ESPAS methodology is described extensively (i.e. the electrodes, amplifier, tape-recorder and processing hardware). Experiment 1 investigated muscular behaviour in target shooting, both indoors (18 and 25 m) and outdoors (50, 70 and 90 m). It was found (via iEMG) that a significant increase in activity only exists between 25 and 50 m, and that there is no linear increase of activity with increased distance. No differences in muscular pattern (IDANCO system: Clarys and Cabri, 1988) or activity between the indoor distances and between the outdoor distances were found. Experiment 2 investigated the muscular economy of four string grips: the three-finger grip, two-finger grip, thumb grip and reversed grip. The largest variations in activity were found for the two most unfamiliar grips, i.e. the thumb and reversed grips; however, low iEMG and the rapid precision improvement (over a limited number of shots) suggest that the thumb grip, if practised long enough, might be the most economical technique. Experiment 3 attempted to differentiate muscular activity and a number of performance variables in three different populations of archers--Olympic athletes, National competitors and beginners--in order to obtain feedback regarding improved performance. Apparently, overall muscle pattern, intensities and arrow speed were not discriminatory. The differences found between the groups (or levels of skill) were affected by the ability to reproduce identical patterns and arrow velocities in consecutive shots and by the constancy of neuromuscular control of the M. trapezius, M. biceps brachii and M. extensor digitorum. Finally, Experiment 4 investigated the muscular activity of elite archers shooting at distances of 70 and 90 m with and without stabilizers. Differences in iEMG were not supported by differences in precision. Over time, the low iEMG in shooting without stabilizers increases precision and delays fatigue.
Muscular Activation During Plyometric Exercises in 90° of Glenohumeral Joint Abduction
Ellenbecker, Todd S.; Sueyoshi, Tetsuro; Bailie, David S.
2015-01-01
Background: Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Hypothesis: Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Study Design: Descriptive laboratory study. Methods: Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Results: Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Conclusion: Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°. PMID:25553216
Muscular activation during plyometric exercises in 90° of glenohumeral joint abduction.
Ellenbecker, Todd S; Sueyoshi, Tetsuro; Bailie, David S
2015-01-01
Plyometric exercises are frequently used to increase posterior rotator cuff and periscapular muscle strength and simulate demands and positional stresses in overhead athletes. The purpose of this study was to provide descriptive data on posterior rotator cuff and scapular muscle activation during upper extremity plyometric exercises in 90° of glenohumeral joint abduction. Levels of muscular activity in the posterior rotator cuff and scapular stabilizers will be high during plyometric shoulder exercises similar to previously reported electromyographic (EMG) levels of shoulder rehabilitation exercises. Descriptive laboratory study. Twenty healthy subjects were tested using surface EMG during the performance of 2 plyometric shoulder exercises: prone external rotation (PERP) and reverse catch external rotation (RCP) using a handheld medicine ball. Electrode application included the upper and lower trapezius (UT and LT, respectively), serratus anterior (SA), infraspinatus (IN), and the middle and posterior deltoid (MD and PD, respectively) muscles. A 10-second interval of repetitive plyometric exercise (PERP) and 3 repetitions of RCP were sampled. Peak and average normalized EMG data were generated. Normalized peak and average IN activity ranged between 73% and 102% and between 28% and 52% during the plyometric exercises, respectively, with peak and average LT activity measured between 79% and 131% and between 31% and 61%. SA activity ranged between 76% and 86% for peak and between 35% and 37% for average activity. Muscular activity levels in the MD and PD ranged between 49% and 72% and between 12% and 33% for peak and average, respectively. Moderate to high levels of muscular activity were measured in the rotator cuff and scapular stabilizers during these plyometric exercises with the glenohumeral joint abducted 90°.
Patterns of arm muscle activation involved in octopus reaching movements.
Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B
1998-08-01
The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.
Qian, Xueya; Li, Pin; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu
2017-03-01
To record and characterize electromyography (EMG) from the uterus and abdominal muscles during the nonlabor to first and second stages of labor and to define relationships to contractions. Nulliparous patients without any treatments were used (n = 12 nonlabor stage, 48 during first stage and 33 during second stage). Electromyography of both uterine and abdominal muscles was simultaneously recorded from electrodes placed on patients' abdominal surface using filters to separate uterine and abdominal EMG. Contractions of muscles were also recorded using tocodynamometry. Electromyography was characterized by analysis of various parameters. During the first stage of labor, when abdominal EMG is absent, uterine EMG bursts temporally correspond to contractions. In the second stage, uterine EMG bursts usually occur at same frequency as groups of abdominal bursts and precede abdominal bursts, whereas abdominal EMG bursts correspond to contractions and are accompanied by feelings of "urge to push." Uterine EMG increases progressively from nonlabor to second stage of labor. (1) Uterine EMG activity can be separated from abdominal EMG events by filtering. (2) Uterine EMG gradually evolves from the antepartum stage to the first and second stages of labor. (3) Uterine and abdominal EMG reflect electrical activity of the muscles during labor and are valuable to assess uterine and abdominal muscle events that control labor. (4) During the first stage of labor uterine, EMG is responsible for contractions, and during the second stage, both uterine and abdominal muscle participate in labor.
Richards, Jim; Thewlis, Dominic; Selfe, James; Cunningham, Andrew; Hayes, Colin
2008-01-01
Context: Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. Objective: To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60° of knee flexion while performing a single-limb squat at different decline angles. Design: Participants acted as their own controls in a repeated-measures design. Patients or Other Participants: We recruited 10 participants who had no pain, injury, or neurologic disorder. Intervention(s): Participants performed single-limb squats at different decline angles. Main Outcome Measure(s): Angle-specific knee and ankle moments were calculated at 60° of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60° of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. Results: An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P = .001), but EMG activity in the gastrocnemius increased between 16° and 24° (P = .018). Conclusions: As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24° decline angle compared with the 16° decline angle. This indicates that decline squats at an angle greater than 16° may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee. PMID:18833310
Dolan, P; Adams, M A
1993-01-01
The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.
1990-01-01
8 Posterior Ligamentous System..........11 Stoop Lift vs. Squat Lift...............17 Kyphosis.....................18 Lordosis ...of EMG electrodes .. ........... . 27 3. Plot of the EMG activity (% MVIC) recorded during a squat lift with the lumbar spine in lordosis . . 31 4...during a squat lift with the lumbar spine in lordosis . . . 33 6. Plot of the EMG activity (% MDA) recorded during a squat lift with the lumbar spine in
Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph
2017-09-01
This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.
Effect of a jig on EMG activity in different orofacial pain conditions.
Bodere, Celine; Woda, Alain
2008-01-01
The bite stop (jig) is commonly used in clinical practice. It has been recommended as a simple means to routinely record or provide centric relation closure and, more recently, to reduce migraines and tension-type headaches. However, the reason for the jig effect has yet to be explained. This study tested the hypothesis that it works through a decrease in masticatory muscle activity. The effect of a jig placed on the maxillary anterior teeth was investigated by recording the electromyographic (EMG) activity of the superficial masseter and anterior temporal muscles at postural position and when swallowing on the jig. EMG recordings were obtained from 2 groups of pain patients (myofascial and neuropathic) and from 2 groups of pain-free patients (disc derangement and controls) unaware of the role of dental occlusion treatments. EMG activity in postural position was higher in pain groups than in pain-free groups. The jig strongly but temporarily decreased the postural EMG activity for masseter muscles in all groups except for the neuropathic group and for temporal muscles in the myofascial group. The EMG activity when swallowing with the jig was reduced in control, disc derangement, and myofascial groups; however, EMG "hyperactivity" in the neuropathic pain group seemed to be locked. The decrease of postural EMG activity, especially in the myofascial group, was short lasting and cannot be considered as evidence to support the hypothesis of a long-term muscle relaxation jig effect. However, the results may uphold certain short-term clinical approaches.
de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J
2005-03-01
Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.
Caldas, A L; Machado-Pinheiro, W; Souza, L B; Motta-Ribeiro, G C; David, I A
2012-09-01
In the Stroop matching task, a Stroop word is compared to a colored bar. The origin of the conflict presented by this task is a topic of current debate. In an effort to disentangle nonresponse and response conflicts, we recorded electromyography (EMG) and event-related potentials (ERPs) while participants performed the task. The N450 component was sensitive to the relationship of color surfaces, regardless of the response, suggesting the participation of nonresponse conflict. Incompatible arrays (e.g., incongruent Stroop stimuli during "same" responses) presented a substantial amount of double EMG activation and slower EMG latencies, suggesting the participation of response conflict. We propose that both response and nonresponse conflicts are sources of these effects. The combined use of the EMG and ERP techniques played an important role in elucidating the conflicts immersed in the Stroop matching task. Copyright © 2012 Society for Psychophysiological Research.
Seven, Yasin B.; Mantilla, Carlos B.; Zhan, Wen-Zhi; Sieck, Gary C.
2012-01-01
We hypothesized that diaphragm muscle (DIAm) by a shift in the EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O2-5% CO2), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ~70 ms during airway occlusion to ~150 ms during eupnea. Within the initial non-stationary period of EMG activity 80–95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. PMID:22986086
Evaluating skeletal muscle electromechanical delay with intramuscular pressure.
Go, Shanette A; Litchy, William J; Evertz, Loribeth Q; Kaufman, Kenton R
2018-06-08
Intramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD). Force, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated. A statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms). IMP reflects changes in muscle tension due to the contractile muscle elements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey
2013-06-01
Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG.
Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey
2013-01-01
Objective To evaluate the value of free-run electromyography (f-EMG) monitoring of extraocular cranial nerves (EOCN) III, IV, and VI during expanded endonasal surgery (EES) of the skull base in reducing iatrogenic cranial nerve (CN) deficits. Design We retrospectively identified 200 patients out of 990 who had at least one EOCN monitored during EES. We further separated patients into groups according to the specific CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as Group I and those who did not as Group II. Results A total of 696 EOCNs were monitored. The number of muscles supplied by EOCNs that had SG f-EMG activity was 88, including CN III = 46, CN IV = 21, and CN VI = 21. There were two deficits involving CN VI in patients who had SG f-EMG activity during surgery. There were 14 deficits observed, including CN III = 3, CN IV = 2, and CN VI = 9 in patients who did not have SG f-EMG activity during surgery. Conclusions f-EMG monitoring of EOCN during EES can be useful in identifying the location of the nerve. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of EOCN during EES need to be done with both f-EMG and triggered EMG. PMID:23943720
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław
Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435
Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney
2017-09-01
The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.
Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D
2012-12-01
Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.
Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.
2013-01-01
Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017
Different fatigue-resistant leg muscles and EMG response during whole-body vibration.
Simsek, Deniz
2017-12-01
The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at p<.05. The study results showed that static WBV stimuli given at different frequencies and amplitudes resulted in a significant increase (p<.05) in compared, the LFR group showed significantly (1) higher rates of quadriceps femoris and hamstring muscle fatigue (p<.05), (2) higher levels of knee extensor and flexor torque (p<.05) and (3) higher percentage increases in EMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced embodied response following ambiguous emotional processing.
Beffara, Brice; Ouellet, Marc; Vermeulen, Nicolas; Basu, Anamitra; Morisseau, Tiffany; Mermillod, Martial
2012-08-01
It has generally been assumed that high-level cognitive and emotional processes are based on amodal conceptual information. In contrast, however, "embodied simulation" theory states that the perception of an emotional signal can trigger a simulation of the related state in the motor, somatosensory, and affective systems. To study the effect of social context on the mimicry effect predicted by the "embodied simulation" theory, we recorded the electromyographic (EMG) activity of participants when looking at emotional facial expressions. We observed an increase in embodied responses when the participants were exposed to a context involving social valence before seeing the emotional facial expressions. An examination of the dynamic EMG activity induced by two socially relevant emotional expressions (namely joy and anger) revealed enhanced EMG responses of the facial muscles associated with the related social prime (either positive or negative). These results are discussed within the general framework of embodiment theory.
Electromyographic activity of mystacial pad musculature during whisking behavior in the rat.
Carvell, G E; Simons, D J; Lichtenstein, S H; Bryant, P
1991-01-01
Cinematographic measurements of whisker movements generated by behaving rats were compared with electromyographic (EMG) activity recorded simultaneously from mystacial pad musculature. Muscle activity consisted of repetitive bursts, each of which initiated a "whisking" cycle consisting of a protraction followed by a retraction. Protraction amplitude and velocity were directly proportional to the amount of EMG activity during forward whisker movement. Overtime, the intensity of muscle discharge determined the set point about which the vibrissae moved; higher levels of muscle activity resulted in a greater degree of overall whisker protraction. These findings are consistent with the known anatomy of the facial musculature and underscore the importance of whisker protraction in the acquisition of tactile information by the vibrissae.
Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.
ERIC Educational Resources Information Center
Engelhorn, Richard
1983-01-01
Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
NASA Technical Reports Server (NTRS)
Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869
Patterns of muscle activity underlying object-specific grasp by the macaque monkey.
Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N
2004-09-01
During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.
Lyytinen, T.; Bragge, T.; Hakkarainen, M.; Liikavainio, T.; Karjalainen, P.A.; Arokoski, J.P.
2016-01-01
Objectives: To determine the repeatability of knee joint impulsive loading measurements with skin-mounted accelerometers (SMAs) and lower limb surface electromyography (EMG) recordings during gait. Methods: Triaxial SMA and EMG from 4 muscles during level and stair walking in nine healthy and nine knee osteoarthritis (OA) subjects were used. The initial peak acceleration (IPA), root mean square (RMS), maximal acceleration transient rate (ATRmax) and mean EMG activity (EMGact) were calculated. The coefficient of variation (CV) and the intraclass correlation coefficient (ICC) were calculated to measure repeatability. Results: The CV and ICC of RMS accelerations ranged from 4.9% to 10.9% and from 0.69 to 0.96 in both study groups during level walking. The CV and ICC of IPA and ATRmax varied from 7.7% to 14.2% and from 0.85 to 0.99 during level and stairs up walking in healthy subjects. The CV and ICC of EMGact ranged from 8.3% to 31.7% and from 0.16 to 0.97 in both study groups. Conclusions: RMS accelerations exhibited good repeatability during walking in healthy and knee OA subjects. The repeatability of EMG measurements was acceptable in healthy subjects depending on the measured muscles. PMID:26944825
Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo
2015-12-29
There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. 15 subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, P = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.
Fuentes, Aler D; Martin, Conchita; Bull, Ricardo; Santander, Hugo; Gutiérrez, Mario F; Miralles, Rodolfo
2016-07-01
There is scarce knowledge regarding the influence of a natural mediotrusive contact on mandibular and cervical muscular activity. The purpose of this study was to analyze the EMG activity of the anterior temporalis (AT) and sternocleidomastoid (SCM) muscles during awake grinding in healthy subjects with or without a natural mediotrusive occlusal contact. Fifteen subjects with natural mediotrusive occlusal contact (Group 1) and 15 subjects without natural mediotrusive occlusal contact (Group 2) participated. Bilateral surface EMG activity of AT and SCM muscles was recorded during unilateral eccentric or concentric tooth grinding tasks. EMG activity was normalized against the activity recorded during maximal voluntary clenching in intercuspal position (IP) for AT muscles and during maximal intentional isometric head-neck rotation to each side, for SCM muscles. EMG activity of AT and SCM muscles showed no statistical difference between groups. EMG activity of AT muscle was higher in the working side (WS) than in the non-WS (NWS) in Group 1 during concentric grinding (0.492 vs 0.331, p = 0.047), whereas no difference was observed in Group 2. EMG activity of SCM was similar between working and NWSs in both groups and tasks. Asymmetry indexes (AIs) were not significantly different between groups. These findings in healthy subjects support the assumption that during awake tooth grinding, central nerve control predominates over peripheral inputs, and reinforce the idea of a functional link between the motor-neuron pools that control jaw and neck muscles.
Neck muscle activity in helicopter pilots: effect of position and helmet-mounted equipment.
Thuresson, Marcus; Ang, Björn; Linder, Jan; Harms-Ringdahl, Karin
2003-05-01
Helicopter pilots usually work in unfavorable ergonomic positions, often with bulky head-worn equipment during flying missions. The purpose of this study was to evaluate and compare immediate muscle response in the dorsal neck muscles to different positions with a variety of head-worn equipment. Fourteen healthy male helicopter pilots volunteered for this study. EMG activity in the upper and lower dorsal neck muscles and the trapezius muscle was measured in a laboratory situation for 5 s in different sitting positions (neutral, trunk inclined 20 degrees, neck flexed 20 degrees), including registration of a 30 degrees left and right rotation in every position; all measurements were performed while wearing a helmet, a helmet and night vision goggles (hNVG), and a helmet, night vision goggles, and counterweight (hCW), in random order. There was significant higher EMG activity in the upper neck with hNVG and hCW than with the helmet only when comparing the mean activity level of all positions. However, there was no significant difference in EMG activity between any variations of head-worn equipment when comparing activity levels during each position separately. In the upper and lower neck, respectively, there was significantly higher muscle activity during the ipsilateral rotated positions plus neck flexion and trunk inclination than in most other positions. The increased load caused by different positions seems to have a greater influence on muscle activity than the increased load of the head-worn equipment, which must be considered when designing helicopter work-places.
Different Muscle-Recruitment Strategies Among Elite Breaststrokers.
Guignard, Brice; Olstad, Bjørn H; Simbaña Escobar, David; Lauer, Jessy; Kjendlie, Per-Ludvik; Rouard, Annie H
2015-11-01
To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers. The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded. The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive PP was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations. The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.
Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.
Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie
2004-10-01
Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.
Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C
2013-01-15
We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (p<0.05). The non-stationary period at the onset of EMG activity ranged from ∼80 ms during airway occlusion to ∼150 ms during eupnea. Within the initial non-stationary period of EMG activity 80-95% of motor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.
Mavratzakis, Aimee; Herbert, Cornelia; Walla, Peter
2016-01-01
In the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220-280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500-750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500-750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Blunted perception of neural respiratory drive and breathlessness in patients with cystic fibrosis.
Reilly, Charles C; Jolley, Caroline J; Elston, Caroline; Moxham, John; Rafferty, Gerrard F
2016-01-01
The electromyogram recorded from the diaphragm (EMG di ) and parasternal intercostal muscle using surface electrodes (sEMG para ) provides a measure of neural respiratory drive (NRD), the magnitude of which reflects lung disease severity in stable cystic fibrosis. The aim of this study was to explore perception of NRD and breathlessness in both healthy individuals and patients with cystic fibrosis. Given chronic respiratory loading and increased NRD in cystic fibrosis, often in the absence of breathlessness at rest, we hypothesised that patients with cystic fibrosis would be able to tolerate higher levels of NRD for a given level of breathlessness compared to healthy individuals during exercise. 15 cystic fibrosis patients (mean forced expiratory volume in 1 s (FEV 1 ) 53.5% predicted) and 15 age-matched, healthy controls were studied. Spirometry was measured in all subjects and lung volumes measured in the cystic fibrosis patients. EMG di and sEMG para were recorded at rest and during incremental cycle exercise to exhaustion and expressed as a percentage of maximum (% max) obtained from maximum respiratory manoeuvres. Borg breathlessness scores were recorded at rest and during each minute of exercise. EMG di % max and sEMG para % max and associated Borg breathlessness scores differed significantly between healthy subjects and cystic fibrosis patients at rest and during exercise. The relationship between EMG di % max and sEMG para % max and Borg score was shifted to the right in the cystic fibrosis patients, such that at comparable levels of EMG di % max and sEMG para % max the cystic fibrosis patients reported significantly lower Borg breathlessness scores compared to the healthy individuals. At Borg score 1 (clinically significant increase in breathlessness from baseline) corresponding levels of EMG di % max (20.2±12% versus 32.15±15%, p=0.02) and sEMG para % max (18.9±8% versus 29.2±15%, p=0.04) were lower in the healthy individuals compared to the cystic fibrosis patients. In the cystic fibrosis patients EMG di % max at Borg score 1 was related to the degree of airways obstruction (FEV 1 ) (r=-0.664, p=0.007) and hyperinflation (residual volume/total lung capacity) (r=0.710, p=0.03). This relationship was not observed for sEMG para % max. These data suggest that compared to healthy individuals, patients with cystic fibrosis can tolerate much higher levels of NRD before increases in breathlessness from baseline become clinically significant. EMG di % max and sEMG para % max provide physiological tools with which to elucidate factors underlying inter-individual differences in breathlessness perception.
Surface electromyography in animals: A systematic review
Valentin, Stephanie; Zsoldos, Rebeka R.
2017-01-01
The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. PMID:26763600
Surface electromyography in animal biomechanics: A systematic review.
Valentin, Stephanie; Zsoldos, Rebeka R
2016-06-01
The study of muscle activity using surface electromyography (sEMG) is commonly used for investigations of the neuromuscular system in man. Although sEMG has faced methodological challenges, considerable technical advances have been made in the last few decades. Similarly, the field of animal biomechanics, including sEMG, has grown despite being confronted with often complex experimental conditions. In human sEMG research, standardised protocols have been developed, however these are lacking in animal sEMG. Before standards can be proposed in this population group, the existing research in animal sEMG should be collated and evaluated. Therefore the aim of this review is to systematically identify and summarise the literature in animal sEMG focussing on (1) species, breeds, activities and muscles investigated, and (2) electrode placement and normalisation methods used. The databases PubMed, Web of Science, Scopus, and Vetmed Resource were searched systematically for sEMG studies in animals and 38 articles were included in the final review. Data on methodological quality was collected and summarised. The findings from this systematic review indicate the divergence in animal sEMG methodology and as a result, future steps required to develop standardisation in animal sEMG are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid
2017-02-01
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.
History dependence of the EMG-torque relationship.
Paquin, James; Power, Geoffrey A
2018-05-28
The influence of active lengthening (residual force enhancement: RFE) and shortening (force depression: FD) on the electromyography (EMG)-torque relationship was investigated by matching torque and activation at 20%, 40%, 60%, 80% and 100% maximal voluntary contraction (MVC). Sixteen males performed lengthening and shortening contractions of the dorsiflexors over 25° into an isometric steady-state. There was 5% greater torque, with no change in agonist EMG during the RFE condition as compared to the isometric condition. Sub-maximally, in the force enhanced state, there was less agonist EMG during the torque clamp at all intensities relative to isometric, and greater torque during the activation clamps relative to isometric was observed across all intensities except 20% MVC. During the FD state compared to isometric, there was less torque produced during MVC (∼15%) with no change in agonist EMG. Sub-maximally, in the FD state, there was greater agonist EMG during the torque clamp and less torque during the activation clamp relative to the isometric condition across all intensities. The EMG-torque relationship was bilinear for all contraction types but was shifted to the left and right for FD and RFE, respectively as compared with isometric, indicating altered neuromuscular activation strategies in the history-dependent states of RFE and FD. Copyright © 2018. Published by Elsevier Ltd.
A three-dimensional muscle activity imaging technique for assessing pelvic muscle function
NASA Astrophysics Data System (ADS)
Zhang, Yingchun; Wang, Dan; Timm, Gerald W.
2010-11-01
A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.
EMG of the hip adductor muscles in six clinical examination tests.
Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J
2012-08-01
To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p < 0.01). EMG activation was highest in Hips 0 or Hips 45 for adductor magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p < 0.05), pectineus (p < 0.01) and gracilis (p < 0.01) but not adductor magnus. For force data, clinical test type was a significant factor (p < 0.01) with Hips 0 being significantly stronger than Hips 45, Hips 90 and Side lay. BMI (body mass index) was a significant factor (p < 0.01) for producing a higher force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cannoy, Jill; Crowley, Sam; Jarratt, Allen; Werts, Kelly LeFevere; Osborne, Krista; Park, Sohee
2016-01-01
Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair. PMID:27466130
Adaptive neuron-to-EMG decoder training for FES neuroprostheses
NASA Astrophysics Data System (ADS)
Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.
2016-08-01
Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by including data from multiple grasping tasks in the training of the neuron-to-EMG decoder. Our approach would make it possible for persons with SCI to grasp objects with their own hands, using near-normal motor intent.
Steenstrup, B; Giralte, F; Bakker, E; Grise, P
2014-12-01
The aim of this work was to evaluate the effect of postural awareness by using the Wii Fit Plus© on the quality of the baseline (automatic) activity of the pelvic floor muscles (PFM) measured by intravaginal surface electromyography (sEMG). Four healthy continent female subjects, all able to perform a voluntary contraction, undertook 2 sets of 3 various exercises offered by the software Wii Fit Plus© using the Wii balance board© (WBB): one set without any visual control and the second set with postural control and sEMG visual feedback. Simultaneously, we recorded the sEMG activity of the PFM. Mean baseline activity of PFM in standing position at start was 2.87 mV, at submaximal voluntary contraction the sEMG activity raised at a mean of 14.43 mV (7.87-21.89). In the first set of exercises on the WBB without any visual feedback, the automatic activity of the PFM increased from 2.87 mV to 8.75 mV (7.96-9.59). In the second set, with visual postural and sEMG control, mean baseline sEMG activity even raised at 11.39 mV (10.17-11.58). Among women able of a voluntary contraction of PFM, visualisation of posture with the help of the WBB and of sEMG activity of the PFM during static and dynamic Wii Fit Plus© activities, may improve the automatic activation of the PFMs. 4. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Steward, James E.; Clemons, Jessica D.; Zaszczurynski, Paul J.; Butler, Robert S.; Damaser, Margot S.; Jiang, Hai-Hong
2009-01-01
Purpose Accuracy in the recording of external urethral sphincter (EUS) electromyography (EMG) is an important goal in the quantitative evaluation of urethral function. This study aim was to quantitatively compare electrode recordings taken during tonic activity and leak point pressure (LPP) testing. Methods Several electrodes, including the surface electrode (SE), concentric electrode (CE), and wire electrode (WE), were placed on the EUS singly and simultaneously in six female Sprague-Dawley rats under urethane anesthesia. The bladder was filled via a retropubic catheter while LPP testing and EUS EMG recording were done. Quantitative baseline correction of the EUS EMG signal was performed to reduce baseline variation. Amplitude and frequency of one-second samples of the EUS EMG signal were measured before LPP (tonic activity) and during peak LPP activity. Results The SE, CE, and WE signals demonstrated tonic activity before LPP and an increase in activity during LPP, suggesting that the electrodes accurately recorded EUS activity during tonic activity and during the bladder-to-EUS guarding reflex, regardless of the size or location of detection areas. SE recordings required significantly less baseline correction than both CE and WE recordings. The activity in CE-recorded EMG was significantly higher than that of the SE and WE both in single and simultaneous recordings. Conclusions These electrodes may be suitable for testing EUS EMG activity. The SE signal had significantly less baseline variation and the CE detected local activity more sensitively than the other electrodes, which may provide insight into choosing an appropriate electrode for EUS EMG recording. PMID:19680661
EMG-Torque Dynamics Change With Contraction Bandwidth.
Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E
2018-04-01
An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.
MacIntosh, Bradley J.; Baker, S. Nicole; Mraz, Richard; Ives, John R.; Martel, Anne L.; McIlroy, William E.; Graham, Simon J.
2016-01-01
Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. PMID:17133382
MacIntosh, Bradley J; Baker, S Nicole; Mraz, Richard; Ives, John R; Martel, Anne L; McIlroy, William E; Graham, Simon J
2007-09-01
Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke. (c) 2006 Wiley-Liss, Inc.
Thirumala, Parthasarathy D; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J; Balzer, Jeffrey
2012-08-01
Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG.
Thirumala, Parthasarathy D.; Mohanraj, Santhosh Kumar; Habeych, Miguel; Wichman, Kelley; Chang, Yue-Fang; Gardner, Paul; Snyderman, Carl; Crammond, Donald J.; Balzer, Jeffrey
2012-01-01
Objective The main objective of this study was to evaluate the value of free-run electromyography (f-EMG) monitoring of cranial nerves (CNs) VII, IX, X, XI, and XII in skull base surgeries performed using endoscopic endonasal approach (EEA) to reduce iatrogenic CN deficits. Design We retrospectively identified 73 patients out of 990 patients who had EEA in our institution who had at least one CN monitored. In each CN group, we classified patients who had significant (SG) f-EMG activity as group I and those who did not as group II. Results We monitored a total of 342 CNs. A total of 62 nerves had SG f-EMG activity including CN VII = 18, CN IX = 16, CN X = 13, CN XI = 5, and CN XII = 10. No nerve deficit was found in the nerves that had significant activity during procedure. A total of five nerve deficits including (CN IX = 1, CN X = 2, CN XII = 2) were observed in the group that did not display SG f-EMG activity during surgery. Conclusions f-EMG seems highly sensitive to surgical manipulations and in locating CNs. It seems to have limited value in predicting postoperative neurological deficits. Future studies to evaluate the EMG of lower CNs during EEA procedures need to be done with both f-EMG and triggered EMG. PMID:23904999
Iguchi, Hiroko; Magara, Jin; Nakamura, Yuki; Tsujimura, Takanori; Ito, Kayoko; Inoue, Makoto
2015-12-01
This study aimed to investigate how the activity of the masseter (Mas) and suprahyoid (Hyoid) muscles is influenced by the physical properties of food, how changes in the rheological properties of food differ between different foods during the process of food reduction, and how different salivary flow rates affect bolus-making capability during masticatory behavior in healthy humans. Ten healthy adults participated in this study. Electromyographic (EMG) recordings were obtained from the Mas and Hyoid muscles, and 15 g of steamed rice and rice cake was prepared as test foods. In the ingestion test, the subjects were asked to eat each food in their usual manner. The chewing duration, number of chewing cycles before the first swallow, Mas and Hyoid EMG activity, and chewing cycle time were compared between the foods. Total chewing duration was divided into three substages: early, middle, and late; chewing cycle time and EMG activity per chewing cycle of each substage were compared between the foods and among the substages. In the spitting test, the rheological properties of the bolus at the end of each substage were compared between the foods and among the substages. Finally, stimulated salivary flow rates were measured and the relationships between salivary flow rate and chewing duration, EMG activity, and changes in physical food characteristics were investigated. There were significant differences in total chewing duration and the number of chewing cycles, but not in chewing cycle time, between the foods, which had similar hardness values. The EMG activity levels of the Mas and Hyoid per chewing cycle for the rice cake were significantly greater than for the steamed rice throughout the recording periods. While Mas activity did not change among the substages during chewing, Hyoid EMG activity decreased as chewing progressed. Chewing cycle time also gradually decreased as chewing progressed. The hardness of both foods initially increased, then gradually decreased back to baseline. The adhesiveness of the rice cake initially increased, and did not fall throughout the recording period; the adhesiveness of the steamed rice did not significantly change. Cohesiveness barely changed in either of the two foods during chewing, but was significantly greater for the rice cake than for the steamed rice. Finally, a correlation between the stimulated salivary flow rate and chewing performance was evident only in a change in Mas EMG activity. The current results demonstrate that the activities of the Mas and Hyoid muscles changed as chewing progressed, and were affected by hardness, adhesiveness, and cohesiveness. Salivary flow rate may affect the changes in Mas activity during the process of bolus formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness. The risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation-induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L
2012-12-01
While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.
Kobelt, Manuela; Wirth, Brigitte; Schuster-Amft, Corina
2018-01-01
Introduction: The present study assessed whether motor imagery (MI) produces electromyographic activation in specific muscles of the upper limb during a hand grasping and arm-lifting task in healthy volunteers, patients after stroke, or with Parkinson's disease. Electromyographic (EMG) activation was compared under three conditions: MI, physical execution (PE), and rest. The task is clinically relevant unilateral executed movement using open muscle chains. Methods: In a cross-sectional study EMG activation was measured in four muscles: M. deltoideus pars clavicularis, M. biceps brachii, M. extensor digitorum, M. flexor carpi radialis. MI ability was evaluated with mental rotation, mental chronometry and the Kinaesthetic and Visual Imagery Questionnaire. Cognitive performance was screened with the Mini-Mental State Examination. Results: Twenty-two participants (11 females, age 52.6 ±15.8, age range 21 to 72) were included: ten healthy volunteers, seven patients after stroke (time after stroke onset 16.3 ± 24.8 months), and five patients with Parkinson's disease (disease duration 60.4 ± 24.5 months). Overall Mini-Mental State Examination scores ranged between 27 and 30. An increased EMG activation during MI compared to rest condition was observed in M. deltoideus pars clavicularis and M. biceps brachii across all participants (p-value = 0.001, p = 0.007). Seven participants (two healthy volunteers, three patients after stroke and two patients with Parkinson's disease) showed a EMG activation during MI of the hand grasping and arm-lifting task in at least one of the target muscles. No correlation between EMG activation during MI and scores of three MI ability assessments were found. Conclusions: The findings suggest that MI can yield subliminal EMG activation. However, that might vary on individual basis. It remains unclear what parameters contribute to or inhibit an EMG activation during MI. Future investigations should determine factors that influence EMG activation, e.g. MI instructions, tasks to imagine, amount of MI training, and longitudinal changes after an MI training period. PMID:29740377
Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping
2017-11-01
This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.
Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza
2014-10-01
This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children. Copyright © 2014 Elsevier Ltd. All rights reserved.
De Meulemeester, Kayleigh; Calders, Patrick; Dewitte, Vincent; Barbe, Tom; Danneels, Lieven; Cagnie, Barbara
2017-12-01
Myofascial pain can be accompanied by a disturbed surface electromyographic (sEMG) activity. Nevertheless, the effect of myofascial treatment techniques, such as dry needling (DN), on the sEMG activity is poorly investigated. Several DN studies also emphasize the importance of eliciting local twitch responses (LTRs) during treatment. However, studies investigating the added value of LTRs are scarce. Therefore, the aims of this study were first to evaluate the effect of DN on the sEMG activity of myalgic muscle tissue, compared with no intervention (rest), and secondly to identify whether this effect is dependent of eliciting LTRs during DN. Twenty-four female office workers with work-related trapezius myalgia were included. After completion of a typing task, changes in sEMG activity were evaluated after a DN treatment of the upper trapezius, compared with rest. The sEMG activity increased after rest and after DN, but this increase was significantly smaller 10 minutes after DN, compared with rest. These differences were independent whether LTRs were elicited or not. Dry needling leads to a significantly lower increase in sEMG activity of the upper trapezius, compared with no intervention, after a typing task. This difference was independent of eliciting LTRs.
Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis
2018-02-01
Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.
Tecco, Simona; Tetè, Stefano; D'Attilio, Michele; Perillo, Letizia; Festa, Felice
2008-12-01
The aim of this study was to investigate the surface electromyographic (sEMG) activity of neck, trunk, and masticatory muscles in subjects with temporomandibular joint (TMJ) internal derangement treated with anterior mandibular repositioning splints. sEMG activities of the muscles in 34 adult subjects (22 females and 12 males; mean age 30.4 years) with TMJ internal derangement were compared with a control group of 34 untreated adults (20 females and 14 males; mean age 31.8 years). sEMG activities of seven muscles (anterior and posterior temporalis, masseter, posterior cervicals, sternocleidomastoid, and upper and lower trapezius) were studied bilaterally, with the mandible in the rest position and during maximal voluntary clenching (MVC), at the beginning of therapy (T0) and after 10 weeks of treatment (T1). Paired and Student's t-tests were undertaken to determine differences between the T0 and T1 data and in sEMG activity between the study and control groups. At T0, paired masseter, sternocleidomastoid, and cervical muscles, in addition to the left anterior temporal and right lower trapezius, showed significantly greater sEMG activity (P = 0.0001; P = 0.0001; for left cervical, P = 0.03; for right cervical, P = 0.0001; P = 0.006 and P = 0.007 muscles, respectively) compared with the control group. This decreased over the remaining study period, such that after treatment, sEMG activity revealed no statistically significant difference when compared with the control group. During MVC at T0, paired masseter and anterior and posterior temporalis muscles showed significantly lower sEMG activity (P = 0.03; P = 0.005 and P = 0.04, respectively) compared with the control group. In contrast, at T1 sEMG activity significantly increased (P = 0.02; P = 0.004 and P = 0.04, respectively), but no difference was observed in relation to the control group. Splint therapy in subjects with internal disk derangement seems to affect sEMG activity of the masticatory, neck, and trunk muscles.
Tahan, Nahid; Arab, Amir Massoud; Vaseghi, Bita; Khademi, Khosro
2013-05-01
Coactivation of abdominal and pelvic-floor muscles (PFM) is an issue considered by researchers recently. Electromyography (EMG) studies have shown that the abdominal-muscle activity is a normal response to PFM activity, and increase in EMG activity of the PFM concomitant with abdominal-muscle contraction was also reported. The purpose of this study was to compare the changes in EMG activity of the deep abdominal muscles during abdominal-muscle contraction (abdominal hollowing and bracing) with and without concomitant PFM contraction in healthy and low-back-pain (LBP) subjects. A 2 × 2 repeated-measures design. Laboratory. 30 subjects (15 with LBP, 15 without LBP). Peak rectified EMG of abdominal muscles. No difference in EMG of abdominal muscles with and without concomitant PFM contraction in abdominal hollowing (P = .84) and abdominal bracing (P = .53). No difference in EMG signal of abdominal muscles with and without PFM contraction between LBP and healthy subjects in both abdominal hollowing (P = .88) and abdominal bracing (P = .98) maneuvers. Adding PFM contraction had no significant effect on abdominal-muscle contraction in subjects with and without LBP.
Sasai-Sakuma, Taeko; Frauscher, Birgit; Mitterling, Thomas; Ehrmann, Laura; Gabelia, David; Brandauer, Elisabeth; Inoue, Yuichi; Poewe, Werner; Högl, Birgit
2014-09-01
Rapid eye movement (REM) sleep without atonia (RWA) is observed in some patients without a clinical history of REM sleep behavior disorder (RBD). It remains unknown whether these patients meet the refined quantitative electromyographic (EMG) criteria supporting a clinical RBD diagnosis. We quantitatively evaluated EMG activity and investigated its overnight distribution in patients with isolated qualitative RWA. Fifty participants with an incidental polysomnographic finding of RWA (isolated qualitative RWA) were included. Tonic, phasic, and 'any' EMG activity during REM sleep on PSG were quantified retrospectively. Referring to the quantitative cut-off values for a polysomnographic diagnosis of RBD, 7/50 (14%) and 6/50 (12%) of the patients showed phasic and 'any' EMG activity in the mentalis muscle above the respective cut-off values. No patient was above the cut-off value for tonic EMG activity or phasic EMG activity in the anterior tibialis muscles. Patients with RWA above the cut-off value showed higher amounts of RWA during later REM sleep periods. This is the first study showing that some subjects with incidental RWA meet the refined quantitative EMG criteria for a diagnosis of RBD. Future longitudinal studies must investigate whether this subgroup with isolated qualitative RWA is at an increased risk of developing fully expressed RBD and/or neurodegenerative disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Mingxing Zhu; Wanzhang Yang; Samuel, Oluwarotimi Williams; Yun Xiang; Jianping Huang; Haiqing Zou; Guanglin Li
2016-08-01
Pharyngeal phase is a central hub of swallowing in which food bolus pass through from the oral cavity to the esophageal. Proper understanding of the muscular activities in the pharyngeal phase is useful for assessing swallowing function and the occurrence of dysphagia in humans. In this study, high-density (HD) surface electromyography (sEMG) was used to study the muscular activities in the pharyngeal phase during swallowing tasks involving three healthy male subjects. The root mean square (RMS) of the HD sEMG data was computed by using a series of segmented windows as myoelectrical energy. And the RMS of each window covering all channels (16×5) formed a matrix. During the pharyngeal phase of swallowing, three of the matrixes were chosen and normalized to obtain the HD energy maps and the statistical parameter. The maps across different viscosity levels offered the energy distribution which showed the muscular activities of the left and right sides of the front neck muscles. In addition, the normalized average RMS (NARE) across different viscosity levels revealed a left-right significant correlation (r=0.868±0.629, p<;0.01) quantitatively, while it showed even stronger correlation when swallowing water. This pilot study suggests that HD sEMG would be a potential tool to evaluate muscular activities in pharyngeal phase during normal swallowing. Also, it might provide useful information for dysphagia diagnosis.
A novel command signal for motor neuroprosthetic control.
Moss, Christa W; Kilgore, Kevin L; Peckham, P Hunter
2011-01-01
Neuroprostheses can restore functions such as hand grasp or standing to individuals with spinal cord injury (SCI) using electrical stimulation to elicit movements in paralyzed muscles. Implanted neuroprostheses currently use electromyographic (EMG) activity from muscles above the lesion that remain under volitional control as a command input. Systems in development use a networked approach and will allow for restoration of multiple functions but will require additional command signals to control the system, especially in individuals with high-level tetraplegia. The objective of this study was to investigate the feasibility of using muscles innervated below the injury level as command sources for a neuroprosthesis. Recent anatomical and physiological studies have demonstrated the presence of intact axons across the lesion, even in those diagnosed with a clinically complete SCI; hence, EMG activity may be present in muscles with no sign of movement. Twelve participants with motor complete SCI were enrolled and EMG was recorded with surface electrodes from 8 muscles below the knee in each leg. Significant activity was evident in 89% of the 192 muscles studied during attempted movements of the foot and lower limb. At least 2 muscles from each participant were identified as potential command signals for a neuroprosthesis based on 2-state, threshold classification. Results suggest that voluntary activity is present and recordable in below lesion muscles even after clinically complete SCI.
Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun
2017-01-01
The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p < 0.05. The one-way repeated ANOVA was revealed to be significantly effective in elbow extension ROM (p = 0.01), biceps muscle strength (p = 0.01), and box and block test (p = 0.03). The one-way repeated ANOVA also revealed to be significantly effective in the peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback when augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.
Yamaguchi, T; Abe, S; Rompré, P H; Manzini, C; Lavigne, G J
2012-01-01
Clinicians and investigators need a simple and reliable recording device to diagnose or monitor sleep bruxism (SB). The aim of this study was to compare recordings made with an ambulatory electromyographic telemetry recorder (TEL-EMG) with those made with standard sleep laboratory polysomnography with synchronised audio-visual recording (PSG-AV). Eight volunteer subjects without current history of tooth grinding spent one night in a sleep laboratory. Simultaneous bilateral masseter EMG recordings were made with a TEL-EMG and standard PSG. All types of oromotor activity and rhythmic masseter muscle activity (RMMA), typical of SB, were independently scored by two individuals. Correlation and intra-class coefficient (ICC) were estimated for scores on each system. The TEL-EMG was highly sensitive to detect RMMA (0·988), but with low positive predictive value (0·231) because of a high rate of oromotor activity detection (e.g. swallowing and scratching). Almost 72% of false-positive oromotor activity scored with the TEL-EMG occurred during the transient wake period of sleep. A non-significant correlation between recording systems was found (r = 0·49). Because of the high frequency of wake periods during sleep, ICC was low (0·47), and the removal of the influence of wake periods improved the detection reliability of the TEL-EMG (ICC = 0·88). The TEL-EMG is sensitive to detect RMMA in normal subjects. However, it obtained a high rate of false-positive detections because of the presence of frequent oromotor activities and transient wake periods of sleep. New algorithms are needed to improve the validity of TEL-EMG recordings. © 2011 Blackwell Publishing Ltd.
Weinreich, André; Funcke, Jakob Maria
2014-01-01
Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.
Santander, H; Miralles, R; Pérez, J; Valenzuela, S; Ravera, M J; Ormeño, G; Villegas, R
2000-07-01
This study was conducted in order to determine the effect of head and neck position on bilateral electromyographic (EMG) activity of the sternocleidomastoid muscles. The study was performed on 16 patients with myogenic cranio-cervical-mandibular dysfunction (CMD) and 16 healthy subjects. EMG recordings at rest and during swallowing of saliva and maximal voluntary clenching were performed by placing surface electrodes on the right and left sternocleidomastoid muscles. EMG activity was recorded in the left lateral decubitus position, in a darkened room and with the individual's eyes closed, under the following experimental conditions: 1. Head, neck, and body horizontally aligned; 2. Head and neck upwardly inclined with respect to the body, simulating the effect of a thick pillow, 3. Head and neck downwardly inclined with respect to the body, simulating the effect of a thin pillow. Variation of head and neck positions was determined by measuring the distance from the angle of neck and shoulder and the apex of the shoulder (SND = shoulder-neck distance) of each individual. Then, head and neck were forward or downwardly inclined with respect to the body at one-third of SND. A significantly higher contralateral EMG activity and a more asymmetric EMG activity were observed in the CMD group than in the healthy subjects (Kruskal-Wallis Test). These results suggest a different behavior of bilateral sternocleidomastoid EMG activity in CMD patients than in healthy subjects depending on the positioning of the head and neck.
Donnelly, Lindsy; Donovan, Luke; Hart, Joseph M; Hertel, Jay
2017-07-01
Individuals with chronic ankle instability (CAI) have demonstrated strength deficits compared to healthy controls; however, the influence of ankle position on force measures and surface electromyography (sEMG) activation of the peroneus longus and brevis has not been investigated. The purpose of this study was to compare sEMG amplitudes of the peroneus longus and brevis and eversion force measures in 2 testing positions, neutral and plantarflexion, in groups with and without CAI. Twenty-eight adults (19 females, 9 males) with CAI and 28 healthy controls (19 females, 9 males) participated. Hand-held dynamometer force measures were assessed during isometric eversion contractions in 2 testing positions (neutral, plantarflexion) while surface sEMG amplitudes of the peroneal muscles were recorded. Force measures were normalized to body mass, and sEMG amplitudes were normalized to a resting period. The group with CAI demonstrated less force when compared to the control group ( P < .001) in both the neutral and plantarflexion positions: neutral position, CAI: 1.64 Nm/kg and control: 2.10 Nm/kg) and plantarflexion position, CAI: 1.40 Nm/kg and control: 1.73 Nm/kg). There were no differences in sEMG amplitudes between the groups or muscles ( P > .05). Force measures correlated with both muscles' sEMG amplitudes in the healthy group (neutral peroneus longus: r = 0.42, P = .03; plantarflexion peroneus longus: r = 0.56, P = .002; neutral peroneus brevis: r = 0.38, P = .05; plantarflexion peroneus longus: r = 0.40, P = .04), but not in the group with CAI ( P > .05). The group with CAI generated less force when compared to the control group during both testing positions. There was no selective activation of the peroneal muscles with testing in both positions, and force output and sEMG activity was only related in the healthy group. Clinicians should assess eversion strength and implement strength training exercises in different sagittal plane positions and evaluate for other pathologies that may contribute to reduced eversion strength in patients with CAI. Level III, cross-sectional.
Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M
2013-01-15
Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.
Neuronal activity in the globus pallidus internus in patients with tics.
Zhuang, P; Hallett, M; Zhang, X; Li, J; Zhang, Y; Li, Y
2009-10-01
To explore the role of neuronal activity in the globus pallidus internus (GPi) in the generation of tic movements. 8 patients with Tourette's syndrome with medically intractable tics who underwent a unilateral pallidotomy for severe tics were studied. They ranged in age from 17 to 24 years; disease duration was 7-19 years. Microelectrode recording was performed in the GPi. The electromyogram (EMG) was simultaneously recorded in muscle groups appropriate for the patient's tics. The relationship between neuronal firing pattern and the EMG was studied. 232 neurons were recorded during tics from eight trajectories. Of these neurons, in addition to decreased neuronal firing rate and irregular firing pattern, 105 (45%) were tic related showing either a burst of activity or a pause in ongoing tonic activity. They could be synchronous (n = 75), earlier than EMG onset (n = 27) or following EMG onset (n = 3). The GPi neuronal bursts preceded EMG onset with decreased (n = 6) or increased activity (n = 21). The initial change in neural activity occurred about 50 ms to 2 s before the EMG onset. Although the data are descriptive and preliminary, the tic related neuronal activity observed in GPi appears to indicate that the basal ganglia motor circuit is involved in tic movements. The early neuronal activity seen in GPi may reflect premonitory sensations that precede a tic.
Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant
2010-10-21
Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface.
2010-01-01
Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. Conclusions The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface. PMID:20964863
Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection
NASA Astrophysics Data System (ADS)
Flórez-Prias, L. A.; Contreras-Ortiz, S. H.
2017-11-01
The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels.
Shin, Hwa Kyung; Cho, Sang Hyun; Jeon, Hye-seon; Lee, Young-Hee; Song, Jun Chan; Jang, Sung Ho; Lee, Chu-Hee; Kwon, Yong Hyun
2008-09-19
We investigated the effect of electromyography (EMG)-triggered neuromuscular electrical stimulation (NMES; EMG-stim) on functional recovery of the hemiparetic hand and the related cortical activation pattern in chronic stroke patients. We enrolled 14 stroke patients, who were randomly assigned to the EMG-stim (n=7) or the control groups (n=7). The EMG-stim was applied to the wrist extensor of the EMG-stim group for two sessions (30 min/session) a day, five times per week for 10 weeks. Four functional tests (box and block, strength, the accuracy index, and the on/offset time of muscle contraction) and functional MRI (fMRI) were performed before and after treatment. fMRI was measured at 1.5 T in parallel with timed finger flexion-extension movements at a fixed rate. Following treatment, the EMG-stim group showed a significant improvement in all functional tests. The main cortical activation change with such functional improvement was shifted from the ipsilateral sensorimotor cortex (SMC) to the contralateral SMC. We demonstrated that 10-week EMG-stim can induce functional recovery and change of cortical activation pattern in the hemiparetic hand of chronic stroke patients.
Surface EMG signals based motion intent recognition using multi-layer ELM
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Qi, Lin; Wang, Xiao
2017-11-01
The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.
Gravitational force modulates muscle activity during mechanical oscillation of the tibia in humans
Chang, Shuo-Hsiu; Dudley-Javoroski, Shauna; Shields, Richard K.
2012-01-01
Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 seconds at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were < 2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia. PMID:21708472
Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels.
Finsterer, Josef; Mittendorfer, Bettina; Neuhuber, Werner; Löscher, Wolfgang N
2002-08-01
Several studies addressed the question whether needle-EMG causes elevation of muscle enzymes [aspartate-aminotransferase, alanine-aminotransferase, lactate-dehydrogenase, creatine-phosphokinase (CPK), isoenzyme-MB, aldolase] and lactate with conflicting results. However, these studies used sterilizable needle electrodes and different protocols and methods to record EMGs and determine muscle enzymes. This study examined if muscle enzymes are elevated immediately after or 24 h following EMGs with disposable, concentric needle-electrodes, and if they are dependent on age, sex, muscle, number of investigated sites and previous CPK-elevation. In 53 subjects, 24 woman, 29 men, aged 17-88 years, muscle enzymes were determined before, immediately after and 24 h following EMG with disposable, concentric needle-electrodes. Muscle enzymes were not different before, immediately after and 24 h following the EMG. Muscle enzymes were not different between patients
The extraction of neural strategies from the surface EMG: an update
Merletti, Roberto; Enoka, Roger M.
2014-01-01
A surface EMG signal represents the linear transformation of motor neuron discharge times by the compound action potentials of the innervated muscle fibers and is often used as a source of information about neural activation of muscle. However, retrieving the embedded neural code from a surface EMG signal is extremely challenging. Most studies use indirect approaches in which selected features of the signal are interpreted as indicating certain characteristics of the neural code. These indirect associations are constrained by limitations that have been detailed previously (Farina D, Merletti R, Enoka RM. J Appl Physiol 96: 1486–1495, 2004) and are generally difficult to overcome. In an update on these issues, the current review extends the discussion to EMG-based coherence methods for assessing neural connectivity. We focus first on EMG amplitude cancellation, which intrinsically limits the association between EMG amplitude and the intensity of the neural activation and then discuss the limitations of coherence methods (EEG-EMG, EMG-EMG) as a way to assess the strength of the transmission of synaptic inputs into trains of motor unit action potentials. The debated influence of rectification on EMG spectral analysis and coherence measures is also discussed. Alternatively, there have been a number of attempts to identify the neural information directly by decomposing surface EMG signals into the discharge times of motor unit action potentials. The application of this approach is extremely powerful, but validation remains a central issue. PMID:25277737
Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J
2014-01-01
Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.
Vibration-evoked reciprocal inhibition between human wrist muscles.
Cody, F W; Plant, T
1989-01-01
Reciprocal inhibition of the voluntarily contracting wrist extensor (extensor carpi radialis, ECR) evoked by proprioceptive afferent input from the flexor (flexor carpi radialis, FCR), was studied in healthy human subjects. Vibration of the FCR tendon was used to elicit Ia-dominated afferent discharge whilst inhibition of ECR was assessed as the reduction in asynchronous, on-going EMG. A small early phase of inhibition (I1) was evident in 25% of trials. The latency (ca. 25 ms) of this component suggested that it was mediated by an Ia oligosynaptic. possibly 'classical' disynaptic, inhibitory pathway. A later and apparently separate phase of reduced activity (I2, ca. 40 ms) was, however, far more consistently observed (96% of trials) and of greater magnitude. The I2 component was usually followed, some 20 ms later, by a phase of elevated activity (E1, 72% trials). Reductions in simultaneously recorded net extensor torque commenced at about 60 ms following the onset of flexor tendon vibration, i.e. some 20 ms after the main I2 EMG component. These mechanical responses must have almost exclusively resulted from reciprocal inhibition of extensor EMG since vibration of the relaxed FCR evoked minimal excitatory flexor activity. The reflex pattern, in any individual subject, was relatively unaffected by altering the duration of the vibration train between one and nineteen cycles (125 Hz). This suggests that the entire response complex resulted largely from the initial afferent volley. The sizes of both the I1 and I2 reductions in ECR activity increased with increasing voluntary extensor contraction so that their depths remained constant proportions of background EMG. Very similar results were obtained when reciprocal inhibition of FCR was produced by vibration of the belly of ECR. Thus, reciprocal inhibition between wrist muscles is mainly expressed as a rather stereotyped, short duration reduction in EMG whose depth is determined by the pre-existing level of motor activity. Some functional implications of this form of reflex behaviour are discussed.
Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.
McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J
2016-02-01
Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P < 0.05) after warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.
Observations on the responses of muscle to mechanical and electrical stimuli
Meadows, J. C.
1971-01-01
Responses to mechanical and electrical stimuli have been studied in vastus medialis in four young adults. Percussion causes an immediate, brief contraction in those muscle fibres passing beneath the site of the blow. This is accompanied by EMG activity which is propagated along the muscle fibres at a normal velocity of around 4 m/sec. The EMG activity lasts much longer than that produced by a single electrical stimulus to muscle fibres because repetitive firing occurs in some of the muscle fibres activated mechanically. This response to percussion is unaffected by nerve blockade with 2% xylocaine. Percussion close to the motor point may cause delayed fasciculation due to activation of intramuscular motor nerve fibres. This, too, is unaffected by nerve blockade. Some observations on EMG insertional activity provoked by needle movement are reported. It is concluded that muscle has a basic tendency to discharge repetitively when stimulated by mechanical means and that EMG insertional activity and the EMG response to percussion reported in this paper are both manifestations of this same tendency, which is increased in the myotonias. Images PMID:4251668
Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul
2014-10-15
The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (
Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul
2014-01-01
The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.
Altenburg, Teatske M; de Ruiter, Cornelis J; Verdijk, Peter W L; van Mechelen, Willem; de Haan, Arnold
2008-12-01
A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20 degrees at 10 degrees /s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%-47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 +/- 0.19) and discharge rate (1.11 +/- 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 +/- 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 +/- 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.
Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise
Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.
2016-01-01
Context: The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective: To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design: Descriptive laboratory study. Setting: Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants: A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s): Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s): Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results: The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions: Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055
Donoso Brown, Elena V; McCoy, Sarah Westcott; Fechko, Amber S; Price, Robert; Gilbertson, Torey; Moritz, Chet T
2014-08-01
To investigate the preliminary effectiveness of surface electromyography (sEMG) biofeedback delivered via interaction with a commercial computer game to improve motor control in chronic stroke survivors. Single-blinded, 1-group, repeated-measures design: A1, A2, B, A3 (A, assessment; B, intervention). Laboratory and participants' homes. A convenience sample of persons (N=9) between 40 and 75 years of age with moderate to severe upper extremity motor impairment and at least 6 months poststroke completed the study. The electromyography-controlled video game system targeted the wrist muscle activation with the goal of increasing selective muscle activation. Participants received several laboratory training sessions with the system and then were instructed to use the system at home for 45 minutes, 5 times per week for the following 4 weeks. Primary outcome measures included duration of system use, sEMG during home play, and pre/post sEMG measures during active wrist motion. Secondary outcomes included kinematic analysis of movement and functional outcomes, including the Wolf Motor Function Test and the Chedoke Arm and Hand Activity Inventory-9. One third of participants completed or exceeded the recommended amount of system use. Statistically significant changes were observed on both game play and pre/post sEMG outcomes. Limited carryover, however, was observed on kinematic or functional outcomes. This preliminary investigation indicates that use of the electromyography-controlled video game impacts muscle activation. Limited changes in kinematic and activity level outcomes, however, suggest that the intervention may benefit from the inclusion of a functional activity component. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Rymer, William Zev; Zhou, Ping
2013-01-01
This study investigates the effect of involuntary motor activity of paretic-spastic muscles on classification of surface electromyography (EMG) signals. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at a relatively slow and fast speed. For each stroke subject, the degree of involuntary motor activity present in voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from slow and fast sessions. Across all tested stroke subjects, our results revealed that when involuntary surface EMG was absent or present in both training and testing datasets, high accuracies (> 96%, > 98%, respectively, averaged over all the subjects) can be achieved in classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either training or testing datasets, the classification accuracies were dramatically reduced (< 89%, < 85%, respectively). However, if both training and testing datasets contained EMG signals with presence and absence of involuntary EMG interference, high accuracies were still achieved (> 97%). The findings of this study can be used to guide appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation. PMID:23860192
Occlus-o-Guide® versus Andresen activator appliance: neuromuscular evaluation.
Farronato, Giampietro; Giannini, Lucia; Galbiati, Guido; Grillo, Elena; Maspero, Cinzia
2013-05-20
The aim of the present study was to assess the muscular variations at the electromyography (EMG) level for the anterior temporalis muscles and masseter muscles during treatment with Occlus-o-Guide® and Andresen activator appliances. Eighty-two patients (35 males and 47 females) aged between 8 and 12 years (mean age, 10.5±0.8 years) participated in the study. Fifty patients underwent treatment with an Occlus-o-Guide® and 32 patients with an Andresen activator. All patients underwent EMG examination using a Freely EMG (De Gotzen, Legnano, Italy) and surface bipolar electrodes when the appliances were worn for the first time (T0), and after 6 months (T1) and after 12 months (T2) of appliance use. Statistical analysis showed that both at T0 and T2, the percent overlapping coefficient (POC) of the anterior temporalis muscles was not statistically different between the appliance groups. At T0, the POC of the masseter muscles was significantly lower for the Andresen appliance as compared to the Occlus-o-Guide® (p=0.02), while at T2 this significance was lost. At insertion of an appliance, all patients show neuromuscular balance that does not correspond to orthognathic occlusion. Both appliances work by creating muscular imbalance. With the appliances in situ, EMG responses were generally analogous for the Occlus-o-Guide® and the Andresen activator; however, the imbalance was greater and the recovery of the orthological muscular balance was slower in patients under treatment with the Andresen activator as compared to those with the Occlus-o-Guide®.
Watanabe, Hironori; Kanehisa, Hiroaki; Yoshitake, Yasuhide
2017-10-01
The present study aimed to examine (1) the effect of task difficulty on unintended muscle activation (UIMA) levels in contralateral homologous muscle, (2) the difference between young and old adults in degree of UIMA with respect to task difficulty, and (3) temporal correlations between intended and contralateral unintended muscle activity at low frequency during unilateral intended force-matching tasks. Twelve young (21.8 ± 2.4 years) and twelve old (69.9 ± 5.3 years) adult men performed steady isometric abductions with the left index finger at 20-80% of maximal voluntary contraction force. Two task difficulties were set by adjusting the spacing between two bars centered about the target force used for visual feedback on a monitor. The amplitude of surface electromyogram (aEMG) for both hands was calculated and normalized with respect to the maximal value. To determine if oscillations between intended and unintended muscle activities were correlated, cross-correlation function (CCF) of rectified EMG for both hands at low frequency was calculated for samples deemed adequate. The unintended aEMG (right hand) had significant main effects in task difficulty, age, and target force (all P < 0.05) without any interactions. Distinct significant peaks in CCF (0.38 on average, P < 0.05) with small time lags were present between rectified EMGs of intended and unintended muscles in 14 of the 17 samples. The current results indicate that UIMA increases with greater task difficulty regardless of age, and temporal correlations exist between intended and contralateral unintended muscle activities at low frequency.
Suica, Zorica; Romkes, Jacqueline; Tal, Amir; Maguire, Clare
2016-01-01
To investigate the immediate effect of four-wheeled- walker(rollator)walking on lower-limb muscle activity and trunk-sway in healthy subjects. In this cross-sectional design electromyographic (EMG) data was collected in six lower-limb muscle groups and trunk-sway was measured as peak-to-peak angular displacement of the centre-of-mass (level L2/3) in the sagittal and frontal-planes using the SwayStar balance system. 19 subjects walked at self-selected speed firstly without a rollator then in randomised order 1. with rollator 2. with rollator with increased weight-bearing. Rollator-walking caused statistically significant reductions in EMG activity in lower-limb muscle groups and effect-sizes were medium to large. Increased weight-bearing increased the effect. Trunk-sway in the sagittal and frontal-planes showed no statistically significant difference between conditions. Rollator-walking reduces lower-limb muscle activity but trunk-sway remains unchanged as stability is likely gained through forces generated by the upper-limbs. Short-term stability is gained but the long-term effect is unclear and requires investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ghaderi, Parviz; Marateb, Hamid R
2017-07-01
The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.
Relationship between grasping force and features of single-channel intramuscular EMG signals.
Kamavuako, Ernest Nlandu; Farina, Dario; Yoshida, Ken; Jensen, Winnie
2009-12-15
The surface electromyographic (sEMG) signal can be used for force prediction and control in prosthetic devices. Because of technological advances on implantable sensors, the use of intramuscular EMG (iEMG) is becoming a potential alternative to sEMG for the control of multiple degrees-of-freedom (DOF). An invasive system is not affected by crosstalk, typical of sEMG, and provides more stable and independent control sites. However, intramuscular recordings provide more local information because of their high selectivity, and may thus be less representative of the global muscle activity with respect to sEMG. This study investigates the capacity of selective single-channel iEMG recordings to represent the grasping force with respect to the use of sEMG with the aim of assessing if iEMG can be an effective method for proportional myoelectric control. sEMG and iEMG were recorded concurrently from 10 subjects who exerted six grasping force profiles from 0 to 25/50N. The linear correlation coefficient between features extracted from iEMG and force was approximately 0.9 and was not significantly different from the degree of correlation between sEMG and force. This result indicates that a selective iEMG recording is representative of the applied grasping force and can be used for proportional control.
Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja
2014-05-07
Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet-based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics.
Specific muscle EMG biofeedback for hand dystonia.
Deepak, K K; Behari, M
1999-12-01
Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.
Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja
2014-01-01
Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet—based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics. PMID:24811078
Electromyographical Comparison of Four Common Shoulder Exercises in Unstable and Stable Shoulders
Sciascia, Aaron; Kuschinsky, Nina; Nitz, Arthur J.; Mair, Scott D.; Uhl, Tim L.
2012-01-01
This study examines if electromyographic (EMG) amplitude differences exist between patients with shoulder instability and healthy controls performing scaption, prone horizontal abduction, prone external rotation, and push-up plus shoulder rehabilitation exercises. Thirty nine subjects were categorized by a single orthopedic surgeon as having multidirectional instability (n = 10), anterior instability (n = 9), generalized laxity (n = 10), or a healthy shoulder (n = 10). Indwelling and surface electrodes were utilized to measure EMG activity (reported as a % of maximum voluntary isometric contraction (MVIC)) in various shoulder muscles during 4 common shoulder exercises. The exercises studied effectively activated the primary musculature targeted in each exercise equally among all groups. The serratus anterior generated high activity (50–80% MVIC) during a push-up plus, while the infraspinatus and teres major generated moderate-to-high activity (30–80% MVIC) during both the prone horizontal and prone external rotation exercises. Scaption exercise generated moderate activity (20–50% MVIC) in both rotator cuff and scapular musculature. Clinicians should feel confident in prescribing these shoulder-strengthening exercises in patients with shoulder instability as the activation levels are comparable to previous findings regarding EMG amplitudes and should improve the dynamic stabilization capability of both rotator cuff and scapular muscles using exercises designed to address glenohumeral joint instability. PMID:22919499
An electromyographic analysis of selected asana in experienced yogic practitioners.
Kelley, Kathleen; Slattery, Katherine; Apollo, Kaitlyn
2018-01-01
The purpose of this study was to assess electromyographic (EMG) output of the anterior tibialis (TA), medial head of the gastrocnemius (GA), rectus femoris (RF), bicep femoris (BF), and gluteus medius (GM) in experienced yogic practitioners during selected yoga asana. A secondary purpose was to examine the differences in EMG output in unilateral V. bilateral standing yoga asana. The study was a single occasion descriptive design. Thirteen healthy yoga practitioners (1 male, 12 females, average age of 37.5) with more than five years of experience were recruited. EMG activity was recorded during maximum voluntary isometric contractions (MVIC) of the TA, GA, RF, and BF using the Biodex Multijoint System ® , and GM using manual muscle testing position. Subjects then performed the following yoga asana while EMG activity was recorded: downward facing dog, half-moon, tree, chair, and warrior three pose. Each asana was held for fifteen seconds and performed three times. EMG data were band pass filtered and the root mean square was obtained. Asana data were then amplitude normalized with the subjects' MVIC data. Integrated EMG was calculated for TA, GA, RF, BF and GM, in each asana. A multilevel regression analysis was performed, and peak EMG data was compared. Analysis between muscles showed that during CH and DD EMG activity was greatest in the TA muscle compared to the other muscles, while during HM and WR the GA muscle showed the greatest activity. Analysis within muscles showed low GA, BF, and GM activity during chair pose and downward facing dog compared to half moon, tree, and warrior three, and high RF activity during chair compared to the other poses. In conclusion, there were differences in frontal and sagittal plane muscle activation between single limb and double limb poses in experienced yogic practitioners. Copyright © 2017. Published by Elsevier Ltd.
Hegyi, A; Péter, A; Finni, T; Cronin, N J
2018-03-01
Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I
2017-06-01
To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?
Armour Smith, Jo; Kulig, Kornelia
2015-06-01
Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effect of grip force, stroke rotation and frequency on discomfort for a torqueing tasks.
Bano, Farheen; Mallick, Zulqernian; Khan, Abid Ali
2015-08-08
Occupational tasks involve awkward upper limb postures, especially movement of forearm with repetitive combined gripping and torqueing exertions, which may lead to development of WMSDs. From the literature survey it was observed that there was a lack of studies focussed on the combined effect of torque and grip exertions on forearm discomfort. The present study was to investigate the effects of grip force, stroke rotation and frequency of exertions on discomfort and Electromyography (EMG) activities of the forearm muscles in a repetitive torqueing task. Twenty-seven male participants volunteered in this study. The participants performed repetitive exertions for a 5 minutes duration for each combination of the different levels of stroke rotation, grip force and frequency of exertions. Three levels of stroke rotation, three levels of grip force and three levels of frequency of exertion were chosen as independent variables. Therefore a 3 × 3 customized factorial design was used for the experiment for each level of grip force. Hence, the study was divided into three groups on the basis of grip force (50N, 70N and 90N). The ANOVA showed that stroke rotation and frequency of exertion were significant on discomfort. Further Students Newmann test (SNK) revealed that discomfort was increased with increasing stroke rotation and frequency of exertion. The multivariate analysis of variances (MANOVA) performed on EMG data instead of ANOVA because EMG activities of five muscles simultaneously were recorded. The Results found that extensor muscles were more fatigued in torqueing with gripping task. It was found that stroke rotation for the torqueing tasks must be kept below 45°. It was concluded that it is important to control stroke rotation to improve performance of repetitive torqueing activity.
Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong
2017-01-01
The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.
Pre-Activity Modulation of Lower Extremity Muscles Within Different Types and Heights of Deep Jump
Mrdakovic, Vladimir; Ilic, Dusko B.; Jankovic, Nenad; Rajkovic, Zeljko; Stefanovic, Djordje
2008-01-01
The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m), who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump) from three different heights (40cm, 60cm, and 80cm). Surface EMG device (1000Hz) was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG) of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis) within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience. Key pointsHeight factor proved to be more relevant for the change in pre-activation level compared to the drop jump type factor.There is evident qualitative difference in pattern of pre-activation from lower and higher drop heights, compared to pattern of pre-activation obtained from optimal drop height.Drop jumps from the heights above the optimal one are not adequate for nicely preparing muscle activity for the impact. PMID:24149460
Control of movement distance in Parkinson's disease.
Pfann, K D; Buchman, A S; Comella, C L; Corcos, D M
2001-11-01
Studies of electromyographic (EMG) patterns during movements in Parkinson's disease (PD) have often yielded contradictory results, making it impossible to derive a set of rules to explain how muscles are activated to perform different movement tasks. We sought to clarify the changes in modulation of EMG parameters associated with control of movement distance during fast movements in patients with PD. Specifically, we studied surface EMG activity during rapid elbow flexion movements over a wide range of distances (5-72 degrees) in 14 patients with relatively mild symptoms of PD and 14 control subjects of similar age, sex, height, and weight. The PD group exhibited several changes in EMG modulation including impaired modulation of agonist burst duration; increased number of agonist bursts; reduced scaling of agonist EMG magnitude in the more severely impaired subjects; and increased temporal overlap of the antagonist and agonist signals in the most severely impaired subjects. These findings suggest that progressive motor dysfunction in PD is accompanied by increasing deficits in modulating muscle activation. These results help clarify previous disparate and sometimes contradictory results of EMG patterns in subjects with PD. Copyright 2001 Movement Disorder Society.
Fong, Shirley S M; Tam, Y T; Macfarlane, Duncan J; Ng, Shamay S M; Bae, Young-Hyeon; Chan, Eleanor W Y; Guo, X
2015-01-01
This study aimed to examine the effects of kinesiology taping (KT) and different TRX suspension workouts on the amplitude of electromyographic (EMG) activity in the core muscles among people with chronic low back pain (LBP). Each participant (total n = 21) was exposed to two KT conditions: no taping and taping, while performing four TRX suspension exercises: (1) hamstring curl, (2) hip abduction in plank, (3) chest press, and (4) 45-degree row. Right transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF) activity was recorded with surface EMG and expressed as a percentage of the EMG amplitude recorded during a maximal voluntary isometric contraction of the respective muscles. Hip abduction in plank increased TrAIO, RA, and LMF EMG amplitude compared with other TRX positions (P < 0.008). Only the hamstring curl was effective in inducing a high EMG amplitude of LMF (P < 0.001). No significant difference in EMG magnitude was found between the taping and no taping conditions overall (P > 0.05). Hip abduction in plank most effectively activated abdominal muscles, whereas the hamstring curl most effectively activated the paraspinal muscles. Applying KT conferred no immediate benefits in improving the core muscle activation during TRX training in adults with chronic LBP.
Bazanova, Olga M; Auer, Tibor; Sapina, Elena A
2018-01-01
Background: Neurofeedback training (NFT) to decrease the theta/beta ratio (TBR) has been used for treating hyperactivity and impulsivity in attention deficit hyperactivity disorder (ADHD); however, often with low efficiency. Individual variance in EEG profile can confound NFT, because it may lead to influencing non-relevant activity, if ignored. More importantly, it may lead to influencing ADHD-related activities adversely, which may even result in worsening ADHD symptoms. Electromyogenic (EMG) signal resulted from forehead muscles can also explain the low efficiency of the NFT in ADHD from both practical and psychological point-of-view. The first aim of this study was to determine EEG and EMG biomarkers most related to the main ADHD characteristics, such as impulsivity and hyperactivity. The second aim was to confirm our hypothesis that the efficiency of the TBR NFT can be increased by individual adjustment of the frequency bands and simultaneous training on forehead muscle tension. Methods: We recruited 94 children diagnosed with ADHD (ADHD) and 23 healthy controls (HC). All participants were male and aged between six and nine. Impulsivity and attention were assessed with Go/no-Go task and delayed gratification task, respectively; and 19-channel EEG and forehead EMG were recorded. Then, the ADHD group was randomly subdivided into (1) standard, (2) individualized, (3) individualized+EMG, and (4) sham NFT (control) groups. The groups were compared based on TBR and EEG alpha activity, as well as hyperactivity and impulsivity three times: pre-NFT, post-NFT and 6 months after the NFT (follow-up). Results: ADHD children were characterized with decreased individual alpha peak frequency, alpha bandwidth and alpha amplitude suppression magnitude, as well as with increased alpha1/alpha2 (a1/a2) ratio and scalp muscle tension when c (η 2 ≥ 0.212). All contingent TBR NFT groups exhibited significant NFT-related decrease in TBR not evident in the control group. Moreover, we detected a higher overall alpha activity in the individualized but not in the standard NFT group. Mixed MANOVA considering between-subject factor GROUP and within-subject factor TIME showed that the individualized+EMG group exhibited the highest level of clinical improvement, which was associated with increase in the individual alpha activity at the 6 months follow-up when comparing with the other approaches (post hoc t = 3.456, p = 0.011). Conclusions: This study identified various (adjusted) alpha activity metrics as biomarkers with close relationship with ADHD symptoms, and demonstrated that TBR NFT individually adjusted for variances in alpha activity is more successful and clinically more efficient than standard, non-individualized NFT. Moreover, these training effects of the individualized TBR NFT lasted longer when combined with EMG.
Nowicky, Alex V.; Horne, Sara; Burdett, Richard
2005-01-01
This study used surface electromyography (sEMG) to examine whether there were differences in hip and trunk muscle activation during the rowing cycle on two of the most widely used air braked ergometers: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min-1 and 1:47.500 m-1 split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key Points The effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls. Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation. As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise. PMID:24431957
Muscle activity characterization by laser Doppler Myography
NASA Astrophysics Data System (ADS)
Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico
2013-09-01
Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.
The effects of a 28-Hz vibration on arm muscle activity during isometric exercise.
Mischi, Massimo; Cardinale, Marco
2009-03-01
The aim of this study was to evaluate activation and coactivation of biceps and triceps muscles during isometric exercise performed with and without superimposing a vibration stimulation. Twelve healthy volunteers (age = 22.7 +/- 2.6 yr) participated in this study. The subjects performed five trials of isometric elbow flexion and five trials of elbow extension with increasing levels of force in two conditions: vibration (V) and normal loading (C). V stimulation was characterized by a frequency of 28 Hz. Surface EMG activity of biceps and triceps muscles was simultaneously measured by bipolar surface electromyography and assessed by the estimation of the root mean square (RMS) of the electrical recordings over a fixed 5-s interval. Frequency analysis was adopted to estimate the RMS related to muscle activation and to exclude the harmonics generated by movement artifacts due to V. The analysis of the recordings revealed a significant EMG RMS increase when V was applied. On average, the EMG RMS of biceps and triceps during elbow flexion was, respectively, 26.1% (P < 0.05) and 18.2% (P = 0.15) higher than C. During elbow extension, the EMG RMS of biceps and triceps was 77.2% and 45.2% (P < 0.05) higher than C, respectively. The coactivation was assessed as the ratio between the activation of antagonist and agonist muscles during arm flexion and extension tasks. The results revealed an increase of coactivation during V exercise, especially for lighter loads. This study shows that V exercise at 28 Hz produces an increase of the activation and the coactivation of biceps and triceps. This exercise modality seems therefore suitable for various applications.
Electromyogram biofeedback training for daytime clenching and its effect on sleep bruxism.
Sato, M; Iizuka, T; Watanabe, A; Iwase, N; Otsuka, H; Terada, N; Fujisawa, M
2015-02-01
Bruxism contributes to the development of temporomandibular disorders as well as causes dental problems. Although it is an important issue in clinical dentistry, no treatment approaches have been proven effective. This study aimed to use electromyogram (EMG) biofeedback (BF) training to improve awake bruxism (AB) and examine its effect on sleep bruxism (SB). Twelve male participants (mean age, 26·8 ± 2·5 years) with subjective symptoms of AB or a diagnosis of SB were randomly divided into BF (n = 7) and control (CO, n = 5) groups to undergo 5-h daytime and night-time EMG measurements for three consecutive weeks. EMG electrodes were placed over the temporalis muscle on the habitual masticatory side. Those in the BF group underwent BF training to remind them of the occurrence of undesirable clenching activity when excessive EMG activity of certain burst duration was generated in week 2. Then, EMGs were recorded at week 3 as the post-BF test. Those in the CO group underwent EMG measurement without any EMG BF training throughout the study period. Although the number of tonic EMG events did not show statistically significant differences among weeks 1-3 in the CO group, events in weeks 2 and 3 decreased significantly compared with those in week 1, both daytime and night-time, in the BF group (P < 0·05, Scheffé's test). This study results suggest that EMG BF to improve AB tonic EMG events can also provide an effective approach to regulate SB tonic EMG events. © 2014 John Wiley & Sons Ltd.
EMG prediction from Motor Cortical Recordings via a Non-Negative Point Process Filter
Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M.; Miall, R. Chris; Miller, Lee E.
2012-01-01
A constrained point process filtering mechanism for prediction of electromyogram (EMG) signals from multi-channel neural spike recordings is proposed here. Filters from the Kalman family are inherently sub-optimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model (GLM) that encapsulates covariates of neural activity, including the neurons’ own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter (KF) in an optimization framework and utilized a non-negativity constraint. This structure characterizes the non-linear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from twelve forearm and hand muscles of a behaving monkey during a grip-force task. For the case of limited training data, the constrained point process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static non-linearity) for different bin sizes and delays between input spikes and EMG output. For longer training data sets, results of the proposed filter and that of the Wiener cascade filter were comparable. PMID:21659018
Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P
2009-11-15
A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.
Cole, Ashley K; McGrath, Melanie L; Harrington, Shana E; Padua, Darin A; Rucinski, Terri J; Prentice, William E
2013-01-01
Context Overhead athletes commonly have poor posture. Commercial braces are used to improve posture and function, but few researchers have examined the effects of shoulder or scapular bracing on posture and scapular muscle activity. Objective To examine whether a scapular stabilization brace acutely alters posture and scapular muscle activity in healthy overhead athletes with forward-head, rounded-shoulder posture (FHRSP). Design Randomized controlled clinical trial. Setting Applied biomechanics laboratory. Patients or Other Participants Thirty-eight healthy overhead athletes with FHRSP. Intervention(s) Participants were assigned randomly to 2 groups: compression shirt with no strap tension (S) and compression shirt with the straps fully tensioned (S + T). Posture was measured using lateral-view photography with retroreflective markers. Electromyography (EMG) of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) in the dominant upper extremity was measured during 4 exercises (scapular punches, W's, Y's, T's) and 2 glenohumeral motions (forward flexion, shoulder extension). Posture and exercise EMG measurements were taken with and without the brace applied. Main Outcome Measure(s) Head and shoulder angles were measured from lateral-view digital photographs. Normalized surface EMG was used to assess mean muscle activation of the UT, MT, LT, and SA. Results Application of the brace decreased forward shoulder angle in the S + T condition. Brace application also caused a small increase in LT EMG during forward flexion and Y's and a small decrease in UT and MT EMG during shoulder extension. Brace application in the S + T group decreased UT EMG during W's, whereas UT EMG increased during W's in the S group. Conclusions Application of the scapular brace improved shoulder posture and scapular muscle activity, but EMG changes were highly variable. Use of a scapular brace might improve shoulder posture and muscle activity in overhead athletes with poor posture. PMID:23672321
Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter
2015-01-01
Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student's t-test. The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs.
Bioconverter for upper extremity rehabilitation.
Brown, D M; Basmajian, J V
1978-10-01
The bioconverter is a simple instrument which uses the output of the Basmajian-Emory myotrainer to activate electrical devices, such as radios, television, etc. It can be used to assist in training by providing an acceptable and/or pleasurable stimulus (such as a radio) as muscle activation improves. The myotrainer contains adjustable sensitivity circuits, and the bioconverter has a pre-set holding circuit of 2, 4, or 6 seconds duration. A case of a deaf and blind patient is presented where the bioconverter is used to activate other sensory (skin) stimuli rather than audio-visual ones. The bioconverter can also be used in relaxation training. In this mode of operation the controlled equipment is on when no EMG is present and is turned off when too high an EMG level exists.
Słupska, Lucyna
2013-01-01
Objectives. The main objective was to determine how the depth of probe placement affects functional and resting bioelectrical activity of the PFM and whether the recorded signal might be dependent on the direction in which the probe is rotated. Participants. The study comprised of healthy, nulliparous women between the ages of 21 and 25. Outcome Measures. Bioelectric activity of the PFM was recorded from four locations of the vagina by surface EMG and vaginal probe. Results. There were no statistically significant differences between the results during functional sEMG activity. During resting sEMG activity, the highest bioelectrical activity of the PFM was observed in the L1 and the lowest in the L4 and a statistically significant difference between the highest and the lowest results of resting sEMG activity was observed (P = 0.0043). Conclusion. Different electrodes placement during functional contraction of PFM does not affect the obtained results in sEMG evaluation. In order to diagnose the highest resting activity of PFM the recording plates should be placed toward the anterior vaginal wall and distally from the introitus. However, all of the PFM have similar bioelectrical activity and it seems that these muscles could be treated as a single muscle. PMID:24392449
Effects of seated posture on erector spinae EMG activity during whole body vibration.
Zimmermann, C L; Cook, T M; Goel, V K
1993-06-01
The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Li, Yun; Chen, Xiang; Li, Guanglin; Zev Rymer, William; Zhou, Ping
2013-08-01
Objective. This study investigates the effect of the involuntary motor activity of paretic-spastic muscles on the classification of surface electromyography (EMG) signals. Approach. Two data collection sessions were designed for 8 stroke subjects to voluntarily perform 11 functional movements using their affected forearm and hand at relatively slow and fast speeds. For each stroke subject, the degree of involuntary motor activity present in the voluntary surface EMG recordings was qualitatively described from such slow and fast experimental protocols. Myoelectric pattern recognition analysis was performed using different combinations of voluntary surface EMG data recorded from the slow and fast sessions. Main results. Across all tested stroke subjects, our results revealed that when involuntary surface EMG is absent or present in both the training and testing datasets, high accuracies (>96%, >98%, respectively, averaged over all the subjects) can be achieved in the classification of different movements using surface EMG signals from paretic muscles. When involuntary surface EMG was solely involved in either the training or testing datasets, the classification accuracies were dramatically reduced (<89%, <85%, respectively). However, if both the training and testing datasets contained EMG signals with the presence and absence of involuntary EMG interference, high accuracies were still achieved (>97%). Significance. The findings of this study can be used to guide the appropriate design and implementation of myoelectric pattern recognition based systems or devices toward promoting robot-aided therapy for stroke rehabilitation.
Activity of masticatory muscles in subjects with different orofacial pain conditions.
Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain
2005-07-01
The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.
Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I
2018-03-01
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Ergonomic analyses of downhill skiing.
Clarys, J P; Publie, J; Zinzen, E
1994-06-01
The purpose of this study was to provide electromyographic feedback for (1) pedagogical advice in motor learning, (2) the ergonomics of materials choice and (3) competition. For these purposes: (1) EMG data were collected for the Stem Christie, the Stem Turn and the Parallel Christie (three basic ski initiation drills) and verified for the complexity of patterns; (2) integrated EMG (iEMG) and linear envelopes (LEs) were analysed from standardized positions, motions and slopes using compact, soft and competition skis; (3) in a simulated 'parallel special slalom', the muscular activity pattern and intensity of excavated and flat snow conditions were compared. The EMG data from the three studies were collected on location in the French Alps (Tignes). The analog raw EMG was recorded on the slopes with a portable seven-channel FM recorder (TEAC MR30) and with pre-amplified bipolar surface electrodes supplied with a precision instrumentation amplifier (AD 524, Analog Devices, Norwood, USA). The raw signal was full-wave rectified and enveloped using a moving average principle. This linear envelope was normalized according to the highest peak amplitude procedure per subject and was integrated in order to obtain a reference of muscular intensity. In the three studies and for all subjects (elite skiers: n = 25 in studies 1 and 2, n = 6 in study 3), we found a high level of co-contractions in the lower limb extensors and flexors, especially during the extension phase of the ski movement. The Stem Christie and the Parallel Christie showed higher levels of rhythmic movement (92 and 84%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)
Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing
Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.
2011-01-01
During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key issue with respect to the influence on muscle recruitment for applied prolonged skiing session. PMID:24149299
Testa, Marco; Geri, Tommaso; Gizzi, Leonardo; Petzke, Frank; Falla, Deborah
2015-01-01
To assess whether patients with persistent neck pain display evidence of altered masticatory muscle behavior during a jaw-clenching task, despite the absence of orofacial pain or temporomandibular disorders. Ten subjects with persistent, nonspecific neck pain and 10 age- and sex-matched healthy controls participated. Maximal voluntary contractions (MVCs) of unilateral jaw clenching followed by 5-second submaximal contractions at 10%, 30%, 50%, and 70% MVC were recorded by two flexible force transducers positioned between the first molar teeth. Task performance was quantified by mean distance and offset error from the reference target force as error indices, and standard deviation of force was used as an index of force steadiness. Electromyographic (EMG) activity was recorded bilaterally from the masseter muscle with 13 X 5 grids of electrodes and from the anterior temporalis with bipolar electrodes. Normalized EMG root mean square (RMS) was computed for each location of the grid to form a map of the EMG amplitude distribution, and the average normalized RMS was determined for the bipolar acquisition. Between-group differences were analyzed with the Kruskal Wallis analysis of variance. Task performance was similar in patients and controls. However, patients displayed greater masseter EMG activity bilaterally at higher force levels (P<.05). This study has provided novel evidence of altered motor control of the jaw in people with neck pain despite the absence of orofacial pain or temporomandibular disorders.
Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
2013-01-01
Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560
Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
Roman-Liu, Danuta; Konarska, Maria
2009-10-01
The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low frequency bands up to 25 Hz are especially feasible for type of muscle.
Zhuang, Katie Z.; Lebedev, Mikhail A.
2014-01-01
Correlation between cortical activity and electromyographic (EMG) activity of limb muscles has long been a subject of neurophysiological studies, especially in terms of corticospinal connectivity. Interest in this issue has recently increased due to the development of brain-machine interfaces with output signals that mimic muscle force. For this study, three monkeys were implanted with multielectrode arrays in multiple cortical areas. One monkey performed self-timed touch pad presses, whereas the other two executed arm reaching movements. We analyzed the dynamic relationship between cortical neuronal activity and arm EMGs using a joint cross-correlation (JCC) analysis that evaluated trial-by-trial correlation as a function of time intervals within a trial. JCCs revealed transient correlations between the EMGs of multiple muscles and neural activity in motor, premotor and somatosensory cortical areas. Matching results were obtained using spike-triggered averages corrected by subtracting trial-shuffled data. Compared with spike-triggered averages, JCCs more readily revealed dynamic changes in cortico-EMG correlations. JCCs showed that correlation peaks often sharpened around movement times and broadened during delay intervals. Furthermore, JCC patterns were directionally selective for the arm-reaching task. We propose that such highly dynamic, task-dependent and distributed relationships between cortical activity and EMGs should be taken into consideration for future brain-machine interfaces that generate EMG-like signals. PMID:25210153
A combined sEMG and accelerometer system for monitoring functional activity in stroke.
Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J
2009-12-01
Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.
A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.
Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C
2014-04-23
Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke.
Hewson, D J; McNair, P J; Marshall, R N
2000-08-01
Flying an aircraft requires a considerable degree of coordination, particularly during aerobatic activities such as rolls, loops and turns. Only one previous study has examined the magnitude of muscle activity required to fly an aircraft, and that was restricted to takeoff and landing maneuvers. The aim of this study was to examine the phasing of muscle activation and control forces of novice and experienced pilots during more complex simulated flight maneuvers. There were 12 experienced and 9 novice pilots who were tested on an Aermacchi flight simulator while performing a randomized set of rolling, looping, and turning maneuvers. Four different runaway trim settings were used to increase the difficulty of the turns (elevator-up, elevator-down, aileron-left, and aileron-right). Variables recorded included aircraft attitude, pilot applied forces, and electromyographic (EMG) activity. Discriminant function analysis was used to distinguish between novice and experienced pilots. Over all maneuvers, 70% of pilots were correctly classified as novice or experienced. Better levels of classification were achieved when maneuvers were analyzed individually (67-91%), although the maneuvers that required the greatest force application, elevator-up turns, were unable to discriminate between novice and experienced pilots. There were no differences in the phasing of muscle activity between experienced and novice pilots. The only consistent difference in EMG activity between novice and experienced pilots was the reduced EMG activity in the wrist extensors of experienced pilots (p < 0.05). The increased wrist extensor activity of the novice pilots is indicative of a distal control strategy, whereby distal muscles with smaller motor units are used to perform a task that requires precise control. Muscle activity sensors could be used to detect the onset of high G maneuvers prior to any change in aircraft attitude and control G-suit inflation accordingly.
Spinal motor outputs during step-to-step transitions of diverse human gaits.
La Scaleia, Valentina; Ivanenko, Yuri P; Zelik, Karl E; Lacquaniti, Francesco
2014-01-01
Aspects of human motor control can be inferred from the coordination of muscles during movement. For instance, by combining multimuscle electromyographic (EMG) recordings with human neuroanatomy, it is possible to estimate alpha-motoneuron (MN) pool activations along the spinal cord. It has previously been shown that the spinal motor output fluctuates with the body's center-of-mass motion, with bursts of activity around foot-strike and foot lift-off during walking. However, it is not known whether these MN bursts are generalizable to other ambulation tasks, nor is it clear if the spatial locus of the activity (along the rostrocaudal axis of the spinal cord) is fixed or variable. Here we sought to address these questions by investigating the spatiotemporal characteristics of the spinal motor output during various tasks: walking forward, backward, tiptoe and uphill. We reconstructed spinal maps from 26 leg muscle EMGs, including some intrinsic foot muscles. We discovered that the various walking tasks shared qualitative similarities in their temporal spinal activation profiles, exhibiting peaks around foot-strike and foot-lift. However, we also observed differences in the segmental level and intensity of spinal activations, particularly following foot-strike. For example, forward level-ground walking exhibited a mean motor output roughly 2 times lower than the other gaits. Finally, we found that the reconstruction of the spinal motor output from multimuscle EMG recordings was relatively insensitive to the subset of muscles analyzed. In summary, our results suggested temporal similarities, but spatial differences in the segmental spinal motor outputs during the step-to-step transitions of disparate walking behaviors.
Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.
Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari
2016-04-01
High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p = .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.
Comparing electro- and mechano-myographic muscle activation patterns in self-paced pediatric gait.
Plewa, Katherine; Samadani, Ali; Chau, Tom
2017-10-01
Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Occlus-o-Guide® versus Andresen activator appliance: neuromuscular evaluation
2013-01-01
Background The aim of the present study was to assess the muscular variations at the electromyography (EMG) level for the anterior temporalis muscles and masseter muscles during treatment with Occlus-o-Guide® and Andresen activator appliances. Methods Eighty-two patients (35 males and 47 females) aged between 8 and 12 years (mean age, 10.5 ± 0.8 years) participated in the study. Fifty patients underwent treatment with an Occlus-o-Guide® and 32 patients with an Andresen activator. All patients underwent EMG examination using a Freely EMG (De Gotzen, Legnano, Italy) and surface bipolar electrodes when the appliances were worn for the first time (T0), and after 6 months (T1) and after 12 months (T2) of appliance use. Results Statistical analysis showed that both at T0 and T2, the percent overlapping coefficient (POC) of the anterior temporalis muscles was not statistically different between the appliance groups. At T0, the POC of the masseter muscles was significantly lower for the Andresen appliance as compared to the Occlus-o-Guide® (p = 0.02), while at T2 this significance was lost. Conclusions At insertion of an appliance, all patients show neuromuscular balance that does not correspond to orthognathic occlusion. Both appliances work by creating muscular imbalance. With the appliances in situ, EMG responses were generally analogous for the Occlus-o-Guide® and the Andresen activator; however, the imbalance was greater and the recovery of the orthological muscular balance was slower in patients under treatment with the Andresen activator as compared to those with the Occlus-o-Guide®. PMID:24325935
Attentional Focus and Grip Width Influences on Bench Press Resistance Training.
Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, JuanCarlos; Andersen, Lars L
2018-04-01
This study evaluated the influence of different attentional foci for varied grip widths in the bench press. Eighteen resistance-trained men were familiarized with the procedure and performed a one-repetition maximum (1RM) test during Session 1. In Session 2, they used three different standardized grip widths (100%, 150%, and 200% of biacromial width distance) in random order at 50% of 1RM while also engaged in three different attention focus conditions (external focus on the bench press, internal focus on pectoralis major muscles, and internal focus on triceps brachii muscles). Surface electromyography (EMG) signals were recorded from the triceps brachii and pectoralis major, and peak EMG of the filtered signals were normalized to maximum EMG of each muscle. Both grip width and focus influenced the muscle activity level, but there were no significant interactions between these variables. Exploratory analyses suggested that an internal focus may slightly (4%-6%) increase pectoralis major activity at wider grip widths and triceps brachii activity at narrower grip widths, but this should be confirmed or rejected in a study with a larger sample size or through a meta-analysis of research to date.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Mimicking muscle activity with electrical stimulation
NASA Astrophysics Data System (ADS)
Johnson, Lise A.; Fuglevand, Andrew J.
2011-02-01
Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.
Measurement of EMG activity with textile electrodes embedded into clothing.
Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S
2007-11-01
Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.
Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C
2014-12-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.
Seven, Yasin B.; Mantilla, Carlos B.
2014-01-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864
Virseda-Chamorro, M; Lopez-Garcia-Moreno, A M; Salinas-Casado, J; Esteban-Fuertes, M
2012-01-01
Electromyography (EMG) of the corpora cavernosa (CC-EMG) is able to record the activity of the erectile tissue during erection, and thus has been used as a diagnostic technique in patients with erectile dysfunction (ED). The present study examines the usefulness of the technique in the diagnosis of arterial ED. A cross-sectional study was made of 35 males with a mean age of 48.5 years (s.d. 11.34), referred to our center with ED for >1 year. The patients were subjected to CC-EMG and a penile Doppler ultrasound study following the injection of 20 μg of prostaglandin E1 (PGE1). The patients were divided into three groups according to their response to the intracavernous injection of PGE1: Group 1 (adequate erection and reduction/suppression of EMG activity); Group 2 (insufficient erection and persistence of EMG activity); and Group 3 (insufficient erection and reduction/suppression of EMG activity). Patient classification according to response to the intracavernous injection of PGE1 was as follows: Group 1: six patients (17%), Group 2: 18 patients (51%), and Group 3: 11 patients (31%). Patients diagnosed with arterial insufficiency according to Doppler ultrasound (systolic arterial peak velocity <30 mm s(-1) in both arteries) were significantly older than those without such damage (54.5 versus 41.8 years, respectively; s.d. 11.12). The patients in Group 3 showed a significantly lower maximum systolic velocity in both arteries than the subjects belonging to Group 2. Likewise, a statistically significant relationship was observed between the diagnosis of arterial insufficiency and patient classification in Group 3. The confirmation of insufficient erection associated with reduction/suppression of EMG activity showed a sensitivity of 66.7% (confidence interval between 50 and 84%) and a specificity of 92.9% (confidence interval between 84 and 100%) in the diagnosis of arterial ED. Owing to the high specificity of CC-EMG response to the injection of PGE1, this test is considered useful as a screening technique in the diagnosis of arterial ED.
Schneider, Cyril; Lavoie, Brigitte A; Barbeau, Hugues; Capaday, Charles
2004-12-01
Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important methodological implications.
Entropic Analysis of Electromyography Time Series
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Sung, Paul
2005-03-01
We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu
2017-08-01
Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A
2017-01-01
The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60-90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity.
Uterine electromyography during active phase compared with latent phase of labor at term.
Trojner Bregar, Andreja; Lucovnik, Miha; Verdenik, Ivan; Jager, Franc; Gersak, Ksenija; Garfield, Robert E
2016-02-01
In a prospective study in a tertiary university hospital we wanted to determine whether uterine electromyography (EMG) can differentiate between the active and latent phase of labor. Thirty women presenting at ≥37(0/7) weeks of gestation with regular uterine contractions, intact membranes, and a Bishop score <6. EMG was recorded from the abdominal surface for 30 min. Latent phase was defined as no cervical change within at least 4 h. Student's t-test was used for statistical analysis (p ≤ 0.05 significant). Diagnostic accuracy of EMG was determined by receiver operator characteristics (ROC) analysis. The integral of the amplitudes of the power density spectrum (PDS) corresponding to the PDS energy within the "bursts" of uterine EMG activity was compared between the active and latent labor groups. Seventeen (57%) women were found to be in the active phase of labor and 13 (43%) were in the latent phase. The EMG PDS integral was significantly higher (p = 0.02) in the active (mean 3.40 ± 0.82 μV) compared with the latent (mean 1.17 ± 0.33 μV) phase of labor. The PDS integral had an area under the ROC curve (AUC) of 0.80 to distinguish between active and latent phases of labor, compared with number of contractions on tocodynamometry (AUC = 0.79), and Bishop score (AUC = 0.78). The combination (sum) of PDS integral, tocodynamometry, and Bishop score predicted active phase of labor with an AUC of 0.90. Adding uterine EMG measurements to the methods currently used in the clinics could improve the accuracy of diagnosing active labor. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Electromyography Biofeedback Exergames to Enhance Grip Strength and Motivation.
Garcia-Hernandez, Nadia; Garza-Martinez, Karen; Parra-Vega, Vicente
2018-02-01
Hand strength weakness affects the performance of most activities of daily living. This study aims to design, develop, and test an electromyography (EMG) biofeedback training system based on serious games to promote motivation and synchronization and proper work intensity in grip exercises for improving hand strength. An EMG surface sensor, soft balls with different stiffness and three exergames, conforms the system to drive videogame clues in response to EMG-inferred grip strength, while overseeing motivation. An experiment was designed to study the effect of performing handgrip (HG) exercises with the proposed system versus traditional exercises. Participants, organized into two groups, followed a training program for each hand. One group followed a HG exergame training (ET) with the dominant hand and traditional HG training with the nondominant hand and inverse sequence by the second group. Initial and final grip forces were measured using a digital dynamometer. Questionnaires evaluated motivation and user experience, and exercise performance was evaluated in terms of work and rest time percentage and maximal voluntary contraction percentage over contraction periods. Data were analyzed for statistically significant differences and increase of means. Participants showed significantly better exercise performance and higher grip forces, with sustained intrinsic motivation and user experience, with the ET. Improvement in force level arises evidently from the synchronized work-rest time pattern and appropriated intensity of the muscle activity. This leads to support that EMG biofeedback exergames improve motor neurons firing and resting.
Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander
2013-01-01
Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals. PMID:24307920
Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander
2013-07-18
Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.
Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl
2015-04-01
To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.
[Acute and remote biochemical and physiological effects of exhaustive weightlifting exercise].
Minigalin, A D; Shumakov, A R; Baranova, T I; Danilova, M A; Kalinskiĭ, M I; Morozov, V I
2011-01-01
The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.
Ozaki, Yasunori; Aoki, Ryosuke; Kimura, Toshitaka; Takashima, Youichi; Yamada, Tomohiro
2016-08-01
The goal of this study is to propose a data driven approach method to characterize muscular activities of complex actions in sports such as golf from a lot of EMG channels. Two problems occur in a many channel measurement. The first problem is that it takes a lot of time to check the many channel data because of combinatorial explosion. The second problem is that it is difficult to understand muscle activities related with complex actions. To solve these problems, we propose an analysis method of multi EMG channels using Non-negative Matrix Factorization and adopt the method to driver swings in golf. We measured 26 EMG channels about 4 professional coaches of golf. The results show that the proposed method detected 9 muscle synergies and the activation of each synergy were mostly fitted by sigmoid curve (R2=0.85).
Dionello, Carla Fontoura; de Souza, Patrícia Lopes; Sá-Caputo, Danubia; Morel, Danielle Soares; Moreira-Marconi, Eloá; Paineiras-Domingos, Laisa Liane; Frederico, Eric Heleno Freire Ferreira; Guedes-Aguiar, Eliane; Paiva, Patricia de Castro; Taiar, Redha; Chiementin, Xavier; Marín, Pedro J; Bernardo-Filho, Mario
2017-01-01
The use of surface electromyography (sEMG) to evaluate muscle activation when executing whole body vibration exercises (WBVE) in studies provide neuromuscular findings, in healthy and diseased populations. Perform a systematic review of the effects of WBVE by sEMG of lower limbs in non-healthy populations. The search using the defined keywords was performed in PubMed, PEDRo and EMBASE databases by three independent researchers. Applying the PRISMA statement several studies were selected according to eligibility criteria and organized for the review. Full papers were included if they described effects of WBVE for the treatment of illnesses, evaluated by sEMG of lower limbs independently on the year of the publication; in comparison or associated with other treatment and evaluation techniques. Seven publications were selected; two in spinal cord injury patients, one in Friedreich's ataxia patients, three in stroke patients and one study in breast cancer survivors. Reported effects of WBV in were muscle activation by sEMG and also on strength, blood flow and exercise resistance; even in paretic limbs. By the use of sEMG it was verified that WBVE elicits muscle activation in diseased population. These results may lead to the definition of exercise protocols to maintain or increase muscular activation. However, due to the heterogeneity of methods among studies, there is currently no consensus on the sEMG signal processing. These strategies might also induce effects on muscle strength, balance and flexibility in these and other illnesses.
Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh
2016-08-10
Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.
Potter, P J; Kirby, R L
1991-12-01
The effect of simulated bilateral knee-flexion contractures (KFC) on the electromyographic (EMG) activity of the vastus lateralis was studied by testing 10 normal subjects using surface EMG to test the hypothesis that the activity of the knee extensors would increase as a function of the severity of the contracture. The root mean square of the EMG activity was determined from four 4-s samples taken at 30-s intervals, during 2 min of standing in each of five positions of simulated KFC (0 degree, 10 degrees, 20 degrees, 30 degrees and 40 degrees). A randomly balanced order of conditions was used. KFC were simulated in each subject by means of an adjustable line from the subject's waist to the sole of each foot. An analysis of variance was used to contrast EMG activity, and a significant difference was found between each of the positions (P less than 0.05). The mean (+/- 1 SD) EMG activity, expressed as a percentage of the maximum voluntary contraction, was 0.3% (+/- 0.2) at 0 degree, 7.6% (+/- 5.6) at 10 degrees, 10.9% (+/- 7.6) at 20 degrees, 16.6% (+/- 12.4) at 30 degrees and 24.0% (+/- 14.0) at 40 degrees. A linear relationship was found (r2 = 0.986), expressed by the equation y = 0.62 + 0.56 x, where y represents EMG activity and x represents the extent of simulated KFC (P = 0.0007). The results provide insight into the increased knee extensor activity necessary to stand with KFC and underline the importance of treating this common disorder.
Knowledge of electromyography (EMG) in patients undergoing EMG examinations
Mondelli, Mauro; Aretini, Alessandro; Greco, Giuseppe
2014-01-01
Summary The aim of this study was to evaluate knowledge of electromyography (EMG) in patients undergoing the procedure. In one year, 1,586 consecutive patients (mean age 56 years; 58.8% women) were admitted to two EMG labs to undergo EMG for the first time. The patients found to be “informed” about the how an EMG examination is performed and about the purpose of EMG numbered 448 (28.2%), while those found to be “informed” only about the manner of its execution or only about its purpose numbered 161 (10.2%) and 151 (9.5%), respectively. The remaining 826 (52.1%) patients had either no information, or the information they had was very poor or incorrect (this was particularly true if they had been consulting websites). Being “informed” was associated with level of education (high), type of referring physician (specialist) and with an appropriate referral diagnosis specified in the EMG request. The quality of patient information on EMG was found to be very poor and could be improved. Physicians referring patients for EMG examinations, especially general practitioners, should assume primary responsibility for patient education and counseling in this field. PMID:25473740
Ambrosini, E; Ferrante, S; Zajc, J; Bulgheroni, M; Baccinelli, W; d'Amico, E; Schauer, T; Wiesener, C; Russold, M; Gfoehler, M; Puchinger, M; Weber, M; Becker, S; Krakow, K; Rossini, M; Proserpio, D; Gasperini, G; Molteni, F; Ferrigno, G; Pedrocchi, A
2017-07-01
The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.
Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter
2015-01-01
Background Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Methods Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student’s t-test. Results The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Conclusion Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and physiotherapist to better understand intensity- and muscle-specific activation during hamstring muscle rehabilitation. Therefore, these results may help in designing progressive strengthening and rehabilitation and prevention programs. PMID:26170726
Effect of instruction, surface stability, and load intensity on trunk muscle activity.
Bressel, Eadric; Willardson, Jeffrey M; Thompson, Brennan; Fontana, Fabio E
2009-12-01
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39-167%) during squats with instructions compared to the other squat conditions (P=0.04-0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P=0.04-0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.
Lower trunk kinematics and muscle activity during different types of tennis serves
Chow, John W; Park, Soo-An; Tillman, Mark D
2009-01-01
Background To better understand the underlying mechanisms involved in trunk motion during a tennis serve, this study aimed to examine the (1) relative motion of the middle and lower trunk and (2) lower trunk muscle activity during three different types of tennis serves - flat, topspin, and slice. Methods Tennis serves performed by 11 advanced (AV) and 8 advanced intermediate (AI) male tennis players were videorecorded with markers placed on the back of the subject used to estimate the anatomical joint (AJ) angles between the middle and lower trunk for four trunk motions (extension, left lateral flexion, and left and right twisting). Surface electromyographic (EMG) techniques were used to monitor the left and right rectus abdominis (LRA and RRA), external oblique (LEO and REO), internal oblique (LIO and RIO), and erector spinae (LES and RES). The maximal AJ angles for different trunk motions during a serve and the average EMG levels for different muscles during different phases (ascending and descending windup, acceleration, and follow-through) of a tennis serve were evaluated. Results The repeated measures Skill × Serve Type × Trunk Motion ANOVA for maximal AJ angle indicated no significant main effects for serve type or skill level. However, the AV group had significantly smaller extension (p = 0.018) and greater left lateral flexion (p = 0.038) angles than the AI group. The repeated measures Skill × Serve Type × Phase MANOVA revealed significant phase main effects in all muscles (p < 0.001) and the average EMG of the AV group for LRA was significantly higher than that of the AI group (p = 0.008). All muscles showed their highest EMG values during the acceleration phase. LRA and LEO muscles also exhibited high activations during the descending windup phase, and RES muscle was very active during the follow-through phase. Conclusion Subjects in the AI group may be more susceptible to back injury than the AV group because of the significantly greater trunk hyperextension, and relatively large lumbar spinal loads are expected during the acceleration phase because of the hyperextension posture and profound front-back and bilateral co-activations in lower trunk muscles. PMID:19825184
Effect of Knee Joint Angle and Contraction Intensity on Hamstrings Coactivation.
Wu, Rui; Delahunt, Eamonn; Ditroilo, Massimiliano; Lowery, Madeleine M; DE Vito, Giuseppe
2017-08-01
This study investigated the effect of knee joint angle and contraction intensity on the coactivation of the hamstring muscles (when acting as antagonists to the quadriceps) in young and older individuals of both sexes. A total of 25 young (24 ± 2.6 yr) and 26 older (70 ± 2.5 yr) healthy men and women participated. Maximal voluntary isometric contraction of the knee extensors and flexors was assessed at two knee joint angles (90° and 60°, 0° = full extension). At each angle, participants performed submaximal contractions of the knee extensors (20%, 50%, and 80% maximal voluntary isometric contraction), whereas surface EMG was simultaneously acquired from the vastus lateralis and biceps femoris muscles to assess the level (EMG root-mean-square) of agonist activation and antagonist coactivation. Subcutaneous adipose tissue in the areas corresponding to surface EMG electrode placements was measured via ultrasonography. The contractions performed at 90° knee flexion demonstrated higher levels of antagonist coactivation (all P < 0.01) and agonist activation (all P < 0.01) as a function of contraction intensity compared with the 60° knee flexion. Furthermore, after controlling for subcutaneous adipose tissue, older participants exhibited a higher level of antagonist coactivation at 60° knee flexion compared with young participants (P < 0.05). The results of the present study suggest that 1) the antagonist coactivation is dependent on knee joint angle and contraction intensity and 2) subcutaneous adipose tissue may affect the measured coactivation level likely because of a cross-talk effect. Antagonist coactivation may play a protective role in stabilizing the knee joint and maintaining constant motor output.
Firmani, Mónica; Miralles, Rodolfo; Casassus, Rodrigo
2015-04-01
To compare the effects of 5% lidocaine patches and placebo patches on pain intensity and electromyographic (EMG) activity of an active myofascial trigger point (MTrP) of the upper trapezius muscle. Thirty-six patients with a MTrP in the upper trapezius muscle were randomly divided into two groups: 20 patients received lidocaine patches (lidocaine group) and 16 patients received placebo patches (placebo group). They used the patches for 12 h each day, for 2 weeks. The patch was applied to the skin over the upper trapezius MTrP. Spontaneous pain, pressure pain thresholds, pain provoked by a 4-kg pressure applied to the MTrP and trapezius EMG activity were measured before and after treatment. Baseline spontaneous pain values were similar in both groups and significantly lower in the lidocaine group than the placebo group after treatment. The baseline pressure pain threshold was significantly lower in the lidocaine group, but after treatment it was significantly higher in this group. Baseline and final values of the pain provoked by a 4-kg pressure showed no significant difference between the groups. Baseline EMG activity at rest and during swallowing of saliva was significantly higher in the lidocaine group, but no significant difference was observed after treatment. Baseline EMG activity during maximum voluntary clenching was similar in both groups, but significantly higher in the lidocaine group after treatment. These clinical and EMG results support the use of 5% lidocaine patches for treating patients with MTrP of the upper trapezius muscle.
Yang, Qiong; Zhang, Lin-Yuan; Chen, Sheng-Di; Liu, Jun
2014-01-01
Freezing of gait (FOG) is a complicated gait disturbance in Parkinson's disease (PD) and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG) and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Freezing of gait questionnaire (FOG-Q). Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG) and without FOG (PD-FOG), based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups. PMID:24586710
Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.
Carlyle, Jennilee K; Mochizuki, George
2018-02-01
Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bernard, J; Beldame, J; Van Driessche, S; Brunel, H; Poirier, T; Guiffault, P; Matsoukis, J; Billuart, F
2017-11-01
Minimally invasive total hip arthroplasty (THA) is presumed to provide functional and clinical benefits, whereas in fact the literature reveals that gait and posturographic parameters following THA do not recover values found in the general population. There is a significant disturbance of postural sway in THA patients, regardless of the surgical approach, although with some differences between approaches compared to controls: the anterior and anterolateral minimally invasive approaches seem to be more disruptive of postural parameters than the posterior approach. Electromyographic (EMG) study of the hip muscles involved in surgery [gluteus maximus (GMax), gluteus medius (GMed), tensor fasciae latae (TFL), and sartorius (S)] could shed light, the relevant literature involves discordant methodologies. We developed a methodology to assess EMG activity during maximal voluntary contraction (MVC) of the GMax, GMed, TFL and sartorius muscles as a reference for normalization. A prospective study aimed to assess whether hip joint positioning and the learning curve on an MVC test affect the EMG signal during a maximal voluntary contraction. Hip positioning and the learning curve on an MVC test affect EMG signal during MVC of GMax, GMed, TFL and S. Thirty young asymptomatic subjects participated in the study. Each performed 8 hip muscle MVCs in various joint positions recorded with surface EMG sensors. Each MVC was performed 3 times in 1 week, with the same schedule every day, controlling for activity levels in the preceding 24h. EMG activity during MVC was expressed as a ratio of EMG activity during unipedal stance. Non-parametric tests were applied. Statistical analysis showed no difference according to hip position for abductors or flexors in assessing EMG signal during MVC over the 3 sessions. Hip abductors showed no difference between abduction in lateral decubitus with hip straight versus hip flexed: GMax (19.8±13.7 vs. 14.5±7.8, P=0.78), GMed (13.4±9.0 vs. 9.9±6.6, P=0.21) and TFL (69.5±61.7 vs. 65.9±51.3, P=0.50). Flexors showed no difference between hip flexion/abduction/lateral rotation performed in supine or sitting position: TFL (70.6±45.9 vs. 61.6±45.8, P=0.22) and S (101.1±67.9 vs. 72.6±44.6, P=0.21). The most effective tests to assess EMG signal during MVC were for the hip abductors: hip abduction performed in lateral decubitus (36.7% for GMax, 76.7% for GMed), and for hip flexors: hip flexion/abduction/lateral rotation performed in supine decubitus (50% for TFL, 76.7% for S). The study hypothesis was not confirmed, since hip joint positioning and the learning curve on an MVC test did not affect EMG signal during MVC of GMax, GMed, TFL and S muscles. Therefore, a single session and one specific test is enough to assess MVC in hip abductors (abduction in lateral decubitus) and flexors (hip flexion/abduction/lateral rotation in supine position). This method could be applied to assess muscle function after THA, and particularly to compare different approaches. III, case-matched study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Naik, Ganesh R; Kumar, Dinesh K
2011-01-01
The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.
Comparison of sEMG processing methods during whole-body vibration exercise.
Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S
2015-12-01
The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C
2010-01-01
Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.
Functional roles of the calf and vastus muscles in locomotion.
Brandell, B R
1977-04-01
Simultaneous and synchronized electromyography and cinematography were used to record the co-ordination of calf and vastus muscle activity with the angular motions of the segments and joints of the lower limb in two female and three male subjects, while each performed one complete series of tests in which they walked at 2.5, 3.2 and 4.2 mph on a treadmill, which was level, or held at upward tilts of 5 and 10 degrees. The raw EMG recordings were also integrated into uniform pulses, which were electronically counted in 5 second time blocks for each of the walking conditions tested. The objectives of this study were to: 1) quantitatively measure the relative increases of EMG activity in thses two groups of muscles under the various degrees of stress, which resulted from walking at increased speeds and degrees of upward tilt, and 2) correlate these gross quantitative relationships of activity with the patterns of co-ordination found between these two groups of muscles under the corresponding stressed conditions of walking. The results of this study indicate that although with increases of speed and upward tilt the absolute values of integrated EMG increased more for the calf than for the vastus muscles, the relative increases of EMG were consistently greater for the vasti, which reached their peak intensity of activity at moments during the walking stride, when their knee extending action stretched the gastrocnemius heads across the back of the knee joint, and thereby assisted the calf muscles lift the heel, and plantar flex the ankle joint--the most essential actions for producing the push-off and thrust in the normal walking stride.
Associations between motor unit action potential parameters and surface EMG features.
Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario
2017-10-01
The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.
Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K
2012-08-01
The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.
Yamasaki, Yo; Kuwatsuru, Rika; Tsukiyama, Yoshihiro; Matsumoto, Hiroshi; Oki, Kyosuke; Koyano, Kiyoshi
2015-12-01
The aim of this study was to examine the validity of objective assessment of actual chewing side by measurement of electromyographic (EMG) activity of the bilateral masseter muscles upon chewing test foods. The sample consisted of 19 healthy, dentate individuals. The subjects were asked to chew three types of test foods (peanuts, beef jerky, and chewing gum) for 10 strokes on the right side and then on the left side, and instructed to perform maximum voluntary clenching for 3s, three times. EMG activity from the bilateral masseter muscles was recorded. The data were collected in three different days. The root mean square EMG amplitude obtained from the maximum clenching task was used as the maximum voluntary contraction (MVC). Then, the level of amplitude against the MVC (%MVC) was calculated for the right and left sides on each stroke. The side with the larger %MVC value was judged as the chewing side, and the concordance rates (CRs) for the instructed chewing side (ICS) and the judged chewing side (JCS) were calculated. Intraclass correlation coefficients (ICCs) of the CRs were calculated to evaluate the reproducibility of the method. High CRs between the ICS and JCS for each test food were recognized. There were significant ICCs for beef jerky (R=0.761, P<0.001) and chewing gum (R=0.785, P<0.001). The results suggested that the measurement of EMG activity from the bilateral masseter muscles may be a useful method for the objective determination of the actual chewing side during mastication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.
Farina, Dario; Gazzoni, Marco; Merletti, Roberto
2003-08-01
This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.
A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.
Ying, Rex; Wall, Christine E
2016-12-08
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relative Activity of Abdominal Muscles during Commonly Prescribed Strengthening Exercises.
ERIC Educational Resources Information Center
Willett, Gilbert M.; Hyde, Jennifer E.; Uhrlaub, Michael B.; Wendel, Cara L.; Karst, Gregory M.
2001-01-01
Examined the relative electromyographic (EMG) activity of upper and lower rectus abdominis (LRA) and external oblique (EOA) muscles during five abdominal strengthening exercises. Isometric and dynamic EMG data indicated that abdominal strengthening exercises activated various abdominal muscle groups. For the LRA and EOA muscle groups, there were…
Okorokova, Elizaveta; Lebedev, Mikhail; Linderman, Michael; Ossadtchi, Alex
2015-01-01
In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG) activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g., the Wiener filter) have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed. PMID:26578856
Combined effect of repetitive work and cold on muscle function and fatigue.
Oksa, Juha; Ducharme, Michel B; Rintamäki, Hannu
2002-01-01
This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P < 0.05). On the basis of fatigue index (calculated from changes in maximal flexor force and flexor EMG activity), the fatigue in the forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.
Hasan, Z; Enoka, R M
1985-01-01
Since the moment arms for the elbow-flexor muscles are longest at intermediate positions of the elbow and shorter at the extremes of the range of motion, it was expected that the elbow torque would also show a peak at an intermediate angle provided the activity of the flexor muscles remained constant. We measured the isometric elbow torque at different elbow angles while the subject attempted to keep constant the electromyographic activity (EMG) of the brachioradialis muscle. The torque-angle relationship thus obtained exhibited a peak, as expected, but the shape of the relationship varied widely among subjects. This was due in part to differences in the variation of the biceps brachii EMG with elbow angle among the different subjects. The implications of these observations for the equilibrium-point hypothesis of movement were investigated as follows. The subject performed elbow movements in the presence of an external torque (which tended to extend the elbow joint) provided by a weight-and-pulley arrangement. We found in the case of flexion movements that invariably there was a transient increase in flexor EMG, as would seem necessary for initiating the movement. However, the steady-state EMG after the movement could be greater or less than the pre-movement EMG. Specifically, the least flexor EMG was required for equilibrium in the intermediate range of elbow angles, compared to the extremes of the range of motion. The EMG-angle relationship, however, varied with the muscle and the subject. The observation that the directions of change in the transient and the steady-state EMG are independent of each other militates against the generality of the equilibrium-point hypothesis. However, a form of the hypothesis which includes the effects of the stretch reflex is not contradicted by this observation.
Tweedell, Andrew J.; Haynes, Courtney A.
2017-01-01
The timing of muscle activity is a commonly applied analytic method to understand how the nervous system controls movement. This study systematically evaluates six classes of standard and statistical algorithms to determine muscle onset in both experimental surface electromyography (EMG) and simulated EMG with a known onset time. Eighteen participants had EMG collected from the biceps brachii and vastus lateralis while performing a biceps curl or knee extension, respectively. Three established methods and three statistical methods for EMG onset were evaluated. Linear envelope, Teager-Kaiser energy operator + linear envelope and sample entropy were the established methods evaluated while general time series mean/variance, sequential and batch processing of parametric and nonparametric tools, and Bayesian changepoint analysis were the statistical techniques used. Visual EMG onset (experimental data) and objective EMG onset (simulated data) were compared with algorithmic EMG onset via root mean square error and linear regression models for stepwise elimination of inferior algorithms. The top algorithms for both data types were analyzed for their mean agreement with the gold standard onset and evaluation of 95% confidence intervals. The top algorithms were all Bayesian changepoint analysis iterations where the parameter of the prior (p0) was zero. The best performing Bayesian algorithms were p0 = 0 and a posterior probability for onset determination at 60–90%. While existing algorithms performed reasonably, the Bayesian changepoint analysis methodology provides greater reliability and accuracy when determining the singular onset of EMG activity in a time series. Further research is needed to determine if this class of algorithms perform equally well when the time series has multiple bursts of muscle activity. PMID:28489897
Electromyographic analysis of standing posture and demi-plié in ballet and modern dancers.
Trepman, E; Gellman, R E; Solomon, R; Murthy, K R; Micheli, L J; De Luca, C J
1994-06-01
Surface electromyography was used to analyze lower extremity muscle activity during standing posture and demi-plié in first position with lower extremities turned out, in five ballet and seven modern female professional dancers. In standing posture, increased electromyographic (EMG) activity above baseline was detected most frequently at the medial gastrocnemius (54% standing repetitions) and tibialis anterior (29%) electrodes (all dancers); in ballet dancers, increased EMG activity during standing was significantly less frequent at the medial gastrocnemius, but more frequent at the tibialis anterior, than in modern dancers. In demi-plié, the tibialis anterior had a discrete peak of EMG activity at midcycle in all dancers (97% demi-pliés). All dancers also had midcycle EMG activity in both vastus lateralis and medialis (100% demi-pliés). At the end of rising phase of demi-plié, ballet dancers had greater EMG activity than at midcycle in vastus lateralis (100% demi-pliés) and medialis (92%); in modern dancers, end-rising phase voltage was lower than at midcycle for vastus lateralis (71% demi-pliés) and medialis (83%). Genu recurvatum > or = 10 degrees was observed at the beginning and end of demi-plié in all ballet dancers, but not in modern dancers. There was marked variation of EMG activity during demi-plié in the lateral gastrocnemius, medial gastrocnemius, gluteus maximus, hamstrings, and adductors. The results support the hypothesis that ballet and modern dancers have different patterns of muscle use in standing posture and demi-plié, which in part may be a result of differences in genu recurvatum and turnout between the two groups.
Non-invasive assessment of skeletal muscle activity
NASA Astrophysics Data System (ADS)
Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per
2005-10-01
After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).
Ma, Rui; Kim, Dae-Hyeong; McCormick, Martin; Coleman, Todd; Rogers, John
2010-01-01
This paper reports a class of stretchable electrode array capable of intimate, conformal integration onto the curvilinear surfaces of skin on the human body. The designs employ conventional metallic conductors but in optimized mechanical layouts, on soft, thin elastomeric substrates. These devices exhibit an ability to record spontaneous EEG activity even without conductive electrolyte gels, with recorded alpha rhythm responses that are 40% stronger than those collected using conventional tin electrodes and gels under otherwise similar conditions. The same type of device can also measure high quality ECG and EMG signals. The results suggest broad utility for skin-mounted measurements of electrical activity in the body, with advantages in signal levels, wearability and modes of integration compared to alternatives.
Positive fEMG Patterns with Ambiguity in Paintings.
Jakesch, Martina; Goller, Juergen; Leder, Helmut
2017-01-01
Whereas ambiguity in everyday life is often negatively evaluated, it is considered key in art appreciation. In a facial EMG study, we tested whether the positive role of visual ambiguity in paintings is reflected in a continuous affective evaluation on a subtle level. We presented ambiguous (disfluent) and non-ambiguous (fluent) versions of Magritte paintings and found that M. Zygomaticus major activation was higher and M. corrugator supercilii activation was lower for ambiguous than for non-ambiguous versions. Our findings reflect a positive continuous affective evaluation to visual ambiguity in paintings over the 5 s presentation time. We claim that this finding is indirect evidence for the hypothesis that visual stimuli classified as art, evoke a safe state for indulging into experiencing ambiguity, challenging the notion that processing fluency is generally related to positive affect.
Dionigi, Gianlorenzo; Chiang, Feng-Yu; Kim, Hoon Yub; Randolph, Gregory W; Mangano, Alberto; Chang, Pi-Ying; Lu, I-Cheng; Lin, Yi-Chu; Chen, Hui-Chun; Wu, Che-Wei
2017-07-01
This study investigated recurrent laryngeal nerve (RLN) real-time electromyography (EMG) data to define optimal safety parameters of the LigaSure Small Jaw (LSJ) instrument during thyroidectomy. Prospective animal model. Dynamic EMG tracings were recorded from 32 RLNs (16 piglets) during various applications of LSJ around using continuous electrophysiologic monitoring. At varying distances from the RLN, the LSJ was activated (activation study). The LSJ was also applied to the RLN at timed intervals after activation and after a cooling maneuver through placement on the sternocleidomastoid muscle (cooling study). In the activation study, there was no adverse EMG event at 2 to 5 mm distance (16 RLNs, 96 tests). In the cooling study, there was no adverse EMG event after 2-second cooling time (16 RLNs, 96 tests) or after the LSJ cooling maneuver on the surrounding muscle before reaching the RLNs (8 RLNs, 24 tests). Based on EMG functional assessment, the safe distance for LSJ activation was 2 mm. Further LSJ-RLN contact was safe if the LSJ was cooled for more than 2 seconds or cooled by touch muscle maneuver. The LSJ should be used with these distance and time parameters in mind to avoid RLN injury. N/A. Laryngoscope, 127:1724-1729, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M
2008-06-01
Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.
Monteiro, Wagner; Francisco de Oliveira Dantas da Gama, Thomaz; dos Santos, Robiana Maria; Collange Grecco, Luanda André; Pasini Neto, Hugo; Oliveira, Claudia Santos
2013-01-01
The aim of the present study was to evaluate the effectiveness of global postural reeducation in the treatment of temporomandibular disorder through bilateral surface electromyographic (EMG) analysis of the masseter muscle in a 23-year-old volunteer. EMG values for the masseter were collected at rest (baseline) and during a maximal occlusion. There was a change in EMG activity both at rest and during maximal occlusion following the intervention, evidencing neuromuscular rebalancing between both sides after treatment as well as an increase in EMG activity during maximal occlusion, with direct improvement in the recruitment of motor units during contractile activity and a decrease in muscle tension between sides at rest. The improvement in postural patterns of the cervical spine provided an improvement in aspects of the EMG signal of the masseter muscle in this patient. However, a multidisciplinary study is needed in order to determine the effect of different forms of treatment on this condition and compare benefits between interventions. Therefore, this study can provide a direction regarding the application of this technique in patients with temporomandibular disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cabaj, Anna M.; Sławińska, Urszula
2017-01-01
The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499
Escamilla, Rafael F; Babb, Eric; DeWitt, Ryan; Jew, Patrick; Kelleher, Patrick; Burnham, Toni; Busch, Juliann; D'Anna, Kristen; Mowbray, Ryan; Imamura, Rodney T
2006-05-01
Performing nontraditional abdominal exercises with devices such as abdominal straps, the Power Wheel, and the Ab Revolutionizer has been suggested as a way to activate abdominal and extraneous (nonabdominal) musculature as effectively as more traditional abdominal exercises, such as the crunch and bent-knee sit-up. The purpose of this study was to test the effectiveness of traditional and nontraditional abdominal exercises in activating abdominal and extraneous musculature. Twenty-one men and women who were healthy and between 23 and 43 years of age were recruited for this study. Surface electromyography (EMG) was used to assess muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus femoris, latissimus dorsi, and lumbar paraspinal muscles while each exercise was performed. The EMG data were normalized to maximum voluntary muscle contractions. Differences in muscle activity were assessed by a 1-way, repeated-measures analysis of variance. Upper and lower rectus abdominis, internal oblique, and latissimus dorsi muscle EMG activity were highest for the Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees. External oblique muscle EMG activity was highest for the Power Wheel (pike, knee-up, and roll-out) and hanging knee-up with straps. Rectus femoris muscle EMG activity was highest for the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up. Lumbar paraspinal muscle EMG activity was low and similar among exercises. The Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees not only were the most effective exercises in activating abdominal musculature but also were the most effective in activating extraneous musculature. The relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some people with low back problems.
Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula
2017-01-01
The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.
Maul, H; Maner, W L; Olson, G; Saade, G R; Garfield, R E
2004-05-01
The study was conducted to investigate whether the strength of uterine contractions monitored invasively by intrauterine pressure catheter could be determined from transabdominal electromyography (EMG) and to estimate whether EMG is a better predictor of true labor compared to tocodynamometry (TOCO). Uterine EMG was recorded from the abdominal surface in laboring patients simultaneously monitored with an intrauterine pressure catheter (n = 13) or TOCO (n = 24). Three to five contractions per patient and corresponding electrical bursts were randomly selected and analyzed (integral of intrauterine pressure; integral, frequency, amplitude of contraction curve on TOCO; burst energy for EMG). The Mann-Whitney test, Spearman correlation and receiver operator characteristics (ROC) analysis were used as appropriate (significance was assumed at a value of p < 0.05). EMG correlated strongly with intrauterine pressure (r = 0.764; p = 0.002). EMG burst energy levels were significantly higher in patients who delivered within 48 h compared to those who delivered later (median [25%/75%]: 96,640 [26,520-322,240] vs. 2960 [1560-10,240]; p < 0.001), whereas none of the TOCO parameters were different. In addition, burst energy levels were highly predictive of delivery within 48 h (AUC = 0.9531; p < 0.0001). EMG measurements correlated strongly with the strength of contractions and therefore may be a valuable alternative to invasive measurement of intrauterine pressure. Unlike TOCO, transabdominal uterine EMG can be used reliably to predict labor and delivery.
Electromyographic and kinetic analysis of two abdominal muscle performance tests.
Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John
2015-01-01
In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.
Load-dependent regulation of neuromuscular system
NASA Technical Reports Server (NTRS)
Ohira, Yoshinobu; Kawano, Fuminori; Stevens, James L.; Wang, Xiao D.; Ishihara, Akihiko
2004-01-01
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.
Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal
2017-02-01
The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.
Jacksteit, Robert; Jackszis, Mario; Feldhege, Frank; Weippert, Matthias; Mittelmeier, Wolfram; Bader, Rainer; Skripitz, Ralf; Behrens, Martin
2017-01-01
Introduction Knee osteoarthrosis (KOA) is commonly associated with a dysfunction of the quadriceps muscle which contributes to alterations in motor performance. The underlying neuromuscular mechanisms of muscle dysfunction are not fully understood. The main objective of this study was to analyze how KOA affects neuromuscular function of the quadriceps muscle during different contraction intensities. Materials and methods The following parameters were assessed in 20 patients and 20 healthy controls: (i) joint position sense, i.e. position control (mean absolute error, MAE) at 30° and 50° of knee flexion, (ii) simple reaction time task performance, (iii) isometric maximal voluntary torque (IMVT) and root mean square of the EMG signal (RMS-EMG), (iv) torque control, i.e. accuracy (MAE), absolute fluctuation (standard deviation, SD), relative fluctuation (coefficient of variation, CV) and periodicity (mean frequency, MNF) of the torque signal at 20%, 40% and 60% IMVT, (v) EMG-torque relationship at 20%, 40% and 60% IMVT and (vi) performance fatigability, i.e. time to task failure (TTF) at 40% IMVT. Results Compared to the control group, the KOA group displayed: (i) significantly higher MAE of the angle signal at 30° (99.3%; P = 0.027) and 50° (147.9%; P < 0.001), (ii) no significant differences in reaction time, (iii) significantly lower IMVT (-41.6%; P = 0.001) and tendentially lower RMS-EMG of the rectus femoris (-33.7%; P = 0.054), (iv) tendentially higher MAE of the torque signal at 20% IMVT (65.9%; P = 0.068), significantly lower SD of the torque signal at all three torque levels and greater MNF at 60% IMVT (44.8%; P = 0.018), (v) significantly increased RMS-EMG of the vastus lateralis at 20% (70.8%; P = 0.003) and 40% IMVT (33.3%; P = 0.034), significantly lower RMS-EMG of the biceps femoris at 20% (-63.6%; P = 0.044) and 40% IMVT (-41.3%; P = 0.028) and tendentially lower at 60% IMVT (-24.3%; P = 0.075) and (vi) significantly shorter TTF (-51.1%; P = 0.049). Conclusion KOA is not only associated with a deterioration of IMVT and neuromuscular activation, but also with an impaired position and torque control at submaximal torque levels, an altered EMG-torque relationship and a higher performance fatigability of the quadriceps muscle. It is recommended that the rehabilitation includes strengthening and fatiguing exercises at maximal and submaximal force levels. PMID:28505208
Hara, Yukihiro; Obayashi, Shigeru; Tsujiuchi, Kazuhito; Muraoka, Yoshihiro
2013-10-01
The relation was investigated between hemiparetic arm function improvement and brain cortical perfusion (BCP) change during voluntary muscle contraction (VOL), EMG-controlled FES (EMG-FES) and simple electrical muscle stimulation (ES) before and after EMG-FES therapy in chronic stroke patients. Sixteen chronic stroke patients with moderate residual hemiparesis underwent 5 months of task-orientated EMG-FES therapy of the paretic arm once or twice a week. Before and after treatment, arm function was clinically evaluated and BCP during VOL, ES and EMG-FES were assessed using multi-channel near-infrared spectroscopy. BCP in the ipsilesional sensory-motor cortex (SMC) was greater during EMG-FES than during VOL or ES; therefore, EMG-FES caused a shift in the dominant BCP from the contralesional to ipsilesional SMC. After EMG-FES therapy, arm function improved in most patients, with some individual variability, and there was significant improvement in Fugl-Meyer (FM) score and maximal grip strength (GS). Clinical improvement was accompanied by an increase in ipsilesional SMC activation during VOL and EMG-FES condition. The EMG-FES may have more influence on ipsilesional BCP than VOL or ES alone. The sensory motor integration during EMG-FES therapy might facilitate BCP of the ipsilesional SMC and result in functional improvement of hemiparetic upper extremity. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Nowicky, Alex V; Horne, Sara; Burdett, Richard
2005-03-01
THIS STUDY USED SURFACE ELECTROMYOGRAPHY (SEMG) TO EXAMINE WHETHER THERE WERE DIFFERENCES IN HIP AND TRUNK MUSCLE ACTIVATION DURING THE ROWING CYCLE ON TWO OF THE MOST WIDELY USED AIR BRAKED ERGOMETERS: the Concept 2C and the Rowperfect. sEMG methods were used to record the muscle activity patterns from the right: m. Erector spinae (ES), m. Rectus Abdominus (RA), m. Rectus Femoris (RF) and m. Biceps Femoris (BF) for their contributions as agonist-antagonist pairs underlying hip and trunk extension/flexion. The sEMG activity patterns of these muscles were examined in six young male elite rowers completing a 2 minute set at a moderate training intensity (23 stroke·min(-1) and 1:47.500 m(-1) split time, 300W). The rowers closely maintained the required target pace through visual inspection of the standard LCD display of each ergometer. The measurements of duration of each rowing cycle and onset of each stroke during the test were recorded simultaneously with the sEMG activity through the additional instrumentation of a foot-pressure switch and handle accelerometry. There were no significant differences between the two ergometer designs in group means for: work rate (i.e., rowing speed and stroke rate), metabolic load as measured by mean heart rate, rowing cycle duration, or timing of the stroke in the cycle. 2-D motion analysis of hip and knee motion for the rowing cycle from the video footage taken during the test also revealed no significant differences in the joint range of motion between the ergometers. Ensemble average sEMG activity profiles based on 30+ strokes were obtained for each participant and normalised per 10% intervals of the cycle duration as well as for peak mean sEMG amplitude for each muscle. A repeated measures ANOVA on the sEMG activity per 10% interval for the four muscles contributing to hip and trunk motion during the rowing cycle revealed no significant differences between the Concept 2C and Rowperfect (F = 0.070, df = 1,5, p = 0.802). The outcome of this study suggests that the two different ergometer designs are equally useful for dry land training. Key PointsThe effects of endurance training on HR recovery after exercise and cardiac ANS modulation were investigated in female marathon runners by comparing with untrained controls.Time and frequency domain analysis of HRV was used to investigate cardiac ANS modulation.As compared with untrained controls, the female marathon runners showed faster HR recovery after exercise, which should result from their higher levels of HRV, higher aerobic capacity and exaggerated blood pressure response to exercise.
Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue.
Mäestu, Jarek; Cicchella, Antonio; Purge, Priit; Ruosi, Sergio; Jürimäe, Jaak; Jürimäe, Toivo
2006-11-01
The aim of this study was to investigate the concepts of electromyographic (EMG) threshold (EMGT) by integrated EMG (iEMG) signals and neuromuscular fatigue threshold (NMFT) concepts in trained male athletes. Nine competitive national-level male rowers (21.8 +/- 4.4 years; 186.2 +/- 4.6 cm; 79.6 +/- 8.4 kg) took part in this investigation. Subjects were asked to participate in the graded exercise test to volitional exhaustion and 500-, 1,000-, and 2,000-m all-out rowing ergometer tests on a rowing ergometer. During all tests, oxygen consumption parameters, average power, and iEMG of the musculus vastus lateralis were recorded. The second ventilatory threshold (248.9 +/- 26.67 W) and EMGT (258.89 +/- 27.13 W) were not significantly different but were significantly lower than the NMFT (302.25 +/- 45.10 W). During 1,000- and 2,000-m all-out distances, VO(2) increased during the first minute and then leveled on a plateau with a slight decrease at the end of the exercise. Vastus lateralis activity showed a slight increase during all distances that was accompanied by a remarkable increase towards the end of the distance. All measured threshold values were significantly correlated (r > 0.70; p < 0.05) to the rowing ergometer performance characteristics. It was concluded that EMGT is closely related to the aerobic-anaerobic transition phase, because NMFT represents the local fatigue accumulation in the muscle. NMFT indicates the performance capacity of the muscles; therefore, it helps coaches to better predict top athletes' performance.
Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface
NASA Astrophysics Data System (ADS)
Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai
To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.
Electromyographic activity and 6RM strength in bench press on stable and unstable surfaces.
Saeterbakken, Atle H; Fimland, Marius S
2013-04-01
The purpose of the study was to compare 6-repetition maximum (6RM) loads and muscle activity in bench press on 3 surfaces, namely, stable bench, balance cushion, and Swiss ball. Sixteen healthy, resistance-trained men (age 22.5 ± 2.0 years, stature 1.82 ± 6.6 m, and body mass 82.0 ± 7.8 kg) volunteered for 3 habituation/strength testing sessions and 1 experimental session. In randomized order on the 3 surfaces, 6RM strength and electromyographic activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were assessed. Relative to stable bench, the 6RM strength was approximately 93% for balance cushion (p ≤ 0.001) and approximately 92% for Swiss ball (p = 0.008); the pectoralis major electromyographic (EMG) activity was approximately 90% using the balance cushion (p = 0.080) and approximately 81% using Swiss ball (p = 0.006); the triceps EMG was approximately 79% using the balance cushion (p = 0.028) and approximately 69% using the Swiss ball (p = 0.002). Relative to balance cushion, the EMG activity in pectoralis, triceps, and erector spinae using Swiss ball was approximately 89% (p = 0.016), approximately 88% (p = 0.014) and approximately 80% (p = 0.020), respectively. In rectus abdominis, the EMG activity relative to Swiss ball was approximately 69% using stable bench (p = 0.042) and approximately 65% using the balance cushion (p = 0.046). Similar EMG activities between stable and unstable surfaces were observed for deltoid anterior, biceps brachii, and oblique external. In conclusion, stable bench press had greater 6RM strength and triceps and pectoralis EMG activity compared with the unstable surfaces. These findings have implications for athletic training and rehabilitation, because they demonstrate an inferior effect of unstable surfaces on muscle activation of prime movers and strength in bench press. If an unstable surface in bench press is desirable, a balance cushion should be chosen instead of a Swiss ball.
Aho, A J; Yli-Hankala, A; Lyytikäinen, L-P; Jäntti, V
2009-02-01
Entropy is an anaesthetic EEG monitoring method, calculating two numerical parameters: State Entropy (SE, range 0-91) and Response Entropy (RE, range 0-100). Low Entropy numbers indicate unconsciousness. SE uses the frequency range 0.8-32 Hz, representing predominantly the EEG activity. RE is calculated at 0.8-47 Hz, consisting of both EEG and facial EMG. RE-SE difference (RE-SE) can indicate EMG, reflecting nociception. We studied RE-SE and EMG in patients anaesthetized without neuromuscular blockers. Thirty-one women were studied in propofol-nitrous oxide (P) or propofol-nitrous oxide-remifentanil (PR) anaesthesia. Target SE value was 40-60. RE-SE was measured before and after endotracheal intubation, and before and after the commencement of surgery. The spectral content of the signal was analysed off-line. Appearance of EMG on EEG was verified visually. RE, SE, and RE-SE increased during intubation in both groups. Elevated RE was followed by increased SE values in most cases. In these patients, spectral analysis of the signal revealed increased activity starting from low (<20 Hz) frequency area up to the highest measured frequencies. This was associated with appearance of EMG in raw signal. No spectral alterations or EMG were seen in patients with stable Entropy values. Increased RE is followed by increased SE at nociceptive stimuli in patients not receiving neuromuscular blockers. Owing to their overlapping power spectra, the contribution of EMG and EEG cannot be accurately separated with frequency analysis in the range of 10-40 Hz.
[The nonlinear parameters of interference EMG of two day old human newborns].
Voroshilov, A S; Meĭgal, A Iu
2011-01-01
Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.
Muscle fibre recruitment can respond to the mechanics of the muscle contraction.
Wakeling, James M; Uehli, Katrin; Rozitis, Antra I
2006-08-22
This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.
A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.
Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca
2015-10-01
Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.
Handedness-related asymmetry in transmission in a system of human cervical premotoneurones.
Marchand-Pauvert, V; Mazevet, D; Pierrot-Deseilligny, E; Pol, S; Pradat-Diehl, P
1999-04-01
The possibility was investigated that human handedness is associated with an asymmetrical cortical and/or peripheral control of the cervical premotoneurones (PreMNs) that have been shown to mediate part of the descending command to motoneurones of forearm muscles. Heteronymous facilitation evoked in the ongoing voluntary extensor carpi radialis (ECR) electromyographic activity (EMG) by weak (0.8 times motor threshold) stimulation of the musculo-cutaneous (MC) nerve was assessed during tonic co-contraction of biceps and ECR. Suppression evoked by stimulation of a cutaneous nerve (superficial radial, SR) at 4 times perception threshold in both the voluntary EMG and in the motor evoked potential (MEP) elicited in ECR by transcranial magnetic stimulation (TMS) was investigated during isolated ECR contraction. Measurements were performed within time windows or at interstimulus intervals where peripheral and cortical inputs may interact at the level of PreMNs. Results obtained on both sides were compared in consistent right- and left-handers. MC-induced facilitation of the voluntary ECR EMG was significantly larger on the preferred side, whereas there was no asymmetry in the SR-evoked depression of the ongoing ECR EMG. In addition, the suppression of the ECR MEP by the same SR stimulation was more pronounced on the dominant side during unilateral, but not during bilateral, ECR contraction. It is argued that (1) asymmetry in MC-induced facilitation of the voluntary EMG reflects a greater efficiency of the peripheral heteronymous volley in facilitating PreMNs on the dominant side; (2) asymmetry in SR-induced suppression of the MEP during unilateral ECR contraction, which is not paralleled by a similar asymmetry of voluntary EMG suppression, reflects a higher excitability of cortical neurones controlling inhibitory spinal pathways to cervical PreMNs on the preferred side.
Application of Pilates principles increases paraspinal muscle activation.
Andrade, Letícia Souza; Mochizuki, Luís; Pires, Flávio Oliveira; da Silva, Renato André Sousa; Mota, Yomara Lima
2015-01-01
To analyze the effect of Pilates principles on the EMG activity of abdominal and paraspinal muscles on stable and unstable surfaces. Surface EMG data about the rectus abdominis (RA), iliocostalis (IL) and lumbar multifidus (MU) of 19 participants were collected while performing three repetitions of a crunch exercise in the following conditions: 1) with no Pilates technique and stable surface (nP + S); 2) with no Pilates technique and unstable surface (nP + U); 3) with Pilates technique and stable surface (P + S); 4) with Pilates and unstable surface (P + U). The EMG Fanalysis was conducted using a custom-made Matlab(®) 10. There was no condition effect in the RA iEMG with stable and unstable surfaces (F(1,290) = 0 p = 0.98) and with and without principles (F(1,290) = 1.2 p = 0.27). IL iEMG was higher for the stable surface condition (F(1,290) = 32.3 p < 0.001) with Pilates principles (F(1,290) = 21.9 p < 0.001). The MU iEMG was higher for the stable surface condition with and without Pilates principles (F(1,290) = 84.9 p < 0.001). Copyright © 2014 Elsevier Ltd. All rights reserved.
Kwok, Garcia; Yip, Joanne; Cheung, Mei-Chun; Yick, Kit-Lun
2015-01-01
There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.
Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya
2014-06-01
To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.
Tsao, Henry; Hodges, Paul W
2008-08-01
This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.
Patterns of motor recruitment can be determined using surface EMG.
Wakeling, James M
2009-04-01
Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle theta that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower theta and higher mean frequency.
Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G
NASA Technical Reports Server (NTRS)
Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)
1999-01-01
Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.
Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S
2013-09-01
A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.
Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo
2014-01-01
Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01). ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. Conclusion Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. Clinical Relevance: Scientific rationale for study Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. Principal findings This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic evaluation of stomatognathic system stability. PMID:25010348
Sex differences in kinetic and neuromuscular control during jumping and landing
Márquez, G.; Alegre, L.M.; Jaén, D.; Martin-Casado, L.; Aguado, X.
2017-01-01
In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (Fpeak), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing. PMID:28250245
Sex differences in kinetic and neuromuscular control during jumping and landing.
Márquez, G; Alegre, L M; Jaén, D; Martin-Casado, L; Aguado, X
2017-03-01
In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (F peak ), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing.
Hanvold, Therese N; Wærsted, Morten; Mengshoel, Anne Marit; Bjertness, Espen; Stigum, Hein; Twisk, Jos; Veiersted, Kaj Bo
2013-07-01
This study aimed to evaluate if sustained trapezius muscle activity predicts neck and shoulder pain over a 2.5-year period. Forty young adults (15 hairdressers, 14 electricians, 5 students and 6 with various work) were followed during their first years of working life. Self-reported neck and shoulder pain during the last four weeks was assessed seven times over the observational period. Upper-trapezius muscle activity was measured during a full working day by bilateral surface electromyography (EMG) at baseline (winter 2006/7). Sustained trapezius muscle activity was defined as continuous muscle activity with amplitude >0.5% EMGmax lasting >4 minutes. The relative time of sustained muscle activity during the working day was calculated and further classified into low (0-29%), moderate (30-49%) and high (50-100%) level groups. Generalized estimating equations (GEE), adjusted for time, gender, mechanical workload, control-over-work intensity, physical activity, tobacco use, and prior neck and shoulder pain, showed that participants with a high level of sustained muscle activity had a rate of neck and shoulder pain three times higher than the low level group during a 2.5-year period. The association was strongest at the same time and shortly after the EMG measurement, indicating a time-lag of ≤6 months. The results support the hypothesis that sustained trapezius muscle activity is associated with neck and shoulder pain. This association was strongest analyzing cross-sectional and short-term effects.
Surface EMG decomposition based on K-means clustering and convolution kernel compensation.
Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun
2015-03-01
A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.
Cholewicki, Jacek; van Dieën, Jaap; Lee, Angela S.; Reeves, N. Peter
2011-01-01
The problem with normalizing EMG data from patients with painful symptoms (e.g. low back pain) is that such patients may be unwilling or unable to perform maximum exertions. Furthermore, the normalization to a reference signal, obtained from a maximal or sub-maximal task, tends to mask differences that might exist as a result of pathology. Therefore, we presented a novel method (GAIN method) for normalizing trunk EMG data that overcomes both problems. The GAIN method does not require maximal exertions (MVC) and tends to preserve distinct features in the muscle recruitment patterns for various tasks. Ten healthy subjects performed various isometric trunk exertions, while EMG data from 10 muscles were recorded and later normalized using the GAIN and MVC methods. The MVC method resulted in smaller variation between subjects when tasks were executed at the three relative force levels (10%, 20%, and 30% MVC), while the GAIN method resulted in smaller variation between subjects when the tasks were executed at the three absolute force levels (50 N, 100 N, and 145 N). This outcome implies that the MVC method provides a relative measure of muscle effort, while the GAIN-normalized EMG data gives an estimate of the absolute muscle force. Therefore, the GAIN-normalized EMG data tends to preserve the EMG differences between subjects in the way they recruit their muscles to execute various tasks, while the MVC-normalized data will tend to suppress such differences. The appropriate choice of the EMG normalization method will depend on the specific question that an experimenter is attempting to answer. PMID:21665489
The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed.
McBride, Jeffrey M; Triplett-McBride, Travis; Davie, Allan; Newton, Robert U
2002-02-01
The purpose of this investigation was to examine the effect of an 8-week training program with heavy- vs. light-load jump squats on various physical performance measures and electromyography (EMG). Twenty-six athletic men with varying levels of resistance training experience performed sessions of jump squats with either 30% (JS30, n = 9) or 80% (JS80, n = 10) of their one repetition maximum in the squat (1RM) or served as a control (C, n = 7). An agility test, 20-m sprint, and jump squats with 30% (30J), 55% (55J), and 80% (80J) of their 1RM were performed before and after training. Peak force, peak velocity (PV), peak power (PP), jump height, and average EMG (concentric phase) were calculated for the jumps. There were significant increases in PP and PV in the 30J, 55J, and 80J for the JS30 group (p
Effect of aerobic fitness on the physiological stress responses at work.
Ritvanen, Tiina; Louhevaara, Veikko; Helin, Pertti; Halonen, Toivo; Hänninen, Osmo
2007-01-01
The aim of the present study was to examine the effects of aerobic fitness on physiological stress responses experienced by teachers during working hours. Twenty-six healthy female and male teachers aged 33-62 years participated in the study. The ratings of perceived stress visual analogue scale (VAS), and the measurement of physiological responses (norepinephrine, epinephrine, cortisol, diastolic and systolic blood pressure, heart rate (HR), and trapezius muscle activity by electromyography (EMG), were determined. Predicted maximal oxygen uptake (VO(2)max) was measured using the submaximal bicycle ergometer test. The predicted VO(2)max was standardized for age using residuals of linear regression analyses. Static EMG activity, HR and VAS were associated with aerobic fitness in teachers. The results suggest that a higher level of aerobic fitness may reduce muscle tension, HR and perceived work stress in teachers.
Muscle coordination in cycling: effect of surface incline and posture.
Li, L; Caldwell, G E
1998-09-01
The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.
Mannion, A F; Pulkovski, N; Schenk, P; Hodges, P W; Gerber, H; Loupas, T; Gorelick, M; Sprott, H
2008-04-01
Rapid arm movements elicit anticipatory activation of the deep-lying abdominal muscles; this appears modified in back pain, but the invasive technique used for its assessment [fine-wire electromyography (EMG)] has precluded its widespread investigation. We examined whether tissue-velocity changes recorded with ultrasound (M-mode) tissue Doppler imaging (TDI) provided a viable noninvasive alternative. Fourteen healthy subjects rapidly flexed, extended, and abducted the shoulder; recordings were made of medial deltoid (MD) surface EMG and of fine-wire EMG and TDI tissue-velocity changes of the contralateral transversus abdominis, obliquus internus, and obliquus externus. Muscle onsets were determined by blinded visual analysis of EMG and TDI data. TDI could not distinguish between the relative activation of the three muscles, so in subsequent analyses only the onset of the earliest abdominal muscle activity was used. The latter occurred <50 ms after the onset of medial deltoid EMG (i.e., was feedforward) and correlated with the corresponding EMG onsets (r = 0.47, P < 0.0001). The mean difference between methods was 20 ms and was likely explained by electromechanical delay; limits of agreement were wide (-40 to +80 ms) but no greater than those typical of repeated measurements using either technique. The between-day standard error of measurement of the TDI onsets (examined in 16 further subjects) was 16 ms. TDI yielded reliable and valid measures of the earliest onset of feedforward activity within the anterolateral abdominal muscle group. The method can be used to assess muscle dysfunction in large groups of back-pain patients and may also be suitable for the noninvasive analysis of other deep-lying or small/thin muscles.
The repeated-bout effect: influence on biceps brachii oxygenation and myoelectrical activity.
Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori
2011-05-01
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.
2014-10-01
Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M
2014-01-01
Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203
Trunk muscle activation during moderate- and high-intensity running.
Behm, David G; Cappa, Dario; Power, Geoffrey A
2009-12-01
Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.
Surface EMG system for use in long-term vigorous activities
NASA Astrophysics Data System (ADS)
de Luca, G.; Bergman, P.; de Luca, C.
The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat accumulation on signal fidelity. The average number of artifacts contaminating the EMG signals during treadmill running was reduced approximat ely three-fold by the prototype electrode/interface, when compared to methods currently available. Peel adhesion of the interface to the skin was significantly improved for treadmill running. Similarly, the artifacts from controlled impacts on the electrode housing were significantly reduced for both treadmill running and for the repetitive lifting task.
Ye, Yuanjuan; Song, Xingrong; Liu, Lei; Shi, Shao-Qing; Garfield, Robert E; Zhang, Guozheng; Liu, Huishu
2015-11-01
To investigate the effect of patient-controlled epidural analgesia (PCEA) on uterine electromyography (EMG) activity in term pregnant women during labor. Nulliparous pregnant women in spontaneous term labor (N = 30) were enrolled (PCEA group, n = 20 and control group, n = 10). Five time periods (30 minutes each) were defined for noninvasive abdominal recordings and analysis of uterine EMG activity, that is, period I: before PCEA treatment with 2-cm cervical dilation; periods II to IV: each period successively at 30, 60, and 120 minutes after PCEA; and period V: second stage of labor with cervix at 10 cm dilation. Control patients without PCEA were monitored during the same times. The number of bursts/30 min, power density spectrum peak frequency, mean amplitude, and duration of uterine EMG bursts were measured to assess uterine EMG activity. Maternal, fetal, and labor characteristics were also recorded. Data were analyzed by analysis of variance followed by other tests. Electromyography parameters are significantly lower (P < .001) after PCEA (periods II to IV) compared to controls but similar between groups by period V (P > .05). Also, patients with PCEA have a slower rate of cervical dilation (P < .003, period IV only) and longer labor in both stage 1 and stage 2 (P < .05). All patients have similar (P > .05) positive labor outcomes. Patient-controlled epidural analgesia initially suppresses uterine EMG and slows cervical dilation thereby prolonging labor. However, the EMG activity recovers with labor progress with no effects on delivery outcomes. © The Author(s) 2015.
Poliacek, Ivan; Simera, Michal; Veternik, Marcel; Kotmanova, Zuzana; Pitts, Teresa; Hanacek, Jan; Plevkova, Jana; Machac, Peter; Visnovcova, Nadezda; Misek, Jakub; Jakus, Jan
2016-07-15
The effect of volume-related feedback and output airflow resistance on the cough motor pattern was studied in 17 pentobarbital anesthetized spontaneously-breathing cats. Lung inflation during tracheobronchial cough was ventilator controlled and triggered by the diaphragm electromyographic (EMG) signal. Altered lung inflations during cough resulted in modified cough motor drive and temporal features of coughing. When tidal volume was delivered (via the ventilator) there was a significant increase in the inspiratory and expiratory cough drive (esophageal pressures and EMG amplitudes), inspiratory phase duration (CTI), total cough cycle duration, and the duration of all cough related EMGs (Tactive). When the cough volume was delivered (via the ventilator) during the first half of inspiratory period (at CTI/2-early over inflation), there was a significant reduction in the inspiratory and expiratory EMG amplitude, peak inspiratory esophageal pressure, CTI, and the overlap between inspiratory and expiratory EMG activity. Additionally, there was significant increase in the interval between the maximum inspiratory and expiratory EMG activity and the active portion of the expiratory phase (CTE1). Control inflations coughs and control coughs with additional expiratory resistance had increased maximum expiratory esophageal pressure and prolonged CTE1, the duration of cough abdominal activity, and Tactive. There was no significant difference in control coughing and/or control coughing when sham ventilation was employed. In conclusion, modified lung inflations during coughing and/or additional expiratory airflow resistance altered the spatio-temporal features of cough motor pattern via the volume related feedback mechanism similar to that in breathing. Copyright © 2016. Published by Elsevier B.V.
Enoka, R M; Rankin, L L; Stuart, D G; Volz, K A
1989-01-01
1. An experimental protocol designed to assess fatigability in motor units (Burke, Levine, Tsairis & Zajac, 1973) has been applied to the whole muscles of anaesthetized adult rats, and the association between the electromyogram (EMG) and force was monitored over the course of the test. 2. Both test muscles (soleus and extensor digitorum longus) exhibited a wide range of fatigability, which was defined as the decline in isometric peak force at 6 min, such that the data could be separated into five levels of fatigability. Fatigue indices for each test muscle were distributed across three levels. 3. The EMG was quantified with four measures of amplitude, four of duration, and one interaction term (area). Correlation analyses indicated that the EMG was adequately represented by one measure of amplitude (absolute amplitude), one of duration (peak-to-peak duration) and area. The best single measure was area. 4. The EMG-force associations for soleus varied markedly among its three fatigability groups. In contrast, over the course of the test, all three extensor digitorum longus groups displayed qualitatively similar EMG-force associations. 5. Multiple regression analyses indicated that the EMG parameters were able to predict peak force better for extensor digitorum longus than for soleus. Furthermore, for both test muscle, the prediction was best for the most fatigable group. 6. The associations between EMG and force exhibited three patterns for the two test muscles and three levels of fatigability. These differences suggested variation in the mechanisms, related to both fibre-type composition and susceptibility to fatigue, that dictate the performance elicited by this particular stimulus regimen. The mechanisms seem to include both intracellular and transmission processes. Images Fig. 1 PMID:2778729
A software package for interactive motor unit potential classification using fuzzy k-NN classifier.
Rasheed, Sarbast; Stashuk, Daniel; Kamel, Mohamed
2008-01-01
We present an interactive software package for implementing the supervised classification task during electromyographic (EMG) signal decomposition process using a fuzzy k-NN classifier and utilizing the MATLAB high-level programming language and its interactive environment. The method employs an assertion-based classification that takes into account a combination of motor unit potential (MUP) shapes and two modes of use of motor unit firing pattern information: the passive and the active modes. The developed package consists of several graphical user interfaces used to detect individual MUP waveforms from a raw EMG signal, extract relevant features, and classify the MUPs into motor unit potential trains (MUPTs) using assertion-based classifiers.
Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro
2014-08-14
Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control strategy based on EMG that can be applied for simultaneous and continuous control of multiple DOF(s) devices such as robotic hand/finger prostheses or exoskeletons.
Ateş, Filiz; Davies, Brenda L; Chopra, Swati; Coleman-Wood, Krista; Litchy, William J; Kaufman, Kenton R
2018-01-01
Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean ( SD ) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m 2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.
Hip and trunk muscles activity during nordic hamstring exercise.
Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji
2018-04-01
The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P <0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward ( r =0.687) and upward motions ( r =0.753) ( P <0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.
Hip and trunk muscles activity during nordic hamstring exercise
Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji
2018-01-01
The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (P<0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward (r=0.687) and upward motions (r=0.753) (P<0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557
A systematic review of surface electromyography analyses of the bench press movement task.
Stastny, Petr; Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam
2017-01-01
The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models.
Graven-Nielsen, T; Svensson, P; Arendt-Nielsen, L
1997-04-01
The relation between muscle pain, muscle activity, and muscle co-ordination is still controversial. The present human study investigates the influence of experimental muscle pain on resting, static, and dynamic muscle activity. In the resting and static experiments, the electromyography (EMG) activity and the contraction force of m. tibialis anterior were assessed before and after injection of 0.5 ml hypertonic saline (5%) into the same muscle. In the dynamic experiment, injections of 0.5 ml hypertonic saline (5%) were performed into either m. tibialis anterior (TA) or m. gastrocnemius (GA) and the muscle activity and co-ordination were investigated during gait on a treadmill by EMG recordings from m. TA and m. GA. At rest no evidence of EMG hyperactivity was found during muscle pain. The maximal voluntary contraction (MVC) during muscle pain was significantly lower than the control condition (P < 0.05). During a static contraction at 80% of the pre-pain MVC muscle pain caused a significant reduction in endurance time (P < 0.043). During dynamic contractions, muscle pain resulted in a significant decrease of the EMG activity in the muscle, agonistic to the painful muscle (P < 0.05), and a significant increase of the EMG activity of the muscle, antagonistic to the painful muscle (P < 0.05). Muscle pain seems to cause a general protection of painful muscles during both static and dynamic contractions. The increased EMG activity of the muscle antagonistic to the painful muscle is probably a functional adaptation of muscle co-ordination in order to limit movements. Modulation of muscle activity by muscle pain could be controlled via inhibition of muscles agonistic to the movement and/or excitation of muscles antagonistic to the movement. The present results are in accordance with the pain-adaptation model (Lund, J.P., Stohler, C.S. and Widmer, C.G. In: H. Vaerøy and H. Merskey (Eds.), Progress in Fibromyalgia and Myofascial Pain. Elsevier, Amsterdam, 1993, pp. 311-327.) which predicts increased activity of antagonistic muscle and decreased activity of agonistic muscle during experimental and clinical muscle pain.
Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.
Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas
2017-10-31
Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of Inter-Electrode Distance on EMG
2001-10-25
has been observed that at low levels of muscle contraction there was no significant variation due to the change in the distance between the...a variation of the spectral content of the EMG with change in the IED. The study also has shown that there is a variation of the EMG with muscle ... contraction but that the comparison should be done if the distance between the electrodes has been kept constant.
Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.
Corbett, Elaine A; Körding, Konrad P; Perreault, Eric J
2013-07-01
Injuries of the cervical spinal cord can interrupt the neural pathways controlling the muscles of the arm, resulting in complete or partial paralysis. For individuals unable to reach due to high-level injuries, neuroprostheses can restore some of the lost function. Natural, multidimensional control of neuroprosthetic devices for reaching remains a challenge. Electromyograms (EMGs) from muscles that remain under voluntary control can be used to communicate intended reach trajectories, but when the number of available muscles is limited control can be difficult and unintuitive. We combined shoulder EMGs with target estimates obtained from gaze. Natural gaze data were integrated with EMG during closed-loop robotic control of the arm, using a probabilistic mixture model. We tested the approach with two different sets of EMGs, as might be available to subjects with C4- and C5-level spinal cord injuries. Incorporating gaze greatly improved control of reaching, particularly when there were few EMG signals. We found that subjects naturally adapted their eye-movement precision as we varied the set of available EMGs, attaining accurate performance in both tested conditions. The system performs a near-optimal combination of both physiological signals, making control more intuitive and allowing a natural trajectory that reduces the burden on the user.
Noninvasive EEG correlates of overground and stair walking.
Brantley, Justin A; Luu, Trieu Phat; Ozdemir, Recep; Zhu, Fangshi; Winslow, Anna T; Huang, Helen; Contreras-Vidal, Jose L
2016-08-01
Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.
Features extraction of EMG signal using time domain analysis for arm rehabilitation device
NASA Astrophysics Data System (ADS)
Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im
2015-05-01
Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.
2010-01-01
Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Results Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the non-injured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases PMID:20184752
Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng
2017-05-27
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.
Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng
2017-01-01
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection. PMID:28555016
Oblique abdominal muscle activity in response to external perturbations when pushing a cart.
Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H
2010-05-07
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.
Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh
2017-07-21
Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.
An EMG-based robot control scheme robust to time-varying EMG signal features.
Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J
2010-05-01
Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.
Onset and duration of intravenous and intraosseous rocuronium in hypovolemic swine.
Nemeth, Miguel; Williams, George N; Prichard, Debbie; McConnico, Angie; Johnson, Don; Loughren, Michael
2016-01-01
Compare the onset and duration of rocuronium administered via the intravenous (IV), and intraosseous (IO) routes in a hypovolemic swine model. Prospective, between subjects, experimental study. Vivarium. Yorkshire-cross swine (N = 8). Electromyography (EMG) amplitudes were recorded at baseline and for every 15 seconds after administering 1.2 mg/kg of rocuronium via IV or IO routes to hypovolemic swine. EMG amplitudes were measured until termination of EMG activity and then measured every 5 minutes until there was a return to baseline values. Individual data were transformed to percent baseline. The time from the end of injection to 90 percent reduction of baseline EMG activity (Onset 90 ), the time to maximum reduction (Onset peak ), and the maximum reduction of the neuromuscular response (peak effect), as well as, time from the end of injection to the return of 25, 50, 75, and 95 percent of baseline EMG activity was used to characterize onset and recovery of neuromuscular function. Maximum reduction, Onset 90 and Onset peak times were not statistically different between groups. The IV group's mean time to recovery of all benchmarks was faster than the IO group. The IO group took statistically longer than the IV group to return to 25, 50, 75, and 95 percent of baseline activity. The IO route is an effective method of administering rocuronium and is comparable to the IV route even under conditions of significant hemorrhage.
Relationship between intra-abdominal pressure and trunk EMG.
McGill, S M; Sharratt, M T
1990-05-01
Intra-abdominal pressure (IAP) has been proposed as an important mechanism in manual lifting and breathing mechanics. Direct (invasive) measures of IAP have required the swallowing of a radio transducer or insertion of a pressure sensor into the rectum or down the oesophagus to the stomach. The purpose of this study was to investigate the relationship between a non-invasive method (EMG) and IAP. Several tasks involving abdominal muscle activation were performed to assess whether or not IAP played a common role in these tasks. IAP and EMG from rectus abdominis, the abdominal obliques, intercostals and erector spinae were measured. Peak IAP reached 340 mmHg (valsalva) for one subject but most values were less than 100 mmHg for tasks other than valsalva. The IAP and EMG data provide some insight into the role of IAP during the performance of specific tasks. Peak IAP within 60 ms of the onset of vigorous abdominal activation indicated the importance of a very rapid pressure response to abdominal muscle activation. The correlations between various muscle EMG time histories and IAP exceeded 0·80 for only two activities (i.e. r(2) = 0·82 between the intercostals and IAP during valsalva manoeuvres). These data suggest that no unifying hypothesis exists to explain the role of IAP for a wide variety of movement tasks; rather, the role of IAP is task specific. Copyright © 1990. Published by Elsevier Ltd.
Gallina, Alessio; Garland, S Jayne; Wakeling, James M
2018-05-22
In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-01-01
The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds. PMID:23406834
Objective models of EMG signals for cyclic processes such as a human gait
NASA Astrophysics Data System (ADS)
Babska, Luiza; Selegrat, Monika; Dusza, Jacek J.
2016-09-01
EMG signals are small potentials appearing at the surface of human skin during muscle work. They arise due to changes in the physiological state of cell membranes in the muscle fibers. They are characterized by a relatively low frequency range (500 Hz) and a low amplitude signal (of the order of μV), making it difficult to record. Raw EMG signal is inherently random shape. However we can distinguish certain features related to the activation of the muscles of a deterministic or quasi-deterministic associated with the movement and its parametric description. Objective models of EMG signals were created on the base of actual data obtained from the VICON system installed at the University of Physical Education in Warsaw. The object of research (healthy woman) moved repeatedly after a fixed track. On her body 35 reflective markers to record the gait kinematics and 8 electrodes to record EMG signals were placed. We obtained research data included more than 1,000 EMG signals synchronized with the phases of gait. Test result of the work is an algorithm for obtaining the average EMG signal received from the multiple registration gait cycles carried out in the same reproducible conditions. The method described in the article is essentially a pre-finding measurement data from the two quasi-synchronous signals at different sampling frequencies for further processing. This signal is characterized by a significant reduction of high frequency noise and emphasis on the specific characteristics of individual records found in muscle activity.
EEG potentials predict upcoming emergency brakings during simulated driving
NASA Astrophysics Data System (ADS)
Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
EEG potentials predict upcoming emergency brakings during simulated driving.
Haufe, Stefan; Treder, Matthias S; Gugler, Manfred F; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin
2011-10-01
Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h(-1) driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.
Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L
2016-08-01
Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.
Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit
2017-07-01
Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.
Surface EMG and intra-socket force measurement to control a prosthetic device
NASA Astrophysics Data System (ADS)
Sanford, Joe; Patterson, Rita; Popa, Dan
2015-06-01
Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.
2016-08-01
Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.
Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
Li, Lifang; Ding, Li; Chen, Na; Mao, Yurong; Huang, Dongfeng; Li, Le
2015-01-01
Wearable robotic devices provide safe and intensive rehabilitation, enabling repeated motions for motor function recovery in stroke patients. The aim of this small case series was to demonstrate the training effects of a three-week robotic leg orthosis, and to investigate possible mechanisms of the sensory-motor alterations and improvements by using gait analysis and EMG. Three survivors of chronic strokes participated in robot-assisted gait therapy for three weeks. EMG signals from the rectus femoris (RF), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (MG), as well as kinetics and kinematics data of the lower limb, were recorded before and after the training. The normalized root mean squared (RMS) values of the muscles, the joint moments, joint angles, and the results of two clinical scales (Berg Balance scale, BBS, and the lower extremity subscale of Fugl-Meyer assessment, LE-FMA) were used for analysis. All participants experienced improved balance and functional performances and increased BBS and LE-FMA scores. The EMG results showed there was an increase of the normalized RMS values of the MG and BF on the affected side. Additionally, EMG activities of the agonist and antagonist pair (i.e. RF and BF) appeared to return to similar levels after training. The peak moment of hip flexor, knee extensor, and plantar flexor, which all contributed to push-off power, were found to have increased after training. In summary, the three-week training period using the wearable RLO improved the three participants' gait performance by regaining push-off power and improved muscle activation and walking speed.
Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh R
2010-01-01
This research paper reports an experimental study on identification of the changes in fractal properties of surface Electromyogram (sEMG) with the changes in the force levels during low-level finger flexions. In the previous study, the authors have identified a novel fractal feature, Maximum fractal length (MFL) as a measure of strength of low-level contractions and has used this feature to identify various wrist and finger movements. This study has tested the relationship between the MFL and force of contraction. The results suggest that changes in MFL is correlated with the changes in contraction levels (20%, 50% and 80% maximum voluntary contraction (MVC)) during low-level muscle activation such as finger flexions. From the statistical analysis and by visualisation using box-plot, it is observed that MFL (p ≈ 0.001) is a more correlated to force of contraction compared to RMS (p≈0.05), even when the muscle contraction is less than 50% MVC during low-level finger flexions. This work has established that this fractal feature will be useful in providing information about changes in levels of force during low-level finger movements for prosthetic control or human computer interface.
Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.
Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo
2017-08-15
The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.
McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D
2004-11-01
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.
2013-01-01
Background Robot-assisted gait training and treadmill training can complement conventional physical therapy in children with neuro-orthopedic movement disorders. The aim of this study was to investigate surface electromyography (sEMG) activity patterns during robot-assisted gait training (with and without motivating instructions from a therapist) and unassisted treadmill walking and to compare these with physiological sEMG patterns. Methods Nine children with motor impairments and eight healthy children walked in various conditions: (a) on a treadmill in the driven gait orthosis Lokomat®, (b) same condition, with additional motivational instructions from a therapist, and (c) on the treadmill without assistance. sEMG recordings were made of the tibialis anterior, gastrocnemius lateralis, vastus medialis, and biceps femoris muscles. Differences in sEMG amplitudes between the three conditions were analyzed for the duration of stance and swing phase (for each group and muscle separately) using non-parametric tests. Spearman’s correlation coefficients illustrated similarity of muscle activation patterns between conditions, between groups, and with published reference trajectories. Results The relative duration of stance and swing phase differed between patients and controls, and between driven gait orthosis conditions and treadmill walking. While sEMG amplitudes were higher when being encouraged by a therapist compared to robot-assisted gait training without instructions (0.008 ≤ p-value ≤ 0.015), muscle activation patterns were highly comparable (0.648 ≤ Spearman correlation coefficients ≤ 0.969). In general, comparisons of the sEMG patterns with published reference data of over-ground walking revealed that walking in the driven gait orthosis could induce more physiological muscle activation patterns compared to unsupported treadmill walking. Conclusions Our results suggest that robotic-assisted gait training with therapeutic encouragement could appropriately increase muscle activity. Robotic-assisted gait training in general could induce physiological muscle activation patterns, which might indicate that this training exploits restorative rather than compensatory mechanisms. PMID:23867005
siGnum: graphical user interface for EMG signal analysis.
Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh
2015-01-01
Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.
Effects of hiking pole inertia on energy and muscular costs during uphill walking.
Foissac, Matthieu J; Berthollet, Romain; Seux, Julien; Belli, Alain; Millet, Guillaume Y
2008-06-01
The purpose of the present study was to investigate the effects of using hiking poles with different inertia on oxygen cost (V O2) and muscular activity. Eleven subjects walked at 3 km.h on a treadmill inclined at 20% grade. Three mass (240, 300, and 360 g), load distribution, and walking frequency (preferred, -20% and +20%) conditions were tested. Each subject also walked without poles and carried a 360-g mass. V[spacing dot above]O2 and average EMG (aEMG) of nine muscles from lower (soleus, gastrocnemius lateralis, vastus lateralis, biceps femoris, gluteus maximus) and upper (latissimus dorsi, biceps brachii, triceps brachii, and anterior deltoid) limbs were recorded. Using poles significantly reduced lower limb muscle aEMG values (P < 0.001) by about 15% and increased upper limb muscle aEMG values (P < 0.001) by about 95%. Hand-masses of 360 g did not result in an increased V[spacing dot above]O2, and the only modification in terms of muscular activation was greater biceps brachii activity (+55%, P = 0.006). Biceps brachii and anterior deltoid activity were also influenced by pole mass and load distribution (P < 0.01). Walking at high frequency increased both aEMG and V[spacing dot above]O2, whereas walking at low frequency redistributed the muscular work from the thigh muscles to calf and upper limb muscles although this did not lead to an increased V[spacing dot above]O2 compared with that at preferred frequency. No interaction between mass and frequency was found for aEMG or V[spacing dot above]O2. Using poles and changing frequency have important effects on muscle recruitment, whereas the effects of mass were limited when considering poles available on the market.
Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.
Vromans, Maria; Faghri, Pouran
2017-12-05
This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.
Does water-perfused catheter overdiagnose anismus compared to balloon probe?
Savoye, G; Leroi, A M; Bertot-Sassigneux, P; Touchais, J Y; Devroede, G; Denis, P
2002-12-01
The purpose of this study was to compare the manometric assessment of straining effort as if to defecate and rectoanal inhibitory reflex obtained with a rectosphincteric balloon probe and with a water-perfused catheter in the same subject. Twelve healthy volunteers underwent two manometric assessments of anal sphincter function and electromyographic (EMG) surface recordings. one with a rectosphincteric balloon and one with a water-perfused catheter, 7 days apart in random order. Increased EMG activity in the external anal sphincter in the midst of the rectoanal inhibitory reflex (P < 0.001) and during straining for defecation (P < 0.001) was more frequently observed with the perfused system than with the balloon probe. There was a discrepancy between the EMG activity of the external anal sphincter and the anal pressures during straining recorded with the perfused system. Duration of the reflex elicited by rectal distension with 10 and 20 ml of air was significantly greater with the rectosphincteric balloon than with the perfused catheter (P = 0.02 and P = 0.05, respectively). Water instilled in the anal canal by the perfused system induces artifacts in EMG recording and active anal contractions. These artifacts and induced contractions could lead to an erroneous diagnosis of anismus, particularly if pelvic floor EMG is only taken into account for the diagnosis of anismus.
Study of the pelvic floor muscles in vaginismus: a concept of pathogenesis.
Shafik, Ahmed; El-Sibai, Olfat
2002-10-10
Neither the cause of vaginismus nor the muscles involved are precisely identified. To define the involved muscles and their role in the pathogenesis of vaginismus. The EMG activity of the levator ani (LA), puborectalis (PR) and bulbocavernosus (BC) muscles was studied in seven female patients (age (years): 25.6(mean)+/-1.2(S.D.)) and seven healthy volunteers who matched the patients in age. Recordings were performed at rest and during induction of vaginismus by a vaginal dilator. Upon approximating the vaginal dilator to the vaginal introitus or introducing it into the vagina of the healthy volunteers, the EMG activity of the LA, PR and BC muscles showed no significant difference from the basal activity. In the patients, the basal EMG activity of the examined muscles was significantly higher than that of the healthy volunteers (P<0.05). Upon vaginismus induction, the muscles showed a significant increase of the EMG activity (P<0.01). The latency recorded a mean of 14.2+/-2.3, 13.9+/-2.3 and 14.1+/-2.2ms (P>0.05) in the LA, PR and BC muscles, respectively. The muscle response was momentary lasting a mean of 31.2+/-5.7s. It was reproducible provided an off-time of a mean of 13.2+/-2.3s was observed. The pelvic floor muscles of vaginismus patients exhibited increased EMG activity at rest and on vaginismus induction; the cause is unknown. The concept of a disordered sacral reflex arc is put forward but needs further studies to be verified.
Park, Rachel J; Tsao, Henry; Claus, Andrew; Cresswell, Andrew G; Hodges, Paul W
2013-11-01
Cross-sectional controlled laboratory study. To investigate potential changes in the function of discrete regions of the psoas major (PM) and quadratus lumborum (QL) with changes in spinal curvatures and hip positions in sitting, in people with recurrent low back pain (LBP). Although the PM and QL contribute to control of spinal curvature in sitting, whether activity of these muscles is changed in individuals with LBP is unknown. Ten volunteers with recurrent LBP (pain free at the time of testing) and 9 pain-free individuals in a comparison group participated. Participants with LBP were grouped into those with high and low erector spinae (ES) electromyographic (EMG) signal amplitude, recorded when sitting with a lumbar lordosis. Data were recorded as participants assumed 3 sitting postures. Fine-wire electrodes were inserted with ultrasound guidance into fascicles of the PM arising from the transverse process and vertebral body, and the anterior and posterior layers of the QL. When data from those with recurrent LBP were analyzed as 1 group, PM and QL EMG signal amplitudes did not differ between groups in any of the sitting postures. However, when subgrouped, those with low ES EMG had greater EMG signal amplitude of the PM vertebral body and QL posterior layer in flat posture and greater EMG signal amplitude of the QL posterior layer in short lordotic posture, compared to those in the pain-free group. For the group with high ES EMG, the PM transverse process and PM vertebral body EMG was less than that of the other LBP group in short lordotic posture. The findings suggest a redistribution of activity between muscles that have a potential extensor moment in individuals with LBP. The modification of EMG of discrete fascicles of the PM and QL was related to changes in ES EMG signal amplitude recorded in sitting.
A masked least-squares smoothing procedure for artifact reduction in scanning-EMG recordings.
Corera, Íñigo; Eciolaza, Adrián; Rubio, Oliver; Malanda, Armando; Rodríguez-Falces, Javier; Navallas, Javier
2018-01-11
Scanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal. In this study, we describe a new scanning-EMG signal processing algorithm that preserves the physiological signal waveform while effectively removing interference from other motor units. To obtain a cleaned-up version of the scanning signal, the masked least-squares smoothing (MLSS) algorithm recalculates and replaces each sample value of the signal using a least-squares smoothing in the spatial dimension, taking into account the information of only those samples that are not contaminated with activity of other motor units. The performance of the new algorithm with simulated scanning-EMG signals is studied and compared with the performance of the median algorithm and tested with real scanning signals. Results show that the MLSS algorithm distorts the waveform of the scanning-EMG signal much less than the median algorithm (approximately 3.5 dB gain), being at the same time very effective at removing interference components. Graphical Abstract The raw scanning-EMG signal (left figure) is processed by the MLSS algorithm in order to remove the artifact interference. Firstly, artifacts are detected from the raw signal, obtaining a validity mask (central figure) that determines the samples that have been contaminated by artifacts. Secondly, a least-squares smoothing procedure in the spatial dimension is applied to the raw signal using the not contaminated samples according to the validity mask. The resulting MLSS-processed scanning-EMG signal (right figure) is clean of artifact interference.
Halski, Tomasz; Słupska, Lucyna; Dymarek, Robert; Bartnicki, Janusz; Halska, Urszula; Król, Agata; Paprocka-Borowicz, Małgorzata; Dembowski, Janusz; Zdrojowy, Romuald
2014-01-01
Objectives. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles (PFM) and the synergistic muscles, depending on the orientation of the pelvis, in anterior (P1) and posterior (P2) pelvic tilt. Design. Preliminary, prospective observational study. Setting. Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Participants. Thirty-two menopausal and postmenopausal women with stress urinary incontinence were recruited. Based on inclusion and exclusion criteria, sixteen women aged 55 to 70 years were enrolled in the study. Primary Outcome Measures. Evaluation of resting and functional bioelectrical activity of the pelvic floor muscles by electromyography (sEMG) and vaginal probe. Secondary Outcome Measures. Evaluation of activity of the synergistic muscles by sEMG and surface electrodes. Results. No significant differences between orientations P1 and P2 were found in functional and resting sEMG activity of the PFM. During resting and functional PFM activity, higher electrical activity in P2 than in P1 has been recorded in some of the synergistic muscles. Conclusions. This preliminary study does not provide initial evidence that pelvic tilt influences PFM activation. Although different activity of synergistic muscles occurs in various orientations of the pelvic tilt, it does not have to affect the sEMG activity of the PFM. PMID:24701567
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Brown, Richard S.; Lepla, Ken
One of the practical problems with quantifying the amount of energy used by fish implanted with electromyogram (EMG) radio transmitters is that the signals emitted by the transmitter provide only a relative index of activity unless they are calibrated to the swimming speed of the fish. Ideally calibration would be conducted for each fish before it is released, but this is often not possible and calibration curves derived from more than one fish are used to interpret EMG signals from individuals which have not been calibrated. We tested the validity of this approach by comparing EMG data within three groupsmore » of three wild juvenile white sturgeon Acipenser transmontanus implanted with the same EMG radio transmitter. We also tested an additional six fish which were implanted with separate EMG transmitters. Within each group, a single EMG radio transmitter usually did not produce similar results in different fish. Grouping EMG signals among fish produced less accurate results than having individual EMG-swim speed relationships for each fish. It is unknown whether these differences were a result of different swimming performances among individual fish or inconsistencies in the placement or function of the EMG transmitters. In either case, our results suggest that caution should be used when applying calibration curves from one group of fish to another group of uncalibrated fish.« less
Reiman, Michael P; Bolgla, Lori A; Loudon, Janice K
2012-05-01
Recently, clinicians have focused much attention on the importance of hip strength for the rehabilitation of not only patients with low back pain but also lower extremity pathology. Properly designing a rehabilitation program for the gluteal muscles requires careful consideration of biomechanical principles, such as length of the external moment arm, gravity, and subject positioning. Understanding the anatomy and function of these muscles also is essential. Electromyography (EMG) provides a useful means to determine muscle activation levels during specific exercises. Descriptions of specific exercises, as they relate to the gluteal muscles, are described. The specific performance of these exercises, the reliability of such EMG measures, and descriptive figures are also detailed. Of utmost importance to practicing clinicians is the interpretation of such data and how it can be best used in exercise prescription when formulating a treatment plan.
Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C
2017-08-01
Lower back pain is commonly associated with golfers. The study aimed: to determine whether thoracic- and lumbar-erector-spinae muscle display signs of muscular fatigue after completing a golf practice session, and to examine the effect of the completed practice session on club head speed, ball speed and absolute carry distance performance variables. Fourteen right-handed male golfers participated in the laboratory-based-study. Surface electromyography (EMG) data was collected from the lead and trail sides of the thoracic- and lumbar-erector-spinae muscle. Normalized root mean squared (RMS) EMG activation levels and performance variables for the golf swings were compared before and after the session. Fatigue was assessed using median frequency (MDF) and RMS during the maximum voluntary contraction (MVC) performed before and after the session. No significant differences were observed in RMS thoracic- and lumbar-erector-spinae muscle activation levels during the five phases of the golf swing and performance variables before and after the session (p > .05). Significant changes were displayed in MDF and RMS when comparing the MVC performed before and after the session (p < .05). Fatigue was evident in the trail side of the erector-spinae muscle after the session.
Marker, Ryan J; Maluf, Katrina S
2014-12-01
Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Requests for electromyography in Rome: a critical evaluation
Di Fabio, Roberto; Castagnoli, Claudio; Madrigale, Andrea; Barrella, Massimo; Serrao, Mariano; Pierelli, Francesco
2013-01-01
Summary To date, there exist no data reporting the level of suitability of requests for electromyography examinations (EMGs) in Rome. The records of 1,220 consecutive patients (age: 57.6±15.0 years; 400 M, 820 F) in two neurophysiology laboratories were collected and analyzed. In total, 1,317 EMGs were requested, mainly by general practitioners (GPs) (57%) and orthopedic specialists (18%). The most common diagnoses were L4-L5 radiculopathy (22%) and carpal tunnel syndrome (21%); 332 examinations (25%) were normal. 68% of requests were not accompanied by any specific query. The concordance between initial hypothesis/final post-EMG diagnosis was low (<20%). When a specific query was indicated, the initial suspicion was confirmed by EMG in 54% of GP requests and 64% of requests by specialists (p=0.03). No difference in diagnostic ability was found between specialists (p>0.05). In 17% of cases, the EMG was deemed diagnostically useless by the neurophysiologist, which seems to indicate potentially suboptimal prescription of EMGs. PMID:24598396
Evaluation of the SEDline to improve the safety and efficiency of conscious sedation
Caputo, Thomas D.; Rossmann, Jeffrey A.; Beach, M. Miles; Griffiths, Garth R.; Meyrat, Benjamin; Barnes, James B.; Kerns, David G.; Crump, Brad; Bookatz, Barnett; Ezzo, Paul
2011-01-01
Brain function monitors have improved safety and efficiency in general anesthesia; however, they have not been adequately tested for guiding conscious sedation for periodontal surgical procedures. This study evaluated the patient state index (PSI) obtained from the SEDline monitor (Sedline Inc., San Diego, CA) to determine its capacity to improve the safety and efficiency of intravenous conscious sedation during outpatient periodontal surgery. Twenty-one patients at the periodontics clinic of Baylor College of Dentistry were admitted to the study in 2009 and sedated to a moderate level using midazolam and fentanyl during periodontal surgery. The PSI monitoring was blinded from the clinician, and the following data were collected: vital signs, Ramsay sedation scale (RSS), medications administered, adverse events, PSI, electroencephalography, and the patients' perspective through visual analogue scales. The data were correlated to evaluate the PSI's ability to assess the level of sedation. Results showed that the RSS and PSI did not correlate (r = −0.25) unless high values associated with electromyographical (EMG) activity were corrected (r = −0.47). Oxygen desaturation did not correlate with the PSI (r = −0.08). Satisfaction (r = −0.57) and amnesia (r = −0.55) both increased as the average PSI decreased. In conclusion, within the limits of this study, PSI appears to correlate with amnesia, allowing a practitioner to titrate medications to that effect. It did not provide advance warning of adverse events and had inherent inaccuracies due to EMG activity during oral surgery. The PSI has the potential to increase safety and efficiency in conscious sedation but requires further development to eliminate EMG activity from confounding the score. PMID:21738291
Yu, X M; Sessle, B J; Haas, D A; Izzo, A; Vernon, H; Hu, J W
1996-11-01
The aim of this study was to examine the possible role of N-methyl-D-aspartate (NMDA) receptor mechanisms in responses induced by the small-fibre excitant and inflammatory irritant mustard oil injected into the temporomandibular joint (TMJ) region of rats. The effects of the non-competitive NMDA antagonist MK-801 were tested on the mustard oil-evoked increases in electromyographic (EMG) activity of the masseter and digastric muscles and Evans Blue plasma extravasation. Five minutes before the mustard oil injection, MK-801 or its vehicle was administered systemically (i.v.), into the third ventricle (i.c.v.), or locally into the TMJ region. Compared with control animals receiving vehicle, the rats receiving MK-801 at an i.v. dose of 0.5 mg/kg (n = 5) showed a significant reduction in the incidence and magnitude of EMG responses as well as in the plasma extravasation evoked by mustard oil; MK-801 at an i.v. dose of 0.1 mg/kg (n = 5) had no significant effect on plasma extravasation or on the incidence and magnitude of EMG responses but did significantly increase the latency of EMG responses. An i.c.v. dose of 0.1 mg/kg (n = 5) or 0.01 mg/kg (n = 5) had no significant effect on plasma extravasation or incidence of EMG responses but did significantly reduce the magnitudes of the masseter EMG response; the 0.01 mg/kg dose also significantly increased the latency of the digastric EMG response. The magnitudes of both the masseter and digastric EMG responses were also significantly reduced by MK-801 administered into the TMJ region at a dose of 0.1 mg/kg (n = 5) but not by 0.01 mg/kg (n = 5); neither dose significantly affected the incidence of EMG responses or the plasma extravasation. These data suggest that both central and peripheral NMDA receptor mechanisms may play an important role in EMG responses evoked by the small-fibre excitant and inflammatory irritant mustard oil, but that different neurochemical mechanisms may be involved in the plasma extravasation induced by mustard oil.
Trapezius muscle activity in using ordinary and ergonomically designed dentistry chairs.
Haddad, O; Sanjari, M A; Amirfazli, A; Narimani, R; Parnianpour, M
2012-04-01
Most dentists complain of musculoskeletal disorders which can be caused by prolonged static posture, lack of suitable rest and other physical and psychological problems. We evaluated a chair with a new ergonomic design which incorporated forward leaning chest and arm supports. The chair was evaluated in the laboratory during task simulation and EMG analysis on 12 students and subjectively assessed by 30 professional dentists using an 18-item questionnaire. EMG activity of right and left trapezius muscles for 12 male students with no musculoskeletal disorders was measured while simulating common tasks like working on the teeth of the lower jaw. Normalized EMG data showed significant reduction (p<0.05) in all EMG recordings of the trapezius muscle. Dentists also unanimously preferred the ergonomically designed chair. Such ergonomically designed chairs should be introduced as early as possible in student training before bad postural habits are acquired.
Investigation of Physiological Properties of Nerves and Muscles Using Electromyography
ERIC Educational Resources Information Center
Roe, Seán M.; Johnson, Christopher D.; Tansey, Etain A.
2014-01-01
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in…
Smirnov, Michael S.; Kiyatkin, Eugene A.
2009-01-01
Many important physiological, behavioral and subjective effects of intravenous (iv) cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed EEG and EMG recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of iv COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by iv COC methiodide, a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC methiodide had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by iv procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, iv saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, iv COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior. PMID:19861149
de Caxias, Fernanda P; Dos Santos, Daniela M; Goiato, Marcelo C; Bitencourt, Sandro B; da Silva, Emily V F; Laurindo-Junior, Murilo C B; Turcio, Karina H L
2018-05-01
Many elderly individuals are rehabilitated with removable complete dentures, which require an initial adaptation period for both oral perception and the perioral muscles. Studies assessing the changes in stimulus perception and the electromyographic (EMG) activity of the orbicularis oris muscle shortly after conventional complete denture insertion are lacking. The purpose of this clinical study was to evaluate the effect of mouth rehabilitation with removable complete dentures on stimulus perception and the EMG activity of the orbicularis oris muscle. This study was approved by the Human Research Ethics Committee of the Araçatuba Dental School (São Paulo State University). Fifteen participants who had worn their removable complete dentures for at least 5 years and needed rehabilitation with new prostheses were enrolled in the study. A perception questionnaire was applied, and surface EMG examinations of the orbicularis oris muscle during rest, suction of water with a straw, and pronunciation of the syllables /bah/, /mah/, /pah/, and the word 'Mississippi' were performed before (T0) and 30 (T1) and 100 (T2) days after insertion of the new prostheses. The data were analyzed with the Cochran Q test, McNemar test, 2-way repeated measures ANOVA, and honestly significant difference (HSD) Tukey test (α=.05). Significant improvement was reported in the perception questionnaire in terms of the oral discomfort sensation in the T2 period. EMG activity decreased during rest and suction after insertion of the new prostheses. A statistical difference between the upper and lower fascicles of the orbicularis oris muscle was detected, with a decrease of EMG activity between the T0 and T1 periods on the lower fascicle, except for when pronouncing the /pah/ syllable. Mouth rehabilitation with removable complete dentures decreased oral discomfort and, depending on the oral function, decreased or increased EMG activity of the orbicularis oris muscle. In addition, the lower fascicle was more active than the upper fascicle during rest and most functional activities. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Intramuscular pressure and electromyography as indexes of force during isokinetic exercise
NASA Technical Reports Server (NTRS)
Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.
1993-01-01
A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.
Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
Saito, Akira; Akima, Hiroshi
2013-12-01
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A
2017-12-01
The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.
Gesture recognition by instantaneous surface EMG images.
Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun
2016-11-15
Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.
Halski, Tomasz; Dymarek, Robert; Ptaszkowski, Kuba; Słupska, Lucyna; Rajfur, Katarzyna; Rajfur, Joanna; Pasternok, Małgorzata; Smykla, Agnieszka; Taradaj, Jakub
2015-01-01
Background Kinesiology taping (KT) is a popular method of supporting professional athletes during sports activities, traumatic injury prevention, and physiotherapeutic procedures after a wide range of musculoskeletal injuries. The effectiveness of KT in muscle strength and motor units recruitment is still uncertain. The objective of this study was to assess the effect of KT on surface electromyographic (sEMG) activity and muscle flexibility of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) muscles in healthy volleyball players. Material/Methods Twenty-two healthy volleyball players (8 men and 14 women) were included in the study and randomly assigned to 2 comparative groups: “kinesiology taping” (KT; n=12; age: 22.30±1.88 years; BMI: 22.19±4.00 kg/m2) in which KT application over the RF muscle was used, and “placebo taping” (PT; n=10; age: 21.50±2.07 years; BMI: 22.74±2.67 kg/m2) in which adhesive nonelastic tape over the same muscle was used. All subjects were analyzed for resting sEMG activity of the VL and VM muscles, resting and functional sEMG activity of RF muscle, and muscle flexibility of RF muscle. Results No significant differences in muscle flexibility of the RF muscle and sEMG activity of the RF, VL, and VM muscles were registered before and after interventions in both groups, and between the KT and PT groups (p>0.05). Conclusions The results show that application of the KT to the RF muscle is not useful to improve sEMG activity. PMID:26232122
Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L
2017-07-01
To investigate the effect of different attentional focus conditions on muscle activity during the push-up exercise and to assess the possible influence of muscle strength and training experience. Eighteen resistance-trained men performed 1RM bench press testing and were familiarized with the procedure during the first session. In the second session, three different conditions were randomly performed: regular push-up and push-up focusing on using the pectoralis major and triceps brachii muscles, respectively. Surface electromyography (EMG) was recorded and analyzed (EMG normalized to max; nEMG) for the triceps brachii and pectoralis major muscles. Participants had on average 8 (SD 6) years of training experience and 1RM of 1.25 (SD 0.28) kg per kg bodyweight. Focusing on using pectoralis major increased activity in this muscle by 9% nEMG (95% CI 5-13; Cohen's d 0.60) compared with the regular condition. Triceps activity was not significantly influenced by triceps focus although borderline significant, with a mean difference of 5% nEMG (95% CI 0-10; Cohen's d 0.30). However, years of training experience was positively associated with the ability to selectively activate the triceps (β = 0.41, P = 0.04), but not the pectoralis. Bench press 1RM was not significantly associated with the ability to selectively activate the muscles. Pectoralis activity can be increased when focusing on using this muscle during push-ups, whereas the ability to do this for the triceps is dependent on years of training experience. Maximal muscle strength does not appear to be a decisive factor for the ability to selectively activate these muscles.
Vinstrup, Jonas; Sundstrup, Emil; Brandt, Mikkel; Jakobsen, Markus D; Calatayud, Joaquin; Andersen, Lars L
2015-01-01
Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26-67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise consisted of 3 repetitions performed at a 10 RM load. EMG amplitude was normalized (nEMG) to maximum voluntary isometric contraction (MVC). Results. A higher right erector spinae activity in the elastic exercise compared with the machine exercise (50% [95% CI 36-64] versus 32% [95% CI 18-46] nEMG) was found. By contrast, the machine exercise, compared with the elastic exercise, showed higher left external oblique activity (77% [95% CI 64-90] versus 54% [95% CI 40-67] nEMG). For the rectus abdominis, right external oblique, and left erector spinae muscles there were no significant differences. Furthermore, 76% preferred the torso-twist with elastic resistance over the machine exercise. Perceived exertion (Borg CR10) was not significantly different between machine (5.8 [95% CI 4.88-6.72]) and elastic exercise (5.7 [95% CI 4.81-6.59]). Conclusion. Torso-twists using elastic resistance showed higher activity of the erector spinae, whereas torso-twist in the machine resulted in higher activity of the external oblique. For the remaining core muscles the two training modalities induced similar muscular activation. In spite of similar perceived exertion the majority of the participants preferred the exercise using elastic resistance.
Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi; Korbo, Lise; Friberg, Lars; Jennum, Poul
2016-06-15
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. 10 iRBD patients, 10 PD patients with PD, 10 PD patients without RBD, and 10 healthy controls were included and assessed with (123)I-N-omega-fluoropropyl-2-beta-carboxymethoxy-3beta-(4-iodophenyl) nortropane ((123)I-FP-CIT) Single-photon emission computed tomography (SPECT) scanning ((123)I-FP-CIT SPECT), neurological examination, and polysomnography. iRBD patients and PD patients with RBD had increased EMG-activity compared to healthy controls. (123)I-FP-CIT uptake in the putamen-region was highest in controls, followed by iRBD patients, and lowest in PD patients. In iRBD patients, EMG-activity in the mentalis muscle was correlated to (123)I-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD. © 2016 American Academy of Sleep Medicine.
Timmer, J; Lauk, M; Pfleger, W; Deuschl, G
1998-05-01
We investigate the relationship between the extensor electromyogram (EMG) and tremor times series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second-order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.
Zhang, Fei-Ruo; He, Li-Hua; Wu, Shan-Shan; Li, Jing-Yun; Ye, Kang-Pin; Wang, Sheng
2011-11-01
Work-related musculoskeletal disorders (WMSDs) have high prevalence in sewing machine operators employed in the garment industry. Long work duration, sustained low level work and precise hand work are the main risk factors of neck-shoulder disorders for sewing machine operators. Surface electromyogram (sEMG) offers a valuable tool to determine muscle activity (internal exposure) and quantify muscular load (external exposure). During sustained and/or repetitive muscle contractions, typical changes of muscle fatigue in sEMG, as an increase in amplitude or a decrease as a shift in spectrum towards lower frequencies, can be observed. In this paper, we measured and quantified the muscle load and muscular activity patterns of neck-shoulder muscles in female sewing machine operators during sustained sewing machine operating tasks using sEMG. A total of 18 healthy women sewing machine operators volunteered to participate in this study. Before their daily sewing machine operating task, we measured the maximal voluntary contractions (MVC) and 20%MVC of bilateral cervical erector spinae (CES) and upper trapezius (UT) respectively, then the sEMG signals of bilateral UT and CES were monitored and recorded continuously during 200 minutes of sustained sewing machine operating simultaneously which equals to 20 time windows with 10 minutes as one time window. After 200 minutes' work, we retest 20%MVC of four neck-shoulder muscles and recorded the sEMG signals. Linear analysis, including amplitude probability distribution frequency (APDF), amplitude analysis parameters such as roof mean square (RMS) and spectrum analysis parameter as median frequency (MF), were used to calculate and indicate muscle load and muscular activity of bilateral CES and UT. During 200 minutes of sewing machine operating, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezius (LUT) and right upper trapezius (RUT) were 6.78%MVE, 6.94%MVE, 6.47%MVE and 5.68%MVE, respectively. Work load of right muscles are significantly higher than that of the left muscles (P < 0.05); sEMG signal analysis of isometric contractions indicated that the amplitude value before operating was significantly higher than that of after work (P < 0.01), and the spectrum value of bilateral CES and UT were significantly lower than those of after work (P < 0.01); according to the sEMG signal data of 20 time windows, with operating time pass by, the muscle activity patterns of bilateral CES and UT showed dynamic changes, the maximal amplitude of LCES, RCES, LUT occurred at the 20th time window, RUT at 16th time window, spectrum analysis showed that the lower value happened at 7th, 16th, 20th time windows. Female sewing machine operators were exposed to high sustained static load on bilateral neck-shoulder muscles; left neck and shoulder muscles were held in more static positions; the 7th, 16th, and 20th time windows were muscle fatigue period that ergonomics intervention can protocol at these periods.
Bazzucchi, Ilenia; Riccio, Maria Elena; Felici, Francesco
2008-10-01
Previous studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions. Ten young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15 degrees , 30 degrees , 60 degrees , 120 degrees , 180 degrees and 240 degrees /s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude. Antagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0+/-7.9% at MVC to 16.3+/-8.9% at 240 degrees /s) with respect to non-players (from 27.7+/-19.7% at MVC to 38.7+/-17.6% at 240 degrees /s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles. Tennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.
Koh, Eun-Kyung; Park, Kyue-Nam; Jung, Do-Young
2016-11-01
This study was conducted in order to determine the effect of feedback tools on activities of the gluteus maximus (Gmax) and oblique abdominal muscles and the angle of pelvic rotation during clam exercise (CE). Comparative study using repeated measures. University laboratory. Sixteen subjects with lower back pain. Each subject performed the CE without feedback, the CE using a pressure biofeedback unit (CE-PBU), and the CE with palpation and visual feedback (CE-PVF). Electromyographic (EMG) activity and the angles of pelvic rotation were measured using surface EMG and a three-dimensional motion-analysis system, respectively. One-way repeated-measures ANOVA followed by the Bonferroni post hoc test were used to compare the EMG activity in each muscle as well as the angle of pelvic rotation during the CE, CE-PBU, and CE-PVF. The results of post-hoc testing showed a significantly reduced angle of pelvic rotation and significantly more Gmax EMG activity during the CE-PVF compared with during the CE and CE-PBU. These findings suggest that palpation and visual feedback is effective for activating the Gmax and controlling pelvic rotation during the CE in subjects with lower back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang
2013-03-01
The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.
Latent Factors Limiting the Performance of sEMG-Interfaces
Lobov, Sergey; Krilova, Nadia; Kazantsev, Victor
2018-01-01
Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human–machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying “problematic” gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces. PMID:29642410
Latent Factors Limiting the Performance of sEMG-Interfaces.
Lobov, Sergey; Krilova, Nadia; Kastalskiy, Innokentiy; Kazantsev, Victor; Makarov, Valeri A
2018-04-06
Recent advances in recording and real-time analysis of surface electromyographic signals (sEMG) have fostered the use of sEMG human-machine interfaces for controlling personal computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture recognition among different users. Here, we systematically study the latent factors determining the performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic tests. Our data suggest that these factors can only be adjusted by long-term training, which promotes fine-tuning of low-level neural circuits driving the muscles. Short-term training has no effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a higher decision-making level, not relevant for synthetic gestures. We propose a procedure that enables quantification of the gestures' fidelity in a dynamic gaming environment. For each individual subject, the approach allows identifying "problematic" gestures that decrease gaming performance. This information can be used for optimizing the training strategy and for adapting the signal processing algorithms to individual users, which could be a way for a qualitative leap in the development of future sEMG-interfaces.
2013-01-01
Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory intermediate neurons that are activated by the conditioning SICI stimulus. PMID:23547559
Hybrid BCI approach to control an artificial tibio-femoral joint.
Mercado, Luis; Rodriguez-Linan, Angel; Torres-Trevino, Luis M; Quiroz, G
2016-08-01
Brain-Computer Interfaces (BCIs) for disabled people should allow them to use their remaining functionalities as control possibilities. BCIs connect the brain with external devices to perform the volition or intent of movement, regardless if that individual is unable to perform the task due to body impairments. In this work we fuse electromyographic (EMG) with electroencephalographic (EEG) activity in a framework called "Hybrid-BCI" (hBCI) approach to control the movement of a simulated tibio-femoral joint. Two mathematical models of a tibio-femoral joint are used to emulate the kinematic and dynamic behavior of the knee. The interest is to reproduce different velocities of the human gait cycle. The EEG signals are used to classify the user intent, which are the velocity changes, meanwhile the superficial EMG signals are used to estimate the amplitude of such intent. A multi-level controller is used to solve the trajectory tracking problem involved. The lower level consists of an individual controller for each model, it solves the tracking of the desired trajectory even considering different velocities of the human gait cycle. The mid-level uses a combination of a logical operator and a finite state machine for the switching between models. Finally, the highest level consists in a support vector machine to classify the desired activity.
Park, Kyue-nam; Kwon, Oh-yun; Ha, Sung-min; Kim, Su-jung; Choi, Hyun-jung; Weon, Jong-hyuck
2012-12-01
Neck pain is common in violin students during a musical performance. The purpose of this study was to compare electromyographic (EMG) activity in superficial neck muscles with neck motion when playing the violin as well as neck range of motion (ROM) at rest, between violin students with and without neck pain. Nine violin students with neck pain and nine age- and gender-matched subjects without neck pain were recruited. Muscle activity of the bilateral upper trapezius, sternocleidomastoid, and superficial cervical extensor muscles was measured using surface EMG. Kinematic data on neck motion while playing and active neck ROM were also measured using a three-dimensional motion analysis system. Independent t-tests were used to compare EMG activity with kinematic data between groups. These analyses revealed that while playing, both the angle of left lateral bending and leftward rotation of the cervical spine were significantly greater in the neck pain group than among those without neck pain. Similarly, EMG activity of the left upper trapezius, both cervical extensors, and both sternocleidomastoid muscles were significantly greater in the neck pain group. The active ROM of left axial rotation was significantly lower in the neck pain group. These results suggest that an asymmetric playing posture and the associated increased muscle activity as well as decreased neck axial rotation may contribute to neck pain in violin students.
Kleine, B U; Schumann, N P; Bradl, I; Grieshaber, R; Scholle, H C
1999-09-01
A study was carried out to investigate temporal changes of activation of shoulder and back muscles in workers at visual display units by means of surface EMG. Moreover, postural parameters were recorded to distinguish fatigue-related from posture-related changes of the myoelectrical activity. Nine healthy female office workers typed texts spoken from tape during three 1-h-long sessions. After the first and again after the second hour there was a break of 15 min. Sixteen-channel surface EMG was bipolarly recorded from the erector spinae, trapezius, deltoid and sternocleidomastoid muscles. Root mean square (RMS) and power spectrum median frequency of the EMG were calculated. Sitting posture was assessed using an eight-channel movement analysis system with ultrasound markers. The position of the seventh cervical spinous process and the left and the right acromion were analysed synchronously with the EMG characteristics using regression analysis. The normalised RMS of the left and right trapezius muscle increased, while the median frequency did not change. The increase of the normalised RMS was significantly lower when the linear influence of posture was excluded. On average, the distance between C7 and the left and right acromion decreased within each working an hour. C7 became lower on average by 5.5 mm within an hour, whereas the acromions became lower by only 1.7 mm (left) and 3.3 mm (right). The increase in trapezius muscle activity was partly related to a lifting of the shoulders to compensate a slight slumping of the back. Another part of the EMG activity increase has to be attributed to fatigue, to attention-related activity or to the combination of both. Therefore, training of the back muscles and a varied organisation of work might have a preventive effect with respect to musculoskeletal complaints in VDU workers.
Slipping during side-step cutting: anticipatory effects and familiarization.
Oliveira, Anderson Souza Castelo; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2014-04-01
The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform. In the second set, subjects were informed about the random possibility of perturbations to balance throughout 32 trials, of which eight were perturbed (Pert, 10cm translation triggered at initial contact), and the others were "catch" trials (Catch). Center of mass velocity (CoMVEL), heel acceleration (HAC), ground reaction forces (GRF) and surface electromyography (EMG) from lower limb and trunk muscles were recorded for each trial. Surface EMG was analyzed prior to initial contact (PRE), during load acceptance (LA) and propulsion (PRP) periods of the stance phase. In addition, hamstrings-quadriceps co-contraction ratios (CCR) were calculated for these time-windows. The results showed no changes in CoMVEL, HAC, peak GRF and surface EMG PRE among conditions. However, during LA, there were increases in tibialis anterior EMG (30-50%) concomitant to reduced EMG for quadriceps muscles, gluteus and rectus abdominis for Catch and Pert conditions (15-40%). In addition, quadriceps EMG was still reduced during PRP (p<.05). Consequently, CCR was greater for Catch and Pert in comparison to Base (p<.05). These results suggest that there is modulation of muscle activity towards anticipating potential instability in the lower limb joints and assure safety to complete the task. Copyright © 2014. Published by Elsevier B.V.
Lan, Yiyun; Yao, Jun; Dewald, Julius P A
2011-01-01
Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.
Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco
2010-08-01
The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.
Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction
NASA Astrophysics Data System (ADS)
Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim
2016-02-01
The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.
Liu, D W; Westerfield, M
1988-01-01
1. The activity of the two classes of motoneurones, primary and secondary, which innervate myotomal muscle fibres in the zebra fish, was monitored with electromyographic and intracellular techniques. 2. Simultaneous EMG and intracellular recordings from muscle fibres showed that the activity of the two motor systems and of individual primary motoneurones can be distinguished by recording EMG spikes during swimming. 3. Measurements of EMG spikes demonstrated that primary and secondary motoneurones are co-ordinately activated over a wide range of conditions during normal swimming. 4. During swimming the primary motoneurones within a given segment are usually co-activated although they sometimes fire independently. 5. When different primary motoneurones within a given segment are co-activated, they fire nearly synchronously. 6. We conclude that the primary motoneurones are used principally, although not exclusively, during fast swimming, struggling and the startle response, whereas secondary motoneurones function primarily during slower swimming. PMID:3253426
Simón, Miguel A; Bueno, Ana M
The aim of this study was to evaluate the efficacy of biofeedback therapy in the treatment of dyssynergic defecation in chronically constipated community-dwelling elderly women. After an initial assessment phase carried out during 1 month, 20 chronically constipated women with dyssynergic defecation were randomly assigned to either electromyographic biofeedback (EMG-BF) group (n=10) or control group (n=10). Outcome measures used to evaluate the efficacy of treatment were weekly stool frequency, sensation of incomplete evacuation, difficulty evacuation level, mean EMG-activity (μV) of the external anal sphincter during straining to defecate and Anismus index. The results obtained in this randomized controlled trial showed significant differences between the groups in all the dependent variables after 1 month of treatment. Moreover, there was no difference between the groups neither in age nor in the duration of chronic constipation symptoms. At the follow-up, 3 months later, clinical gains were maintained. This study demonstrates that the EMG-BF is an effective behavioral therapy for the treatment of dyssynergic defecation in community-dwelling elderly women.
Effect of age on changes in motor units functional connectivity.
Arjunan, Sridhar P; Kumar, Dinesh
2015-08-01
With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.
Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer
van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.
2016-01-01
Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154
Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M
2016-01-01
Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.
Activation of respiratory muscles during respiratory muscle training.
Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim
2018-01-01
It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.
VanderWerf, Frans; Reits, Dik; Metselaar, Mick; De Zeeuw, Chris I
2012-03-01
To determine the functional recovery in patients with severe transient peripheral facial motor paralysis (Bell palsy). Prospective controlled trial. Academic medical center. Blink recovery was studied in 2 groups of severely affected Bell palsy patients during a follow-up period of 84 weeks. The patients in one group received prednisolone within the first week after the onset of symptoms. No medication was given to the other group. A control group of healthy subjects was also included. Simultaneous orbicularis oculi muscle activity and eyelid kinematics were recorded by surface electromyographic (EMG) recording and eyelid search coils, respectively. At the beginning of the paralysis, very little integrated orbicularis oculi muscle activity and eyelid movement was measured at the palsied side of the face. Thirteen weeks later, the integrated orbicularis oculi EMG and functional blink recovery gradually improved until 39 weeks. Beyond, only the integrated orbicularis oculi EMG slightly increased. At 84 weeks, the integrated orbicularis oculi EMG was significantly larger in the prednisolone group compared with the control group. The integrated EMG of the nonmedicated group recovered to normal values. Curiously enough, the functional blink recovery at the palsied side remained reduced to 64% compared with the healthy controls in the prednisolone-treated group and to 36% in the nonmedicated group. The authors demonstrate that prednisolone significantly increased the orbicularis oculi muscle activity and significantly improved functional blink recovery in severely affected Bell palsy patients. However, the increase of muscle activity was insufficient to restore functional blinking to normal values.
Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh K
2016-08-01
Age-associated changes in the surface electromyogram (sEMG) of Tibialis Anterior (TA) muscle can be attributable to neuromuscular alterations that precede strength loss. We have used our sEMG model of the Tibialis Anterior to interpret the age-related changes and compared with the experimental sEMG. Eighteen young (20-30 years) and 18 older (60-85 years) performed isometric dorsiflexion at 6 different percentage levels of maximum voluntary contractions (MVC), and their sEMG from the TA muscle was recorded. Six different age-related changes in the neuromuscular system were simulated using the sEMG model at the same MVCs as the experiment. The maximal power of the spectrum, Gaussianity and Linearity Test Statistics were computed from the simulated and experimental sEMG. A correlation analysis at α=0.05 was performed between the simulated and experimental age-related change in the sEMG features. The results show the loss in motor units was distinguished by the Gaussianity and Linearity test statistics; while the maximal power of the PSD distinguished between the muscular factors. The simulated condition of 40% loss of motor units with halved the number of fast fibers best correlated with the age-related change observed in the experimental sEMG higher order statistical features. The simulated aging condition found by this study corresponds with the moderate motor unit remodelling and negligible strength loss reported in literature for the cohorts aged 60-70 years.
[Recognition of walking stance phase and swing phase based on moving window].
Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu
2014-04-01
Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.
Usefulness of BFB/EMG in facial palsy rehabilitation.
Dalla Toffola, Elena; Bossi, Daniela; Buonocore, Michelangelo; Montomoli, Cristina; Petrucci, Lucia; Alfonsi, Enrico
2005-07-22
To analyze and to compare the recovery and the development of synkinesis in patients with idiopathic facial palsy (Bell's palsy) following treatment with two methods of rehabilitation, kinesitherapy (KT) and biofeedback/EMG (BFB/EMG). Retrospective cases--series review. Seventy-four patients with Bell' palsy were clinically evaluated within 1 month from onset of palsy and at 12 months after palsy (House scale and synkinesis evaluation). Electromyography (EMG) and Electroneurography (ENG) were performed about 4 weeks after palsy to better evaluate functional abnormalities due to facial nerve lesion. The patients followed two different protocols for rehabilitation: the first 32 patients were treated with therapeutic exercises performed by therapists (KT group), the latter 42 patients were treated using BFB/EMG methods (BFB group) with inhibition of synkinetic movement as the primary goal. KT and BFB patients were evaluated for clinical and neurophysiological characteristics before rehabilitative treatment. BFB patients showed better clinical recovery and minor synkinesis than KT patients. BFB/EMG seems to be more useful than KT in Bell's palsy treatment. This could be due to the fact that BFB/EMG gives more accurate information than KT on muscle activation with better modulation in voluntary recruitment of motor unit.
[EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].
Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E
2014-01-01
The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.
Adaptive EMG noise reduction in ECG signals using noise level approximation
NASA Astrophysics Data System (ADS)
Marouf, Mohamed; Saranovac, Lazar
2017-12-01
In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.
Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona
2018-01-01
Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. However, neural correlates of the phenomenon are as yet not well established. We investigated this issue using simultaneously recorded EMG and BOLD signals during perception of dynamic and static emotional facial expressions of happiness and anger. During display presentations, BOLD signals and zygomaticus major (ZM), corrugator supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions with increased EMG activity in ZM and OO muscles and decreased CS activity, which was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions associated with emotional processing (i.e., insula, part of the extended MNS). It is concluded that FM involves both motor and emotional brain structures, especially during perception of natural emotional expressions. PMID:29467691
Frauscher, Birgit; Gabelia, David; Biermayr, Marlene; Stefani, Ambra; Hackner, Heinz; Mitterling, Thomas; Poewe, Werner; Högl, Birgit
2014-10-01
Rapid eye movement sleep without atonia (RWA) is the polysomnographic hallmark of REM sleep behavior disorder (RBD). To partially overcome the disadvantages of manual RWA scoring, which is time consuming but essential for the accurate diagnosis of RBD, we aimed to validate software specifically developed and integrated with polysomnography for RWA detection against the gold standard of manual RWA quantification. Academic referral center sleep laboratory. Polysomnographic recordings of 20 patients with RBD and 60 healthy volunteers were analyzed. N/A. Motor activity during REM sleep was quantified manually and computer assisted (with and without artifact detection) according to Sleep Innsbruck Barcelona (SINBAR) criteria for the mentalis ("any," phasic, tonic electromyographic [EMG] activity) and the flexor digitorum superficialis (FDS) muscle (phasic EMG activity). Computer-derived indices (with and without artifact correction) for "any," phasic, tonic mentalis EMG activity, phasic FDS EMG activity, and the SINBAR index ("any" mentalis + phasic FDS) correlated well with the manually derived indices (all Spearman rhos 0.66-0.98). In contrast with computerized scoring alone, computerized scoring plus manual artifact correction (median duration 5.4 min) led to a significant reduction of false positives for "any" mentalis (40%), phasic mentalis (40.6%), and the SINBAR index (41.2%). Quantification of tonic mentalis and phasic FDS EMG activity was not influenced by artifact correction. The computer algorithm used here appears to be a promising tool for REM sleep behavior disorder detection in both research and clinical routine. A short check for plausibility of automatic detection should be a basic prerequisite for this and all other available computer algorithms. © 2014 Associated Professional Sleep Societies, LLC.
Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert
2016-11-01
On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.
A systematic review of surface electromyography analyses of the bench press movement task
Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam
2017-01-01
Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID:28170449
Rendos, Nicole K; Heredia Vargas, Héctor M; Alipio, Taislaine C; Regis, Rebeca C; Romero, Matthew A; Signorile, Joseph F
2016-07-01
Rendos, NK, Heredia Vargas, HM, Alipio, TC, Regis, RC, Romero, MA, and Signorile, JF. Differences in muscle activity during cable resistance training are influenced by variations in handle types. J Strength Cond Res 30(7): 2001-2009, 2016-There has been a recent resurgence in the use of cable machines for resistance training allowing movements that more effectively simulate daily activities and sports-specific movements. By necessity, these devices require a machine/human interface through some type of handle. Considerable data from material handling, industrial engineering, and exercise training studies indicate that handle qualities, especially size and shape, can significantly influence force production and muscular activity, particularly of the forearm muscles, which affect the critical link in activities that require object manipulation. The purpose for this study was to examine the influence of three different handle conditions: standard handle (StandH), ball handle with the cable between the index and middle fingers (BallIM), and ball handle with the cable between the middle and ring fingers (BallMR), on activity levels (rmsEMG) of the triceps brachii lateral and long heads (TriHLat, TriHLong), brachioradialis (BR), flexor carpi radialis (FCR), extensor carpi ulnaris, and extensor digitorum (ED) during eight repetitions of standing triceps pushdown performed from 90° to 0° elbow flexion at 1.5 s per contractile stage. Handle order was randomized. No significant differences were seen for triceps or BR rmsEMG across handle conditions; however, relative patterns of activation did vary for the forearm muscles by handle condition, with more coordinated activation levels for the FCR and ED during the ball handle conditions. In addition, the rmsEMG for the ED was significantly higher during the BallIM than any other condition and during the BallMR than the StandH. These results indicate that the use of ball handles with the cable passing between different fingers can vary the utilization patterns of selected forearm muscles and may therefore be advantageous for coaches, personal trainers, therapists, or bodybuilders for targeted training or rehabilitation of these muscles.
Chen, Su-Huang; Lee, Yung-Hui; Lin, Chiuhsiang Joe
2015-01-01
Various parameters related to pushing/pulling tasks have been examined yet the effects of changing the load position in one-wheeled wheelbarrow task has not been examined. To explore the effects of load position and force direction on muscle activity during wheelbarrow tasks. Nine participants were recruited to take part in the experiment. Each participant performed 18 trials consisting of 2 force directions (push and pull) and 9 load positions. The dependent variables were EMG of erector spinae and gripping force. ANOVA was used to identify significant differences between force direction and load position in EMG and gripping force data. Results showed that peak EMG was lowest for the left and right erector spinae when the load was positioned farther from the participant. Peak EMG of the bilateral erector spinae increased when the weight was near the participant and on the ipsilateral hand. Based on the EMG results, we suggest that loads be arranged in the anterior part of the bin in order to reduce muscle activity on the spine during the wheelbarrow task. This finding also provides some directions in the improvement and ergonomic redesign of the one-wheeled wheelbarrow.
The Effect of Varying Biting Position on Relative Jaw Muscle EMG activity
1988-09-01
with muscle force is the key to 13 this approach as it allows inference of muscle contraction activity from EMG data. This relationship has been the...5! 15 LITERATURE REVIEW Introduction: The study of the physiology of bite force, muscle contraction force, joint reaction force and the lever system...Currently, the best method of indirectly observing muscle contraction activity is through electromyography. Although there appears to be a time delay
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Altered muscular activation during prone hip extension in women with and without low back pain.
Arab, Amir M; Ghamkhar, Leila; Emami, Mahnaz; Nourbakhsh, Mohammad R
2011-08-14
Altered movement pattern has been associated with the development of low back pain (LBP). The purpose of this study was to investigate the activity pattern of the ipsilateral erector spinae (IES) and contralateral erectorspinae (CES), gluteus maximus (GM) and hamstring (HAM) muscles during prone hip extension (PHE) test in women with and without LBP. A cross-sectional non-experimental design was used. Convenience sample of 20 female participated in the study. Subjects were categorized into two groups: with LBP (n = 10) and without LBP (n = 10). The electromyography (EMG) signal amplitude of the tested muscles during PHE (normalized to maximum voluntary electrical activity (MVE)) was measured in the dominant lower extremity in all subjects. Statistical analysis revealed greater normalized EMG signal amplitude in women with LBP compared to non-LBP women. There was significant difference in EMG activity of the IES (P = 0.03) and CES (P = 0.03) between two groups. However, no significant difference was found in EMG signals of the GM (P = 0.11) and HAM (P = 0.14) among two groups. The findings of this study demonstrated altered activation pattern of the lumbo-pelvic muscles during PHE in the women with chronic LBP. This information is important for investigators using PHE as either an evaluation tool or a rehabilitation exercise.
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.
Alenabi, Talia; Whittaker, Rachel; Kim, Soo Y; Dickerson, Clark R
2018-04-25
This study aimed to identify optimal sets of maximal voluntary isometric contractions (MVICs) for normalizing EMG data from anterior and posterior regions of the supraspinatus, and superior, middle and inferior regions of the infraspinatus. 31 right-handed young healthy individuals (15 males, 16 females) participated. EMG activity was obtained from two regions of supraspinatus and three regions of infraspinatus muscles via fine wire electrodes. Participants performed 15 MVIC tests against manual resistance. The EMG data were normalized to the maximum values. Optimal sets of MVIC combinations, defined as those which elicited >90% MVIC activation in the muscles of interest in >80% and >90% of the population, were obtained. EMG data from the inferior region of infraspinatus were removed from analysis due to technical problem. No single test achieved maximal activation of both regions of either the supraspinatus or infraspinatus. Instead, a combination of 6-8 MVICs were required to reach >90% MVIC activation in both parts of those muscles. In all regions of the rotator cuff muscles, the optimal combination was obtained with 8-10 MVICs. The proposed combinations can reduce inter-participant variability in generating maximal activation from different regions of the supraspinatus and infraspinatus muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pattern learning with deep neural networks in EMG-based speech recognition.
Wand, Michael; Schultz, Tanja
2014-01-01
We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.
The effect of yoga on puborectalis paradox.
Dolk, A; Holmström, B; Johansson, C; Frostell, C; Nilsson, B Y
1991-08-01
Nine patients with severe defaecation difficulties primarily considered to be due to puborectalis dysfunction (puborectalis paradox), verified by electromyography (EMG) of the striated anal sphincter muscles, were offered training in Yogic techniques of relaxation and muscle control in order to change the activity of the pelvic floor muscles during attempted defaecation. Five patients completed the training program of 20 2-hour sessions and were re-examined clinically and with EMG. One patient regained a normal EMG pattern but none of the patients improved clinically.
Respiration in vitro: I. Spontaneous activity.
Hamada, O; Garcia-Rill, E; Skinner, R D
1992-01-01
The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.
Bauman, Nancy M; Wang, DeQiang; Luschei, Erich S; Talman, William T
2002-10-01
Identification of central neurotransmitters that mediate laryngeal adductor and/or tensor activity may prove useful in managing pathological laryngeal adduction as occurs in laryngospasm or apparent life-threatening events. The putative transmitter substance P (SP) is found in the nucleus tractus solitarius (NTS), in which laryngeal afferents terminate. Therefore, we studied the laryngeal, cardiovascular, and respiratory effects of SP injected into the NTS of rats. We completed bilateral stereotactic injections of 20 nL of SP (15 micromol) or control solution into the region of the NTS, the dorsal motor nucleus (DMN), or the nucleus gracilis (GR) in 30 anesthetized rats. Changes in diaphragm, cricothyroid (CT), and thyroarytenoid (TA) electromyography (EMG), as well as blood pressure (BP), were compared. The injection sites were verified histologically. Injection of SP into the NTS altered CT and/or TA EMG activity in all animals. The change ranged from complete inhibition, to a phasic increase, to a tonic increase. No change in laryngeal adductor EMG activity was seen in 8 of 9 animals after SP injections into the DMN (4/5) or GR (4/4), but 1 animal demonstrated brief inhibition of CT and TA EMG activity after SP injection into the DMN. Injection of SP into the NTS induced central apnea and a significant decrease in BP in all animals. The duration of apnea tended to be longer after NTS injections than after DMN or GR injections (p < .10 and p < .05, respectively). We conclude that stereotactic injections of putative neurotransmitters in rats may be accomplished to identify effects on laryngeal motor activity. Direct application of SP into the NTS consistently elicits a change in CT and/or TA EMG activity, ranging from inhibition to excitation. This model may prove useful in evaluating pharmacological targets of central reflex activity to manage life-threatening laryngeal reflex activity.
Gesture recognition by instantaneous surface EMG images
Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun
2016-01-01
Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347
Analysis of comfort and ergonomics for clinical work environments.
Shafti, Ali; Lazpita, Beatriz Urbistondo; Elhage, Oussama; Wurdemann, Helge A; Althoefer, Kaspar
2016-08-01
Work related musculoskeletal disorders (WMSD) are a serious risk to workers' health in any work environment, and especially in clinical work places. These disorders are typically the result of prolonged exposure to non-ergonomic postures and the resulting discomfort in the workplace. Thus a continuous assessment of comfort and ergonomics is necessary. There are different techniques available to make such assessments, such as self-reports on perceived discomfort and observational scoring models based on the posture's relevant joint angles. These methods are popular in medical and industrial environments alike. However, there are uncertainties with regards to objectivity of these methods and whether they provide a full picture. This paper reports on a study about these methods and how they correlate with the activity of muscles involved in the task at hand. A wearable 4-channel electromyography (EMG) and joint angle estimation device with wireless transmission was made specifically for this study to allow continuous, long-term and real-time measurements and recording of activities. N=10 participants took part in an experiment involving a buzz-wire test at 3 different levels, with their muscle activity (EMG), joint angle scores (Rapid Upper Limb Assessment - RULA), self-reports of perceived discomfort (Borg scale) and performance score on the buzz-wire being recorded and compared. Results show that the Borg scale is not responsive to smaller changes in discomfort whereas RULA and EMG can be used to detect more detailed changes in discomfort, effort and ergonomics.
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
Quantitative facial electromyography monitoring after hypoglossal‐facial jump nerve suture
Flasar, Jan; Volk, Gerd Fabian; Granitzka, Thordis; Geißler, Katharina; Irintchev, Andrey; Lehmann, Thomas
2017-01-01
Objectives/Hypothesis The time course of the reinnervation of the paralyzed face after hypoglossal‐facial jump nerve suture using electromyography (EMG) was assessed. The relation to the clinical outcome was analyzed. Study Design Retrospective single‐center cohort study Methods Reestablishment of motor units was studied by quantitative EMG and motor unit potential (MUP) analysis in 11 patients after hypoglossal‐facial jump nerve suture. Functional recovery was evaluated using the Stennert index (0 = normal; 10 = maximal palsy). Results Clinically, first movements were seen between 6 and >10 months after surgery in individual patients. Maximal improvement was achieved at 18 months. The Stennert index decreased from 7.9 ± 2.0 preoperatively to a final postoperative score of 5.8 ± 2.4. EMG monitoring performed for 2.8 to 60 months after surgery revealed that pathological spontaneous activity disappeared within 2 weeks. MUPs were first recorded after the 2nd month and present in all 11 patients 8–10 months post‐surgery. Polyphasic regeneration potentials first appeared at 4–10 months post‐surgery. The MUP amplitudes increased between the 3rd and 15th months after surgery to values of control muscles. The MUP duration was significantly increased above normal values between the 3rd and 24th months after surgery. Conclusion Reinnervation can be detected at least 2 months earlier by EMG than by clinical evaluation. Changes should be followed for at least 18 months to assess outcome. EMG changes reflected the remodeling of motor units due to axonal regeneration and collateral sprouting by hypoglossal nerve fibers into the reinnervated facial muscle fibers. Level of Evidence 3b. PMID:29094077
Barn, Ruth; Rafferty, Daniel; Turner, Deborah E.; Woodburn, James
2012-01-01
Objective To determine within- and between-day reliability characteristics of electromyographic (EMG) activity patterns of selected lower leg muscles and kinematic variables in patients with rheumatoid arthritis (RA) and pes planovalgus. Methods Five patients with RA underwent gait analysis barefoot and shod on two occasions 1 week apart. Fine-wire (tibialis posterior [TP]) and surface EMG for selected muscles and 3D kinematics using a multi-segmented foot model was undertaken barefoot and shod. Reliability of pre-determined variables including EMG activity patterns and inter-segment kinematics were analysed using coefficients of multiple correlation, intraclass correlation coefficients (ICC) and the standard error of the measurement (SEM). Results Muscle activation patterns within- and between-day ranged from fair-to-good to excellent in both conditions. Discrete temporal and amplitude variables were highly variable across all muscle groups in both conditions but particularly poor for TP and peroneus longus. SEMs ranged from 1% to 9% of stance and 4% to 27% of maximum voluntary contraction; in most cases the 95% confidence interval crossed zero. Excellent within-day reliability was found for the inter-segment kinematics in both conditions. Between-day reliability ranged from fair-to-good to excellent for kinematic variables and all ICCs were excellent; the SEM ranged from 0.60° to 1.99°. Conclusion Multi-segmented foot kinematics can be reliably measured in RA patients with pes planovalgus. Serial measurement of discrete variables for TP and other selected leg muscles via EMG is not supported from the findings in this cohort of RA patients. Caution should be exercised when EMG measurements are considered to study disease progression or intervention effects. PMID:22721819
Csapo, Robert; Malis, Vadim; Sinha, Usha
2015-01-01
The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17–39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions. PMID:26112239
Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.
Kloter, Evelyne; Dietz, Volker
2012-05-01
The aim of this study was to explore the neural basis of adaptation, memory and skill transfer during human stepping over obstacles. Whilst walking on a treadmill, subjects had to perform uni- and bilateral obstacle steps. Acoustic feedback information about foot clearance was provided. Non-noxious electrical stimuli were applied to the right tibial nerve during the mid-stance phase of the right leg, i.e. 'prior' to the right or 'during' the left leg swing over the obstacle. The electromyogram (EMG) responses evoked by these stimuli in arm and leg muscles are known to reflect the neural coordination during normal and obstacle steps. The leading and trailing legs rapidly adapted foot clearance during obstacle steps with small further changes when the same obstacle condition was repeated. This adaptation was associated with a corresponding decrease in arm and leg muscle reflex EMG responses. Arm (but not leg) muscle EMG responses were greater when the stimulus was applied 'during' obstacle crossing by the left leg leading compared with stimulation 'prior' to right leg swing over the obstacle. A corresponding difference existed in arm muscle background EMG. The results indicate that, firstly, the somatosensory information gained by the performance and adaptation of uni- and bilateral obstacle stepping becomes transferred to the trailing leg in a context-specific manner. Secondly, EMG activity in arm and leg muscles parallels biomechanical adaptation of foot clearance. Thirdly, a consistently high EMG activity in the arm muscles during swing over the obstacle is required for equilibrium control. Thus, such a precision locomotor task is achieved by a context-specific, coordinated activation of arm and leg muscles for performance and equilibrium control that includes adaptation, memory and skill transfer. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Donovan, Luke; Hart, Joseph M; Hertel, Jay
2015-03-01
Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were consistent increases in fibularis longus sEMG amplitudes during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, and pre-initial contact and post-initial contact during lateral hops and walking.
Ries, Lilian Gerdi Kittel; Alves, Marcelo Correa; Bérzin, Fausto
2008-01-01
The aim of this study was to analyze the symmetry of the electromyographic (EMG) activity of the temporalis, masseter, and sternocleidomastoid (SCM) muscles in volunteers divided into a control group and a temporomandibular disorder (TMD) group. The surface EMG recordings were made during mandibular rest position, maximal intercuspal position, and during the chewing cycle. Normalized EMG waves of paired muscles were compared by computing a percentage overlapping coefficient (POC). The difference between the groups and between the static and dynamic clenching tests was analyzed through repeated measures, ANOVA. Symmetry of the temporalis, masseter, and SCM muscles activity was smaller in the TMD group compared to the control group. The mandibular postures were also significantly different among themselves. The asymmetric activation of jaw and neck muscles was interpreted as a compensatory strategy to achieve stability for the mandibular and cervical systems during masticatory function.
NASA Technical Reports Server (NTRS)
Jorgensen, Chuck; Wheeler, Kevin
2002-01-01
Scientists are conducting research into electroencephalograms (EEGs) of brainwave activity, and electromyography (EMG) of muscle activity, in order to develop systems which can control an aircraft with only a pilot's thoughts. This article describes some EEG and EMG signals, and how they might be analyzed and interpreted to operate an aircraft. The development of a system to detect and interpret fine muscle movements is also profiled in the article.
The Influence of CO2 on Genioglossus Muscle After-Discharge Following Arousal From Sleep.
Cori, Jennifer M; Rochford, Peter D; O'Donoghue, Fergal J; Trinder, John; Jordan, Amy S
2017-11-01
Ventilatory after-discharge (sustained elevation of ventilation following stimulus removal) occurs during sleep but not when hypocapnia is present. Genioglossus after-discharge also occurs during sleep, but CO2 effects have not been assessed. The relevance is that postarousal after-discharge may protect against upper airway collapse. This study aimed to determine whether arousal elicits genioglossus after-discharge that persists into sleep, and whether it is influenced by CO2. Twenty-four healthy individuals (6 female) slept with a nasal mask and ventilator. Sleep (EEG, EOG, EMG), ventilation (pneumotachograph), end-tidal CO2 (PETCO2), and intramuscular genioglossus EMG were monitored. NREM eucapnia was determined during 5 minutes on continuous positive airway pressure (4 cmH2O). Inspiratory pressure support was increased until PETCO2 was ≥2 mm Hg below NREM eucapnia. Supplemental CO2 was added to reproduce normocapnia, without changing ventilator settings. Arousals were induced by auditory tones and genioglossus EMG compared during steady-state hypocapnia and normocapnia. Eleven participants (4 female) provided data. Prearousal PETCO2 was less (p < .05) during hypocapnia (40.74 ± 2.37) than normocapnia (43.82 ± 2.89), with differences maintained postarousal. After-discharge, defined as an increase in genioglossus activity above prearousal levels, occurred following the return to sleep. For tonic activity, after-discharge lasted four breaths irrespective of CO2 condition. For peak activity, after-discharge lasted one breath during hypocapnia and 6 breaths during normocapnia. However, when peak activity following the return to sleep was compared between CO2 conditions no individual breath differences were observed. Postarousal genioglossal after-discharge may protect against upper airway collapse during sleep. Steady-state CO2 levels minimally influence postarousal genioglossus after-discharge. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Activity of upper limb muscles during human walking.
Kuhtz-Buschbeck, Johann P; Jing, Bo
2012-04-01
The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.
Artificial neural network EMG classifier for functional hand grasp movements prediction.
Gandolla, Marta; Ferrante, Simona; Ferrigno, Giancarlo; Baldassini, Davide; Molteni, Franco; Guanziroli, Eleonora; Cotti Cottini, Michele; Seneci, Carlo; Pedrocchi, Alessandra
2017-12-01
Objective To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution. Methods Multiple degrees-of-freedom hand grasp movements (i.e. pinching, grasp an object, grasping) were predicted by means of surface EMG signals, recorded from 10 bipolar EMG electrodes arranged in a circular configuration around the forearm 2-3 cm from the elbow. Two cascaded artificial neural networks were then exploited to detect the patient's motion intention from the EMG signal window starting from the electrical activity onset to movement onset (i.e. electromechanical delay). Results The proposed approach was tested on eight healthy control subjects (4 females; age range 25-26 years) and it demonstrated a mean ± SD testing performance of 76% ± 14% for correctly predicting healthy users' motion intention. Two post-stroke patients tested the controller and obtained 79% and 100% of correctly classified movements under testing conditions. Conclusion A task-selection controller was developed to estimate the intended movement from the EMG measured during the electromechanical delay.
Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.
1992-01-01
A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.
Kang, Sun-Young; Jeon, Hye-Seon; Kwon, Ohyun; Cynn, Heon-Seock; Choi, Boram
2013-08-01
The direction of fiber alignment within a muscle is known to influence the effectiveness of muscle contraction. However, most of the commonly used clinical gluteus maximus (GM) exercises do not consider the direction of fiber alignment within the muscle. Therefore, the purpose of this study was to investigate the influence of hip abduction position on the EMG (electromyography) amplitude and onset time of the GM and hamstrings (HAM) during prone hip extension with knee flexion (PHEKF) exercise. Surface EMG signals were recorded from the GM and HAM during PHEKF exercise in three hip abduction positions: 0°, 15°, and 30°. Thirty healthy subjects voluntarily participated in this study. The results show that GM EMG amplitude was greatest in the 30° hip abduction position, followed by 15° and then 0° hip abduction during PHEKF exercise. On the other hand, the HAM EMG amplitude at 0° hip abduction was significantly greater than at 15° and 30° hip abduction. Additionally, GM EMG onset firing was delayed relative to that of the HAM at 0° hip abduction. On the contrary, the GM EMG onset occurred earlier than the HAM in the 15° and 30° hip abduction positions. These findings indicate that performing PHEKF exercise in the 30° hip abduction position may be recommended as an effective way to facilitate the GM muscle activity and advance the firing time of the GM muscle in asymptomatic individuals. This finding provides preliminary evidence that GM EMG amplitude and onset time can be modified by the degree of hip abduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Khushaba, Rami N; Al-Timemy, Ali H; Al-Ani, Ahmed; Al-Jumaily, Adel
2017-10-01
The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.
Hirschauer, Thomas J; Buford, John A
2015-04-01
Neurons in the pontomedullary reticular formation (PMRF) give rise to the reticulospinal tract. The motor output of the PMRF was investigated using stimulus-triggered averaging of electromyography (EMG) and force recordings in two monkeys (M. fascicularis). EMG was recorded from 12 pairs of upper limb muscles, and forces were detected using two isometric force-sensitive handles. Of 150 stimulation sites, 105 (70.0%) produced significant force responses, and 139 (92.5%) produced significant EMG responses. Based on the average flexor EMG onset latency of 8.3 ms and average force onset latency of 15.9 ms poststimulation, an electromechanical delay of ∼7.6 ms was calculated. The magnitude of force responses (∼10 mN) was correlated with the average change in EMG activity (P < 0.001). A multivariate linear regression analysis was used to estimate the contribution of each muscle to force generation, with flexors and extensors exhibiting antagonistic effects. A predominant force output pattern of ipsilateral flexion and contralateral extension was observed in response to PMRF stimulation, with 65.3% of significant ipsilateral force responses directed medially and posteriorly (P < 0.001) and 78.6% of contralateral responses directed laterally and anteriorly (P < 0.001). This novel approach permits direct measurement of force outputs evoked by central nervous system microstimulation. Despite the small magnitude of poststimulus EMG effects, low-intensity single-pulse microstimulation of the PMRF evoked detectable forces. The forces, showing the combined effect of all muscle activity in the arms, are consistent with reciprocal pattern of force outputs from the PMRF detectable with stimulus-triggered averaging of EMG. Copyright © 2015 the American Physiological Society.
Rouse, Adam G.
2016-01-01
In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156
Alternative Control Technologies: Human Factors Issues
1998-10-01
that instant. This removes the workload associated and, over a long period, apply painful pressure to the face. with having to remember which words...shown that phonetically-relevant orofacial motions can be estimated from the underlying EMG activity. 4.4. EMG-BASED CONTROL APPLICATION EXAMPLES 30
Age-associated changes in muscle activity during isometric contraction.
Arjunan, Sridhar P; Kumar, Dinesh K
2013-04-01
We investigated the effect of age on the complexity of muscle activity and the variance in the force of isometric contraction. Surface electromyography (sEMG) from biceps brachii muscle and force of contraction were recorded from 96 subjects (20-70 years of age) during isometric contractions. There was a reduction in the complexity of sEMG associated with aging. The relationship of age and complexity was approximated using a bilinear fit, with the average knee point at 45 years. There was an age-associated increase in the coefficient of variation (CoV) of the force of muscle contraction, and this increase was correlated with the decrease in complexity of sEMG (r(2) = 0.76). There was an age-associated increase in CoV and also a reduction in the complexity of sEMG. The correlation between these 2 factors can be explained based on the age-associated increase in motor unit density. Copyright © 2012 Wiley Periodicals, Inc.
Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario
2018-04-01
Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.
Khorievin, V I; Horkovenko, A V; Vereshchaka, I V
2013-01-01
Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.