Science.gov

Sample records for emg temporal parameters

  1. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Bonell, Claudia E.; Cherniz, Analía S.; Tabernig, Carolina B.

    2007-11-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  2. [The nonlinear parameters of interference EMG of two day old human newborns].

    PubMed

    Voroshilov, A S; Meĭgal, A Iu

    2011-01-01

    Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.

  3. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy

    PubMed Central

    Meigal, Alexander Yu.; Miroshnichenko, German G.; Kuzmina, Anna P.; Rissanen, Saara M.; Georgiadis, Stefanos D.; Karjalainen, Pasi A.

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. Conclusion: with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class. PMID:26217236

  4. Evaluation of higher order statistics parameters for multi channel sEMG using different force levels.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K

    2011-01-01

    The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.

  5. EMG/ECG Acquisition System with Online Adjustable Parameters Using ZigBee Wireless Technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroyuki

    This paper deals with a novel wireless bio-signal acquisition system employing ZigBee wireless technology, which consists of mainly two components, that is, intelligent electrode and data acquisition host. The former is the main topic of this paper. It is put on a subject's body to amplify bio-signal such as EMG or ECG and stream its data at upto 2 ksps. One of the most remarkable feature of the intelligent electrode is that it can change its own parameters including both digital and analog ones on-line. The author describes its design first, then introduces a small, light and low cost implementation of the intelligent electrode named as “VAMPIRE-BAT.” And he show some experimental results to confirm its usability and to estimate its practical performances.

  6. An optimized method for tremor detection and temporal tracking through repeated second order moment calculations on the surface EMG signal.

    PubMed

    De Marchis, Cristiano; Schmid, Maurizio; Conforto, Silvia

    2012-11-01

    In this study, the problem of detecting and tracking tremor from the surface myoelectric signal is addressed. A method based on the calculation of a Second Order Moment Function (SOMF) inside a window W sliding over the sEMG signal is here presented. An analytical formulation of the detector allows the extraction of the optimal parameters characterizing the algorithm. Performance of the optimized method is assessed on a set of synthetic tremor sEMG signals in terms of sensitivity, precision and accuracy through the use of a properly defined cost function able to explain the overall detector performance. The obtained results are compared to those emerging from the application of optimized versions of traditional detection techniques. Once tested on a database of synthetic tremor sEMG data, a quantitative assessment of the SOMF algorithm performance is carried out on experimental tremor sEMG signals recorded from two patients affected by Essential Tremor and from two patients affected by Parkinson's Disease. The SOMF algorithm outperforms the traditional techniques both in detecting (sensitivity and positive predictive value >99% for SNR higher than 3dB) and in estimating timings of muscular tremor bursts (bias and standard deviation on the estimation of the onset and offset time instants lower than 8ms). Its independence from the SNR level and its low computational cost make it suitable for real-time implementation and clinical use. PMID:22257701

  7. Time-of-Day Effects on EMG Parameters During the Wingate Test in Boys

    PubMed Central

    Souissi, Hichem; Chtourou, Hamdi; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar; Amri, Mohamed

    2012-01-01

    In boys, muscle power and strength fluctuate with time-of-day with morning nadirs and afternoon maximum values. However, the exact underlying mechanisms of this daily variation are not studied yet. Thus, the purpose of this study was to examine the time-of-day effects on electromyographic (EMG) parameters changes during a Wingate test in boys. Twenty-two boys performed a 30-s Wingate test (measurement of muscle power and fatigue) at 07:00 and 17:00-h on separate days. Surface EMG activity was recorded in the Vastus lateralis, rectus femoris and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root-mean-square (RMS) and mean-power-frequency (MPF) were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Muscle power (8.22 ± 0.92 vs. 8.75 ± 0.99 W·kg-1 for peak power and 6.96 ± 0. 72 vs. 7.31 ± 0.77 W·kg-1 for mean power, p < 0.001) and fatigue (30.27 ± 7.98 vs. 34.5 ± 10. 15 %, p < 0.05) during the Wingate test increased significantly from morning to evening. Likewise, MPF (102.14 ± 18.15 vs. 92.38 ± 12.39 Hz during the first 5-s, p < 0.001) and NME (4.78 ± 1.7 vs. 3.88 ± 0.79 W·mV-1 during the first 5-s, p < 0.001) were higher in the evening than the morning; but no significant time-of-day effect was noticed for RMS. Taken together, these results suggest that peripheral mechanisms are more likely the cause of the child’s diurnal variations of muscle power and fatigue during the Wingate test. Key pointsIn boys, performances during the Wingate test fluctuate with the time-of-day.MPF and NME are higher in the evening during the Wingate cycling test.RMS is unaffected by the time-of-day.The evening improvement in muscle power and fatigue is due to an enhancement of the muscle contractile properties. PMID:24149343

  8. Evaluation of Three Methods for Determining EMG-Muscle Force Parameter Estimates for the Shoulder Muscles

    PubMed Central

    Gatti, Christopher J.; Doro, Lisa Case; Langenderfer, Joseph E.; Mell, Amy G.; Maratt, Joseph D.; Carpenter, James E.; Hughes, Richard E.

    2008-01-01

    Background Accurate prediction of in vivo muscle forces is essential for relevant analyses of musculoskeletal biomechanics. The purpose of this study was to evaluate three methods for predicting muscle forces of the shoulder by comparing calculated muscle parameters, which relate electromyographic activity to muscle forces. Methods Thirteen subjects performed sub-maximal, isometric contractions consisting of six actions about the shoulder and two actions about the elbow. Electromyography from 12 shoulder muscles and internal shoulder moments were used to determine muscle parameters using traditional multiple linear regression, principal-components regression, and a sequential muscle parameter determination process using principal-components regression. Muscle parameters were evaluated based on their sign (positive or negative), standard deviations, and error between the measured and predicted internal shoulder moments. Findings It was found that no method was superior with respect to all evaluation criteria. The sequential principal-components regression method most frequently produced muscle parameters that could be used to estimate muscle forces, multiple regression best predicted the measured internal shoulder moments, and the results of principal-components regression fell between those of sequential principal-components regression and multiple regression. Interpretation The selection of a muscle parameter estimation method should be based on the importance of the evaluation criteria. Sequential principal-components regression should be used if a greater number of physiologically accurate muscle forces are desired, while multiple regression should be used for a more accurate prediction of measured internal shoulder moments. However, all methods produced muscle parameters which can be used to predict in vivo muscle forces of the shoulder. PMID:17945401

  9. Quality parameters for a multimodal EEG/EMG/kinematic brain-computer interface (BCI) aiming to suppress neurological tremor in upper limbs.

    PubMed

    Grimaldi, Giuliana; Manto, Mario; Jdaoudi, Yassin

    2013-01-01

    Tremor is the most common movement disorder encountered during daily neurological practice. Tremor in the upper limbs causes functional disability and social inconvenience, impairing daily life activities. The response of tremor to pharmacotherapy is variable. Therefore, a combination of drugs is often required. Surgery is considered when the response to medications is not sufficient. However, about one third of patients are refractory to current treatments. New bioengineering therapies are emerging as possible alternatives. Our study was carried out in the framework of the European project "Tremor" (ICT-2007-224051). The main purpose of this challenging project was to develop and validate a new treatment for upper limb tremor based on the combination of functional electrical stimulation (FES; which has been shown to reduce upper limb tremor) with a brain-computer interface (BCI). A BCI-driven detection of voluntary movement is used to trigger FES in a closed-loop approach. Neurological tremor is detected using a matrix of EMG electrodes and inertial sensors embedded in a wearable textile. The identification of the intentionality of movement is a critical aspect to optimize this complex system. We propose a multimodal detection of the intentionality of movement by fusing signals from EEG, EMG and kinematic sensors (gyroscopes and accelerometry). Parameters of prediction of movement are extracted in order to provide global prediction plots and trigger FES properly. In particular, quality parameters (QPs) for the EEG signals, corticomuscular coherence and event-related desynchronization/synchronization (ERD/ERS) parameters are combined in an original algorithm which takes into account the refractoriness/responsiveness of tremor. A simulation study of the relationship between the threshold of ERD/ERS of artificial EEG traces and the QPs is also provided. Very interestingly, values of QPs were much greater than those obtained for the corticomuscular module alone.

  10. Quality parameters for a multimodal EEG/EMG/kinematic brain-computer interface (BCI) aiming to suppress neurological tremor in upper limbs.

    PubMed

    Grimaldi, Giuliana; Manto, Mario; Jdaoudi, Yassin

    2013-01-01

    Tremor is the most common movement disorder encountered during daily neurological practice. Tremor in the upper limbs causes functional disability and social inconvenience, impairing daily life activities. The response of tremor to pharmacotherapy is variable. Therefore, a combination of drugs is often required. Surgery is considered when the response to medications is not sufficient. However, about one third of patients are refractory to current treatments. New bioengineering therapies are emerging as possible alternatives. Our study was carried out in the framework of the European project "Tremor" (ICT-2007-224051). The main purpose of this challenging project was to develop and validate a new treatment for upper limb tremor based on the combination of functional electrical stimulation (FES; which has been shown to reduce upper limb tremor) with a brain-computer interface (BCI). A BCI-driven detection of voluntary movement is used to trigger FES in a closed-loop approach. Neurological tremor is detected using a matrix of EMG electrodes and inertial sensors embedded in a wearable textile. The identification of the intentionality of movement is a critical aspect to optimize this complex system. We propose a multimodal detection of the intentionality of movement by fusing signals from EEG, EMG and kinematic sensors (gyroscopes and accelerometry). Parameters of prediction of movement are extracted in order to provide global prediction plots and trigger FES properly. In particular, quality parameters (QPs) for the EEG signals, corticomuscular coherence and event-related desynchronization/synchronization (ERD/ERS) parameters are combined in an original algorithm which takes into account the refractoriness/responsiveness of tremor. A simulation study of the relationship between the threshold of ERD/ERS of artificial EEG traces and the QPs is also provided. Very interestingly, values of QPs were much greater than those obtained for the corticomuscular module alone. PMID

  11. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG

  12. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG

  13. Mapping of spatial and temporal heterogeneity of plantar flexor muscle activity during isometric contraction: correlation of velocity-encoded MRI with EMG

    PubMed Central

    Csapo, Robert; Malis, Vadim; Sinha, Usha

    2015-01-01

    The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17–39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions. PMID:26112239

  14. Mapping of spatial and temporal heterogeneity of plantar flexor muscle activity during isometric contraction: correlation of velocity-encoded MRI with EMG.

    PubMed

    Csapo, Robert; Malis, Vadim; Sinha, Usha; Sinha, Shantanu

    2015-09-01

    The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17-39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions.

  15. Geoelectrical inference of mass transfer parameters using temporal moments

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.

    2008-01-01

    We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT-estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments. Copyright 2008 by the American Geophysical Union.

  16. Modelling spatial-temporal and coordinative parameters in swimming.

    PubMed

    Seifert, L; Chollet, D

    2009-07-01

    This study modelled the changes in spatial-temporal and coordinative parameters through race paces in the four swimming strokes. The arm and leg phases in simultaneous strokes (butterfly and breaststroke) and the inter-arm phases in alternating strokes (crawl and backstroke) were identified by video analysis to calculate the time gaps between propulsive phases. The relationships among velocity, stroke rate, stroke length and coordination were modelled by polynomial regression. Twelve elite male swimmers swam at four race paces. Quadratic regression modelled the changes in spatial-temporal and coordinative parameters with velocity increases for all four strokes. First, the quadratic regression between coordination and velocity showed changes common to all four strokes. Notably, the time gaps between the key points defining the beginning and end of the stroke phases decreased with increases in velocity, which led to decreases in glide times and increases in the continuity between propulsive phases. Conjointly, the quadratic regression among stroke rate, stroke length and velocity was similar to the changes in coordination, suggesting that these parameters may influence coordination. The main practical application for coaches and scientists is that ineffective time gaps can be distinguished from those that simply reflect an individual swimmer's profile by monitoring the glide times within a stroke cycle. In the case of ineffective time gaps, targeted training could improve the swimmer's management of glide time. PMID:18547862

  17. Wideband EMG telemetry system

    NASA Technical Reports Server (NTRS)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  18. EMG (Electromyography) (For Parents)

    MedlinePlus

    ... conditions that might be causing muscle weakness, including muscular dystrophy and nerve disorders. How Is an EMG Done? ... contraction: diseases of the muscle itself (most commonly, muscular dystrophy in children) diseases of the neuromuscular junction , which ...

  19. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  20. The Rancho EMG analyzer: a computerized system for gait analysis.

    PubMed

    Perry, J; Bontrager, E L; Bogey, R A; Gronley, J K; Barnes, L A

    1993-11-01

    This paper describes a computer system which accurately defines the EMG patterns of the lower extremities during gait. Footswitches are used to identify the temporal relationships and determine the phases of the gait cycle. Fine wire electrodes, inserted in the desired muscles of the patient being tested, provide EMG signals for comparison with a normal database. The system is also usable with surface electrodes when an appropriate normal database for surface electrodes is incorporated. Descriptive qualifiers (such as 'premature onset', 'delayed cessation', 'no clinically significant EMG', 'continuous activity' etc.) are used to produce a clinically relevant printed (textual) report. The intensity filtered average (IFA) of the EMG is shown graphically with the representative profile of each stride. The IFAs for all muscles tested can be plotted together (up to six on a page) and the graphic representation of the 'raw' EMG can be produced. The methods of generating the normal database by creating time-adjusted mean profiles (TAMP) are enumerated. The clinical use of the system is discussed. A detailed analysis of 31 of the most recent patient tests for which the system was used provides an indication of its accuracy. For 86% of the 428 muscle tests examined, the EMG analyser was considered to have given the correct result as compared with a visual analysis of the raw EMG record by a trained expert. Recommendations for the use and future improvements of the EMG analyser are made.

  1. Spatial-temporal event detection in climate parameter imagery.

    SciTech Connect

    McKenna, Sean Andrew; Gutierrez, Karen A.

    2011-10-01

    Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to the earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.

  2. Knowledge of electromyography (EMG) in patients undergoing EMG examinations.

    PubMed

    Mondelli, Mauro; Aretini, Alessandro; Greco, Giuseppe

    2014-01-01

    The aim of this study was to evaluate knowledge of electromyography (EMG) in patients undergoing the procedure. In one year, 1,586 consecutive patients (mean age 56 years; 58.8% women) were admitted to two EMG labs to undergo EMG for the first time. The patients found to be "informed" about the how an EMG examination is performed and about the purpose of EMG numbered 448 (28.2%), while those found to be "informed" only about the manner of its execution or only about its purpose numbered 161 (10.2%) and 151 (9.5%), respectively. The remaining 826 (52.1%) patients had either no information, or the information they had was very poor or incorrect (this was particularly true if they had been consulting websites). Being "informed" was associated with level of education (high), type of referring physician (specialist) and with an appropriate referral diagnosis specified in the EMG request. The quality of patient information on EMG was found to be very poor and could be improved. Physicians referring patients for EMG examinations, especially general practitioners, should assume primary responsibility for patient education and counseling in this field.

  3. Chronic Assessment of Diaphragm Muscle EMG Activity across Motor Behaviors

    PubMed Central

    Mantilla, Carlos B.; Seven, Yasin B.; Hurtado-Palomino, Juan N.; Zhan, Wen-Zhi; Sieck, Gary C.

    2011-01-01

    The diaphragm muscle is main inspiratory muscle in mammals. Quantitative analyses documenting the reliability of chronic diaphragm EMG recordings are lacking. Assessment of ventilatory and non-ventilatory motor behaviors may facilitate evaluating diaphragm EMG activity over time. We hypothesized that normalization of diaphragm EMG amplitude across behaviors provides stable and reliable parameters for longitudinal assessments of diaphragm activity. We found that diaphragm EMG activity shows substantial intra-animal variability over 6 weeks, with coefficient of variation (CV) for different behaviors ~29–42%. Normalization of diaphragm EMG activity to near maximal behaviors (e.g., deep breathing) reduced intra-animal variability over time (CV ~22–29%). Plethysmographic measurements of eupneic ventilation were also stable over 6 weeks (CV ~13% for minute ventilation). Thus, stable and reliable measurements of diaphragm EMG activity can be obtained longitudinally using chronically implanted electrodes by examining multiple motor behaviors. By quantitatively determining the reliability of longitudinal diaphragm EMG analyses, we provide an important tool for evaluating the progression of diseases or injuries that impair ventilation. PMID:21414423

  4. Error reduction in EMG signal decomposition.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2014-12-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.

  5. Mandibular kinematics and masticatory muscles EMG in patients with short lasting TMD of mild-moderate severity.

    PubMed

    De Felício, Cláudia Maria; Mapelli, Andrea; Sidequersky, Fernanda Vincia; Tartaglia, Gianluca M; Sforza, Chiarella

    2013-06-01

    Mandibular kinematic and standardized surface electromyography (sEMG) characteristics of masticatory muscles of subjects with short lasting TMD of mild-moderate severity were examined. Volunteers were submitted to clinical examination and questionnaire of severity. Ten subjects with TMD (age 27.3years, SD 7.8) and 10 control subjects without TMD, matched by age, were selected. Mandibular movements were recorded during free maximum mouth opening and closing (O-C) and unilateral, left and right, gum chewing. sEMG of the masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position, and during gum chewing. sEMG indices were obtained. Subjects with TMD, relative to control subjects, had lower relative mandibular rotation at the end of mouth opening, larger mean number of intersection between interincisal O-C paths during mastication and smaller asymmetry between working and balancing side, with participation beyond the expected of the contralateral muscles (P<0.05, t-test). Overall, TMD subjects showed similarities with the control subjects in several kinematic parameters and the EMG indices of the static test, although some changes in the mastication were observed. PMID:23477915

  6. Can't wait to lose weight? Characterizing temporal discounting parameters for weight-loss.

    PubMed

    Lim, Seung-Lark; Bruce, Amanda S

    2015-02-01

    Obesity is often related to steeper temporal discounting, that is, higher decision impulsivity for immediate rewards over delayed rewards. However, previous studies have measured temporal discounting parameters through monetary rewards. The aim of this study was to develop a temporal discounting measure based on weight-loss rewards, which may help to understand decision-making mechanisms more closely related to body weight regulation. After having their heights and weights measured, healthy young adults completed the Monetary Choice Questionnaire (MCQ), and an adapted version of the MCQ, with weight-loss as a reward. Participants also completed self-reports that measure obesity-related cognitive variables. For 42 participants who expressed a desire to lose weight, weight-loss rewards were discounted over time and had a positive correlation with temporal discounting for monetary rewards. Higher temporal discounting for weight loss rewards (i.e., preference for immediate weight loss) showed correlations with beliefs that obesity is under obese persons' control and largely due to lack of willpower, while temporal discounting parameters for monetary rewards did not. Taken together, our weight loss temporal discounting measure demonstrated both convergent and divergent validity, which can be utilized for future obesity research and interventions.

  7. Nonstationary harmonic modeling for ECG removal in surface EMG signals.

    PubMed

    Zivanovic, Miroslav; González-Izal, Miriam

    2012-06-01

    We present a compact approach for mitigating the presence of electrocardiograms (ECG) in surface electromyographic (EMG) signals by means of time-variant harmonic modeling of the cardiac artifact. Heart rate and QRS complex variability, which often account for amplitude and frequency time variations of the ECG, are simultaneously captured by a set of third-order constant-coefficient polynomials modulating a stationary harmonic basis in the analysis window. Such a characterization allows us to significantly suppress ECG from the mixture by preserving most of the EMG signal content at low frequencies (less than 20 Hz). Moreover, the resulting model is linear in parameters and the least-squares solution to the corresponding linear system of equations efficiently provides model parameter estimates. The comparative results suggest that the proposed method outperforms two reference methods in terms of the EMG preservation at low frequencies. PMID:22453600

  8. Temporal parameters of one-trial tolerance to benzodiazepines in four-plate test-retest.

    PubMed

    Petit-Demouliere, Benoit; Bourin, Michel

    2007-11-01

    Anxiolytic-like effect of diazepam is abolished by a previous exposure to four-plate test (FPT). Variations of temporal parameters: interval between trials and duration of Trial 1, with or without electric punishments allow characterizing factors which are responsible for this loss phenomenon. Complete spatial representation of FPT seems to be responsible of this one-trial tolerance, and needs at least a 30s exposure to the apparatus to be completed, with or without punishments.

  9. Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    PubMed

    López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L

    2016-01-01

    The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.

  10. Adaptive filtering for ECG rejection from surface EMG recordings.

    PubMed

    Marque, C; Bisch, C; Dantas, R; Elayoubi, S; Brosse, V; Pérot, C

    2005-06-01

    Surface electromyograms (EMG) of back muscles are often corrupted by electrocardiogram (ECG) signals. This noise in the EMG signals does not allow to appreciate correctly the spectral content of the EMG signals and to follow its evolution during, for example, a fatigue process. Several methods have been proposed to reject the ECG noise from EMG recordings, but seldom taking into account the eventual changes in ECG characteristics during the experiment. In this paper we propose an adaptive filtering algorithm specifically developed for the rejection of the electrocardiogram corrupting surface electromyograms (SEMG). The first step of the study was to choose the ECG electrode position in order to record the ECG with a shape similar to that found in the noised SEMGs. Then, the efficiency of different algorithms were tested on 28 erector spinae SEMG recordings. The best algorithm belongs to the fast recursive least square family (FRLS). More precisely, the best results were obtained with the simplified formulation of a FRLS algorithm. As an application of the adaptive filtering, the paper compares the evolutions of spectral parameters of noised or denoised (after adaptive filtering) surface EMGs recorded on erector spinae muscles during a trunk extension. The fatigue test was analyzed on 16 EMG recordings. After adaptive filtering, mean initial values of energy and of mean power frequency (MPF) were significantly lower and higher respectively. The differences corresponded to the removal of the ECG components. Furthermore, classical fatigue criteria (increase in energy and decrease in MPF values over time during the fatigue test) were better observed on the denoised EMGs. The mean values of the slopes of the energy-time and MPF-time linear relationships differed significantly when established before and after adaptive filtering. These results account for the efficacy of the adaptive filtering method proposed here to denoise electrophysiological signals.

  11. iEMG: Imaging electromyography.

    PubMed

    Urbanek, Holger; van der Smagt, Patrick

    2016-04-01

    Advanced data analysis and visualization methodologies have played an important role in making surface electromyography both a valuable diagnostic methodology of neuromuscular disorders and a robust brain-machine interface, usable as a simple interface for prosthesis control, arm movement analysis, stiffness control, gait analysis, etc. But for diagnostic purposes, as well as for interfaces where the activation of single muscles is of interest, surface EMG suffers from severe crosstalk between deep and superficial muscle activation, making the reliable detection of the source of the signal, as well as reliable quantification of deeper muscle activation, prohibitively difficult. To address these issues we present a novel approach for processing surface electromyographic data. Our approach enables the reconstruction of 3D muscular activity location, making the depth of muscular activity directly visible. This is even possible when deep muscles are overlaid with superficial muscles, such as seen in the human forearm. The method, which we call imaging EMG (iEMG), is based on using the crosstalk between a sufficiently large number of surface electromyographic electrodes to reconstruct the 3D generating electrical potential distribution within a given area. Our results are validated by in vivo measurements of iEMG and ultrasound on the human forearm.

  12. Decomposition of indwelling EMG signals

    PubMed Central

    Nawab, S. Hamid; Wotiz, Robert P.; De Luca, Carlo J.

    2008-01-01

    Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca (25, 26), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains. PMID:18483170

  13. Dynamic interactions between hydrogeological and exposure parameters in daily dose prediction under uncertainty and temporal variability.

    PubMed

    Kumar, Vikas; de Barros, Felipe P J; Schuhmacher, Marta; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2013-12-15

    We study the time dependent interaction between hydrogeological and exposure parameters in daily dose predictions due to exposure of humans to groundwater contamination. Dose predictions are treated stochastically to account for an incomplete hydrogeological and geochemical field characterization, and an incomplete knowledge of the physiological response. We used a nested Monte Carlo framework to account for uncertainty and variability arising from both hydrogeological and exposure variables. Our interest is in the temporal dynamics of the total dose and their effects on parametric uncertainty reduction. We illustrate the approach to a HCH (lindane) pollution problem at the Ebro River, Spain. The temporal distribution of lindane in the river water can have a strong impact in the evaluation of risk. The total dose displays a non-linear effect on different population cohorts, indicating the need to account for population variability. We then expand the concept of Comparative Information Yield Curves developed earlier (see de Barros et al. [29]) to evaluate parametric uncertainty reduction under temporally variable exposure dose. Results show that the importance of parametric uncertainty reduction varies according to the temporal dynamics of the lindane plume. The approach could be used for any chemical to aid decision makers to better allocate resources towards reducing uncertainty.

  14. Perceived Impact of Spasticity Is Associated with Spatial and Temporal Parameters of Gait in Multiple Sclerosis

    PubMed Central

    Balantrapu, Swathi; Sandroff, Brian M.; Sosnoff, Jacob J.; Motl, Robert W.

    2012-01-01

    Background. Spasticity is prevalent and disabling in persons with multiple sclerosis (MS), and the development of the Multiple Sclerosis Spasticity Scale-88 (MSSS-88) provides an opportunity for examining the perceived impact of spasticity and its association with gait in this population. Purpose. This study examined the association between the perceived impact of spasticity and spatio-temporal parameters of gait in persons with MS. Methods. The sample included 44 adults with MS who completed the MSSS-88 and 4 walking trials on a 26-foot GAITRiteTM electronic walkway for measurement of spatio-temporal components of gait including velocity, cadence, base of support, step time, single support, double support, and swing phase. Results. The overall MSSS-88 score was significantly associated with velocity (r = −0.371), cadence (r = −0.306), base of support (r = 0.357), step time (r = 0.305), single leg support (r = −0.388), double leg support (r = 0.379), and swing phase (r = −0.386). Conclusions. The perceived impact of spasticity coincides with alterations of the spatio-temporal parameters of gait in MS. This indicates that subsequent interventions might target a decrease in spasticity or its perceived impact as an approach for improving mobility in MS. PMID:22462022

  15. Temporal adaptability and the inverse relationship to sensitivity: a parameter identification model.

    PubMed

    Langley, Keith

    2005-01-01

    Following a prolonged period of visual adaptation to a temporally modulated sinusoidal luminance pattern, the threshold contrast of a similar visual pattern is elevated. The adaptive elevation in threshold contrast is selective for spatial frequency, may saturate at low adaptor contrast, and increases as a function of the spatio-temporal frequency of the adapting signal. A model for signal extraction that is capable of explaining these threshold contrast effects of adaptation is proposed. Contrast adaptation in the model is explained by the identification of the parameters of an environmental model: the autocorrelation function of the visualized signal. The proposed model predicts that the adaptability of threshold contrast is governed by unpredicted signal variations present in the visual signal, and thus represents an internal adjustment by the visual system that takes into account these unpredicted signal variations given the additional possibility for signal corruption by additive noise.

  16. Integration of smartphones and webcam for the measure of spatio-temporal gait parameters.

    PubMed

    Barone, V; Maranesi, E; Fioretti, S

    2014-01-01

    A very low cost prototype has been made for the spatial and temporal analysis of human movement using an integrated system of last generation smartphones and a highdefinition webcam, controlled by a laptop. The system can be used to analyze mainly planar motions in non-structured environments. In this paper, the accelerometer signal as captured by the 3D sensor embedded in one smartphone, and the position of colored markers derived by the webcam frames, are used for the computation of spatial-temporal parameters of gait. Accuracy of results is compared with that obtainable by a gold-standard instrumentation. The system is characterized by a very low cost and by a very high level of automation. It has been thought to be used by non-expert users in ambulatory settings. PMID:25571351

  17. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results

  18. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  19. Facial EMG responses to noise.

    PubMed

    Kjellberg, A; Sköldström, B; Tesarz, M; Dallner, M

    1994-12-01

    Tension of the forehead increases as a response to unpleasant stimuli. In three experiments EMG activity in corrugator muscle was measured to test this response as an indicator of noise annoyance. In Exp. 1 (n = 24) monotonic sound level-response functions were obtained for four levels of 100- and 1000-Hz tones. In Exp. 2 (n = 20) recordings were made during work with a simple and a difficult task in a group of women and a group of men. Larger responses were obtained during the difficult task, especially during noise exposure. The response was much larger for the women. Exp. 3 (n = 24) showed that the sex difference was unaffected by a correction for differences in maximum level of corrugator response. Rated annoyance was a linear function of log EMG.

  20. Estimation of spatial-temporal gait parameters using a low-cost ultrasonic motion analysis system.

    PubMed

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-01-01

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636

  1. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System

    PubMed Central

    Qi, Yongbin; Soh, Cheong Boon; Gunawan, Erry; Low, Kay-Soon; Thomas, Rijil

    2014-01-01

    In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications. PMID:25140636

  2. Ground reaction forces are more sensitive gait measures than temporal parameters in rodents following rotator cuff injury.

    PubMed

    Pardes, A M; Freedman, B R; Soslowsky, L J

    2016-02-01

    Gait analysis is a quantitative, non-invasive technique that can be used to investigate functional changes in animal models of musculoskeletal disease. Changes in ground reaction forces following injury have been observed that coincide with differences in tissue mechanical and histological properties during healing. However, measurement of these kinetic gait parameters can be laborious compared to the simpler and less time-consuming analysis of temporal gait parameters alone. We compared the sensitivity of temporal and kinetic gait parameters in detecting functional changes following rotator cuff injury in rats. Although these parameters were strongly correlated, temporal measures were unable to detect greater than 50% of the functional gait differences between injured and uninjured animals identified simultaneously by ground reaction forces. Regression analysis was used to predict ground reaction forces from temporal parameters. This model improved the ability of temporal parameters to identify known functional changes, but only when these differences were large in magnitude (i.e., between injured vs. uninjured animals, but not between different post-operative treatments). The results of this study suggest that ground reaction forces are more sensitive measures of limb/joint function than temporal parameters following rotator cuff injury in rats. Therefore, although gait analysis systems without force plates are typically efficient and easy to use, they may be most appropriate for use when major functional changes are expected. PMID:26768230

  3. Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters.

    PubMed

    Breebaart, J; van de Par, S; Kohlrausch, A

    2001-08-01

    This paper and two accompanying papers [Breebaart et al., J. Acoust. Soc. Am. 110, 1074-1088 (2001); 110, 1089-1104 (2001)] describe a computational model for the signal processing of the binaural auditory system. The model consists of several stages of monaural and binaural preprocessing combined with an optimal detector. Simulations of binaural masking experiments were performed as a function of temporal stimulus parameters and compared to psychophysical data adapted from literature. For this purpose, the model was used as an artificial observer in a three-interval, forced-choice procedure. All model parameters were kept constant for all simulations. Model predictions were obtained as a function of the interaural correlation of a masking noise and as a function of both masker and signal duration. Furthermore, maskers with a time-varying interaural correlation were used. Predictions were also obtained for stimuli with time-varying interaural time or intensity differences. Finally, binaural forward-masking conditions were simulated. The results show that the combination of a temporal integrator followed by an optimal detector in the time domain can account for all conditions that were tested, except for those using periodically varying interaural time differences (ITDs) and those measuring interaural correlation just-noticeable differences (jnd's) as a function of bandwidth. PMID:11519578

  4. Temporal variation of tidal parameters in superconducting gravimeter time-series

    NASA Astrophysics Data System (ADS)

    Meurers, Bruno; Van Camp, Michel; Francis, Olivier; Pálinkáš, Vojtech

    2016-04-01

    Analysing independent 1-yr data sets of 10 European superconducting gravimeters (SG) reveals statistically significant temporal variations of M2 tidal parameters. Both common short-term (<2 yr) and long-term (>2 yr) features are identified in all SG time-series but one. The averaged variations of the amplitude factor are about 0.2‰. The path of load vector variations equivalent to the temporal changes of tidal parameters suggests the presence of an 8.85 yr modulation (lunar perigee). The tidal waves having the potential to modulate M2 with this period belong to the 3rd degree constituents. Their amplitude factors turn out to be much closer to body tide model predictions than that of the main 2nd degree M2, which indicates ocean loading for 3rd degree waves to be less prominent than for 2nd degree waves within the M2 group. These two different responses to the loading suggest that the observed modulation is more due to insufficient frequency resolution of limited time-series rather than to time variable loading. Presently, SG gravity time-series are still too short to prove if time variable loading processes are involved too as in case of the annual M2 modulation known to appear for analysis intervals of less than 1 yr. Whatever the variations are caused by, they provide the upper accuracy limit for earth model validation and permit estimating the temporal stability of SG scale factors and assessing the quality of gravity time-series.

  5. Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters.

    PubMed

    Meier, Kimberly; Sum, Brian; Giaschi, Deborah

    2016-10-01

    Global motion sensitivity in typically developing children depends on the spatial (Δx) and temporal (Δt) displacement parameters of the motion stimulus. Specifically, sensitivity for small Δx values matures at a later age, suggesting it may be the most vulnerable to damage by amblyopia. To explore this possibility, we compared motion coherence thresholds of children with amblyopia (7-14years old) to age-matched controls. Three Δx values were used with two Δt values, yielding six conditions covering a range of speeds (0.3-30deg/s). We predicted children with amblyopia would show normal coherence thresholds for the same parameters on which 5-year-olds previously demonstrated mature performance, and elevated coherence thresholds for parameters on which 5-year-olds demonstrated immaturities. Consistent with this, we found that children with amblyopia showed deficits with amblyopic eye viewing compared to controls for small and medium Δx values, regardless of Δt value. The fellow eye showed similar results at the smaller Δt. These results confirm that global motion perception in children with amblyopia is particularly deficient at the finer spatial scales that typically mature later in development. An additional implication is that carefully designed stimuli that are adequately sensitive must be used to assess global motion function in developmental disorders. Stimulus parameters for which performance matures early in life may not reveal global motion perception deficits. PMID:27426263

  6. Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters.

    PubMed

    Meier, Kimberly; Sum, Brian; Giaschi, Deborah

    2016-10-01

    Global motion sensitivity in typically developing children depends on the spatial (Δx) and temporal (Δt) displacement parameters of the motion stimulus. Specifically, sensitivity for small Δx values matures at a later age, suggesting it may be the most vulnerable to damage by amblyopia. To explore this possibility, we compared motion coherence thresholds of children with amblyopia (7-14years old) to age-matched controls. Three Δx values were used with two Δt values, yielding six conditions covering a range of speeds (0.3-30deg/s). We predicted children with amblyopia would show normal coherence thresholds for the same parameters on which 5-year-olds previously demonstrated mature performance, and elevated coherence thresholds for parameters on which 5-year-olds demonstrated immaturities. Consistent with this, we found that children with amblyopia showed deficits with amblyopic eye viewing compared to controls for small and medium Δx values, regardless of Δt value. The fellow eye showed similar results at the smaller Δt. These results confirm that global motion perception in children with amblyopia is particularly deficient at the finer spatial scales that typically mature later in development. An additional implication is that carefully designed stimuli that are adequately sensitive must be used to assess global motion function in developmental disorders. Stimulus parameters for which performance matures early in life may not reveal global motion perception deficits.

  7. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

    PubMed Central

    Kim, Janis; Arora, Pooja; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance.

  8. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

    PubMed Central

    Kim, Janis; Arora, Pooja; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955

  9. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy.

    PubMed

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955

  10. Single fiber EMG Fiber density and its relationship to Macro EMG amplitude in reinnervation.

    PubMed

    Sandberg, Arne

    2014-12-01

    The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude. Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated. FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level. The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation.

  11. Spatial and Temporal Variation of Physico-chemical Parameters in the Merbok Estuary, Kedah, Malaysia.

    PubMed

    Fatema, Kaniz; Wan Maznah, W O; Isa, Mansor Mat

    2014-12-01

    In this study, factor analysis (FA) was applied to extract the hidden factors responsible for water quality variations during both wet and dry seasons. Water samples were collected from six sampling stations (St. 1 Lalang River, St. 2 Semeling River, St. 3 Jagung River, St. 4 Teluk Wang River, St. 5 Gelam River and St. 6 Derhaka River) in the Merbok estuary, Malaysia from January to December 2011; the samples were further analysed in the laboratory. Correlation analysis of the data sets showed strong correlations between the parameters. Nutrients such as nitrate (NO3 (-)), nitrite (NO2 (-)), ammonia (NH3) and phosphate (PO4 (3-)) were determined to be critical indicators of water quality throughout the year. Influential water quality parameters during the wet season were conductivity, salinity, biochemical oxygen demand (BOD), dissolved oxygen (DO) and chlorophyll a (Chla), whereas total suspended solid (TSS) and pH were critical water quality indicators during the dry season. The Kruskal-Wallis H test showed that water quality parameters were significantly different among the sampling months and stations (p<0.05), and Mann-Whitney U tests further revealed that the significantly different parameters were temperature, pH, DO, TSS, NO2 (-) and BOD (p<0.01), whereas salinity, conductivity, NO3 (-), PO4 (3-), NH3 and Chla were not significantly different (p>0.05). Water quality parameters in the estuary varied on both temporal and spatial scales and these results may serve as baseline information for estuary management, specifically for the Merbok estuary. PMID:27073596

  12. Prediction of human gait parameters from temporal measures of foot-ground contact

    NASA Technical Reports Server (NTRS)

    Breit, G. A.; Whalen, R. T.

    1997-01-01

    Investigation of the influence of human physical activity on bone functional adaptation requires long-term histories of gait-related ground reaction force (GRF). Towards a simpler portable GRF measurement, we hypothesized that: 1) the reciprocal of foot-ground contact time (1/tc); or 2) the reciprocal of stride-period-normalized contact time (T/tc) predict peak vertical and horizontal GRF, loading rates, and horizontal speed during gait. GRF data were collected from 24 subjects while they walked and ran at a variety of speeds. Linear regression and ANCOVA determined the dependence of gait parameters on 1/tc and T/tc, and prediction SE. All parameters were significantly correlated to 1/tc and T/tc. The closest pooled relationship existed between peak running vertical GRF and T/tc (r2 = 0.896; SE = 3.6%) and improved with subject-specific regression (r2 = 0.970; SE = 2.2%). We conclude that temporal measures can predict force parameters of gait and may represent an alternative to direct GRF measurements for determining daily histories of habitual lower limb loading quantities necessary to quantify a bone remodeling stimulus.

  13. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    PubMed

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p<0.05) in Dyn-WU and Control compared to Neu-WU. No other significant (p>0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality.

  14. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed Central

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-01-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032

  15. Effects of aging and perturbation intensities on temporal parameters during slipping-like perturbations.

    PubMed

    Tropea, Peppino; Martelli, Dario; Aprigliano, Federica; Micera, Silvestro; Monaco, Vito

    2015-01-01

    The aim of this study was to analyze the modifications of temporal parameters during slipping-like perturbations associated both with aging and perturbation intensities. Twelve participants equally distributed from two age groups (elderly and young) were recorded while, during steady locomotion, managing unexpected slipping-like perturbations, in forward direction, at different intensity and amplitude of foot shift. Two metrics were extrapolated from the analysis of the ground reaction force supplied by ad hoc platform aimed at destabilizing the balance control. The results indicated that the analyzed timing variables, both for elderly and young, are strongly modified by intensity of the perturbation, but only slight altered by the amplitude. Concerning the comparison about the two groups, elderly people seem to have slower reactive response than young subjects. These findings support further investigations in order to gain a better understanding of fall dynamics in elderly people.

  16. Objectivity and validity of EMG method in estimating anaerobic threshold.

    PubMed

    Kang, S-K; Kim, J; Kwon, M; Eom, H

    2014-08-01

    The purposes of this study were to verify and compare the performances of anaerobic threshold (AT) point estimates among different filtering intervals (9, 15, 20, 25, 30 s) and to investigate the interrelationships of AT point estimates obtained by ventilatory threshold (VT) and muscle fatigue thresholds using electromyographic (EMG) activity during incremental exercise on a cycle ergometer. 69 untrained male university students, yet pursuing regular exercise voluntarily participated in this study. The incremental exercise protocol was applied with a consistent stepwise increase in power output of 20 watts per minute until exhaustion. AT point was also estimated in the same manner using V-slope program with gas exchange parameters. In general, the estimated values of AT point-time computed by EMG method were more consistent across 5 filtering intervals and demonstrated higher correlations among themselves when compared with those values obtained by VT method. The results found in the present study suggest that the EMG signals could be used as an alternative or a new option in estimating AT point. Also the proposed computing procedure implemented in Matlab for the analysis of EMG signals appeared to be valid and reliable as it produced nearly identical values and high correlations with VT estimates. PMID:24988194

  17. Effect of temporal acquisition parameters on image quality of strain time constant elastography.

    PubMed

    Nair, Sanjay; Varghese, Joshua; Chaudhry, Anuj; Righetti, Raffaella

    2015-04-01

    Ultrasound methods to image the time constant (TC) of elastographic tissue parameters have been recently developed. Elastographic TC images from creep or stress relaxation tests have been shown to provide information on the viscoelastic and poroelastic behavior of tissues. However, the effect of temporal ultrasonic acquisition parameters and input noise on the image quality of the resultant strain TC elastograms has not been fully investigated yet. Understanding such effects could have important implications for clinical applications of these novel techniques. This work reports a simulation study aimed at investigating the effects of varying windows of observation, acquisition frame rate, and strain signal-to-noise ratio (SNR) on the image quality of elastographic TC estimates. A pilot experimental study was used to corroborate the simulation results in specific testing conditions. The results of this work suggest that the total acquisition time necessary for accurate strain TC estimates has a linear dependence to the underlying strain TC (as estimated from the theoretical strain-vs.-time curve). The results also indicate that it might be possible to make accurate estimates of the elastographic TC (within 10% error) using windows of observation as small as 20% of the underlying TC, provided sufficiently fast acquisition rates (>100 Hz for typical acquisition depths). The limited experimental data reported in this study statistically confirm the simulation trends, proving that the proposed model can be used as upper bound guidance for the correct execution of the experiments.

  18. Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters

    NASA Technical Reports Server (NTRS)

    Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.

  19. Spatial and temporal variations of reddening parameters toward HII regions in the Milky Way galaxy

    NASA Astrophysics Data System (ADS)

    Vargas Alvarez, Carlos A.

    The purpose of this thesis is to determine if the value of the total-to-selective extinction ratio, RV, has spatial and temporal variations as dust is modified by UV photons. Historically this value has been assumed to be 3.1 after averaging the values along different sightlines in the Milky Way Galaxy. This work will also demonstrate, that for areas of recent star formation with heavy extinction a proper study can not be done when assuming the nominal value, but a local value of RV must first be determined. For this purpose I will analyze the reddening parameters RV and A V toward the massive cluster Westerlund 2 and several mid-IR bubbles located in the G38.91-0.42 complex. Three reddening laws that made different assumptions about RV are applied to the spectral energy distribution (SED) of the observed stars. These SEDs are compared to the available optical and IR photometry searching for the RV and AV that minimizes the chi 2 of the fit.

  20. Behavior of temporal parameters of the ground reactive forces for the walking of postmenopausal women.

    PubMed

    DE Sousa, Adriana Leite; Calçadas Dias Gabriel, Ronaldo Eugênio; Faria, Aurélio Marques; Aragão, Florbela R; Rodrigues Moreira, Maria Helena

    2015-01-01

    The study aimed to examine the influence of body composition and menopause characteristics on certain temporal parameters of the behavior of vertical and anteroposterior components of ground reactive forces, as well as the vertical and anteroposterior rates on the walking of postmenopausal women. The sample consisted of 67 postmenopausal women, average age 59 years. Body composition was assessed by octapolar bioimpedance and ground reactive force by the Kistler force platform. Vertical loading rate correlated positively with age (r = 0.02) and negatively with weight (r = -0.33). The relationship between the rates of vertical loading and unloading associated positively with menopause time (r = 0.27) but negatively with weight (r = -0.27). Vertical unloading rate showed a negative association with abdominal visceral adiposity (r = -0.27). The relationship between the times of the intermediate and final phases of the support correlated significantly with abdominal visceral adiposity (r = 0.25) and fat mass (r = 0.24). The study suggests that fat mass and abdominal visceral adiposity affect the support time, and increased abdominal visceral adiposity implies a slower pre-suspension phase during the walking of postmenopausal women. Hormone replacement therapy was shown to be an enhancer of steeper vertical loading and anteroposterior unloading and longer time in the double support phase, indicating a greater stability of postmenopausal women when walking. PMID:26686563

  1. Large-scale solar wind streams: Average temporal evolution of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda

    2016-07-01

    In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR

  2. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    PubMed

    Loaiza, Vanessa M; Camos, Valérie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoretically meaningful methodological aspect of the LoP span task. Specifically, we fixed the presentation duration of the processing component a priori because such fixed complex span tasks have shown differences when compared to unfixed tasks in terms of recall from WM as well as the latent structure of WM. After establishing a fixed presentation rate from a pilot study, the LoP span task presented memoranda in red or blue font that were immediately followed by two processing words that matched the memoranda in terms of font color or semantic relatedness. On presentation of the processing words, participants made deep or shallow processing decisions for each of the memoranda before a cue to recall them from WM. Participants also completed delayed recall of the memoranda. Results indicated that LoP affected delayed recall, but not immediate recall from WM. These results suggest that fixing temporal parameters of the LoP span task does not moderate the null LoP effect in WM, and further indicate that WM and long-term episodic memory are dissociable on the basis of LoP effects. PMID:27152126

  3. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales.

  4. Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly?

    PubMed

    Mortaza, N; Abu Osman, N A; Mehdikhani, N

    2014-12-01

    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not

  5. Effect of Temporal and Spatial Rainfall Resolution on HSPF Predictive Performance and Parameter Estimation

    EPA Science Inventory

    Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...

  6. Measuring leg movements during sleep using accelerometry: comparison with EMG and piezo-electric scored events.

    PubMed

    Terrill, Philip I; Leong, Matthew; Barton, Katrina; Freakley, Craig; Downey, Carl; Vanniekerk, Mark; Jorgensen, Greg; Douglas, James

    2013-01-01

    Periodic Limb Movements during Sleep (PLMS) can cause significant disturbance to sleep, resulting in daytime sleepiness and reduced quality of life. In conventional clinical practice, PLMS are measured using overnight electromyogram (EMG) of the tibialis anterior muscle, although historically they have also been measured using piezo-electric gauges placed over the muscle. However, PLMS counts (PLM index) do not correlate well with clinical symptomology. In this study, we propose that because EMG and piezo derived signals measure muscle activation rather than actual movement, they may count events with no appreciable movement of the limb and therefore no contribution to sleep disturbance. The aim of this study is thus to determine the percentage of clinically scored limb movements which are not associated with movement of the great toe measured using accelerometry. 9 participants were studied simultaneously with an overnight diagnostic polysomnogram (including EMG and piezo instrumentation of the right leg) and high temporal resolution accelerometry of the right great toe. Limb movements were scored, and peak acceleration during each scored movement was quantified. Across the participant population, 54.9% (range: 26.7-76.3) and 39.0% (range: 4.8-69.6) of limb movements scored using piezo and EMG instrumentation respectively, were not associated with toe movement measured with accelerometry. If sleep disturbance is the consequence of the limb movements, these results may explain why conventional piezo or EMG derived PLMI is poorly correlated with clinical symptomology.

  7. Comparison between spectro-temporal analysis methods on the Earth rotation parameters and their atmospheric excitation functions

    NASA Astrophysics Data System (ADS)

    Kosek, Wieslaw; Popinski, Waldemar

    In this paper the three spectro-temporal analyses: the Fourier Transform Band Pass Filter (FTBPF), the Wavelet Transform (WT) and Harmonie Wavelet Transform (HWT) are compared on short period Earth Rotation Parameters (ERP) and the Atmospheric Angular Momentum (AAM) data. The computed time variable and time-frequency spectra of length of day (LOD) data reveal various effects of changing the time and frequency resolution in the FTBPF and frequency resolution in the HWT spectra.

  8. Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: a preliminary report.

    PubMed

    Patterson, Shawnna L; Rodgers, Mary M; Macko, Richard F; Forrester, Larry W

    2008-01-01

    The effects of task-repetitive locomotor training on stroke patients' spatial and temporal gait parameters during unassisted walking are not well understood. This study determined the effects of treadmill aerobic exercise (T-EX) on spatial and temporal gait parameters that underlie changes in overground walking function. Thirty-nine subjects with hemiparetic stroke underwent T-EX three times weekly for 6 months. We measured the subjects pre- and posttraining on 30-foot timed walks and 6-minute distance walks with usual assistive devices and on an 8 m instrumented walkway without assistive devices. T-EX improved 30-foot walks by 17% and 6-minute walks by 23%. Unassisted walking velocity increased 22%, stride length increased 13%, and cadence increased 7%. Paretic and nonparetic step lengths increased significantly, and respective step times decreased significantly. Interlimb symmetry did not change. This study presents preliminary evidence that changes in spatial and temporal gait parameters contribute to the increased velocity of subjects with stroke after T-EX.

  9. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.

    PubMed

    Zhang, Qin; Hayashibe, Mitsuhiro; Papaiordanidou, Maria; Fraisse, Philippe; Fattal, Charles; Guiraud, David

    2010-01-01

    Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model. PMID:21097036

  10. Quadratus femoris: An EMG investigation during walking and running.

    PubMed

    Semciw, Adam I; Freeman, Michael; Kunstler, Breanne E; Mendis, M Dilani; Pizzari, Tania

    2015-09-18

    Dysfunction of hip stabilizing muscles such as quadratus femoris (QF) is identified as a potential source of lower extremity injury during functional tasks like running. Despite these assumptions, there are currently no electromyography (EMG) data that establish the burst activity profile of QF during any functional task like walking or running. The objectives of this study were to characterize and compare the EMG activity profile of QF while walking and running (primary aim) and describe the direction specific action of QF (secondary aim). A bipolar fine-wire intramuscular electrode was inserted via ultrasound guidance into the QF of 10 healthy participants (4 females). Ensemble curves were generated from four walking and running trials, and normalized to maximum voluntary isometric contractions (MVICs). Paired t-tests compared the temporal and amplitude EMG variables. The relative activity of QF in the MVICs was calculated. The QF displayed moderate to high amplitude activity in the stance phase of walking and very high activity during stance in running. During swing, there was minimal QF activity recorded during walking and high amplitudes were present while running (run vs walk effect size=4.23, P<0.001). For the MVICs, external rotation and clam produced the greatest QF activity, with the hip in the anatomical position. This study provides an understanding of the activity demands placed on QF while walking and running. The high activity in late swing during running may signify a synergistic role with other posterior thigh muscles to control deceleration of the limb in preparation for stance.

  11. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  12. Temporal characterisation of river waters in urban and semi-urban areas using physico-chemical parameters and chemometric methods.

    PubMed

    Felipe-Sotelo, M; Andrade, J M; Carlosena, A; Tauler, R

    2007-01-30

    Three sampling campaigns were carried out in rivers located at two hydrographic basins affected by urban and semi-urban areas around the Metropolitan area of A Coruña (ca. 500,000 inhabitants, NW-Spain) to study local and temporal variations of 21 physicochemical parameters (pH, conductivity, Cl-, SO4(2-), SiO2, Ca2+, Mg2+, Na+, K+, hardness, NO3(-), NO2(-), NH4(+), COD, PO4(3-), Zn2+, Cu2+, Mn2+, Pb2+, alkalinity and acidity) in 23 sampling points. The temporal evolution of the water quality was assessed by matrix augmentation principal components analysis (MA-PCA) and parallel factor analysis (PARAFAC). Moreover, classical principal components analysis (PCA) (one per sampling campaign) was applied with exploratory and comparison purposes. The first factor of the different studies comprised variables associated to the mineral content and it differentiated the samples according to their hydrographic basins. The second factor was mainly associated to organic matter, from domestic wastes and decomposition of natural debris. The temporal evolution of the water quality was mostly related to seasonal increments of the physicochemical parameters defining the decomposition of the organic matter. The three models applied (PCA, MA-PCA and PARAFAC) led to similar conclusions, nonetheless, MA-PCA excelled, since the refolding of scores provided more straightforward and convenient overview of sample time and geographical variations than individual PCA and it is more flexible and adaptable to environmental studies than PARAFAC. PMID:17386537

  13. An EMG study on TMJ disorders.

    PubMed

    Valentino, B; Aldi, B; Melito, F; Valentino, T

    2002-01-01

    The Authors have described a clinical case involving a patient with a classical TMJ syndrome and a full range of typical symptoms, both dental and non-dental. The patient underwent a set of EMG tests before his occlusal plane was restored using a special material, immediately following reconstruction and, lastly, three months following the application of a prosthesis. The findings of these EMG tests have shown that the complex symptoms reported by the patient could be traced back to his occlusal plane. Once it was reconstructed, all the typical dental and non-dental symptoms of TMJ disorders subsided.

  14. Sub-Daily Runoff Simulations with Parameters Inferred at the Daily Time Scale: Impacts of the temporal distribution of rainfall in parameter inference.

    NASA Astrophysics Data System (ADS)

    Reynolds Puga, Jose Eduardo; Halldin, Sven; Xu, Chong-Yu; Seibert, Jan

    2016-04-01

    Flood forecasting at sub-daily time scales are commonly required in regions where sub-daily observational data are not available. This has led to approaches to estimate model parameters at sub-daily time scales from data with a lower time resolution. Reynolds et al. (2015) show that parameters inferred at one time scale (e.g., daily) may be used directly for runoff simulations at other time scales (e.g., 1 h) when the modelling time step is the same and sufficiently small during calibration and simulation periods. Their approach produced parameter distributions at daily and sub-daily time scales that were similar and relatively constant across the time scales. The transfer of parameter values across time scales resulted in small model-performance decrease as opposed to when the parameter sets inferred at their respective time scale were used. This decrease in performance may be attributed to the degree of information lost, in terms of the physical processes occurring at short time scales, when the rainfall-runoff data used during the parameter-inference phase become coarser. It is not yet fully understood how the aggregation (or disaggregation) of the rainfall-runoff data affects parameter inference. In this study we analyse the impacts of the temporal distribution of rainfall for inferring model parameters at a coarse time scale and their effects in model performance when they are used at finer time scales, where data may not be available for calibration. The motivation is to improve runoff predictions and model performance at sub-daily time scales when parameters inferred at the daily scale are used for simulating at these scales. First, we calibrated the HBV-light conceptual hydrological model at the daily scale, but modelled discharge internally in 1-h time steps using 3 disaggregation procedures of the rainfall data. This was done in an attempt to maximise the information content of the input data used for calibration at the daily scale. One disaggregation

  15. A Meta-Parameter Learning Method in Reinforcement Learning Based on Temporal Difference Error

    NASA Astrophysics Data System (ADS)

    Mizoue, Hiroyuki; Kobayashi, Kunikazu; Kuremoto, Takashi; Obayashi, Masanao

    In general, meta-parameters in a reinforcement learning system such as learning rate are empirically determined and fixed during the learning. Therefore, when an external environment has changed, the sytem cannot adjust to the change. Meanwhile, it is suggested that the biological brain could conduct reinforcement learning and adjust to the external environment by controlling neuromodulators corresponding to meta-parameters. In the present paper, based on the above suggestion, a method to adjust meta-parameters using the TD-error is proposed. Through computer simulations using maze problem and inverted pendulum control problem, it is verified that meta-parameters are appropriately adjusted according to the amplitude of the TD-error.

  16. Spatio-temporal parameters and lower-limb kinematics of turning gait in typically developing children.

    PubMed

    Dixon, Philippe C; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2013-09-01

    Turning is a requirement for most locomotor tasks; however, knowledge of the biomechanical requirements of successful turning is limited. Therefore, the aims of this study were to investigate the spatio-temporal and lower-limb kinematics of 90° turning. Seventeen typically developing children, fitted with full body and multi-segment foot marker sets, having performed both step (outside leg) and spin (inside leg) turning strategies at self-selected velocity, were included in the study. Three turning phases were identified: approach, turn, and depart. Stride velocity and stride length were reduced for both turning strategies for all turning phases (p<0.03 and p<0.01, respectively), while stance time and stride width were increased during only select phases (p<0.05 and p<0.01, respectively) for both turn conditions compared to straight gait. Many spatio-temporal differences between turn conditions and phases were also found (p<0.03). Lower-limb kinematics revealed numerous significant differences mainly in the coronal and transverse planes for the hip, knee, ankle, midfoot, and hallux between conditions (p<0.05). The findings summarized in this study help explain how typically developing children successfully execute turns and provide greater insight into the biomechanics of turning. This knowledge may be applied to a clinical setting to help improve the management of gait disorders in pathological populations, such as children with cerebral palsy.

  17. Variability in the temporal parameters in the song of the Bengalese finch (Lonchura striata var. domestica).

    PubMed

    Tachibana, Ryosuke O; Koumura, Takuya; Okanoya, Kazuo

    2015-12-01

    Birdsong provides a unique model for studying the control mechanisms of complex sequential behaviors. The present study aimed to demonstrate that multiple factors affect temporal control in the song production. We analyzed the song of Bengalese finches in various time ranges to address factors that affected the duration of acoustic elements (notes) and silent intervals (gaps). The gaps showed more jitter across song renditions than did notes. Gaps had longer duration in branching points of song sequence than in stereotypic transitions, and the duration of a gap was correlated with the duration of the note that preceded the gap. When looking at the variation among song renditions, we found notable factors in three time ranges: within-day drift, within-bout changes, and local jitter. Note durations shortened over time from morning to evening. Within each song bout note durations lengthened as singing progressed, while gap durations lengthened only during the late part of song bout. Further analysis after removing these drift factors confirmed that the jitter remained in local song sequences. These results suggest distinct sources of temporal variability exist at multiple levels on the basis of this note-gap relationship, and that song comprised a mixture of these sources. PMID:26512015

  18. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  19. The Response of Hyperkinesis to EMG Biofeedback.

    ERIC Educational Resources Information Center

    Haight, Maryellen J.; And Others

    A study was conducted involving eight hyperkinetic males (11-15 years old) to determine if Ss receiving electromyography (EMG) biofeedback training would show a reduction in frontalis muscle tension, hyperactivity, and lability, and increases in self-esteem and visual and auditory attention span. Individual 45- and 30-minute relaxation exercises…

  20. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  1. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    PubMed

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications. PMID:25570426

  2. Surface EMG measurements during fMRI at 3T: accurate EMG recordings after artifact correction.

    PubMed

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, Hans; Maurits, Natasha

    2005-08-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s non-scanning), we were able to compare the mean amplitude of the undisturbed EMG (non-scanning) intervals with the mean amplitude of the EMG intervals during scanning, after MRI artifact correction. The agreement between the mean amplitudes of the corrected and the undisturbed EMG was excellent and the mean difference between the two amplitudes was not significantly different. Furthermore, there was no significant difference between the corrected and undisturbed amplitude at different force levels. In conclusion, we have shown that it is feasible to record surface EMG during scanning and that, after MRI artifact correction, the EMG recordings can be used to quantify isometric muscle activity, even at very low activation intensities.

  3. An inferential investigation into how stride length influences temporal parameters within the baseball pitching delivery.

    PubMed

    Crotin, Ryan L; Bhan, Shivam; Ramsey, Dan K

    2015-06-01

    Motion analyses of lower body mechanics offer new schemas to address injury prevention strategies among baseball pitchers, where the influence of stride length remains unknown. This study examined the temporal effect of stride length at constituent pitching events and phases. Nineteen competitive pitchers (15 collegiate, 4 high school) were randomly assigned to pitch two simulated, 80-pitch games at ±25% of their desired stride length. An integrated, three-dimensional motion capture system recorded each pitch. Paired t-tests were used to determine whether differences between stride conditions at respective events and within phases were significantly different. The results demonstrate the shorter strides mediated earlier onset of stride foot contact, reduced time in single support whereas double support intervals increased (p<.001). The opposite was observed with the longer strides. However, the acceleration phase, which comprises the highest throwing arm kinematics and kinetics, remained unchanged. The interaction between stride length, stride foot contact onsets, and time in single support is inferentially evidenced. The equivalent acceleration phases suggest stride length alone influenced time in single and double support by altering the onset of stride foot contact, which perhaps affects the mechanics in preparing the throwing arm for maximal external shoulder rotation.

  4. EPIPOI: A user-friendly analytical tool for the extraction and visualization of temporal parameters from epidemiological time series

    PubMed Central

    2012-01-01

    Background There is an increasing need for processing and understanding relevant information generated by the systematic collection of public health data over time. However, the analysis of those time series usually requires advanced modeling techniques, which are not necessarily mastered by staff, technicians and researchers working on public health and epidemiology. Here a user-friendly tool, EPIPOI, is presented that facilitates the exploration and extraction of parameters describing trends, seasonality and anomalies that characterize epidemiological processes. It also enables the inspection of those parameters across geographic regions. Although the visual exploration and extraction of relevant parameters from time series data is crucial in epidemiological research, until now it had been largely restricted to specialists. Methods EPIPOI is freely available software developed in Matlab (The Mathworks Inc) that runs both on PC and Mac computers. Its friendly interface guides users intuitively through useful comparative analyses including the comparison of spatial patterns in temporal parameters. Results EPIPOI is able to handle complex analyses in an accessible way. A prototype has already been used to assist researchers in a variety of contexts from didactic use in public health workshops to the main analytical tool in published research. Conclusions EPIPOI can assist public health officials and students to explore time series data using a broad range of sophisticated analytical and visualization tools. It also provides an analytical environment where even advanced users can benefit by enabling a higher degree of control over model assumptions, such as those associated with detecting disease outbreaks and pandemics. PMID:23153033

  5. Variation in EMG activity: a hierarchical approach

    PubMed Central

    German, Rebecca Z.; Crompton, A. W.; Thexton, A. J.

    2008-01-01

    Recordings of naturally occurring Electromyographic (EMG) signals are variable. One of the first formal and successful attempts to quantify variation in EMG signals was Shaffer and Lauder's (1985) study examining several levels of variation but not within muscle. The goal of the current study was to quantify the variation that exists at different levels, using more detailed measures of EMG activity than did Shaffer and Lauder (1985). The importance of accounting for different levels of variation in an EMG study is both biological and statistical. Signal variation within the same muscle for a stereotyped action suggests that each recording represents a sample drawn from a pool of a large number of motor units that, while biologically functioning in an integrated fashion, showed statistical variation. Different levels of variation for different muscles could be related to different functions or different tasks of those muscles. The statistical impact of unaccounted or inappropriately analyzed variation can lead to false rejection (type I error) or false acceptance (type II error) of the null hypothesis. Type II errors occur because such variation will accrue to the error, reducing power, and producing an artificially low F-value. Type I errors are associated with pseudoreplication, in which the replicated units are not truly independent, thereby leading to inflated degrees of freedom, and an underestimate of the error mean square. To address these problems, we used a repeated measures, nested multifactor model to measure the relative contribution of different hierarchical levels of variation to the total variation in EMG signals during swallowing. We found that variation at all levels, among electrodes in the same muscle, in sequences of the same animal, and among individuals and between differently named muscles, was significant. These findings suggest that a single intramuscular electrode, recording from a limited sample of the motor units, cannot be relied upon to

  6. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  7. Sequence-based Parameter Estimation for an Epidemiological Temporal Aftershock Forecasting Model using Markov Chain Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Jalayer, Fatemeh; Ebrahimian, Hossein

    2014-05-01

    Introduction The first few days elapsed after the occurrence of a strong earthquake and in the presence of an ongoing aftershock sequence are quite critical for emergency decision-making purposes. Epidemic Type Aftershock Sequence (ETAS) models are used frequently for forecasting the spatio-temporal evolution of seismicity in the short-term (Ogata, 1988). The ETAS models are epidemic stochastic point process models in which every earthquake is a potential triggering event for subsequent earthquakes. The ETAS model parameters are usually calibrated a priori and based on a set of events that do not belong to the on-going seismic sequence (Marzocchi and Lombardi 2009). However, adaptive model parameter estimation, based on the events in the on-going sequence, may have several advantages such as, tuning the model to the specific sequence characteristics, and capturing possible variations in time of the model parameters. Simulation-based methods can be employed in order to provide a robust estimate for the spatio-temporal seismicity forecasts in a prescribed forecasting time interval (i.e., a day) within a post-main shock environment. This robust estimate takes into account the uncertainty in the model parameters expressed as the posterior joint probability distribution for the model parameters conditioned on the events that have already occurred (i.e., before the beginning of the forecasting interval) in the on-going seismic sequence. The Markov Chain Monte Carlo simulation scheme is used herein in order to sample directly from the posterior probability distribution for ETAS model parameters. Moreover, the sequence of events that is going to occur during the forecasting interval (and hence affecting the seismicity in an epidemic type model like ETAS) is also generated through a stochastic procedure. The procedure leads to two spatio-temporal outcomes: (1) the probability distribution for the forecasted number of events, and (2) the uncertainty in estimating the

  8. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  9. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    NASA Astrophysics Data System (ADS)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2009-12-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  10. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  11. Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.

    1992-01-01

    A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.

  12. Fatigue compensation during FES using surface EMG.

    PubMed

    Winslow, Jeffrey; Jacobs, Patrick L; Tepavac, Dejan

    2003-12-01

    Muscle fatigue limits the effectiveness of FES when applied to regain functional movements in spinal cord injured (SCI) individuals. The stimulation intensity must be manually increased to provide more force output to compensate for the decreasing muscle force due to fatigue. An artificial neural network (ANN) system was designed to compensate for muscle fatigue during functional electrical stimulation (FES) by maintaining a constant joint angle. Surface electromyography signals (EMG) from electrically stimulated muscles were used to determine when to increase the stimulation intensity when the muscle's output started to drop. In two separate experiments on able-bodied subjects seated in hard back chairs, electrical stimulation was continuously applied to fatigue either the biceps (during elbow flexion) or the quadriceps muscle (during leg extension) while recording the surface EMG. An ANN system was created using processed surface EMG as the input, and a discrete fatigue compensation control signal, indicating when to increase the stimulation current, as the output. In order to provide training examples and test the systems' performance, the stimulation current amplitude was manually increased to maintain constant joint angles. Manual stimulation amplitude increases were required upon observing a significant decrease in the joint angle. The goal of the ANN system was to generate fatigue compensation control signals in an attempt to maintain a constant joint angle. On average, the systems could correctly predict 78.5% of the instances at which a stimulation increase was required to maintain the joint angle. The performance of these ANN systems demonstrates the feasibility of using surface EMG feedback in an FES control system.

  13. The effects of altering attentional demands of gait control on the variability of temporal and kinematic parameters.

    PubMed

    Tanimoto, Kenji; Anan, Masaya; Sawada, Tomonori; Takahashi, Makoto; Shinkoda, Koichi

    2016-06-01

    The purpose of this study was to investigate the effects of cognitive and visuomotor tasks on gait control in terms of the magnitude and temporal structure of the variability in stride time and lower-limb kinematics measured using inertial sensors. Fourteen healthy young subjects walked on a treadmill for 15min at a self-selected gait speed in the three conditions: normal walking without a concurrent task; walking while performing a cognitive task; and walking while performing a visuomotor task. The time series data of stride time and peak shank angular velocity were generated from acceleration and angular velocity data recorded from both shanks. The mean, coefficient of variation, and fractal scaling exponent α of the time series of these variables and the standard deviation of shank angular velocity over the entire stride cycle were calculated. The cognitive task had an effect on long-range correlations in stride time but not on lower-limb kinematics. The temporal structure of variability in stride time became more random in the cognitive task. The visuomotor task had an effect on lower-limb kinematics. Subjects controlled their swing limb with greater variability and had a more complex adaptive lower-limb movement pattern in the visuomotor task. The effects of the dual tasks on gait control were different for stride time and lower-limb kinematics. These findings suggest that the temporal structure of variability and lower-limb kinematics are useful parameters to detect a change in gait pattern and provide further insight into gait control. PMID:27264404

  14. Alternative methods of normalising EMG during running.

    PubMed

    Albertus-Kajee, Yumna; Tucker, Ross; Derman, Wayne; Lamberts, Robert P; Lambert, Michael I

    2011-08-01

    We evaluated possible methods of normalising EMG measured during running. MVC, Sprint and 70% Peak Running Speed methods were evaluated and their repeatability, reliability and sensitivity to incremental running speed were compared. Twelve runners performed the same experimental protocol on three separate occasions. Each day, subjects firstly performed MVCs, followed by a 20 m maximal sprint (with a 20-30 m run-up). Following this, they performed the peak running speed (PRS) test until exhaustion. After which they ran at 70% of PRS for 5 laps. Results indicated that normalising EMG data to MVC and Sprint methods are more repeatable for VM, BF, MG and RF, VL, LG, respectively, with the average ICC>0.80. The 70% PRS demonstrated poor to fair levels of repeatability ranging between ICC 0.27 and 0.70. Whereas the 70% PRS method had the least intra-subject variability and the greatest sensitivity to increasing running speeds. More specifically, demonstrating significant changes in muscle activity in VM with increasing running speed while MVC and Sprint methods were unable to detect these changes. The dynamic methods were the most appropriate for EMG normalisation showing repeatability, better intra-subject reliability and better sensitivity during running over different days and for once-off measurements. PMID:21531148

  15. Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA.

    PubMed

    McKay, J Lucas; Welch, Torrence D J; Vidakovic, Brani; Ting, Lena H

    2013-01-01

    We developed wavelet-based functional ANOVA (wfANOVA) as a novel approach for comparing neurophysiological signals that are functions of time. Temporal resolution is often sacrificed by analyzing such data in large time bins, increasing statistical power by reducing the number of comparisons. We performed ANOVA in the wavelet domain because differences between curves tend to be represented by a few temporally localized wavelets, which we transformed back to the time domain for visualization. We compared wfANOVA and ANOVA performed in the time domain (tANOVA) on both experimental electromyographic (EMG) signals from responses to perturbation during standing balance across changes in peak perturbation acceleration (3 levels) and velocity (4 levels) and on simulated data with known contrasts. In experimental EMG data, wfANOVA revealed the continuous shape and magnitude of significant differences over time without a priori selection of time bins. However, tANOVA revealed only the largest differences at discontinuous time points, resulting in features with later onsets and shorter durations than those identified using wfANOVA (P < 0.02). Furthermore, wfANOVA required significantly fewer (~1/4;×; P < 0.015) significant F tests than tANOVA, resulting in post hoc tests with increased power. In simulated EMG data, wfANOVA identified known contrast curves with a high level of precision (r(2) = 0.94 ± 0.08) and performed better than tANOVA across noise levels (P < <0.01). Therefore, wfANOVA may be useful for revealing differences in the shape and magnitude of neurophysiological signals (e.g., EMG, firing rates) across multiple conditions with both high temporal resolution and high statistical power. PMID:23100136

  16. Dynamic tension EMG to characterize the effects of DBS treatment of advanced Parkinson's disease.

    PubMed

    Ruonala, V; Pekkonen, E; Rissanen, S; Airaksinen, O; Miroshnichenko, G; Kankaanpää, M; Karjalainen, P

    2014-01-01

    Deep brain stimulation (DBS) is an effective treatment method for motor symptoms of advanced Parkinson's disease. DBS-electrode is implanted to subthalamic nucleus to give precisely allocated electrical stimuli to brain. The optimal stimulus type has to be adjusted individually. Disease severity, main symptoms and biological factors play a role in correctly setting up the device. Currently there are no objective methods to assess the efficacy of DBS, hence the adjustment is based solely on clinical assessment. In optimal case an objectively measurable feature would point the right settings of DBS. Surface electromyographic and kinematic measurements have been used in Parkinson's disease research. As Parkinson's disease symptoms are known to change the EMG signal properties, these methods could be helpful aid in the clinical adjustment of DBS. In this study, 13 patients with advanced Parkinson's disease who received DBS treatment were measured. The patients were measured with seven different settings of the DBS in clinical range including changes in stimulation amplitude, frequency and pulse width. The EMG analysis was based on parameters that characterize EMG signal morphology. Correlation dimension and recurrence rate made the most significant difference in relation to optimal settings. In conclusion, EMG analysis is able to detect differences between the DBS setups, and can help in finding the correct parameters. PMID:25570683

  17. Comparison of temporal parameters of swimming rescue elements when performed using dolphin and flutter kick with fins - didactical approach.

    PubMed

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. PMID:24150079

  18. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  19. Analysis and classification of delay-sensitive cortical neurons based on response to temporal parameters in echolocation signals.

    PubMed

    Chittajallu, S K; Palakal, M J; Wong, D

    1995-04-01

    Echolocating bats generate an acoustic image of their target by processing target-reflected echoes of their emitted biosonar pulses. Efforts in building computational models of auditory processing in the bat auditory system, using extensive neurophysiological data from cortical studies are challenged by the intrinsic complexity and the significant variability in neural response to stimuli. In this paper, we use a computerized method for the analysis and classification of delay-sensitive neurons to classify neurons from the auditory cortex of Myotis lucifugus, a species that echolocates with FM signals. The coefficients of the bi-linear fit to the best delay response surfaces (mean R2 = 0.01) were used in classifying the neurons. Six classes were derived that corresponded to the four previously characterized neurophysiologically. The first class corresponded to delay-tuned neurons which exhibited a constant best delay at different pulse repetition rates and pulse durations. Three other classes corresponded to the different subtypes of tracking neurons which changed their best delay to one or both of these stimulus temporal parameters. Two additional classes were differentiated although their best-delay response were similar to either the delay-tuned or the duration and pulse-repetition rate sensitive class. Artificial delay-sensitive neurons built from the parameters of the centroid of each class, will serve a key role in the FM bat auditory system model that we are building. PMID:7642448

  20. Changes in computed tomography perfusion parameters after superficial temporal artery to middle cerebral artery bypass: an analysis of 29 cases.

    PubMed

    Serrone, Joseph C; Jimenez, Lincoln; Hanseman, Dennis J; Carroll, Christopher P; Grossman, Aaron W; Wang, Lily; Vagal, Achala; Choutka, Ondrej; Andaluz, Norberto; Ringer, Andrew J; Abruzzo, Todd; Zuccarello, Mario

    2014-12-01

    Introduction Analysis of computed tomography perfusion (CTP) studies before and after superficial temporal artery to middle cerebral artery (STA-MCA) bypass is warranted to better understand cerebral steno-occlusive pathology. Methods Retrospective review was performed of STA-MCA bypass patients with steno-occlusive disease with CTP before and after surgery. CTP parameters were evaluated for change after STA-MCA bypass. Results A total of 29 hemispheres were bypassed in 23 patients. After STA-MCA bypass, mean transit time (MTT) and time to peak (TTP) improved. When analyzed as a ratio to the contralateral hemisphere, MTT, TTP, and cerebral blood flow (CBF) improved. There was no effect of gender, double vessel versus single vessel bypass, or time until postoperative CTP study to changes in CTP parameters after bypass. Conclusions Blood flow augmentation after STA-MCA bypass may best be assessed by CTP using baseline MTT or TTP and ratios of MTT, TTP, or CBF to the contralateral hemisphere. The failure of cerebrovascular reserve to improve after cerebral bypass may indicate irreversible loss of autoregulation with chronic cerebral vasodilation or the inability of CTP to detect these improvements.

  1. EMG feedback as a muscle reeducation technique: a controlled study.

    PubMed

    Middaugh, S J

    1978-01-01

    In an effort to evaluate the efficacy and function of EMG feedback in muscle reeducation, improvement of the abductor function of the abductor hallucis muscle was studied under three training conditions involving 1) EMG feedback, 2) sensory stimulation or 3) equal time for unassisted practice; and a fourth, control condition involving testing without training. Active range of motion was measured before and after training to assess ability to use the muscle as an abductor. EMG activity was quantified for a 1-minute test contraction to evaluate ability to maintain and maximize a voluntary contraction of the target muscle. The results indicated that EMG feedback was highly effective when subjects had little initial use of the target muscle. EMG feedback improved the ability of these subjects to maintain and maximize voluntary muscle contractions, as demonstrated on the EMG measure. EMG feedback did not add to the learning situation when only a relatively brief, phasic contraction was required, as on the range-of-motion measure; similar gains were made with equivalent practive without EMG feedback. When subjects already had considerable use of the target muscle prior to training, EMG feedback may have actually interfered with training; in this case unassisted practice was more effective.

  2. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources. PMID:26841414

  3. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  4. Comparison of Temporal Parameters of Swimming Rescue Elements When Performed Using Dolphin and Flutter Kick with Fins - Didactical Approach

    PubMed Central

    Rejman, Marek; Wiesner, Wojciech; Silakiewicz, Piotr; Klarowicz, Andrzej; Abraldes, J. Arturo

    2012-01-01

    The aim of this study was an analysis of the time required to swim to a victim and tow them back to shore, while perfoming the flutter-kick and the dolphin-kick using fins. It has been hypothesized that using fins while using the dolphin-kick when swimming leads to reduced rescue time. Sixteen lifeguards took part in the study. The main tasks performed by them, were to approach and tow (double armpit) a dummy a distance of 50m while applying either the flutter-kick, or the dolphin-kick with fins. The analysis of the temporal parameters of both techniques of kicking demonstrates that, during the approach to the victim, neither the dolphin (tmean = 32.9s) or the flutter kick (tmean = 33.0s) were significantly faster than the other. However, when used for towing a victim the flutter kick (tmean = 47.1s) was significantly faster when compared to the dolphin-kick (tmean = 52.8s). An assessment of the level of technical skills in competitive swimming, and in approaching and towing the victim, were also conducted. Towing time was significantly correlated with the parameter that linked the temporal and technical dimensions of towing and swimming (difference between flutter kick towing time and dolphin-kick towing time, 100m medley time and the four swimming strokes evaluation). No similar interdependency has been discovered in flutter kick towing time. These findings suggest that the dolphin-kick is a more difficult skill to perform when towing the victim than the flutter-kick. Since the hypothesis stated was not confirmed, postulates were formulated on how to improve dolphin-kick technique with fins, in order to reduce swimming rescue time. Key points The source of reduction of swimming rescue time was researched. Time required to approach and to tow the victim while doing the flutter kick and the dolphin-kick with fins was analyzed. The propulsion generated by dolphin-kick did not make the approach and tow faster than the flutter kick. More difficult skill to realize of

  5. The temporal evolution of three-dimensional lightning parameters and their suitability for thunderstorm tracking and nowcasting

    NASA Astrophysics Data System (ADS)

    Meyer, V. K.; Höller, H.; Betz, H. D.

    2013-01-01

    Total lightning (TL) data has been found to provide valuable information about the internal dynamics of a thunderstorm allowing conclusions about its further development as well as indicating potential of thunderstorm-related severe weather at the ground. This paper investigates electrical discharge correlations of strokes and flashes with respect to the temporal evolution of thunderstorms in case studies as well as by statistical means. The recently developed algorithm li-TRAM (tracking and monitoring of lightning-cells, Meyer et al., 2012) has been employed to track and monitor thunderstorms based on three-dimensionally resolved TL lightning data provided as stroke events by the European lightning location network LINET. From statistical investigation of 863 suited thunderstorm life-cycles the cell area turned out to correlate well with (a) the total discharge rate, (b) the in-cloud (IC) discharge rate, and (c) the mean IC discharge height per lightning-cell as identified by li-TRAM. All three parameter correlations consistently show an abrupt change in discharge characteristics around a cell area of 170 km2. Statistical investigations supported by the comparison of three case studies - selected to represent a single storm, a multi-cell and a supercell - strongly suggest that the correlation functions include the temporal evolution as well as the storm type. With the help of volumetric radar data, it can also be suggested that the well defined break observed at 170 km2 marks the region, where the transition occurs from short-lived and rather simple structured single storm cells to better organized, more persistent, and more complex structured thunderstorm forms, e.g. multi-cells and super-cells. All three storm-types experience similar discharge characteristics during their growing and dissipating phases. However, while the poorly organized and short-lived cells preferentially remain small during a short mature phase, mainly the more persistent thunderstorm types

  6. The temporal evolution of three-dimensional lightning parameters and their suitability for thunderstorm tracking and nowcasting

    NASA Astrophysics Data System (ADS)

    Meyer, V. K.; Höller, H.; Betz, H. D.

    2013-05-01

    Total lightning (TL) data have been found to provide valuable information about the internal dynamics of a thunderstorm allowing conclusions about its further development as well as indicating potential of thunderstorm-related severe weather at the ground. This paper investigates electrical discharge correlations of strokes and flashes with respect to the temporal evolution of thunderstorms in case studies as well as by statistical means. The recently developed algorithm li-TRAM (tracking and monitoring of lightning cells, Meyer et al., 2013) has been employed to track and monitor thunderstorms based on three-dimensionally resolved TL data provided as stroke events by the European lightning location network LINET. From statistical investigation of 863 suited thunderstorm life cycles, the cell area turned out to correlate well with (a) the total discharge rate, (b) the in-cloud (IC) discharge rate, and (c) the mean IC discharge height per lightning cell as identified by li-TRAM. All three parameter correlations consistently show an abrupt change in discharge characteristics around a cell area of 170 km2. Statistical investigations supported by the comparison of three case studies - selected to represent a single storm, a multi-cell and a supercell - strongly suggest that the correlation functions include the temporal evolution as well as the storm type. With the help of volumetric radar data, it can also be suggested that the well-defined break observed at 170 km2 marks the region where the transition occurs from short-lived and rather simple structured single storm cells to better organized, more persistent, and more complex structured thunderstorm forms, e.g. multi-cells and supercells. All three storm types experience similar discharge characteristics during their growing and dissipating phases. However, while the poorly organized and short-lived cells preferentially remain small during a short mature phase, mainly the more persistent thunderstorm types develop

  7. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  8. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.

    PubMed

    Liang, Nan; Yamashita, Takamasa; Ni, Zhen; Takahashi, Makoto; Murakami, Tsuneji; Yahagi, Susumu; Kasai, Tatsuya

    2008-02-01

    Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.

  9. Seasonal parameter extraction of paddy rice fields in West Java using multi-temporal MODIS imagery datasets

    NASA Astrophysics Data System (ADS)

    Sianturi, Riswan S.; Nieuwenhuis, Willem; Jetten, V. G.

    2015-10-01

    Continuous monitoring on farming practices is urgently needed provided the challenges faced by rice fields. Information of seasonal parameters supplies crucial inputs for monitoring rice fields as well as improving other applications, such as biomass monitoring, yield estimation, integrated pest management, irrigation water management, and precision farming. We extracted the heading stages using multi-temporal MODerate resolution Imaging Spectroradiometer (MODIS) imageries in rice fields in northern districts of West Java, Indonesia. The spatial distribution of the heading stages in the whole year suggests complex cropping pattern of rice fields in West Java. The monthly average of EVI shows that green waves move northward as the results of stipulated cropping calendar. The Root Mean Square Error (RMSE) for the heading stages is 12.77 days. The heading stages periods of most rice fields are from the middle of February to the middle of March and from the middle of June to the middle of July for rendeng and gadu, consecutively. The findings provide timely and cost effective information for monitoring rice fields.

  10. Effects of regular exercise and dual tasking on spatial and temporal parameters of obstacle negotiation in elderly women.

    PubMed

    Guadagnin, E C; da Rocha, E S; Mota, C B; Carpes, F P

    2015-09-01

    This study investigated the effects of regular exercise and dual tasking on bilateral spatial and temporal parameters of obstacle negotiation in elderly women. Sedentary (n=12) and physically active (n=12) elderly women volunteered to participate in this study. Gait kinematics were recorded during obstacle crossing when performing a dual task and when not performing a dual task. Physically active participants crossed obstacles more safely, in terms of clearance or distance to or over the obstacle, both with and without dual tasking, and usually for both lead and trail legs. Performing the dual task increased toe distance, and decreased heel distance and gait speed in the active participants, and increased toe clearance and heel distance, and decreased gait speed in the sedentary participants. Differences between preferred and non-preferred leg were accentuated for toe clearance in the lead limb. These results suggest that specialized exercises may not be needed for improvement in obstacle avoidance skills in the elderly, and participation in multi-activities, including aerobic exercises, may be sufficient.

  11. Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model

    PubMed Central

    2011-01-01

    Background Development of effective and plausible numerical tools is an imperative task for thorough studies of nonlinear dynamics in life science applications. Results We have developed a complementary suite of computational tools for two-parameter screening of dynamics in neuronal models. We test a ‘brute-force’ effectiveness of neuroscience plausible techniques specifically tailored for the examination of temporal characteristics, such duty cycle of bursting, interspike interval, spike number deviation in the phenomenological Hindmarsh-Rose model of a bursting neuron and compare the results obtained by calculus-based tools for evaluations of an entire spectrum of Lyapunov exponents broadly employed in studies of nonlinear systems. Conclusions We have found that the results obtained either way agree exceptionally well, and can identify and differentiate between various fine structures of complex dynamics and underlying global bifurcations in this exemplary model. Our future planes are to enhance the applicability of this computational suite for understanding of polyrhythmic bursting patterns and their functional transformations in small networks. PMID:22656867

  12. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters.

    PubMed

    Ferrari, Alberto; Ginis, Pieter; Hardegger, Michael; Casamassima, Filippo; Rocchi, Laura; Chiari, Lorenzo

    2016-07-01

    Gait impairments are among the most disabling symptoms in several musculoskeletal and neurological conditions, severely limiting personal autonomy. Wearable gait sensors have been attracting attention as diagnostic tool for gait and are emerging as promising tool for tutoring and guiding gait execution. If their popularity is continuously growing, still there is room for improvement, especially towards more accurate solutions for spatio-temporal gait parameters estimation. We present an implementation of a zero-velocity-update gait analysis system based on a Kalman filter and off-the-shelf shoe-worn inertial sensors. The algorithms for gait events and step length estimation were specifically designed to comply with pathological gait patterns. More so, an Android app was deployed to support fully wearable and stand-alone real-time gait analysis. Twelve healthy subjects were enrolled to preliminarily tune the algorithms; afterwards sixteen persons with Parkinson's disease were enrolled for a validation study. Over the 1314 strides collected on patients at three different speeds, the total root mean square difference on step length estimation between this system and a gold standard was 2.9%. This shows that the proposed method allows for an accurate gait analysis and paves the way to a new generation of mobile devices usable anywhere for monitoring and intervention.

  13. Treatment of Handwriting Problems Utilizing EMG Biofeedback Training.

    ERIC Educational Resources Information Center

    Hughes, Howard; And Others

    1979-01-01

    The effects of electromyogram (EMG) biofeedback training on cursive handwriting were investigated with nine fourth graders. A significant reduction in EMG between the first baseline session and last training session was obtained. Four of five characteristics of handwriting improved significantly. (Author/SBH)

  14. Temporal and spatial variations in photosynthetic parameters in the South Sea and East/Japan Sea, Korea

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2015-12-01

    Although the photosynthetic parameters are important factors for phytoplankton ecology and simulation models of ecological dynamics in marine ecosystems, very limited data for temporal and spatial variations in in situ photosynthetic parameters are available in Korean oceans. To obtain the photosynthetic parameters, we measured carbon fixation rates of phytoplankton from six light depths (100, 50, 30, 12, 5, and 1 %) at 2 sampling sites (Hupo-Pohang and Gwangyang bay, Korea) in 2013, using a stable carbon isotope (13C) tracer technique. Based on the results from this study, the ranges of α (photosynthetic efficiency), β (strength of the photoinhibition) and μ (growth rate) were 0.06-0.07 mg C h-1 (µmol quanta m-2 s-1) -1, 3.90-21.41 mg C h-1 (µmol quanta m-2 s-1) -1, and 0.18-0.19 d-1, respectively at Hupo-Pohang site in the East/Japan Sea. The values of α and β were higher in November (Average ± S.D = 0.07±0.02 mg C h-1 (µmol quanta m-2 s-1) -1 and 21.41±36.89 mg C h-1 (µmol quanta m-2 s-1) -1, respectvitly) than those (Average ± S.D = 0.06±0.05 mg C h-1 (µmol quanta m-2 s-1) -1 and 3.90±5.36 mg C h-1 (µmol quanta m-2 s-1) -1, respectively) in September, 2013. In contrast, μ value was higher in September (Average ± S.D = 0.19±0.15 d-1) than that (Average ± S.D = 0.18±0.14 d-1) in November. In comparison, the ranges of α, β and μ at Gwangyang bay site in the South Sea were 0.05-0.11 mg C h-1 mg C h-1 (µmol quanta m-2 s-1) -1 , 3.14-93.91 mg C h-1 (µmol quanta m-2 s-1) -1 and 0.14-0.34 d-1, respectively. The parameters of α and μ were highest in June (Average ± S.D = 0.11±0.05 mg C h-1 (µmol quanta m-2 s-1) -1, and 0.34±0.27 d-1), and β was highest value in January (Average ± S.D = 93.31±81.47 mg C h-1 (µmol quanta m-2 s-1) -1). The photosynthetic parameters obtained in this study are within the ranges of α (0.08 to 0.26 mg C h-1 (µmol quanta m-2 s-1) -1) and μ (0.42 to 1.31 d-1) in Bedford basin previously reported by Brenda

  15. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions.

    PubMed

    González-Izal, M; Rodríguez-Carreño, I; Malanda, A; Mallor-Giménez, F; Navarro-Amézqueta, I; Gorostiaga, E M; Izquierdo, M

    2010-12-01

    The purpose of this study was to investigate the sensitivity of new surface electromyography (sEMG) indices based on the discrete wavelet transform to estimate acute exercise-induced changes on muscle power output during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg press, with 2 min rest between sets. sEMG was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were computed. These were: mean rectified voltage (MRV), median spectral frequency (F(med)), Dimitrov spectral index of muscle fatigue (FI(nsm5)), as well as five other parameters obtained from the stationary wavelet transform (SWT) as ratios between different scales. The new wavelet indices showed better accuracy to map changes in muscle power output during the fatiguing protocol. Moreover, the new wavelet indices as a single parameter predictor accounted for 46.6% of the performance variance of changes in muscle power and the log-FI(nsm5) and MRV as a two-factor combination predictor accounted for 49.8%. On the other hand, the new wavelet indices proposed, showed the highest robustness in presence of additive white Gaussian noise for different signal to noise ratios (SNRs). The sEMG wavelet indices proposed may be a useful tool to map changes in muscle power output during dynamic high-loading fatiguing task.

  16. IDENTIFICATION OF TERM AND PRE-TERM LABOR IN RATS USING ARTIFICIAL NEURAL NETWORKS ON UTERINE EMG SIGNALS

    PubMed Central

    SHI, Shao Q.; MANER, William L.; MACKAY, Lynette B.; GARFIELD, Robert E.

    2008-01-01

    CONDENSATION Term or preterm delivery in rats can be effectively predicted using artificial neural network analysis of uterine EMG data. Objective To use artificial neural networks (ANN) on uterine electromyography (EMG) data to identify term and preterm labor in rats. Study Design Controls (G1:N=4) and preterm labor models (G2:N=4, treated with onapristone) were used. Uterine EMG and intrauterine pressure (IUP) variables were measured by implanted telemetric devices. For each time-point assessed, either a “labor-event” or “non-labor-event” was first assigned using visual and other means. 112 total labor and non-labor events were observed. ANN was then used with EMG and IUP parameters to attempt algorithmic, objective identification for time of labor in each group. Results For G1, 8/8 (100%) of labor events and 44/44 (100%) of non-labor events were correctly identified by the ANN. For G2, 22/24 (92%) of labor events and 31/36 (86%) of non-labor events were correctly determined by the ANN. Conclusion ANN can effectively predict term and preterm labor during pregnancy using uterine EMG and IUP variables. PMID:18226633

  17. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  18. Tension-type headache: pain, fatigue, tension, and EMG responses to mental activation.

    PubMed

    Bansevicius, D; Westgaard, R H; Sjaastad, O M

    1999-06-01

    Twenty patients with tension-type headache (14 chronic and 6 episodic) and 20 group-matched controls were selected for this study. They participated in a 1-hour, complex, two-choice, reaction-time test, as well as 5-minute pretest and 20-minute posttest periods. Subjects reported any pain in the forehead, temples, neck, and shoulders, as well as any feelings of fatigue and tension during the pretest, and every 10 minutes during the test and posttest by visual analog scales. Superficial electromyography was recorded simultaneously from positions representing the frontal and temporal muscles, neck (mostly splenius), and trapezius muscles. The location of pain corresponded to the position of the electrodes, but extended over a larger area. The test provoked pain in the forehead, neck, and shoulders of patients, i.e., pain scores from these regions increased significantly during the test. The pain scores continued to increase posttest. In patients, the EMG response of the trapezius (first 10 minutes of the test) was elevated relative to pretest. In controls, only the frontal muscles showed an EMG test response. Patients showed significantly higher EMG responses than controls in the neck (whole test period) and trapezius (first 10 minutes of the test period). There were significant differences in pain and fatigue scoring between patients and controls in all three periods and in tension scoring posttest. Fatigue correlated with pain, with increasing significance for all locations examined, while tension was mainly associated with the neck pain. The meaning of the variables "tension" and "fatigue" in headache, and their association with recorded muscle activity in various regions is discussed. The EMG response of the trapezius muscle to the test is discussed in comparison with similar responses observed in patients with other pain syndromes.

  19. A segmentation approach to long duration surface EMG recordings.

    PubMed

    El Falou, Wassim; Duchêne, Jacques; Hewson, David; Khalil, Mohamad; Grabisch, Michel; Lino, Frédéric

    2005-02-01

    The purpose of this study was to develop an automatic segmentation method in order to identify postural surface EMG segments in long-duration recordings. Surface EMG signals were collected from the cervical erector spinae (CES), erector spinae (ES), external oblique (EO), and tibialis anterior (TA) muscles of 11 subjects using a bipolar electrode configuration. Subjects remained seated in a car seat over the 150-min data-collection period. The modified dynamic cumulative sum (MDCS) algorithm was used to automatically segment the surface EMG signals. Signals were rejected by comparison with an exponential mathematical model of the spectrum of a surface EMG signal. The average power ratio computed between two successive retained segments was used to classify segments as postural or surface EMG. The presence of a negative slope of a regression line fitted to the median frequency values of postural surface EMG segments was taken as an indication of fatigue. Alpha level was set at 0.05. The overall classification error rate was 8%, and could be performed in 25 min for a 150-min signal using a custom-built software program written in C (Borland Software Corporation, CA, USA). This error rate could be enhanced by concentrating on the rejection method, which caused most of the misclassification (6%). Furthermore, the elimination of non-postural surface EMG segments by the use of a segmentation approach enabled muscular fatigue to be identified in signals that contained no evidence of fatigue when analysed using traditional methods.

  20. Characterizing EMG data using machine-learning tools.

    PubMed

    Yousefi, Jamileh; Hamilton-Wright, Andrew

    2014-08-01

    Effective electromyographic (EMG) signal characterization is critical in the diagnosis of neuromuscular disorders. Machine-learning based pattern classification algorithms are commonly used to produce such characterizations. Several classifiers have been investigated to develop accurate and computationally efficient strategies for EMG signal characterization. This paper provides a critical review of some of the classification methodologies used in EMG characterization, and presents the state-of-the-art accomplishments in this field, emphasizing neuromuscular pathology. The techniques studied are grouped by their methodology, and a summary of the salient findings associated with each method is presented.

  1. Adaptive neuron-to-EMG decoder training for FES neuroprostheses

    NASA Astrophysics Data System (ADS)

    Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.

    2016-08-01

    Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by

  2. A Spiking Neural Network in sEMG Feature Extraction.

    PubMed

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-01-01

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control. PMID:26540060

  3. A Spiking Neural Network in sEMG Feature Extraction

    PubMed Central

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-01-01

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control. PMID:26540060

  4. Kinematic, Dynamic and EMG Analysis of Drop Jumps in Female Elite Triple Jump Athletes.

    PubMed

    Čoh, Milan; Matjačić, Zlatko; Peharec, Stanislav; Bačić, Petar; Rausavjević, Nikola; Maćkala, Krzysztof

    2015-07-01

    The purpose of the study was a biodynamic analysis of the kinematic, dynamic and EMG parameters of two types of drop jumps (heights of 25 cm and 45 cm). The sample of measured subjects included four female elite triple jump athletes, with their best results varying from 13.33 to 15.06 meters. The kinematic and dynamic parameters were calculated with the use of a bipedal tensiometric force plate, which was synchronized with nine CCD cameras. A 16-channel electromyography (BTS Pocket, Myolab) was used to analyze the EMG activation of the following muscles: m. erector spinae, m. gluteus, m. rectus femoris, m. vastus medialis, m. vastus lateralis, m. biceps femoris, m. soleus and m. gastrocnemius medialis. In the drop jump from a 25 cm height, the measured subjects achieved the following results: height of jump 43.37 ± 5.39 cm and ground reaction force 2770 ± 411 N. In comparison, results for the drop jump from a 45 cm height were: height of jump 45.22 ± 4.65 cm and ground reaction force 2947 ± 366 N. Vertical velocity of the take-off in the 25 cm drop jump was 2.77 ± 0.19 ms(-1) and in the 45 cm drop jump it was 2.86 ± 0.15 ms(-1). Observation of the EMG activation revealed the proximal to distal principle of muscle activation at work in both types of drop jumps. In the first phase of the concentric phase the most active muscles were m. gluteus maximus and m. rectus femoris. The greatest activity of m. gastrocnemius medialis and m. soleus was noticed in the last third of the take-off action. Significantly high EMG activation of m. vastus medialis and m. vastus lateralis was already shown in the flight phase prior to the feet making contact with the ground. PMID:26434025

  5. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.

    PubMed

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2016-01-01

    Improving the functionality of prosthetic hands with noninvasive techniques is still a challenge. Surface electromyography (sEMG) currently gives limited control capabilities; however, the application of machine learning to the analysis of sEMG signals is promising and has recently been applied in practice, but many questions still remain. In this study, we recorded the sEMG activity of the forearm of 11 male subjects with transradial amputation who were mentally performing 40 hand and wrist movements. The classification performance and the number of independent movements (defined as the subset of movements that could be distinguished with >90% accuracy) were studied in relationship to clinical parameters related to the amputation. The analysis showed that classification accuracy and the number of independent movements increased significantly with phantom limb sensation intensity, remaining forearm percentage, and temporal distance to the amputation. The classification results suggest the possibility of naturally controlling up to 11 movements of a robotic prosthetic hand with almost no training. Knowledge of the relationship between classification accuracy and clinical parameters adds new information regarding the nature of phantom limb pain as well as other clinical parameters, and it can lay the foundations for future "functional amputation" procedures in surgery. PMID:27272750

  6. siGnum: graphical user interface for EMG signal analysis.

    PubMed

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  7. Identification of contaminant type in surface electromyography (EMG) signals.

    PubMed

    McCool, Paul; Fraser, Graham D; Chan, Adrian D C; Petropoulakis, Lykourgos; Soraghan, John J

    2014-07-01

    The ability to recognize various forms of contaminants in surface electromyography (EMG) signals and to ascertain the overall quality of such signals is important in many EMG-enabled rehabilitation systems. In this paper, new methods for the automatic identification of commonly occurring contaminant types in surface EMG signals are presented. Such methods are advantageous because the contaminant type is typically not known in advance. The presented approach uses support vector machines as the main classification system. Both simulated and real EMG signals are used to assess the performance of the methods. The contaminants considered include: 1) electrocardiogram interference; 2) motion artifact; 3) power line interference; 4) amplifier saturation; and 5) additive white Gaussian noise. Results show that the contaminants can readily be distinguished at lower signal to noise ratios, with a growing degree of confusion at higher signal to noise ratios, where their effects on signal quality are less significant.

  8. Retrieval of Spatio-temporal Distributions of Particle Parameters from Multiwavelength Lidar Measurements Using the Linear Estimation Technique and Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.

    2013-01-01

    The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.

  9. EMG spike time difference based feedback control.

    PubMed

    Butala, Jaydrath; Arkles, Anthony; Gray, John R

    2007-01-01

    Flight control in insects has been studied extensively; however the underlying neural mechanisms are not fully understood. Output from the central nervous system (CNS) must drive wing phase shifts and flight muscle depressor asymmetries associated with adaptive flight maneuvers. These maneuvers will, in turn, influence the insect's sensory environment, thus closing the feedback loop. We present a novel method that utilizes asymmetrical timing of bilateral depressor muscles, the forewing first basalars (m97), of the locust to close a visual feedback loop in a computer-generated flight simulator. The method converts the time difference between left and right m97s to analog voltage values. These voltage values can be obtained using open-loop experiments (visual motion controlled by the experimenter), or can be used to control closed-loop experiments (muscle activity controls the visual stimuli) experiments. Electromyographic (EMG) signals were obtained from right and left m97 muscles; spike time difference between them was calculated and converted to voltage values. Testing this circuit with real animals, we were able to detect the spike time difference and convert that to voltage that controlled the presentation of a stimulus in a closed-loop environment. This method may be used in conjunction with the flight simulator to understand the manner in which sensory information is integrated with the activity of the flight circuitry to study the neural control of this complex behaviour. PMID:18003414

  10. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  11. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    PubMed Central

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2=0.77 to R2=0.98 (for blood lactate) and from R2=0.81 to R2=0.97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  12. EMG Activity of Masseter Muscles in the Elderly According to Rheological Properties of Solid Food

    PubMed Central

    Kang, Au Jin; Kang, Si Hyun; Seo, Kyung Mook; Park, Hyoung Su; Park, Ki-Hwan

    2016-01-01

    Objective To assess the impact of aging on masticatory muscle function according to changes in hardness of solid food. Methods Each of fifteen healthy elderly and young people were selected. Subjects were asked to consume cooked rice, which was processed using the guidelines of the Universal Design Foods concept for elderly people (Japan Care Food Conference 2012). The properties of each cooked rice were categorized as grade 1, 2, 3 and 4 (5×103, 2×104, 5×104, and 5×105 N/m2) respectively. Surface electromyography (sEMG) was used to measure masseter activity from food ingestion to swallowing of test foods. The raw data was normalized by the ratio of sEMG activity to maximal voluntary contraction and compared among subjects. The data was divided according to each sequence of mastication and then calculated within the parameters of EMG activities. Results Intraoral tongue pressure was significantly higher in the young than in the elderly (p<0.05). Maximal value of average amplitude of the sequence in whole mastication showed significant positive correlation with hardness of food in both young and elderly groups (p<0.05). In a comparisons between groups, the maximal value of average amplitude of the sequence in whole mastication and peak amplitude in whole mastication showed that mastication in the elderly requires a higher percentage of maximal muscle activity than in the young, even with soft foods (p<0.05). Conclusion sEMG data of the masseter can provide valuable information to aid in the selection of foods according to hardness for the elderly. The results also support the necessity of specialized food preparation or products for the elderly. PMID:27446781

  13. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  14. Re-evaluation of EMG-torque relation in chronic stroke using linear electrode array EMG recordings

    PubMed Central

    Bhadane, Minal; Liu, Jie; Rymer, W. Zev; Zhou, Ping; Li, Sheng

    2016-01-01

    The objective was to re-evaluate the controversial reports of EMG-torque relation between impaired and non-impaired sides using linear electrode array EMG recordings. Ten subjects with chronic stroke performed a series of submaximal isometric elbow flexion tasks. A 20-channel linear array was used to record surface EMG of the biceps brachii muscles from both impaired and non-impaired sides. M-wave recordings for bilateral biceps brachii muscles were also made. Distribution of the slope of the EMG-torque relations for the individual channels showed a quasi-symmetrical “M” shaped pattern. The lowest value corresponded to the innervation zone (IZ) location. The highest value from the slope curve for each side was selected for comparison to minimize the effect of electrode placement and IZ asymmetry. The slope was greater on the impaired side in 4 of 10 subjects. There were a weak correlation between slope ratio and strength ratio and a moderate to high correlation between slope ratio and M-wave ratio between two sides. These findings suggest that the EMG-torque relations are likely mediated and influenced by multiple factors. Our findings emphasize the importance of electrode placement and suggest the primary role of peripheral adaptive changes in the EMG-torque relations in chronic stroke. PMID:27349938

  15. Electromyography (EMG) accuracy compared to muscle biopsy in childhood.

    PubMed

    Rabie, Malcolm; Jossiphov, Joseph; Nevo, Yoram

    2007-07-01

    Reports show wide variability of electromyography (EMG) in detecting pediatric neuromuscular disorders. The study's aim was to determine EMG/nerve conduction study accuracy compared to muscle biopsy and final clinical diagnosis, and sensitivity for myopathic motor unit potential detection in childhood. Of 550 EMG/nerve conduction studies performed by the same examiner from a pediatric neuromuscular service, 27 children (ages 6 days to 16 years [10 boys; M:F, 1:1.7]) with muscle biopsies and final clinical diagnoses were compared retrospectively. Final clinical diagnoses were congenital myopathies (5 of 27,18%), nonspecific myopathies (biopsy myopathic, final diagnosis uncertain; 6 of 27, 22%), congenital myasthenic syndrome (3 of 27, 11%), juvenile myasthenia gravis (1 of 27, 4%), arthrogryposis multiplex congenita (2 of 27, 7%), hereditary motor and sensory neuropathy (1 of 27, 4%), bilateral peroneal neuropathies (1 of 27, 4%), and normal (8 of 27, 30%). There were no muscular dystrophy or spinal muscular atrophy patients. EMG/nerve conduction studies had a 74% agreement with final clinical diagnoses and 100% agreement in neurogenic, neuromuscular junction, and normal categories. Muscle biopsies concurred with final diagnoses in 87%, and 100% in myopathic and normal categories. In congenital myasthenic syndrome, muscle biopsies showed mild variation in fiber size in 2 of 3 children and were normal in 1 of 3. EMG sensitivity for detecting myopathic motor unit potentials in myopathies was 4 of 11 (36%), greater over 2 years of age (3 of 4, 75%), compared to infants less than 2 years (1 of 7, 14%), not statistically significant (P = .0879). EMGs false-negative for myopathy in infants < 2 years of age were frequently neurogenic (3 of 6, 50%). In congenital myopathies EMG detected myopathic motor unit potentials in 40%, with false-negative results neurogenic (20%) or normal (40%). Because our study has no additional tests for active myopathies, for example Duchenne

  16. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  17. The effects of spectral and temporal parameters on perceived confirmation of an auditory non-speech signal.

    PubMed

    Bodendörfer, Xaver; Kortekaas, Reinier; Weingarten, Markus; Schlittmeier, Sabine

    2015-08-01

    In human-machine interactions, the confirmation of an action or input is a very important information for users. A paired comparison experiment explored the effects of four acoustic parameters on the perceived confirmation of auditory non-speech signals. Reducing the frequency-ratio and the pulse-to-pulse time between two successive pulses increased perceived confirmation. The effects of the parameters frequency and number of pulses were not clear-cut. The results provide information for designing auditory confirmation signals. It is shown that findings about the effects of certain parameters on the perceived urgency of warning signals cannot be easily inverted to perceived confirmation. PMID:26328737

  18. Estimation and application of EMG amplitude during dynamic contractions.

    PubMed

    Clancy, E A; Bouchard, S; Rancourt, D

    2001-01-01

    The sections above have described an EMG amplitude estimator and an initial application of this estimator to the EMG-torque problem. The amplitude estimator consists of six stages. In the first stage, motion artifact and power-line interference are attenuated. Motion artifact is typically removed with a highpass filter. Elimination of power-line noise is more difficult. Commercial systems tend to use notch filters, accepting the concomitant loss of "true" signal power in exchange for simplicity and robustness. Adaptive methods may be preferable, however, to preserve more "true" signal power. In stage two, the signal is whitened. One fixed whitening technique and two adaptive whitening methods were described. For low-amplitude levels, the adaptive whitening technique that includes adaptive noise cancellation may be necessary. In stage three, multiple EMG channels (all overlying the same muscle) are combined. For most applications, simple gain normalization is all that is required. Stage four rectifies the signal and then applies the power law required to demodulate the signal. In stage six, the inverse of the power law is applied to relinearize the signal. Direct comparison of MAV (first power) to RMS (second power) processing demonstrates little difference between the two. Therefore, unless there is reason to believe that the EMG density departs strongly from that found in the existing studies, RMS and MAV processing are essentially identical. In stage five, the demodulated samples are averaged across all channels and then smoothed (time averaged) to reduce the variance of the amplitude estimate, but at the expense of increasing the bias. For best performance, the window length that best trades off variance and bias error is selected. The advanced EMG processing was next applied to dynamic EMG-torque estimation about the elbow joint. Results showed that improved EMG amplitude estimates led to improved EMG-torque estimates. An initial comparison of different system

  19. Electrotactile EMG feedback improves the control of prosthesis grasping force

    NASA Astrophysics Data System (ADS)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  20. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.

    PubMed

    Staudenmann, Didier; Potvin, Jim R; Kingma, Idsart; Stegeman, Dick F; van Dieën, Jaap H

    2007-01-01

    Biomechanical models are in use to estimate parameters such as contact forces and stability at various joints. In one class of these models, surface electromyography (EMG) is used to address the problem of mechanical indeterminacy such that individual muscle activation patterns are accounted for. Unfortunately, because of the stochastical properties of EMG signals, EMG based estimates of muscle force suffer from substantial estimation errors. Recent studies have shown that improvements in muscle force estimation can be achieved through adequate EMG processing, specifically whitening and high-pass (HP) filtering of the signals. The aim of this paper is to determine the effect of such processing on outcomes of a biomechanical model of the lumbosacral joint and surrounding musculature. Goodness of fit of estimated muscle moments to net moments and also estimated joint stability significantly increased with increasing cut-off frequencies in HP filtering, whereas no effect on joint contact forces was found. Whitening resulted in moment estimations comparable to those obtained from optimal HP filtering with cut-off frequencies over 250 Hz. Moreover, compared to HP filtering, whitening led to a further increase in estimated joint-stability. Based on theoretical models and on our experimental results, we hypothesize that the processing leads to an increase in pick-up area. This then would explain the improvements from a better balance between deep and superficial motor unit contributions to the signal. PMID:16765965

  1. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.

    PubMed

    Ma, Ye; Xie, Shengquan; Zhang, Yanxin

    2016-03-01

    A patient-specific electromyography (EMG)-driven neuromuscular model (PENm) is developed for the potential use of human-inspired gait rehabilitation robots. The PENm is modified based on the current EMG-driven models by decreasing the calculation time and ensuring good prediction accuracy. To ensure the calculation efficiency, the PENm is simplified into two EMG channels around one joint with minimal physiological parameters. In addition, a dynamic computation model is developed to achieve real-time calculation. To ensure the calculation accuracy, patient-specific muscle kinematics information, such as the musculotendon lengths and the muscle moment arms during the entire gait cycle, are employed based on the patient-specific musculoskeletal model. Moreover, an improved force-length-velocity relationship is implemented to generate accurate muscle forces. Gait analysis data including kinematics, ground reaction forces, and raw EMG signals from six adolescents at three different speeds were used to evaluate the PENm. The simulation results show that the PENm has the potential to predict accurate joint moment in real-time. The design of advanced human-robot interaction control strategies and human-inspired gait rehabilitation robots can benefit from the application of the human internal state provided by the PENm.

  2. Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait.

    PubMed

    Semciw, Adam I; Green, Rodney A; Murley, George S; Pizzari, Tania

    2014-02-01

    Gluteus minimus is believed to consist of two structurally and functionally unique segments (anterior and posterior); however there is a lack of electromyography (EMG) research that attempts to verify current theoretical knowledge of this muscle. The purpose of this study was therefore to evaluate the function of gluteus minimus during gait, and to determine whether anterior and posterior segments are functionally independent. Bipolar fine wire intramuscular EMG electrodes were inserted into anterior and posterior gluteus minimus segments of fifteen healthy volunteers (9 males) according to previously verified guidelines. Participants completed a series of four walking trials, followed by maximum voluntary isometric contractions in five different positions. Temporal and amplitude variables for each segment were compared across the gait cycle with independent t-tests. The relative contribution of each segment to the maximum resisted trials was compared with Mann-Whitney U tests (α = 0.05). Anterior and posterior segments were contracting at different relative intensities for three of the five maximum resisted trials (effect size = 0.39 to 0.62, P < 0.037). The posterior segment was larger in EMG amplitude (peak and average) during the first 20% of the gait cycle (effect size = 0.96 to 1.03, P < 0.02), while the anterior segment peaked later in the stance phase (effect size = 0.83, P = 0.034). Gluteus minimus is therefore composed of functionally independent segments. These results build on contemporary theoretical knowledge and may signify hip stabilising roles for each segment across different phases of the gait cycle.

  3. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  4. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  5. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  6. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: validation on normal subjects by standard gait analysis.

    PubMed

    Bugané, F; Benedetti, M G; Casadio, G; Attala, S; Biagi, F; Manca, M; Leardini, A

    2012-10-01

    This paper investigates the ability of a single wireless inertial sensing device stuck on the lower trunk to provide spatial-temporal parameters during level walking. The 3-axial acceleration signals were filtered and the timing of the main gait events identified. Twenty-two healthy subjects were analyzed with this system for validation, and the estimated parameters were compared with those obtained with state-of-the-art gait analysis, i.e. stereophotogrammetry and dynamometry. For each side, from four to six gait cycles were measured with the device, of which two were validated by gait analysis. The new acquisition system is easy to use and does not interfere with regular walking. No statistically significant differences were found between the acceleration-based measurements and the corresponding ones from gait analysis for most of the spatial-temporal parameters, i.e. stride length, stride duration, cadence and speed, etc.; significant differences were found for the gait cycle phases, i.e. single and double support duration, etc. The system therefore shows promise also for a future routine clinical use.

  7. Driving Electric Vehicle by EMG Signal Considering Frequency Components

    NASA Astrophysics Data System (ADS)

    Aso, Shinichi; Sasaki, Akinori; Hashimoto, Hiroshi; Ishii, Chiharu

    This paper proposes a useful method driving the electric vehicle by EMG signals (Electromyographic signals) which are filtered on the basis of frequency components which change with muscle contraction. This method estimates strength of muscular tension by a single EMG signal. By our method, user is able to control speed of the electric vehicle by strength of muscular tension. The method of speed control may give user good or bad operation feeling in the meaning of SD (Semantic Differential) method and factor analysis. The operation feeling is evaluated by experiment on EMG interface in cases of using filters or not. As a result, it is shown that operation feeling is influenced by this method.

  8. A real-time EMG-driven virtual arm.

    PubMed

    Manal, Kurt; Gonzalez, Roger V; Lloyd, David G; Buchanan, Thomas S

    2002-01-01

    An EMG-driven virtual arm is being developed in our laboratories for the purposes of studying neuromuscular control of arm movements. The virtual arm incorporates the major muscles spanning the elbow joint and is used to estimate tension developed by individual muscles based on recorded electromyograms (EMGs). It is able to estimate joint moments and the corresponding virtual movements, which are displayed in real-time on a computer screen. In addition, the virtual arm offers artificial control over a variety of physiological and environmental conditions. The virtual arm can be used to examine how the neuromuscular system compensates for the partial or total loss of a muscle's ability to generate force as might result from trauma or pathology. The purpose of this paper is to describe the design objectives, fundamental components and implementation of our real-time, EMG-driven virtual arm. PMID:11738638

  9. Active Finger Recognition from Surface EMG Signal Using Bayesian Filter

    NASA Astrophysics Data System (ADS)

    Araki, Nozomu; Hoashi, Yuki; Konishi, Yasuo; Mabuchi, Kunihiko; Ishigaki, Hiroyuki

    This paper proposed an active finger recognition method using Bayesian filter in order to control a myoelectric hand. We have previously proposed a finger joint angle estimation method based on measured surface electromyography (EMG) signals and a linear model. However, when we estimate 2 or more finger angles by this estimation method, the estimation angle of the inactive finger is not accurate. This is caused by interference of surface EMG signal. To solve this interference problem, we proposed active finger recognition method from the amplitude spectrum of surface EMG signal using Bayesian filter. To confirm the effectiveness of this recognition method, we developed a myoelectric hand simulator that implements proposed recognition algorithm and carried out real-time recognition experiment.

  10. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  11. Proportional EMG control for upper-limb powered exoskeletons.

    PubMed

    Lenzi, T; De Rossi, S M M; Vitiello, N; Carrozza, M C

    2011-01-01

    Electromyography (EMG) has been frequently proposed as the driving signal for controlling powered exoskeletons. Lot of effort has been spent to design accurate algorithms for muscular torque estimation, while very few studies attempted to understand to what extent an accurate torque estimate is indeed necessary to provide effective movement assistance through powered exoskeletons. In this study, we focus on the latter aspect by using a simple and "low-accuracy" torque estimate, an EMG-proportional control, to provide assistance through an elbow exoskeleton. Preliminary results show that subjects adapt almost instantaneously to the assistance provided by the exoskeleton and can reduce their effort while keeping full control of the movement. PMID:22254387

  12. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.

    PubMed

    Lloyd, David G; Besier, Thor F

    2003-06-01

    This paper examined if an electromyography (EMG) driven musculoskeletal model of the human knee could be used to predict knee moments, calculated using inverse dynamics, across a varied range of dynamic contractile conditions. Muscle-tendon lengths and moment arms of 13 muscles crossing the knee joint were determined from joint kinematics using a three-dimensional anatomical model of the lower limb. Muscle activation was determined using a second-order discrete non-linear model using rectified and low-pass filtered EMG as input. A modified Hill-type muscle model was used to calculate individual muscle forces using activation and muscle tendon lengths as inputs. The model was calibrated to six individuals by altering a set of physiologically based parameters using mathematical optimisation to match the net flexion/extension (FE) muscle moment with those measured by inverse dynamics. The model was calibrated for each subject using 5 different tasks, including passive and active FE in an isokinetic dynamometer, running, and cutting manoeuvres recorded using three-dimensional motion analysis. Once calibrated, the model was used to predict the FE moments, estimated via inverse dynamics, from over 200 isokinetic dynamometer, running and sidestepping tasks. The inverse dynamics joint moments were predicted with an average R(2) of 0.91 and mean residual error of approximately 12 Nm. A re-calibration of only the EMG-to-activation parameters revealed FE moments prediction across weeks of similar accuracy. Changing the muscle model to one that is more physiologically correct produced better predictions. The modelling method presented represents a good way to estimate in vivo muscle forces during movement tasks.

  13. Temporal Variation in Water Quality Parameters under Different Vegetative Communities in Two Flooded Forests of the Northern Pantanal, Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Couto, E. G.; Dalmagro, H. J.; Lathuilliere, M. J.; Pinto Junior, O. B.; Johnson, M. S.

    2013-12-01

    The Pantanal is one of the largest flood plains in the world, and is characterized by large variability in vegetative communities and flooding dynamics. Some woody plant species have been observed to colonize large areas forming monospecific stands. We measured chemical parameters of flood waters including dissolved organic carbon (DOC), nitrate (NO3), dissolved oxygen (DO), and carbon dioxide (CO2) as well as physical parameters such as photosynthetically active radiation (PAR), temperature (Tw), turbidity (Turb) and water levels (WL). These chemical and physical measurements were conducted with the intent to characterize spatial and temporal differences of monospecific stands in order to understand if these different formations alter the biogeochemistry of the Pantanal waters. Water sample campaigns were conducted during the inundation period of January to May 2013 in two areas located in the Private Reserve of the Brazilian Social Service of Commerce (RPPN-SESC) near Poconé, Mato Grosso. Research sites included: (1) a flooded tall-stature forest (known as Cambarazal) dominated by the Vochysia divergens species; and (2) in a flooded scrub forest (known as Baia das Pedras) dominated by the Combretum lanceolatum species. Results showed three principal factors which explained 80% of variance in aquatic physical and chemical parameters. The first factor (PCA-1) explained 38% of variance (DO, PAR and WL), PCA-2 explained 23% (NO3, Tw, DOC), while PCA-3 explained only 19% of variance (CO2 and Turb). During the entire study period, the major concentration of variables were observed in the flooded forest. Physical variables presented small alterations, with the exception of water levels, that were greater in the flooded forest. With respect to temporal variables, all chemical parameters were greater at the beginning of the inundation and gradually dropped with the water level. With this work, we observed that the different monospecific formations influenced water

  14. Concurrent Validity and Test-retest Reliability of the OPTOGait Photoelectric Cell System for the Assessment of Spatio-temporal Parameters of the Gait of Young Adults.

    PubMed

    Lee, Myung Mo; Song, Chang Ho; Lee, Kyoung Jin; Jung, Sang Woo; Shin, Doo Chul; Shin, Seung Ho

    2014-01-01

    [Purpose] The purpose of this study was to investigate the concurrent validity and test-retest reliability of the recently introduced OPTOGait Photoelectric Cell System for the assessment of spatio-temporal parameters of gait. [Subjects] Twenty healthy young adults (mean age = 27.35, SD = 7.4) were asked to walk 3 times on walkway at a comfortable speed. [Methods] Concurrent validity was assessed by comparing data obtained using the OPTOGait and GAITRite systems, and reliability was assessed by comparing data from the first and third OPTOGait sessions. [Results] Concurrent validity, as identified by intra-class correlation coefficients (ICC (2, 1) = 0.929-0.998), coefficients of variation (CVME = 0.32-11.30%), and 95% limits of agreement, showed high levels of correlation. In addition, the test-retest reliability of the OPTOGait Photoelectric Cell System was demonstrated as showing a high level of correlation with all spatio-temporal parameters by intra-class correlation coefficients (ICC (3, 1) = 0.785-0.952), coefficients of variation (CVME = 1.66-4.06%), 95% limits of agreement, standard error of measurement (SEM = 2.17-5.96%), and minimum detectable change (MDC95% = 6.01-16.52%). [Conclusion] The OPTOGait Photoelectric Cell System has strong concurrent validity along with relative and absolute test-retest reliabilities. This portable system with easy-to-use features can be used for clinical assessments or research purposes as an objective means of assessing gait.

  15. Influence of simulation time-step (temporal-scale) on optimal parameter estimation and runoff prediction performance in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2015-04-01

    Nowadays, most hydrological catchment models are designed to allow their use for streamflow simulation at different time-scales. While this permits models to be applied for broader purposes, it can also be a source of error in hydrological processes simulation at catchment scale. Those errors seem not to affect significantly simple conceptual models, but this flexibility may lead to large behavior errors in physically based models. Equations used in processes such as those related to soil moisture time-variation are usually representative at certain time-scales but they may not characterize properly water transfer in soil layers at larger scales. This effect is especially relevant as we move from detailed hourly scale to daily time-step, which are common time scales used at catchment streamflow simulation for different research and management practices purposes. This study aims to provide an objective methodology to identify the degree of similarity of optimal parameter values when hydrological catchment model calibration is developed at different time-scales. Thus, providing information for an informed discussion of physical parameter significance on hydrological models. In this research, we analyze the influence of time scale simulation on: 1) the optimal values of six highly sensitive parameters of the TOPLATS model and 2) the streamflow simulation efficiency, while optimization is carried out at different time scales. TOPLATS (TOPMODEL-based Land-Atmosphere Transfer Scheme) has been applied on its lumped version on three catchments of varying size located in northern Spain. The model has its basis on shallow groundwater gradients (related to local topography) that set up spatial patterns of soil moisture and are assumed to control infiltration and runoff during storm events and evaporation and drainage in between storm events. The model calculates the saturated portion of the catchment at each time step based on Topographical Index (TI) intervals. Surface

  16. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters.

    PubMed

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F Javier; Rojas, Teresa I

    2014-09-01

    The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a "dry season" and a "rainy season". A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."

  17. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters

    NASA Astrophysics Data System (ADS)

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F. Javier; Rojas, Teresa I.

    2014-09-01

    The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a "dry season" and a "rainy season". A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/ Penicillium."

  18. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    PubMed

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir. PMID:22990407

  19. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    PubMed

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  20. Change Mechanisms in EMG Biofeedback Training: Cognitive Changes Underlying Improvements in Tension Headache.

    ERIC Educational Resources Information Center

    Holroyd, Kenneth A.; And Others

    1984-01-01

    Subjects (N=43) suffering from tension headache were assigned to one of four electromyograph (EMG) biofeedback conditions and were led to believe they were achieving high or moderate success in decreasing EMG activity. Regardless of actual EMG changes, subjects receiving high-success feedback showed greater improvement for headaches than…

  1. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  2. Design of a robust EMG sensing interface for pattern classification

    PubMed Central

    Huang, He; Zhang, Fan; Sun, Yan L.; He, Haibo

    2010-01-01

    Electromyographic (EMG) pattern classification has been widely investigated for neural control of external devices in order to assist with movements of patients with motor deficits. Classification performance deteriorates due to inevitable disturbances to the sensor interface, which significantly challenges the clinical value of this technique. This study aimed to design a sensor fault detection (SFD) module in the sensor interface to provide reliable EMG pattern classification. This module monitored the recorded signals from individual EMG electrodes and performed a self-recovery strategy to recover the classification performance when one or more sensors were disturbed. To evaluate this design, we applied synthetic disturbances to EMG signals collected from leg muscles of able-bodied subjects and a subject with a transfemoral amputation and compared the accuracies for classifying transitions between different locomotion modes with and without the SFD module. The results showed that the SFD module maintained classification performance when one signal was distorted and recovered about 20% of classification accuracy when four signals were distorted simultaneously. The method was simple to implement. Additionally, these outcomes were observed for all subjects, including the leg amputee, which implies the promise of the designed sensor interface for providing a reliable neural-machine interface for artificial legs. PMID:20811091

  3. Effects of load on good morning kinematics and EMG activity.

    PubMed

    Vigotsky, Andrew David; Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises. PMID:25653899

  4. EMG Biofeedback Training Versus Systematic Desensitization for Test Anxiety Reduction

    ERIC Educational Resources Information Center

    Romano, John L.; Cabianca, William A.

    1978-01-01

    Biofeedback training to reduce test anxiety among university students was investigated. Biofeedback training with systematic desensitization was compared to an automated systematic desensitization program not using EMG feedback. Biofeedback training is a useful technique for reducing test anxiety, but not necessarily more effective than systematic…

  5. Effects of load on good morning kinematics and EMG activity.

    PubMed

    Vigotsky, Andrew David; Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  6. EOG-sEMG Human Interface for Communication.

    PubMed

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  7. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  8. EOG-sEMG Human Interface for Communication

    PubMed Central

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  9. Design of a robust EMG sensing interface for pattern classification

    NASA Astrophysics Data System (ADS)

    Huang, He; Zhang, Fan; Sun, Yan L.; He, Haibo

    2010-10-01

    Electromyographic (EMG) pattern classification has been widely investigated for neural control of external devices in order to assist with movements of patients with motor deficits. Classification performance deteriorates due to inevitable disturbances to the sensor interface, which significantly challenges the clinical value of this technique. This study aimed to design a sensor fault detection (SFD) module in the sensor interface to provide reliable EMG pattern classification. This module monitored the recorded signals from individual EMG electrodes and performed a self-recovery strategy to recover the classification performance when one or more sensors were disturbed. To evaluate this design, we applied synthetic disturbances to EMG signals collected from leg muscles of able-bodied subjects and a subject with a transfemoral amputation and compared the accuracies for classifying transitions between different locomotion modes with and without the SFD module. The results showed that the SFD module maintained classification performance when one signal was distorted and recovered about 20% of classification accuracy when four signals were distorted simultaneously. The method was simple to implement. Additionally, these outcomes were observed for all subjects, including the leg amputee, which implies the promise of the designed sensor interface for providing a reliable neural-machine interface for artificial legs.

  10. Vibration-induced changes in EMG during human locomotion.

    PubMed

    Verschueren, Sabine M P; Swinnen, Stephan P; Desloovere, Kaat; Duysens, Jacques

    2003-03-01

    The present study was set up to examine the contribution of Ia afferent input in the generation of electromyographic (EMG) activity. Subjects walked blindfolded along a walkway while tendon vibration was applied continuously to a leg muscle. The effects of vibration were measured on mean EMG activity in stance and swing phase. The results show that vibration of the quadriceps femoris (Q) at the knee and of biceps femoris (BF) at the knee enhanced the EMG activity of these muscles and this occurred mainly in the stance phase of walking. These results suggest involvement of Ia afferent input of Q and BF in EMG activation during stance. In contrast, vibration of muscles at the ankle and hip had no significant effect on burst amplitude. Additionally, the onset time of tibialis anterior was measured to look at timing of phase transitions. Only vibration of quadriceps femoris resulted in an earlier onset of tibialis anterior within the gait cycle, suggesting involvement of these Ia afferents in the triggering of phase transitions. In conclusion, the results of the present study suggest involvement of Ia afferent input in the control of muscle activity during locomotion in humans. A limited role in timing of phase transitions is proposed as well. PMID:12626612

  11. Effects of load on good morning kinematics and EMG activity

    PubMed Central

    Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises. PMID:25653899

  12. Statistical analysis of long term spatial and temporal trends of temperature parameters over Sutlej river basin, India

    NASA Astrophysics Data System (ADS)

    Singh, Dharmaveer; Glupta, R. D.; Jain, Sanjay K.

    2015-02-01

    The annual and seasonal trend analysis of different surface temperature parameters (average, maximum, minimum and diurnal temperature range) has been done for historical (1971-2005) and future periods (2011-2099) in the middle catchment of Sutlej river basin, India. The future time series of temperature data has been generated through statistical downscaling from large scale predictors of CGCM3 and HadCM3 models under A2 scenario. Modified Mann-Kendall test and Cumulative Sum (CUSUM) chart have been used for detecting trend and sequential shift in time series of temperature parameters. The results of annual trend analysis for period of 1971-2005 show increasing as well as decreasing trends in average ( T Mean), maximum ( T Max), minimum ( T Min) temperature and increasing trends in Diurnal Temperature Range (DTR) at different stations. But the annual trend analysis of downscaled data has revealed statistically significant (95% confidence level) rising trends in T Mean, T Max, T Min and falling trend in DTR for the period 2011-2099. The decreasing trend in DTR is due to higher rate of increase in T Min compared to T Max.

  13. The Importance of Temporal Design: How Do Measurement Intervals Affect the Accuracy and Efficiency of Parameter Estimates in Longitudinal Research?

    PubMed

    Timmons, Adela C; Preacher, Kristopher J

    2015-01-01

    The timing (spacing) of assessments is an important component of longitudinal research. The purpose of the present study is to determine methods of timing the collection of longitudinal data that provide better parameter recovery in mixed effects nonlinear growth modeling. A simulation study was conducted, varying function type, as well as the number of measurement occasions, in order to examine the effect of timing on the accuracy and efficiency of parameter estimates. The number of measurement occasions was associated with greater efficiency for all functional forms and was associated with greater accuracy for the intrinsically nonlinear functions. In general, concentrating measurement occasions toward the left or at the extremes was associated with increased efficiency when estimating the intercepts of intrinsically linear functions, and concentrating values where the curvature of the function was greatest generally resulted in the best recovery for intrinsically nonlinear functions. Results from this study can be used in conjunction with theory to improve the design of longitudinal research studies. In addition, an R program is provided for researchers to run customized simulations to identify optimal sampling schedules for their own research.

  14. Generating Control Commands From Gestures Sensed by EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements

  15. Unilateral and bilateral subthalamic nucleus stimulation in Parkinson's disease: effects on EMG signals of lower limb muscles during walking.

    PubMed

    Ferrarin, Maurizio; Carpinella, Ilaria; Rabuffetti, Marco; Rizzone, Mario; Lopiano, Leonardo; Crenna, Paolo

    2007-06-01

    The effects of subthalamic nucleus (STN) stimulation on the spatio-temporal organization of locomotor commands directed to lower limb muscles were studied in subjects with idiopathic Parkinson's Disease (PD) by recording the EMG activity produced during steady-state walking in representative thigh (rectus femoris, RF, and semimembranosus, SM) and leg (gatrocnemius medialis, GAM, and tibialis anterior, TA) muscles, under four experimental conditions: basal stimulation OFF, unilateral (right and left) stimulation ON, and bilateral stimulation ON. Locomotor profiles of all of the muscles tested were found to be substantially affected by STN stimulation, either in terms of restoration/enhancement of the main activity bursts or normalization of recruitment timing thereof. Responses showed relatively higher statistical significance in the distal groups (GAM and TA) and, within them, for the EMG components called into action over the ground-contact (ankle dorsiflexors) and midstance (ankle plantarflexors) phases of the stride cycle. In line with data obtained from clinical rating, unilateral stimulation produced less consistent EMG changes compared with bilateral stimulation. However, at variance with clinical effects, which prevailed on the side of the body contralateral to stimulation, EMG responses to unilateral stimulation were usually symmetrical. Results indicate that the impact of STN stimulation on locomotor activation of lower limb muscles in PD is characterized by: 1) substantial effects exhibiting differential topographical (distal versus proximal) and stride-phase (stance versus swing) consistency and 2) absence of the lateralized actions typically observed for the clinical signs of the disease. Interaction with the activity of functionally different executive systems might account for the observed pattern of responsiveness.

  16. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  17. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery. PMID:26513799

  18. Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy Using Spatial-Temporal {sup 18}F-FDG PET Features, Clinical Parameters, and Demographics

    SciTech Connect

    Zhang, Hao; Tan, Shan; Chen, Wengen; Kligerman, Seth; Kim, Grace; D'Souza, Warren D.; Suntharalingam, Mohan; Lu, Wei

    2014-01-01

    Purpose: To construct predictive models using comprehensive tumor features for the evaluation of tumor response to neoadjuvant chemoradiation therapy (CRT) in patients with esophageal cancer. Methods and Materials: This study included 20 patients who underwent trimodality therapy (CRT + surgery) and underwent {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) both before and after CRT. Four groups of tumor features were examined: (1) conventional PET/CT response measures (eg, standardized uptake value [SUV]{sub max}, tumor diameter); (2) clinical parameters (eg, TNM stage, histology) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changes resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, cross-validations being used to avoid model overfitting. Prediction accuracy was assessed by area under the receiver operating characteristic curve (AUC), and precision was evaluated by confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). With the use of spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications)—results that were significantly better than when conventional PET/CT measures or clinical parameters and demographics alone were used. For groups with many tumor features (groups 3 and 4), the SVM model achieved significantly higher

  19. Spatio-temporal distribution of chlorophyll-a in relation to physico-chemical parameters in coastal waters of the northwestern Bay of Bengal.

    PubMed

    Baliarsingh, S K; Lotliker, Aneesh A; Sahu, K C; Sinivasa Kumar, T

    2015-07-01

    The present study focuses on understanding the long-term distribution of physico-chemical parameters and their influence on the distribution of chlorophyll-a (chl-a) at a coastal site in the northwestern Bay of Bengal. Chl-a showed large variability (0.12 to 10.05 mg m(-3)) on a spatio-temporal scale during the study period. However, the distribution showed a similar pattern with marginal variability from March 2010 to February 2011 and March 2011 to February 2012. The vertical distribution of salinity, pH, total suspended matter (TSM) and chl-a showed systematic temporal variability. However, dissolved oxygen (DO) and nutrients (nitrite + nitrate, phosphate, silicate) did not show any significant spatio-temporal trend. Chl-a showed bimodal distribution on an annual scale, with the first peak appearing during the pre-monsoon period in March due to a seasonal phytoplankton bloom, whereas the second peak occurring during September as a result of nutrient loading from river influx due to monsoonal precipitation. Factor analysis revealed the association of low salinity and high nutrients with chl-a. This infers that the nutrients brought by the influx of river into the study area were fuelling the growth and abundance of phytoplankton. Cluster analysis resulted in two distinct clusters among all physico-chemical datasets, indicating the presence of two distinct areas separated by the 30 m isobath that were strongly influenced by physico-chemical characteristics associated with the seasonal monsoon.

  20. Temporal variability in bioassays of ammonia exchange potential in relation to plant and soil nitrogen parameters in intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Mattsson, M.; Herrmann, B.; David, M.; Loubet, B.; Riedo, M.; Theobald, M. R.; Sutton, M. A.; Bruhn, D.; Neftel, A.; Schjoerring, J. K.

    2008-07-01

    The exchange of ammonia between crop canopies and the atmosphere depends on a range of plant parameters and climatic conditions but little is known about effects of management factors. We have here investigated the ammonia exchange potential of a grass sward dominated by Lolium perenne in response to cutting and fertilization. Tall grass showed a low potential for NH3 emission before cutting. During re-growth after cutting, leaf tissue concentrations of NO3-, NH4+, soluble N and total N increased along with apoplastic NH4+ concentrations. In contrast, apoplastic pH decreased resulting in largely unaltered NH3 emission potential. A high potential for NH3 emission was shown by the plant litter. Fertilization with 100 kg N ha-1 one week after cutting caused the apoplastic NH4+ concentration of the newly emerging leaves to increase dramatically. The apoplastic NH4+ concentration peaked the day after the fertiliser was applied and thereafter decreased over the following 10 days until reaching the same level as before fertilisation. A positive correlation was found between NH4+ concentrations in leaf apoplast, bulk tissue and litter throughout the experimental period. Leaf soluble N was negatively correlated with apoplastic NH4+ concentration whereas total N was weakly correlated with NH4+ concentrations in leaf tissue and soil.

  1. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. I. UNIVERSAL SCALING LAWS OF SPACE AND TIME PARAMETERS

    SciTech Connect

    Aschwanden, Markus J.; Zhang, Jie; Liu, Kai E-mail: jzhang7@gmu.edu

    2013-09-20

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D{sub 2}), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v{sub max}) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L {sup –3}, N(A)∝A {sup –2}, N(V)∝V {sup –5/3}, N(T)∝T {sup –2}, and D{sub 2} = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L {sup 0.94±0.01} and the three-parameter scaling law L∝κ T {sup 0.1}, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)

  2. Multi-wavelength Observations of the Spatio-temporal Evolution of Solar Flares with AIA/SDO. I. Universal Scaling Laws of Space and Time Parameters

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Zhang, Jie; Liu, Kai

    2013-09-01

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D 2), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v max) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)vpropL -3, N(A)vpropA -2, N(V)vpropV -5/3, N(T)vpropT -2, and D 2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κvpropL 0.94 ± 0.01 and the three-parameter scaling law Lvpropκ T 0.1, which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs).

  3. Spatial and temporal dynamics of size-structured photosynthetic parameters (PAM) and primary production (13C) of pico- and nano-phytoplankton in an atoll lagoon.

    PubMed

    Lefebvre, Sébastien; Claquin, Pascal; Orvain, Francis; Véron, Benoît; Charpy, Loïc

    2012-01-01

    Atoll lagoons display a high diversity of trophic states due mainly to their specific geomorphology, and probably to their level and mode of human exploitation. We investigated the functioning of the Ahe atoll lagoon, utilized for pearl oyster farming, through estimations of photosynthetic parameters (pulse amplitude modulation fluorometry) and primary production ((13)C incorporation) measurements of the size structured phytoplankton biomass (<2 μm and >2 μm). Spatial and temporal scales of variability were surveyed during four seasons, over 16 months, at four sites within the lagoon. While primary production (P) was dominated by the picophytoplankton, its biomass specific primary productivity (P(B)) was lower than in other atoll lagoons. The variables size fraction of the phytoplankton, water temperature, season, the interaction term station*fraction and site, explained significantly the variance of the data set using redundancy analysis. No significant trends over depth were observed in the range of 0-20 m. A clear spatial pattern was found which was persistent over the seasons: south and north sites were different from the two central stations for most of the measured variables. This pattern could possibly be explained by the existence of water cells showing different water residence time within the lagoon. Photoacclimation strategies of the two size fractions differed through their light saturation coefficient (higher for picophytoplankton), but not through their maximum photosynthetic capacity (ETR(max)). Positive linear relationships between photosynthetic parameters indicated that their dynamic was independent of light availability in this ecosystem, but most probably dependent on nutrient availability and/or rapid changes in the community structure. Spatial and temporal patterns of the measured processes are then further discussed in the context of nutrient availability and the possible role of cultured oysters in nutrient recycling. PMID:22640918

  4. fMRI analysis for motor paradigms using EMG-based designs: a validation study.

    PubMed

    van Rootselaar, Anne-Fleur; Renken, Remco; de Jong, Bauke M; Hoogduin, Johannes M; Tijssen, Marina A J; Maurits, Natasha M

    2007-11-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five healthy participants performed a motor task, consisting of posture (low EMG power), and slow (medium EMG power) and fast (high EMG power) wrist flexion-extension movements. Brain activation maps derived from a conventional block design analysis (block-only design) were compared with brain activation maps derived using EMG-based regressors: (1) using the continuous EMG power as a single regressor of interest (EMG-only design) to relate motor performance and brain activity, and (2) using EMG power variability as an additional regressor in the fMRI block design analysis to relate movement variability and brain activity (mathematically) independent of the motor task. The agreement between the identified brain areas for the block-only design and the EMG-only design was excellent for all participants. Additionally, we showed that EMG power variability correlated well with activity in brain areas known to be involved in movement modulation. These innovative EMG-fMRI analysis techniques will allow the application of novel motor paradigms. This is an important step forward in the study of both the normally functioning motor system and the pathophysiological mechanisms in movement disorders.

  5. Seasonal and temporal dynamics of macrophytic assemblages and abiotic parameters of coastal lagoons in Western Greece (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Christia, Chrysoula; Papastergiadou, Eva

    2014-05-01

    Coastal lagoons are considered naturally stressed systems that experience frequent environmental disturbances and fluctuations and they are usually considered as physically controlled ecosystems. Coastal lagoons of Western Greece are representative of four different lagoon types covering a wide range of physiographical and hydrological characteristics. The seasonal differences in the physico-chemical parameters monitored from 2005 to 2007 were reduced in lagoon types (II and III) which characterized by better seawater communication when compared with the chocked lagoon types (Type I and IV). The latter types showed lower salinity values and high nutrient concentrations especially during the wet period. The macrophytic assemblages of coastal lagoons are typically dominated by few genera with great environmental plasticity and salinity competition, among other structuring abiotic variables. The implementation of DCA analysis revealed five distinct macrophytic assemblages in which dominant species were the angiosperms Zostera noltii, Ruppia cirrhosa, Cymodocea nodosa, Potamogeton pectinatus, the charophytes Lamprothamnium papulosum and Chara hispida f. corfuensis, as well as species preferring more marine conditions such as Acanthophora nayadiformis and Cystoseira barbata. The lagoon type IV differs from all other distinguished lagoon types due to the dominance of the species Potamogeton pectinatus and the charophyte Chara hispida f. corfuensis. Regarding the macrophytic assemblages and the univariate variables, important differences were recorded between lagoon types. Chocked lagoons showed low number of species and Shannon diversity index comparing with restricted lagoon types (Types II and III). The multiple linear regression analysis showed that transparency, pH, nitrates, alkalinity and Chl-a could affect the values of the above variables. A decline of angiosperms was referred on a worldwide scale and recorded also in coastal lagoons of Western Greece. A gradual

  6. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  7. Differences in Contraction-Induced Hemodynamics and Surface EMG in Duchenne Muscular Dystrophy.

    PubMed

    Van Ginderdeuren, Eva; Caicedo, Alexander; Taelmans, Joachim; Goemans, Nathalie; van den Hauwe, Marlen; Naulaers, Gunnar; Van Huffel, Sabine; Buyse, Gunnar

    2016-01-01

    Duchenne muscular dystrophy (DMD) is the most common and devastating type of muscular dystrophy worldwide. In this study we have investigated the potential of the combined use of non-invasive near-infrared spectroscopy (NIRS) and surface electromyography (sEMG) to assess contraction-induced changes in oxygenation and myoelectrical activity, respectively in the biceps brachii of eight DMD patients aged 9-12 years and 11 age-matched healthy controls. Muscle tissue oxygenation index (TOI), oxyhemoglobin (HbO2), and sEMG signals were continuously measured during a sustained submaximal contraction of 60% maximal voluntary isometric contraction, and post-exercise recovery period. Compared to controls, DMD subjects showed significantly smaller changes in TOI during the contraction. In addition, during the reoxygenation phase some dynamic parameters extracted from the HbO2 measurements were significantly different between the two groups, some of which were correlated with functional performances on a 6-min walking test. In conclusion, non-invasive continuous monitoring of skeletal muscle oxygenation by NIRS is feasible in young children, and significant differences in contraction-induced deoxygenation and reoxygenation patterns were observed between healthy controls and DMD children.

  8. Improvements on EMG-based handwriting recognition with DTW algorithm.

    PubMed

    Li, Chengzhang; Ma, Zheren; Yao, Lin; Zhang, Dingguo

    2013-01-01

    Previous works have shown that Dynamic Time Warping (DTW) algorithm is a proper method of feature extraction for electromyography (EMG)-based handwriting recognition. In this paper, several modifications are proposed to improve the classification process and enhance recognition accuracy. A two-phase template making approach has been introduced to generate templates with more salient features, and modified Mahalanobis Distance (mMD) approach is used to replace Euclidean Distance (ED) in order to minimize the interclass variance. To validate the effectiveness of such modifications, experiments were conducted, in which four subjects wrote lowercase letters at a normal speed and four-channel EMG signals from forearms were recorded. Results of offline analysis show that the improvements increased the average recognition accuracy by 9.20%.

  9. Voiceless Bangla vowel recognition using sEMG signal.

    PubMed

    Mostafa, S S; Awal, M A; Ahmad, M; Rashid, M A

    2016-01-01

    Some people cannot produce sound although their facial muscles work properly due to having problem in their vocal cords. Therefore, recognition of alphabets as well as sentences uttered by these voiceless people is a complex task. This paper proposes a novel method to solve this problem using non-invasive surface Electromyogram (sEMG). Firstly, eleven Bangla vowels are pronounced and sEMG signals are recorded at the same time. Different features are extracted and mRMR feature selection algorithm is then applied to select prominent feature subset from the large feature vector. After that, these prominent features subset is applied in the Artificial Neural Network for vowel classification. This novel Bangla vowel classification method can offer a significant contribution in voice synthesis as well as in speech communication. The result of this experiment shows an overall accuracy of 82.3 % with fewer features compared to other studies in different languages. PMID:27652095

  10. Temporal-scale spectral variability analysis of water quality parameters to realize seasonal behaviour of a tropical river system--River Cauvery, India.

    PubMed

    Prakash, K L; Raghavendra, K; Somashekar, R K

    2009-03-01

    This paper describes the Time series analysis of river water quality with emphasis on variation in parameters as evidenced by statistical approach and mathematical models. The extensive study enabled to differentiate and realize the behaviour of river and catchment's changes induced by human activities. The Time series analysis evaluation indicated trivial variation and movement in the water quality as reflected by the changes in the catchment characteristics. Although the observed trends showed an insignificant human contribution to basin hydrology and river water chemistry, noticeable human activities and unsustainable practices steadily contributed to change in water quality from the existing long term spectral signatures to short term spectral signatures. It is inferred that short term spectral signature exhibited on temporal scale by a monitoring program of this kind reflects an insalubrious river system and long term gradual changes in spectrum is an indication of healthy system. Monitoring and analyses of these decisive changes in water quality parameters over a period could be a powerful tool for assessing general river water quality and management plan.

  11. EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower Extremity

    PubMed Central

    Sartori, Massimo; Reggiani, Monica; Farina, Dario; Lloyd, David G.

    2012-01-01

    This work examined if currently available electromyography (EMG) driven models, that are calibrated to satisfy joint moments about one single degree of freedom (DOF), could provide the same musculotendon unit (MTU) force solution, when driven by the same input data, but calibrated about a different DOF. We then developed a novel and comprehensive EMG-driven model of the human lower extremity that used EMG signals from 16 muscle groups to drive 34 MTUs and satisfy the resulting joint moments simultaneously produced about four DOFs during different motor tasks. This also led to the development of a calibration procedure that allowed identifying a set of subject-specific parameters that ensured physiological behavior for the 34 MTUs. Results showed that currently available single-DOF models did not provide the same unique MTU force solution for the same input data. On the other hand, the MTU force solution predicted by our proposed multi-DOF model satisfied joint moments about multiple DOFs without loss of accuracy compared to single-DOF models corresponding to each of the four DOFs. The predicted MTU force solution was (1) a function of experimentally measured EMGs, (2) the result of physiological MTU excitation, (3) reflected different MTU contraction strategies associated to different motor tasks, (4) coordinated a greater number of MTUs with respect to currently available single-DOF models, and (5) was not specific to an individual DOF dynamics. Therefore, our proposed methodology has the potential of producing a more dynamically consistent and generalizable MTU force solution than was possible using single-DOF EMG-driven models. This will help better address the important scientific questions previously approached using single-DOF EMG-driven modeling. Furthermore, it might have applications in the development of human-machine interfaces for assistive devices. PMID:23300725

  12. In vivo EMG biofeedback in violin and viola pedagogy.

    PubMed

    LeVine, W R; Irvine, J K

    1984-06-01

    In vivo EMG biofeedback was found to be an effective pedagogical tool for removing unwanted left-hand tension in nine violin and viola players. Improvement occurred rapidly and persisted throughout a 5-month follow-up period. Further studies will be necessary to assess the effect of biofeedback independent of placebo effects. The brevity of the method and the magnitude of improvement warrant further investigation. PMID:6509108

  13. Comparative study of PCA in classification of multichannel EMG signals.

    PubMed

    Geethanjali, P

    2015-06-01

    Electromyographic (EMG) signals are abundantly used in the field of rehabilitation engineering in controlling the prosthetic device and significantly essential to find fast and accurate EMG pattern recognition system, to avoid intrusive delay. The main objective of this paper is to study the influence of Principal component analysis (PCA), a transformation technique, in pattern recognition of six hand movements using four channel surface EMG signals from ten healthy subjects. For this reason, time domain (TD) statistical as well as auto regression (AR) coefficients are extracted from the four channel EMG signals. The extracted statistical features as well as AR coefficients are transformed using PCA to 25, 50 and 75 % of corresponding original feature vector space. The classification accuracy of PCA transformed and non-PCA transformed TD statistical features as well as AR coefficients are studied with simple logistic regression (SLR), decision tree (DT) with J48 algorithm, logistic model tree (LMT), k nearest neighbor (kNN) and neural network (NN) classifiers in the identification of six different movements. The Kruskal-Wallis (KW) statistical test shows that there is a significant reduction (P < 0.05) in classification accuracy with PCA transformed features compared to non-PCA transformed features. SLR with non-PCA transformed time domain (TD) statistical features performs better in accuracy and computational power compared to other features considered in this study. In addition, the motion control of three drives for six movements of the hand is implemented with SLR using TD statistical features in off-line with TMSLF2407 digital signal controller (DSC). PMID:25860845

  14. Forearm motion discrimination technique using real-time EMG signals.

    PubMed

    Mizuno, Haruaki; Tsujiuchi, Nobutaka; Koizumi, Takayuki

    2011-01-01

    The objective of this study is to develop a method of discriminating real-time motion from electromyogram (EMG) signals. We previously proposed a motion discrimination method. This method could discriminate five motions (hand opening, hand closing, hand chucking, wrist extension, and wrist flexion) at a rate of above 90 percent from four channel EMG signals in the forearm. The method prevents elbow motions from interfering with hand motion discrimination. However, discrimination processing time of this method is more than 300 ms, and the shortest delay time that is perceivable by the user is generally regarded to be roughly 300 ms. Furthermore, a robot hand has a mechanical delay time. Thus, the discrimination time should be less than 300 ms. Here, we propose a real-time motion discrimination method using a hyper-sphere model. In comparison with the old model, the hyper-sphere models can make more complex decision regions which can discriminate at the state of the motion. Furthermore, this model can learn EMG signals in real-time. We experimentally verified that the discrimination accuracies of this method were above 90 percent. Moreover, elbow motions did not interfere with the hand motion discrimination. The discrimination processing time was less than 300 ms, and was about 30 percent shorter than that of the old method. PMID:22255323

  15. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    PubMed

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  16. A new and fast approach towards sEMG decomposition.

    PubMed

    Gligorijević, Ivan; van Dijk, Johannes P; Mijović, Bogdan; Van Huffel, Sabine; Blok, Joleen H; De Vos, Maarten

    2013-05-01

    The decomposition of high-density surface EMG (HD-sEMG) interference patterns into the contribution of motor units is still a challenging task. We introduce a new, fast solution to this problem. The method uses a data-driven approach for selecting a set of electrodes to enable discrimination of present motor unit action potentials (MUAPs). Then, using shapes detected on these channels, the hierarchical clustering algorithm as reported by Quian Quiroga et al. (Neural Comput 16:1661-1687, 2004) is extended for multichannel data in order to obtain the motor unit action potential (MUAP) signatures. After this first step, more motor unit firings are obtained using the extracted signatures by a novel demixing technique. In this demixing stage, we propose a time-efficient solution for the general convolutive system that models the motor unit firings on the HD-sEMG grid. We constrain this system by using the extracted signatures as prior knowledge and reconstruct the firing patterns in a computationally efficient way. The algorithm performance is successfully verified on simulated data containing up to 20 different MUAP signatures. Moreover, we tested the method on real low contraction recordings from the lateral vastus leg muscle by comparing the algorithm's output to the results obtained by manual analysis of the data from two independent trained operators. The proposed method showed to perform about equally successful as the operators.

  17. Individual finger classification from surface EMG: Influence of electrode set.

    PubMed

    Celadon, Nicolo; Dosen, Strahinja; Paleari, Marco; Farina, Dario; Ariano, Paolo

    2015-01-01

    The aim of this work was to minimize the number of channels, determining acceptable electrode locations and optimizing electrode-recording configurations to decode isometric flexion and extension of individual fingers. Nine healthy subjects performed cyclical isometric contractions activating individual fingers. During the experiment they tracked a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be employed. Surface electromyography (sEMG) signals were detected from the forearm muscles using a matrix of 192 channels (24 longitudinal columns and 8 transversal rows, 10 mm inter-electrode distance). The classification was evaluated in the context of a linear discriminant analysis (LDA) with different sets of EMG electrodes: A) one linear array of 8 electrodes, B) two arrays of 8 electrodes each, C) a set with one electrode on the barycenter of each sEMG activity area, D) all the recorded channels. The results showed that the classification accuracy depended on the electrode set (F=14.67, p<;0.001). The best reduction approaches were the barycenter calculation and the use of two linear arrays of electrodes, which performed similarly to each other (both > 82% of average success rate). Considering the computation time and electrode positioning, it is concluded that two arrays of 8 electrodes provide an optimal configuration to classify the isometric flexion and extension of individual fingers.

  18. Baseline Adaptive Wavelet Thresholding Technique for sEMG Denoising

    NASA Astrophysics Data System (ADS)

    Bartolomeo, L.; Zecca, M.; Sessa, S.; Lin, Z.; Mukaeda, Y.; Ishii, H.; Takanishi, Atsuo

    2011-06-01

    The surface Electromyography (sEMG) signal is affected by different sources of noises: current technology is considerably robust to the interferences of the power line or the cable motion artifacts, but still there are many limitations with the baseline and the movement artifact noise. In particular, these sources have frequency spectra that include also the low-frequency components of the sEMG frequency spectrum; therefore, a standard all-bandwidth filtering could alter important information. The Wavelet denoising method has been demonstrated to be a powerful solution in processing white Gaussian noise in biological signals. In this paper we introduce a new technique for the denoising of the sEMG signal: by using the baseline of the signal before the task, we estimate the thresholds to apply to the Wavelet thresholding procedure. The experiments have been performed on ten healthy subjects, by placing the electrodes on the Extensor Carpi Ulnaris and Triceps Brachii on right upper and lower arms, and performing a flexion and extension of the right wrist. An Inertial Measurement Unit, developed in our group, has been used to recognize the movements of the hands to segment the exercise and the pre-task baseline. Finally, we show better performances of the proposed method in term of noise cancellation and distortion of the signal, quantified by a new suggested indicator of denoising quality, compared to the standard Donoho technique.

  19. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  20. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP. PMID:25227075

  1. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    SciTech Connect

    Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco; Dunbar, John; Higley, Paul

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  2. Evidence from retractor bulbi EMG for linearized motor control of conditioned nictitating membrane responses.

    PubMed

    Lepora, N F; Mavritsaki, E; Porrill, J; Yeo, C H; Evinger, C; Dean, P

    2007-10-01

    Classical conditioning of nictitating membrane (NM) responses in rabbits is a robust model learning system, and experimental evidence indicates that conditioned responses (CRs) are controlled by the cerebellum. It is unknown whether cerebellar control signals deal directly with the complex nonlinearities of the plant (blink-related muscles and peripheral tissues) or whether the plant is linearized to ensure a simple relation between cerebellar neuronal firing and CR profile. To study this question, the retractor bulbi muscle EMG was recorded with implanted electrodes during NM conditioning. Pooled activity in accessory abducens motoneurons was estimated from spike trains extracted from the EMG traces, and its temporal profile was found to have an approximately Gaussian shape with peak amplitude linearly related to CR amplitude. The relation between motoneuron activity and CR profiles was accurately fitted by a first-order linear filter, with each spike input producing an exponentially decaying impulse response with time constant of order 0.1 s. Application of this first-order plant model to CR data from other laboratories suggested that, in these cases also, motoneuron activity had a Gaussian profile, with time-of-peak close to unconditioned stimulus (US) onset and SD proportional to the interval between conditioned stimulus and US onsets. These results suggest that for conditioned NM responses the cerebellum is presented with a simplified "virtual" plant that is a linearized version of the underlying nonlinear biological system. Analysis of a detailed plant model suggests that one method for linearising the plant would be appropriate recruitment of motor units.

  3. Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model.

    PubMed

    de Oliveira, Liliam Fernandes; Menegaldo, Luciano Luporini

    2010-10-19

    EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (F(om)). This paper proposes an approach to find F(om) by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. F(om) obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained F(om) was used, as compared to F(om) from the literature.

  4. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: effects of land cover and human impact.

    PubMed

    Mouri, Goro; Takizawa, Satoshi; Oki, Taikan

    2011-07-01

    Seasonal and spatial variations in major ion chemistry and isotope composition in the rural-urban catchment of the Shigenobu River were monitored to determine the influences of agricultural and urban sewage systems on water quality. Temporal patterns of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) were examined at four sites in the rural-urban catchment. Urban land cover, incorporating the effects of increased population, domestic water use, and industrial wastewater, was positively associated with increases in water pollution and was included as an important explanatory variable for the variations in all water quality parameters. Significant trends were found in each parameter. BOD concentrations ranged widely, and were high in urban regions, due to the presence of a waste water treatment plant. TN and SS showed various trends, but did not vary widely, unlike TP. TP concentrations varied greatly, with high concentrations in cultivated areas, due to fertilizer use. Local water quality management or geology could further explain some of the variations in water quality. Non-point-source pollution exhibited strong positive spatial autocorrelation, indicating that incorporating spatial dimensions into water quality assessment enhances our understanding of spatial patterns of water quality. Data from the Ministry of Land Infrastructure and Transport (MLIT) and Environment Ministry (EM) were used to investigate trends in land management. Stepwise regression analysis was used to test the correlation between specific management practises and substance concentrations in surface water and sediment. MLIT and EM data for 1981-2003 showed an increase in TN, TP, and SS concentrations in surface water. High levels of fertilizer in dormant sprays and domestic water use were associated with high pesticide concentrations in water and sediment. This paper presents a novel method of studying the environmental impact of

  5. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: effects of land cover and human impact.

    PubMed

    Mouri, Goro; Takizawa, Satoshi; Oki, Taikan

    2011-07-01

    Seasonal and spatial variations in major ion chemistry and isotope composition in the rural-urban catchment of the Shigenobu River were monitored to determine the influences of agricultural and urban sewage systems on water quality. Temporal patterns of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) were examined at four sites in the rural-urban catchment. Urban land cover, incorporating the effects of increased population, domestic water use, and industrial wastewater, was positively associated with increases in water pollution and was included as an important explanatory variable for the variations in all water quality parameters. Significant trends were found in each parameter. BOD concentrations ranged widely, and were high in urban regions, due to the presence of a waste water treatment plant. TN and SS showed various trends, but did not vary widely, unlike TP. TP concentrations varied greatly, with high concentrations in cultivated areas, due to fertilizer use. Local water quality management or geology could further explain some of the variations in water quality. Non-point-source pollution exhibited strong positive spatial autocorrelation, indicating that incorporating spatial dimensions into water quality assessment enhances our understanding of spatial patterns of water quality. Data from the Ministry of Land Infrastructure and Transport (MLIT) and Environment Ministry (EM) were used to investigate trends in land management. Stepwise regression analysis was used to test the correlation between specific management practises and substance concentrations in surface water and sediment. MLIT and EM data for 1981-2003 showed an increase in TN, TP, and SS concentrations in surface water. High levels of fertilizer in dormant sprays and domestic water use were associated with high pesticide concentrations in water and sediment. This paper presents a novel method of studying the environmental impact of

  6. Influence of specific training on spatio-temporal parameters at the onset of goal-directed reaching in infants: a controlled trial*

    PubMed Central

    Cunha, Andréa B.; Woollacott, Marjorie; Tudella, Eloisa

    2013-01-01

    Background There is evidence that long-term experience can promote functional changes in infants. However, much remains unknown about how a short-term experience affects performance of a task. Objective This study aims to investigate the influence of a single training session at the onset of goal-directed reaching on the spatio-temporal parameters of reaching and whether there are differences in the effects of training across different reaching positions. Method Thirty-three infants were divided into three groups: 1) a control group; 2) a group that was reach trained in a reclined position; and 3) a group trained in the supine position. The infants were submitted to two assessments (pre- and post-training) in two testing positions (supine and reclined at 45°). Results The short-duration training sessions were effective in promoting shorter reaches in the specific position in which the training was conducted. Training in the reclined position was associated with shorter and faster reaches upon assessment in the reclined position. Conclusions A few minutes of reach training are effective in facilitating reaching behavior in infants at the onset of reaching. The improvements in reaching were specific to the position in which the infants were trained. PMID:24072228

  7. Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway.

    PubMed

    González, Iván; López-Nava, Irvin H; Fontecha, Jesús; Muñoz-Meléndez, Angélica; Pérez-SanPablo, Alberto I; Quiñones-Urióstegui, Ivett

    2016-08-01

    Quantitative gait analysis allows clinicians to assess the inherent gait variability over time which is a functional marker to aid in the diagnosis of disabilities or diseases such as frailty, the onset of cognitive decline and neurodegenerative diseases, among others. However, despite the accuracy achieved by the current specialized systems there are constraints that limit quantitative gait analysis, for instance, the cost of the equipment, the limited access for many people and the lack of solutions to consistently monitor gait on a continuous basis. In this paper, two low-cost systems for quantitative gait analysis are presented, a wearable inertial system that relies on two wireless acceleration sensors mounted on the ankles; and a passive vision-based system that externally estimates the measurements through a structured light sensor and 3D point-cloud processing. Both systems are compared with a reference clinical instrument using an experimental protocol focused on the feasibility of estimating temporal gait parameters over two groups of healthy adults (five elders and five young subjects) under controlled conditions. The error of each system regarding the ground truth is computed. Inter-group and intra-group analyses are also conducted to transversely compare the performance between both technologies, and of these technologies with respect to the reference system. The comparison under controlled conditions is required as a previous stage towards the adaptation of both solutions to be incorporated into Ambient Assisted Living environments and to provide continuous in-home gait monitoring as part of the future work. PMID:27395370

  8. Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway.

    PubMed

    González, Iván; López-Nava, Irvin H; Fontecha, Jesús; Muñoz-Meléndez, Angélica; Pérez-SanPablo, Alberto I; Quiñones-Urióstegui, Ivett

    2016-08-01

    Quantitative gait analysis allows clinicians to assess the inherent gait variability over time which is a functional marker to aid in the diagnosis of disabilities or diseases such as frailty, the onset of cognitive decline and neurodegenerative diseases, among others. However, despite the accuracy achieved by the current specialized systems there are constraints that limit quantitative gait analysis, for instance, the cost of the equipment, the limited access for many people and the lack of solutions to consistently monitor gait on a continuous basis. In this paper, two low-cost systems for quantitative gait analysis are presented, a wearable inertial system that relies on two wireless acceleration sensors mounted on the ankles; and a passive vision-based system that externally estimates the measurements through a structured light sensor and 3D point-cloud processing. Both systems are compared with a reference clinical instrument using an experimental protocol focused on the feasibility of estimating temporal gait parameters over two groups of healthy adults (five elders and five young subjects) under controlled conditions. The error of each system regarding the ground truth is computed. Inter-group and intra-group analyses are also conducted to transversely compare the performance between both technologies, and of these technologies with respect to the reference system. The comparison under controlled conditions is required as a previous stage towards the adaptation of both solutions to be incorporated into Ambient Assisted Living environments and to provide continuous in-home gait monitoring as part of the future work.

  9. Rectification of the EMG is an unnecessary and inappropriate step in the calculation of Corticomuscular coherence.

    PubMed

    McClelland, Verity M; Cvetkovic, Zoran; Mills, Kerry R

    2012-03-30

    Corticomuscular coherence (CMC) estimation is a frequency domain method used to detect a linear coupling between rhythmic activity recorded from sensorimotor cortex (EEG or MEG) and the electromyogram (EMG) of active muscles. In motor neuroscience, rectification of the surface EMG is a common pre-processing step prior to calculating CMC, intended to maximize information about action potential timing, whilst suppressing information relating to motor unit action potential (MUAP) shape. Rectification is believed to produce a general shift in the EMG spectrum towards lower frequencies, including those around the mean motor unit discharge rate. However, there are no published data to support the claim that EMG rectification enhances the detection of CMC. Furthermore, performing coherence analysis after the non-linear procedure of rectification, which results in a significant distortion of the EMG spectrum, is considered fundamentally flawed in engineering and digital signal processing. We calculated CMC between sensorimotor cortex EEG and EMG of two hand muscles during a key grip task in 14 healthy subjects. CMC calculated using unrectified and rectified EMG was compared. The use of rectified EMG did not enhance the detection of CMC, nor was there any evidence that MUAP shape information had an adverse effect on the CMC estimation. EMG rectification had inconsistent effects on the power and coherence spectra and obscured the detection of CMC in some cases. We also provide a comprehensive theoretical analysis, which, along with our empirical data, demonstrates that rectification is neither necessary nor appropriate in the calculation of CMC.

  10. Zebrafish needle EMG: a new tool for high-throughput drug screens.

    PubMed

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu; Kim, Sohee

    2015-09-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics.

  11. Zebrafish needle EMG: a new tool for high-throughput drug screens

    PubMed Central

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu

    2015-01-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  12. Blind separation of convolutive sEMG mixtures based on independent vector analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Guo, Yina; Tian, Wenyan

    2015-12-01

    An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.

  13. EMG BIOFEEDBACK II: THE DOSE—RESPONSE RELATIONSHIP

    PubMed Central

    Sargunaraj, D.; Kumaraiah, V.; Subbakrishna, D.K.

    1991-01-01

    SUMMARY 36 clients with anxiety neurosis were trained to reduce frontalis muscle tension over two phases of ten sessions each. They were assessed on psychological and physiological measures, before, during and after the phases. The data analysis indicated that the clients succeeded in lowering frontalis muscle tension levels during the feedback and no-feedback phases of the training sessions. The inter-correlations among the outcome measures indicated that with an increasing amount of control of muscle tensior, the clients perceived greater amounts of change in state anxiety and in anxiety symptoms. This implies that EMG biofeedback can effect cognitive changes in clients. PMID:21897456

  14. Subauditory Speech Recognition based on EMG/EPG Signals

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  15. Performances evaluation of textile electrodes for EMG remote measurements.

    PubMed

    Sumner, B; Mancuso, C; Paradiso, R

    2013-01-01

    This work focus on the evaluation of textile electrodes for EMG signals acquisition. Signals have been acquired simultaneously from textile electrode and from gold standard electrodes, by using the same acquisition system; tests were done across subjects and with multiple trials to enable a more complete analysis. This research activity was done in the frame of the European Project Interaction, aiming at the development of a system for a continuous daily-life monitoring of the functional performance of stroke survivors in their physical interaction with the environment.

  16. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson's Disease.

    PubMed

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson's disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1-3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion-extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments. PMID:27563296

  17. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson’s Disease

    PubMed Central

    Pau, Massimiliano; Corona, Federica; Pili, Roberta; Casula, Carlo; Sors, Fabrizio; Agostini, Tiziano; Cossu, Giovanni; Guicciardi, Marco; Murgia, Mauro

    2016-01-01

    Movement rehabilitation by means of physical therapy represents an essential tool in the management of gait disturbances induced by Parkinson’s disease (PD). In this context, the use of rhythmic auditory stimulation (RAS) has been proven useful in improving several spatio-temporal parameters, but concerning its effect on gait patterns, scarce information is available from a kinematic viewpoint. In this study, we used three-dimensional gait analysis based on optoelectronic stereophotogrammetry to investigate the effects of 5 weeks of supervised rehabilitation, which included gait training integrated with RAS on 26 individuals affected by PD (age 70.4 ± 11.1, Hoehn and Yahr 1–3). Gait kinematics was assessed before and at the end of the rehabilitation period and after a 3-month follow-up, using concise measures (Gait Profile Score and Gait Variable Score, GPS and GVS, respectively), which are able to describe the deviation from a physiologic gait pattern. The results confirm the effectiveness of gait training assisted by RAS in increasing speed and stride length, in regularizing cadence and correctly reweighting swing/stance phase duration. Moreover, an overall improvement of gait quality was observed, as demonstrated by the significant reduction of the GPS value, which was created mainly through significant decreases in the GVS score associated with the hip flexion–extension movement. Future research should focus on investigating kinematic details to better understand the mechanisms underlying gait disturbances in people with PD and the effects of RAS, with the aim of finding new or improving current rehabilitative treatments. PMID:27563296

  18. A new spatially and temporally variable sigma parameter in degree-day melt modelling of the Greenland Ice Sheet 1870-2013

    NASA Astrophysics Data System (ADS)

    Jowett, A. E.; Hanna, E.; Ng, F.; Huybrechts, P.; Janssens, I.

    2015-10-01

    The degree-day based method of calculating ice-/snow-melt across the Greenland Ice Sheet (GrIS) commonly includes the temperature parameter sigma (σ) accounting for temperature variability on short (sub-monthly down to hourly) timescales, in order to capture melt in months where the mean temperature is below 0 °C. Sigma is typically assumed to be constant in space and time, with values ranging from ~ 2.5 to 5.5 °C. It is unclear in many cases how these values were derived and little sensitivity analysis or validation has been conducted. Here we determine spatially and temporally varying monthly values of σ for the unique, extended 1870-2013 timescale based on downscaled, corrected European Centre for Medium-Range Weather Forecasts (ECMWF) Interim (ERA-I) and Twentieth Century Reanalysis (20CR) meteorological reanalysis 2 m air temperatures on a 5 km × 5 km polar stereographic grid for the GrIS. The resulting monthly σ values reveal a distinct seasonal cycle. The mean summer σ value for the study period is ~ 3.2 °C, around 1 °C lower than the value of 4.2 °C commonly used in the literature. Sigma values for individual summers range from 1.7 to 5.9 °C. Since the summer months dominate the melt calculation, use of the new variable σ parameter would lead to a smaller melt area and a more positive surface mass balance for the GrIS. Validation of our new variable σ dataset shows good agreement with standard deviations calculated from automatic weather station observations across the ice sheet. Trend analysis shows large areas of the ice sheet exhibit statistically significant increasing temperature variability from 1870-2013 in all seasons, with notable exceptions around Summit in spring, and Summit and South Dome in winter. More recently, since 1990, σ has been decreasing, significantly so in the north-west during July. These interannual σ trends reflect climate change and variability processes operating across the ice sheet, several mechanisms of which

  19. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  20. Intention-based EMG control for powered exoskeletons.

    PubMed

    Lenzi, T; De Rossi, S M M; Vitiello, N; Carrozza, M C

    2012-08-01

    Electromyographical (EMG) signals have been frequently used to estimate human muscular torques. In the field of human-assistive robotics, these methods provide valuable information to provide effectively support to the user. However, their usability is strongly limited by the necessity of complex user-dependent and session-dependent calibration procedures, which confine their use to the laboratory environment. Nonetheless, an accurate estimate of muscle torque could be unnecessary to provide effective movement assistance to users. The natural ability of human central nervous system of adapting to external disturbances could compensate for a lower accuracy of the torque provided by the robot and maintain the movement accuracy unaltered, while the effort is reduced. In order to explore this possibility, in this paper we study the reaction of ten healthy subjects to the assistance provided through a proportional EMG control applied by an elbow powered exoskeleton. This system gives only a rough estimate of the user muscular torque but does not require any specific calibration. Experimental results clearly show that subjects adapt almost instantaneously to the assistance provided by the robot and can reduce their effort while keeping full control of the movement under different dynamic conditions (i.e., no alterations of movement accuracy are observed). PMID:22588573

  1. EMG activity during positive-pressure treadmill running.

    PubMed

    Hunter, Iain; Seeley, Matthew Kirk; Hopkins, Jon Ty; Carr, Cameron; Franson, Jared Judd

    2014-06-01

    Success has been demonstrated in rehabilitation from certain injuries while using positive-pressure treadmills. However, certain injuries progress even with the lighter vertical loads. Our purpose was to investigate changes in muscle activation for various lower limb muscles while running on a positive-pressure treadmill at different amounts of body weight support. We hypothesized that some muscles would show decreases in activation with greater body weight support while others would not. Eleven collegiate distance runners were recruited. EMG amplitude was measured over 12 lower limb muscles. After a short warm-up, subjects ran at 100%, 80%, 60%, and 40% of their body weight for two minutes each. EMG amplitudes were recorded during the final 30s of each stage. Most muscles demonstrated lower amplitudes as body weight was supported. For the hip adductors during the swing phase and the hamstrings during stance, no significant trend appeared. Positive-pressure treadmills may be useful interventions for certain injuries. However, some injuries, such as hip adductor and hamstring tendonitis or strains may require alternative cross-training to relieve stress on those areas. Runners should be careful in determining how much body weight should be supported for various injuries to return to normal activity in the shortest possible time. PMID:24613660

  2. EMG activity during positive-pressure treadmill running.

    PubMed

    Hunter, Iain; Seeley, Matthew Kirk; Hopkins, Jon Ty; Carr, Cameron; Franson, Jared Judd

    2014-06-01

    Success has been demonstrated in rehabilitation from certain injuries while using positive-pressure treadmills. However, certain injuries progress even with the lighter vertical loads. Our purpose was to investigate changes in muscle activation for various lower limb muscles while running on a positive-pressure treadmill at different amounts of body weight support. We hypothesized that some muscles would show decreases in activation with greater body weight support while others would not. Eleven collegiate distance runners were recruited. EMG amplitude was measured over 12 lower limb muscles. After a short warm-up, subjects ran at 100%, 80%, 60%, and 40% of their body weight for two minutes each. EMG amplitudes were recorded during the final 30s of each stage. Most muscles demonstrated lower amplitudes as body weight was supported. For the hip adductors during the swing phase and the hamstrings during stance, no significant trend appeared. Positive-pressure treadmills may be useful interventions for certain injuries. However, some injuries, such as hip adductor and hamstring tendonitis or strains may require alternative cross-training to relieve stress on those areas. Runners should be careful in determining how much body weight should be supported for various injuries to return to normal activity in the shortest possible time.

  3. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters.

    PubMed

    Mero, A; Komi, P V

    1986-01-01

    The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.

  4. Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters.

    PubMed

    Mesin, Luca; Tizzani, Francesca; Farina, Dario

    2006-10-01

    Muscle fiber conduction velocity (CV) can be estimated by the application of a pair of spatial filters to surface electromagnetic (EMG) signals and compensation of the spatial filter transfer function with equivalent temporal filters. This method integrates the selection of the spatial filters for signal detection to the estimation of CV. Using this approach, in this paper, we propose a novel technique for signal-based selection of the spatial filter pair that minimizes the effect of nonpropagating signal components (end-of-fiber effects) on CV estimates (optimal filters). The technique is applicable to signals with one propagating and one nonpropagating component, such as single motor unit action potentials. It is shown that the determination of the optimal filters also allows the identification of the propagating and nonpropagating signal components. The new method was applied to simulated and experimental EMG signals. Simulated signals were generated by a cylindrical, layered volume conductor model. Experimental signals were recorded from the abductor pollicis brevis with a linear array of 16 electrodes. In the simulations, the proposed approach provided CV estimates with lower bias due to nonpropagating signal components than previously proposed methods based on the entire signal waveform. In the experimental signals, the technique separated propagating and nonpropagating signal components with an average reconstruction error of 2.9 +/- 0.9% of the signal energy. The technique may find application in single motor unit studies for decreasing the variability and bias of CV estimates due to the presence and different weights of the nonpropagating components.

  5. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  6. Preliminary Investigation of EMG Biofeedback Induced Relaxation with a Preschool Aged Stutterer.

    ERIC Educational Resources Information Center

    St. Louis, Kenneth O.; And Others

    1982-01-01

    Using comparative speech tasks and EMG recordings to assess the potential of EMG biofeedback-assisted relaxation to reduce stuttering, a preschool child was able to reduce larynegeal tension but not without some difficulty. The small effect of the training was in the direction of less stuttering. (Author/CM)

  7. Recognition of grasp types through principal components of DWT based EMG features.

    PubMed

    Kakoty, Nayan M; Hazarika, Shyamanta M

    2011-01-01

    With the advancement in machine learning and signal processing techniques, electromyogram (EMG) signals have increasingly gained importance in man-machine interaction. Multifingered hand prostheses using surface EMG for control has appeared in the market. However, EMG based control is still rudimentary, being limited to a few hand postures based on higher number of EMG channels. Moreover, control is non-intuitive, in the sense that the user is required to learn to associate muscle remnants actions to unrelated posture of the prosthesis. Herein lies the promise of a low channel EMG based grasp classification architecture for development of an embedded intelligent prosthetic controller. This paper reports classification of six grasp types used during 70% of daily living activities based on two channel forearm EMG. A feature vector through principal component analysis of discrete wavelet transform coefficients based features of the EMG signal is derived. Classification is through radial basis function kernel based support vector machine following preprocessing and maximum voluntary contraction normalization of EMG signals. 10-fold cross validation is done. We have achieved an average recognition rate of 97.5%.

  8. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  9. Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers

    ERIC Educational Resources Information Center

    Liu, Bin; Luo, Jiong

    2015-01-01

    Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…

  10. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  11. Basic reporting and interpretation of surface EMG amplitude and mean power frequency: a reply to Vitgotsky, Ogborn, and Phillips.

    PubMed

    Jenkins, Nathaniel D M; Housh, Terry J; Bergstrom, Haley C; Cochrane, Kristen C; Hill, Ethan C; Smith, Cory M; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2016-03-01

    In this response, we addressed the specific issues raised by Vigotsky et al. and clarified (1) our methods and adherence to electromyographic signal reporting standards, (2) our interpretation of EMG amplitude, and (3) our interpretation of EMG mean power frequency.

  12. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA.

    PubMed

    Abbaspour, Sara; Lindén, Maria; Gholamhosseini, Hamid

    2015-01-01

    This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum. PMID:25980853

  13. EMGs Analysis of Lumbar, Pelvic and Leg Muscles in Leg Length Discrepancy Adolescents

    NASA Astrophysics Data System (ADS)

    Sotelo-Barroso, Fernando; Márquez-Gamiño, Sergio; Caudillo-Cisneros, Cipriana

    2004-09-01

    To evaluate differences in surface electromyography (EMGs) activity of lumbar, pelvic and leg muscles in adolescents with and without LLD. EMGs activity records were taken during rest and maximal isometric voluntary contractions (MIVC). Peak to peak amplitude (PPA), mean rectified voltage (MRV) and root mean square (RMS), were analyzed. Statistical differences between short and large sides of LLD adolescents, were found (p<0.05). Higher values occurred in shorter limb muscles. No significative differences were found between left and right legs of the control subjects. When EMGs values were compared between short and large sides of LLD subjects with ipsilateral sides of controls, selective, statistically different EMGs values were exhibited. It is suggested that adaptative behavior to secondary biomechanical and/or neural changes occurred, even when none clinical symptoms were reported. The observations were remarked by the absence of EMGs differences between right and left sides of control subjects.

  14. Real-time motion discrimination considering variation of EMG signals associated with lapse of time.

    PubMed

    Shiraki, Masashi; Tsujiuchi, Nobutaka; Akihito, Ito; Yamamoto, Tetsushi

    2015-08-01

    This study proposes a motion discrimination method that considers the variation of electromyogram (EMG) signals associated with a lapse of time. In a previous study, we proposed a real-time discrimination method based on EMG signals of the forearm. Our method uses a hypersphere model as a discriminator. In motion discrimination using EMG signals, one problem is to maintain high discrimination accuracy over time because EMG signals change with a lapse of time. This study analyzed the effect of changes in EMG signals on our method. Based on analysis results, adding a relearning system of the decision criteria to the discrimination system was expected to be effective. We created a new motion discrimination method that contains the relearning system and experimentally verified its effectiveness. The motion discrimination system discriminated three hand motions, open, grasp, and pinch with discrimination accuracy above 90% in real-time (processing time below 300 ms) even after time elapsed. PMID:26736306

  15. Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender.

    PubMed

    Seifert, L; Boulesteix, L; Chollet, D; Vilas-Boas, J P

    2008-02-01

    Spatial-temporal parameters (velocity, stroke rate, stroke length) and arm-leg coordination in the butterfly stroke were studied as a function of race pace, skill (due to technical level, age, and experience) and gender. Forty swimmers (ten elite men, ten elite women, ten less-skilled men, and ten less-skilled women) performed the butterfly stroke at four velocities corresponding to the appropriate paces for the 400-m, 200-m, 100-m, and 50-m, respectively. Arm and leg stroke phases were identified by video analysis and used to calculate four time gaps (T1: the time difference between the start of the arms' catch phase and the start of the legs' downward phase of the first leg kick; T2: the time difference between the start of the arms' pull phase and the start of the legs' upward phase of the first leg kick; T3: the time difference between the start of the arms' push phase and the start of the legs' downward phase of the second leg kick; and T4: the time difference between the start of the arms' recovery and the start of the legs' upward phase of the second leg kick) and the total time gap (TTG), i.e., the sum of the four discrete time gaps. These values described the changing coupling of arm to leg actions over an entire stroke cycle. A significant race pace effect indicated that the synchronization between the key motor points of the arms and legs, which determine the starts and ends of the arm and leg stroke phases, increased with pace for all participants. A significant skill effect indicated that the elite swimmers had greater velocity, stroke length, and stroke rate and stronger synchronization of the arm and leg stroke phases than the less-skilled swimmers, due to smaller T2 and T3 and greater T1. A significant gender effect revealed greater velocity and stroke length for the men, and smaller T1 for the less-skilled women. These time gap differences between skill levels were related to the capacity of elite swimmers to assume a more streamlined position of

  16. Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender.

    PubMed

    Seifert, L; Boulesteix, L; Chollet, D; Vilas-Boas, J P

    2008-02-01

    Spatial-temporal parameters (velocity, stroke rate, stroke length) and arm-leg coordination in the butterfly stroke were studied as a function of race pace, skill (due to technical level, age, and experience) and gender. Forty swimmers (ten elite men, ten elite women, ten less-skilled men, and ten less-skilled women) performed the butterfly stroke at four velocities corresponding to the appropriate paces for the 400-m, 200-m, 100-m, and 50-m, respectively. Arm and leg stroke phases were identified by video analysis and used to calculate four time gaps (T1: the time difference between the start of the arms' catch phase and the start of the legs' downward phase of the first leg kick; T2: the time difference between the start of the arms' pull phase and the start of the legs' upward phase of the first leg kick; T3: the time difference between the start of the arms' push phase and the start of the legs' downward phase of the second leg kick; and T4: the time difference between the start of the arms' recovery and the start of the legs' upward phase of the second leg kick) and the total time gap (TTG), i.e., the sum of the four discrete time gaps. These values described the changing coupling of arm to leg actions over an entire stroke cycle. A significant race pace effect indicated that the synchronization between the key motor points of the arms and legs, which determine the starts and ends of the arm and leg stroke phases, increased with pace for all participants. A significant skill effect indicated that the elite swimmers had greater velocity, stroke length, and stroke rate and stronger synchronization of the arm and leg stroke phases than the less-skilled swimmers, due to smaller T2 and T3 and greater T1. A significant gender effect revealed greater velocity and stroke length for the men, and smaller T1 for the less-skilled women. These time gap differences between skill levels were related to the capacity of elite swimmers to assume a more streamlined position of

  17. The Effects of Relaxation Instructions and EMG Biofeedback of Test Anxiety, General Anxiety, and Locus of Control.

    ERIC Educational Resources Information Center

    Reed, Michael; Saslow, Carol

    1980-01-01

    Brief relaxation instruction alone and instructions plus electromyographic (EMG) feedback produced significant decreases in general and test-specific anxiety. EMG feedback added little to the effectiveness of relaxation instructions and practice. Relaxation instruction without EMG biofeedback shifted subjects toward a more internal locus of…

  18. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  19. To What Extent Is Mean EMG Frequency during Gait a Reflection of Functional Muscle Strength in Children with Cerebral Palsy?

    ERIC Educational Resources Information Center

    Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…

  20. Dynamics of temporal discrimination.

    PubMed

    Guilhardi, Paulo; Church, Russell M

    2005-11-01

    The purpose of this research was to describe and explain the acquisition of temporal discriminations, transitions from one temporal interval to another, and asymptotic performance of stimulus and temporal discriminations. Rats were trained on a multiple cued interval (MCI) procedure with a head entry response on three signaled fixed-interval schedules of reinforcement (30, 60, and 120 sec). They readily learned the three temporal discriminations, whether they were presented simultaneously or successively, and they rapidly adjusted their performance to new intervals when the intermediate interval was varied daily. Although exponential functions provided good descriptions of many measures of temporal discrimination, different parameter values were required for each measure. The addition of a linear operator to a packet theory of timing with a single set of parameters provided a quantitative process model that fit many measures of the dynamics of temporal discrimination.

  1. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  2. Muscle networks: Connectivity analysis of EMG activity during postural control

    PubMed Central

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-01-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures. PMID:26634293

  3. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication. PMID:25836061

  4. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  5. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Chen, Xin

    2010-11-01

    In this study we simultaneously collected ultrasound images, EMG, MMG from the rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine male subjects (mean±SD, age=30.7±.4.9 years; body weight=67.0±8.4kg; height=170.4±6.9cm) during step, ramp increasing, and decreasing at three different rates (50%, 25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in this study. The cross-sectional area (CSA) and aspect ratio between muscle width and thickness (width/thickness) were extracted from ultrasound images. The results showed that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque output changed from 0% to 90% MVC, and the aspect ratio decreased by 41.66±7.96%. The muscle contraction level and SMG data were strongly correlated (R(2)=0.961, P=0.003, for CSA and R(2)=0.999, P<0.001, for width/thickness ratio). The data indicated a significant difference (P<0.05) in percentage changes for CSA and aspect ratio among step, ramp increasing, and decreasing contractions. The normalized EMG RMS in ramp increasing was 8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step contraction was significantly lower than ramp increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), respectively. The results of this study demonstrated that the CSA and aspect ratio, i.e., SMG signals, can provide useful information about muscle contractions. They may therefore complement EMG and MMG for studying muscle activation strategies under different conditions.

  6. Comparison of sEMG processing methods during whole-body vibration exercise.

    PubMed

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance.

  7. Detecting labor using graph theory on connectivity matrices of uterine EMG.

    PubMed

    Al-Omar, S; Diab, A; Nader, N; Khalil, M; Karlsson, B; Marque, C

    2015-08-01

    Premature labor is one of the most serious health problems in the developed world. One of the main reasons for this is that no good way exists to distinguish true labor from normal pregnancy contractions. The aim of this paper is to investigate if the application of graph theory techniques to multi-electrode uterine EMG signals can improve the discrimination between pregnancy contractions and labor. To test our methods we first applied them to synthetic graphs where we detected some differences in the parameters results and changes in the graph model from pregnancy-like graphs to labor-like graphs. Then, we applied the same methods to real signals. We obtained the best differentiation between pregnancy and labor through the same parameters. Major improvements in differentiating between pregnancy and labor were obtained using a low pass windowing preprocessing step. Results show that real graphs generally became more organized when moving from pregnancy, where the graph showed random characteristics, to labor where the graph became a more small-world like graph.

  8. Interpreting sign components from accelerometer and sEMG data for automatic sign language recognition.

    PubMed

    Li, Yun; Chen, Xiang; Zhang, Xu; Wang, Kongqiao; Yang, Jihai

    2011-01-01

    The identification of constituent components of each sign gesture is a practical way of establishing large-vocabulary sign language recognition (SLR) system. Aiming at developing such a system using portable accelerometer (ACC) and surface electromyographic (sEMG) sensors, this work proposes a method for automatic SLR at the component level. The preliminary experimental results demonstrate the effectiveness of the proposed method and the feasibility of interpreting sign components from ACC and sEMG data. Our study improves the performance of SLR based on ACC and sEMG sensors and will promote the realization of a large-vocabulary portable SLR system. PMID:22255059

  9. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  10. Rectification of EMG in low force contractions improves detection of motor unit coherence in the beta-frequency band.

    PubMed

    Ward, Nicholas J; Farmer, Simon F; Berthouze, Luc; Halliday, David M

    2013-10-01

    Rectification of surface EMG before spectral analysis is a well-established preprocessing method used in the detection of motor unit firing patterns. A number of recent studies have called into question the need for rectification before spectral analysis, pointing out that there is no supporting experimental evidence to justify rectification. We present an analysis of 190 records from 13 subjects consisting of simultaneous recordings of paired single motor units and surface EMG from the extensor digitorum longus muscle during middle finger extension against gravity (unloaded condition) and against gravity plus inertial loading (loaded condition). We directly examine the hypothesis that rectified surface EMG is a better predictor of the frequency components of motor unit synchronization than the unrectified (or raw) EMG in the beta-frequency band (15-32 Hz). We use multivariate analysis and estimate the partial coherence between the paired single units using both rectified and unrectified surface EMG as a predictor. We use a residual partial correlation measure to quantify the difference between raw and rectified EMG as predictor and analyze unloaded and loaded conditions separately. The residual correlation for the unloaded condition is 22% with raw EMG and 3.5% with rectified EMG and for the loaded condition it is 5.2% with raw EMG and 1.4% with rectified EMG. We interpret these results as strong supporting experimental evidence in favor of using the preprocessing step of surface EMG rectification before spectral analysis.

  11. Temporalis function in anthropoids and strepsirrhines: an EMG study.

    PubMed

    Hylander, William L; Wall, Christine E; Vinyard, Christopher J; Ross, Callum; Ravosa, Mathew R; Williams, Susan H; Johnson, Kirk R

    2005-09-01

    The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire

  12. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.

    PubMed

    Lang, C E; Bastian, A J

    1999-11-01

    We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation

  13. Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models.

    PubMed

    Vögele, Anna Magdalena; Zsoldos, Rebeka R; Krüger, Björn; Licka, Theresia

    2016-01-01

    This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion. PMID:27362752

  14. Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    PubMed Central

    Vögele, Anna Magdalena; Zsoldos, Rebeka R.; Krüger, Björn; Licka, Theresia

    2016-01-01

    This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion. PMID:27362752

  15. An adaptation strategy of using LDA classifier for EMG pattern recognition.

    PubMed

    Zhang, Haoshi; Zhao, Yaonan; Yao, Fuan; Xu, Lisheng; Shang, Peng; Li, Guanglin

    2013-01-01

    The time-varying character of myoelectric signal usually causes a low classification accuracy in traditional supervised pattern recognition method. In this work, an unsupervised adaptation strategy of linear discriminant analysis (ALDA) based on probability weighting and cycle substitution was suggested in order to improve the performance of electromyography (EMG)-based motion classification in multifunctional myoelectric prostheses control in changing environment. The adaptation procedure was firstly introduced, and then the proposed ALDA classifier was trained and tested with surface EMG recordings related to multiple motion patterns. The accuracies of the ALDA classifier and traditional LDA classifier were compared when the EMG recordings were added with different degrees of noise. The experimental results showed that compared to the LDA method, the suggested ALDA method had a better performance in improving the classification accuracy of sEMG pattern recognition, in both stable situation and noise added situation.

  16. The relationship between narrow and wide bandwidth filter settings during an EMG scanning procedure.

    PubMed

    Cram, J R; Garber, A

    1986-06-01

    This study examined the correlation between EMG values measured with wide (25-1000 Hz) and narrow (100-200 Hz) band-width filters. An EMG diagnostic scan was conducted on 32 chronic pain patients admitted to an inpatient treatment unit. EMG readings were taken from a total of 44 sites (11 sites X 2 sides X 2 postures). Each EMG measure was passed in parallel through a narrow and wide band-pass filter and the stable readings were recorded. Correlated t tests and Pearson correlations were used to compare the data from the narrow and wide filter settings. The measures from the wide filter were significantly higher than the measures from the narrow filter. In addition, 61% of the correlations were greater than .90. The majority of the correlations below the median (.93) occurred in the neck region and the abdomen. The implications of the findings are discussed.

  17. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  18. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  19. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent

  20. Temporal generalization.

    PubMed

    Church, R M; Gibbon, J

    1982-04-01

    Responses of 26 rats were reinforced following a signal of a certain duration, but not following signals of shorter or longer durations. This led to a positive temporal generalization gradient with a maximum at the reinforced duration in six experiments. Spacing of the nonreinforced signals did not influence the gradient, but the location of the maximum and breadth of the gradient increased with the duration of the reinforced signal. Reduction of reinforcement, either by partial reinforcement or reduction in the probability of a positive signal, led to a decrease in the height of the generalization gradient. There were large, reliable individual differences in the height and breadth of the generalization gradient. When the conditions of reinforcement were reversed (responses reinforced following all signals longer or shorter than a single nonreinforced duration), eight additional rats had a negative generalization gradient with a minimum at a signal duration shorter than the single nonreinforced duration. A scalar timing theory is described that provided a quantitative fit of the data. This theory involved a clock that times in linear units with an accurate mean and a negligible variance, a distribution of memory times that is normally distributed with an accurate mean and a scalar standard deviation, and a rule to respond if the clock is "close enough" to a sample of the memory time distribution. This decision is based on a ratio of the discrepancy between the clock time and the remembered time, to the remembered time. When this ratio is below a (variable) threshold, subjects respond. When three timing parameters--coefficient of variation of the memory time, the mean and the standard deviation of the threshold--were set at their median values, a theory with two free parameters accounted for 96% of the variance. The two parameters reflect the probability of attention to time and the probability of a response given inattention. These parameters were not influenced

  1. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  2. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    PubMed

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  3. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    PubMed

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  4. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  5. Teager–Kaiser energy operator signal conditioning improves EMG onset detection

    PubMed Central

    Rider, Patrick; Steinweg, Ken; DeVita, Paul; Hortobágyi, Tibor

    2010-01-01

    Accurate identification of the onset of muscle activity is an important element in the biomechanical analysis of human movement. The purpose of this study was to determine if inclusion of the Teager–Kaiser energy operator (TKEO) in signal conditioning would increase the accuracy of popular electromyography (EMG) onset detection methods. Three methods, visual determination, threshold-based method, and approximated generalized likelihood ratio were used to estimate the onset of EMG burst with and without TKEO conditioning. Reference signals, with known onset times, were constructed from EMG signals collected during isometric contraction of the vastus lateralis (n = 17). Additionally, vastus lateralis EMG signals (n = 255) recorded during gait were used to evaluate a clinical application of the TKEO conditioning. Inclusion of TKEO in signal conditioning significantly reduced mean detection error of all three methods compared with signal conditioning without TKEO, using artificially generated reference data (13 vs. 98 ms, p < 0.001) and also compared with experimental data collected during gait (55 vs. 124 ms, p < 0.001). In conclusion, addition of TKEO as a step in conditioning surface EMG signals increases the detection accuracy of EMG burst boundaries. PMID:20526612

  6. Analysis of surface EMG baseline for detection of hidden muscle activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhou, Ping

    2014-02-01

    Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.

  7. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    PubMed

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  8. Simultaneous EMG-fMRI during startle inhibition in monosymptomatic enuresis--an exploratory study.

    PubMed

    Schulz-Juergensen, Sebastian; Wunberg, David; Wolff, Stephan; Eggert, Paul; Siniatchkin, Michael

    2013-01-01

    Evidence is growing that monosymptomatic enuresis (ME) is a maturational disorder of the central nervous system with a lack of arousal and lacking inhibition of the micturition reflex. Previous studies have shown a significant reduction of prepulse inhibition (PPI) of startle in children with enuresis. However, it is still unclear whether the abnormal PPI in enuresis is based on an inhibitory deficit at brainstem or cortical level. Nine children with ME and ten healthy children were investigated using simultaneous recording of EMG from the M. orbicularis oculi and functional MRI. The experimental paradigm consisted of acoustic startle stimulation, with startle-alone stimuli and prepulse-startle combinations. Functional MRI data were processed using multiple regression and parametric modulation with startle amplitudes as a parameter. Neither patients with enuresis nor healthy children revealed measurable PPI in the MRI scanner. Startle stimuli caused equal hemodynamic changes in the acoustic cortex, medial prefrontal and orbitofrontal cortex in both groups. The amplitude of startle correlated with more prominent BOLD signal changes in the anterior cingulate cortex in healthy subjects than in patients with ME. This pronounced frontal activation in healthy controls was related to the PPI condition, indicating that the prefrontal cortex of healthy children was activated more strongly to inhibit startle than in patients with ME. In conclusion, apart from the possibility that recordings of PPI inside the MRI scanner may be compromised by methodological problems, the results of this study suggest that high cortical control mechanisms at the prefrontal level are relevant for the pathogenesis of ME.

  9. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    PubMed

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  10. Neural network committees for finger joint angle estimation from surface EMG signals

    PubMed Central

    Shrirao, Nikhil A; Reddy, Narender P; Kosuri, Durga R

    2009-01-01

    Background In virtual reality (VR) systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG) signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals. PMID:19154615

  11. Experimal study of young male drivers' responses to vehicle collision using EMG of lower extremity.

    PubMed

    Gao, Zhenhai; Li, Chuzhao; Hu, Hongyu; Zhao, Hui; Chen, Chaoyang; Yu, Huili

    2015-01-01

    A driver's response to a front-coming vehicle collision consists of braking reaction time and braking behavior. The purpose was to investigate drivers' responses at different speeds, relative distances, and particularly the behavior on the accelerator at the collision moment. Twelve young men participated in driving simulator tests. Vehicle parameters and electromyograms (EMGs) of the drivers' tibialis anterior muscles were recorded and responses were analyzed. The drivers' braking reaction time windows were divided into pre-motor time, muscle activation time, accelerator release time, and movement time. By comparing the reaction times and collision times, braking behaviors were investigated. It was found that movement times (r = -0.281) decreased with speed. Pre-motor times (r = 0.326) and muscle activation times (r = 0.281) increased with relative distance. At the collision moment, the probability of the driver's lower extremity being on the accelerator, in the air, and on the brake pedal was 7.4%, 18.9%, and 73.7%, respectively. With higher speeds and smaller distances, the lower extremity was more likely to be in the air or even on the accelerator in different muscle activation states. The driver will collide in normal driving postures which muscles are not or not fully activated in very urgent situation. PMID:26406050

  12. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    PubMed Central

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  13. Temporal and Spatial Variations of Earthquake Source Parameters within the 2012 Nicoya, Costa Rica Mw=7.6 Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bilek, S. L.; Phillips, W. S.; Walter, J. I.; Schwartz, S. Y.; Peng, Z.; Rotman, H. M. M.

    2014-12-01

    Subduction zone megathrust faults produce the majority of seismic activity, as well as host a wide range of slip processes, including slow slip events and non-volcanic tremor. In a few regions, such as along the Middle America subduction zone where the Cocos Plate subducts beneath the Caribbean Plate, we are fortunate to have significant long-term seismic and geodetic networks situated above the seismogenic zone. This allows for areas of moment release and geodetic locking to be defined before, during, and after large magnitude earthquakes. These types of long-term observations allow us to explore possible spatial and temporal relationships between slip behavior and geodetic coupling. Here we use the local seismic network data to compute earthquake stress drops using S-wave coda recorded over a period of ~13 years, including for a large set of aftershocks of the 2012 Mw 7.6 earthquake along central Nicoya Peninsula. We use over 1000 earthquakes to test for possible changes in microearthquake behavior after the 2012 Nicoya earthquake, as well as spatial variations that might be linked to variations in mainshock slip and geodetic coupling. Preliminary results, focusing on underthrusting events, suggest spatial stress drop variations that correspond to areas that had significant slip during the mainshock. We also see differences of roughly a factor of 2 in stress drops for aftershocks within the high slip area relative to earthquakes that occurred in that same region within the previous 13 years, suggesting temporal variations as well. These observations have interesting implications for the nature of strong and weakly coupled fault zones, as well as how temporal changes in fault zones may manifest in earthquake behavior through the earthquake cycle.

  14. Surface EMG pattern recognition for real-time control of a wrist exoskeleton

    PubMed Central

    2010-01-01

    Background Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopenia. While using sEMG for position control, estimation of the intended torque of the user could also provide sufficient information for an effective force control of the hand prosthesis or assistive device. This paper presents the use of pattern recognition to estimate the torque applied by a human wrist and its real-time implementation to control a novel two degree of freedom wrist exoskeleton prototype (WEP), which was specifically developed for this work. Methods Both sEMG data from four muscles of the forearm and wrist torque were collected from eight volunteers by using a custom-made testing rig. The features that were extracted from the sEMG signals included root mean square (rms) EMG amplitude, autoregressive (AR) model coefficients and waveform length. Support Vector Machines (SVM) was employed to extract classes of different force intensity from the sEMG signals. After assessing the off-line performance of the used classification technique, the WEP was used to validate in real-time the proposed classification scheme. Results The data gathered from the volunteers were divided into two sets, one with nineteen classes and the second with thirteen classes. Each set of data was further divided into training and testing data. It was observed that the average testing accuracy in the case of nineteen classes was about 88% whereas the average accuracy in the case of thirteen classes reached about 96%. Classification and control algorithm implemented in the WEP was executed in less than 125 ms. Conclusions The results of this study showed that classification of EMG signals by

  15. EMG, bite force, and elongation of the masseter muscle under isometric voluntary contractions and variations of vertical dimension.

    PubMed

    Manns, A; Miralles, R; Palazzi, C

    1979-12-01

    The relation EMG activity, bite force, and muscular elongation was studied in eight subjects with complete natural dentition during isometric contractions of the masseter muscle, measured from 7 mm to almost maximum jaw opening. EMG was registered with superficial electrodes and bite force with a gnathodynamometer. In series 1, recordings of EMG activity maintaining bite force constant (10 and 20 kg) show that EMG is high when the bite opening is 7 mm, decreases from 15 to 20 mm, and then increases again as jaw opening approaches maximum opening. In series 2, recordings of bite force maintaining EMG constant show that bite force increases up to a certain range of jaw opening (around 15 to 20 mm) and then decreases as we approach maximum jaw opening. Results show that there is for each experimental subject a physiologically optimum muscular elongation of major efficiency where the masseter develops highest muscular force with least EMG activity.

  16. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI.

    PubMed

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon; Gargiulo, Paolo

    2015-03-11

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150

  17. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    PubMed

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  18. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Tibiletti, Marta; Schauer, Thomas; Klauer, Christian; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2011-01-01

    MUNDUS is an assistive platform for recovering direct interaction capability of severely impaired people based on upper limb motor functions. Its main concept is to exploit any residual control of the end-user, thus being suitable for long term utilization in daily activities. MUNDUS integrates multimodal information (EMG, eye tracking, brain computer interface) to control different actuators, such as a passive exoskeleton for weight relief, a neuroprosthesis for arm motion and small motors for grasping. Within this project, the present work integreted a commercial passive exoskeleton with an EMG-controlled neuroprosthesis for supporting hand-to-mouth movements. Being the stimulated muscle the same from which the EMG was measured, first it was necessary to develop an appropriate digital filter to separate the volitional EMG and the stimulation response. Then, a control method aimed at exploiting as much as possible the residual motor control of the end-user was designed. The controller provided a stimulation intensity proportional to the volitional EMG. An experimental protocol was defined to validate the filter and the controller operation on one healthy volunteer. The subject was asked to perform a sequence of hand-to-mouth movements holding different loads. The movements were supported by both the exoskeleton and the neuroprosthesis. The filter was able to detect an increase of the volitional EMG as the weight held by the subject increased. Thus, a higher stimulation intensity was provided in order to support a more intense exercise. The study demonstrated the feasibility of an EMG-controlled neuroprosthesis for daily upper limb support on healthy subjects, providing a first step forward towards the development of the final MUNDUS platform. PMID:22255280

  19. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI

    PubMed Central

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon

    2015-01-01

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150

  20. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI.

    PubMed

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon; Gargiulo, Paolo

    2015-03-11

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles.

  1. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    PubMed Central

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S.

    2015-01-01

    The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05), and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05). This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key points The spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity The motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrum Reflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass PMID:25729290

  2. Detection of tremor bursts from the sEMG signal: an optimization procedure for different detection methods.

    PubMed

    De Marchis, C; Conforto, S; Severini, G; Schmid, M; D'Alessio, T

    2011-01-01

    Two different detection techniques for EMG burst detection are here used to reveal tremor in both a set of synthetic data and in a small sample of experimental trials. An optimization procedure that employs the minimization of a cost function to provide the parameter set characterizing the two techniques is here presented and its performance assessed. The results obtained with the optimization procedure are satisfactory and suitable for practical use: the values for both bias and standard deviation in the estimation of both onset and offset time instants are lower than 10 ms, and the sensitivity and positive predictive value in the detection of tremor bursts are > 96% for SNR levels higher than 6 dB.

  3. Real-time intelligent pattern recognition algorithm for surface EMG signals

    PubMed Central

    Khezri, Mahdi; Jahed, Mehran

    2007-01-01

    Background Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS) integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD) and time-frequency representation (TFR). Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA) is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal are time and time

  4. Evaluation of sonomyography (SMG) for control compared with electromyography (EMG) in a discrete target tracking task.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Kenney, Laurence P; Xie, Hong-Bo

    2009-01-01

    Most of the commercial upper-limb externally powered prosthetic devices are controlled by electromyography (EMG) signals. We previously proposed using the real-time change of muscle thickness detected using ultrasound, namely sonomyography (SMG), for the control of prostheses. In this study, we compared the performance of subjects using 1-D SMG signal and surface EMG signal, using a discrete target tracking protocol involving a series of letter cancellation tasks. Each task involved using grip force, EMG or SMG from a wrist extensor muscle to move a cursor to one of 5 locations on a computer screen, at the first four of which were located a letter and last of which was a word of "NEXT". The target was defined by the location showing the letter "E" and, once the subject reached this target, they were instructed to "cancel" the E from the screen, using a button operated by the contralateral hand. A paired t-test revealed that the percentage of letters correctly cancelled with force/angle and SMG signal in isometric force control, and with SMG in wrist extension were significantly higher than with EMG (P<0.05) for both isometric control and wrist extension. The results suggest that SMG signal has great potential as an alternative to EMG for prosthetic control.

  5. Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees.

    PubMed

    Wentink, E C; Schut, V G H; Prinsen, E C; Rietman, J S; Veltink, P H

    2014-01-01

    In this study we determined if detection of the onset of gait initiation in transfemoral amputees can be useful for voluntary control of upper leg prostheses. From six transfemoral amputees inertial sensor data and EMG were measured at the prosthetic leg during gait initiation. First, initial movement was detected from the inertial sensor data. Subsequently it was determined whether EMG could predict initial movement before detection based on the inertial sensors with comparable consistency as the inertial sensors. From the inertial sensors the initial movement can be determined. If the prosthetic leg leads, the upper leg accelerometer data was able to detect initial movement best. If the intact leg leads the upper leg gyroscope data performed best. Inertial sensors at the upper leg in general showed detections at the same time or earlier than those at the lower leg. EMG can predict initial movement up to a 138 ms in advance, when the prosthetic leg leads. One subject showed consistent EMG onset up to 248 ms before initial movement in the intact leg leading condition. A new method to detect initial movement from inertial sensors was presented and can be useful for additional prosthetic control. EMG measured at the prosthetic leg can be used for prediction of gait initiation when the prosthetic leg is leading, but for the intact leg leading condition this will not be of additional value.

  6. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    PubMed Central

    Langzam, Eran; Isakov, Eli; Mizrahi, Joseph

    2006-01-01

    Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES). Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles. PMID:17123447

  7. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin.

  8. Simulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation.

    PubMed

    Mesin, Luca; Farina, Dario

    2004-09-01

    Surface electromyographic (EMG) signal modeling has important applications in the interpretation of experimental EMG data. Most models of surface EMG generation considered volume conductors homogeneous in the direction of propagation of the action potentials. However, this may not be the case in practice due to local tissue inhomogeneities or to the fact that there may be groups of muscle fibers with different orientations. This study addresses the issue of analytically describing surface EMG signals generated by bi-pinnate muscles, i.e., muscles which have two groups of fibers with two orientations. The approach will also be adapted to the case of a muscle with fibers inclined in the depth direction. Such muscle anatomies are inhomogeneous in the direction of propagation of the action potentials with the consequence that the system can not be described as space invariant in the direction of source propagation. In these conditions, the potentials detected at the skin surface do not travel without shape changes. This determines numerical issues in the implementation of the model which are addressed in this work. The study provides the solution of the nonhomogenous, anisotropic problem, proposes an implementation of the results in complete surface EMG generation models (including finite-length fibers), and shows representative results of the application of the models proposed.

  9. EMG reactivity and oral habits among facial pain patients in a scheduled-waiting competitive task.

    PubMed

    Nicholson, R A; Lakatos, C A; Gramling, S E

    1999-12-01

    For individuals with temporomandibular disorder (TMD) it has been theorized that stressful events trigger oral habits (e.g., teeth grinding), thereby increasing masticatory muscle tension and subsequent pain. Recent research involving adjunctive behaviors found an increase in masseter surface EMG (sEMG) and oral habits when students with TMD symptomatology were placed on a fixed-time reinforcement schedule. The current study used a treatment-seeking community sample with TMD symptomatology in a competitive task designed to be a more naturalistic Fixed Time task. The experiment consisted of Adaptation, Free-Play, Scheduled-Play, and Recovery phases. During the Scheduled-Play phase participants played, and waited to play, an electronic poker game. Results indicated that masseter muscle tension in the Scheduled-Play phase was significantly higher (p < .001) than in any other phase. Moreover, during the Scheduled-Play phase masseter sEMG was higher (p < .001) when participants waited to play. Self-reported oral habits and overall affect were significantly higher (p's < .05) in the Free-Play and Scheduled-Play phases relative to Adaptation and Recovery. The observation that masseter sEMG was elevated during the Scheduled-Play phase relative to all other phases, and within the Scheduled-Play phase sEMG was highest while waiting, suggests that adjunctive oral habits may lead to TMD symptomatology.

  10. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke

    PubMed Central

    Roy, Serge H.; Cheng, M. Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S. Hamid; De Luca, Carlo J.

    2010-01-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of <10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:20051332

  11. Continuous motion decoding from EMG using independent component analysis and adaptive model training.

    PubMed

    Zhang, Qin; Xiong, Caihua; Chen, Wenbin

    2014-01-01

    Surface Electromyography (EMG) is popularly used to decode human motion intention for robot movement control. Traditional motion decoding method uses pattern recognition to provide binary control command which can only move the robot as predefined limited patterns. In this work, we proposed a motion decoding method which can accurately estimate 3-dimensional (3-D) continuous upper limb motion only from multi-channel EMG signals. In order to prevent the muscle activities from motion artifacts and muscle crosstalk which especially obviously exist in upper limb motion, the independent component analysis (ICA) was applied to extract the independent source EMG signals. The motion data was also transferred from 4-manifold to 2-manifold by the principle component analysis (PCA). A hidden Markov model (HMM) was proposed to decode the motion from the EMG signals after the model trained by an adaptive model identification process. Experimental data were used to train the decoding model and validate the motion decoding performance. By comparing the decoded motion with the measured motion, it is found that the proposed motion decoding strategy was feasible to decode 3-D continuous motion from EMG signals.

  12. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  13. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin. PMID:26059538

  14. Evaluation of Novel EMG Biofeedback for Postural Correction During Computer Use.

    PubMed

    Gaffney, Brecca M; Maluf, Katrina S; Davidson, Bradley S

    2016-06-01

    Postural correction is an effective rehabilitation technique used to treat chronic neck and shoulder pain, and is aimed toward reducing the load on the surrounding muscles by adopting a neutral posture. The objective of this investigation was to evaluate the effectiveness of real-time high-density surface EMG (HDsEMG) biofeedback for postural correction during typing. Twenty healthy participants performed a typing task with two forms of postural feedback: (1) verbal postural coaching and (2) verbal postural coaching plus HDsEMG biofeedback. The interface used activity from two HDsEMG arrays placed over the trapezius designed to shift trapezius muscle activity inferiorly. The center of gravity across both arrays was used to quantify the spatial distribution of trapezius activity. Planar angles taken from upper extremity reflective markers quantified cervicoscapular posture. During the biofeedback condition, trapezius muscle activity was located 12.74 ± 3.73 mm more inferior, the scapula was 2.58 ± 1.18° more adducted and 0.23 ± 0.24° more depressed in comparison to verbal postural coaching alone. The results demonstrate the short-term effectiveness of a real-time HDsEMG biofeedback intervention to achieve postural correction, and may be more effective at creating an inferior shift in trapezius muscle activity in comparison to verbal postural coaching alone. PMID:26718205

  15. Peripherally induced EMG silent periods. Normal physiology and disorders of motor control.

    PubMed

    Ford, B; Fahn, S; Pullman, S L

    1995-01-01

    Periods of relative or absolute EMG suppression induced by peripheral stimulation have been described using a variety of experimental paradigms in normal subjects and in conditions of abnormal motor control. Peripherally induced silent periods represent complex inhibitory modulations of muscle activity and can be reproducibly evoked by cutaneous or mixed nerve electrical or mechanical stimuli. Features of the electromyographic suppression which most easily permit analysis include the degree of EMG inhibition, the latency and duration of the response, and the timing of the return of normal EMG activity following the stimulus, or S-X interval. When exteroceptive reflexes in craniocervical muscles are studied, alternating periods of EMG inhibition and facilitation have been described. Experiments designed to isolate the various contributants to EMG silence have not revealed a unitary electrophysiological basis for all of the silent period responses elicited by peripheral means. Thus, silent periods share a multifactorial origin that depends upon segmental spinal mechanisms which are heavily influenced by descending suprasegmental pathways. Because these mechanisms are affected in a variety of central disorders of motor control, study of peripherally induced silent periods may provide a window on the abnormal physiology of selected CNS diseases. Further study is required to elucidate the electrophysiology of peripherally induced silent periods, and to clarify the alterations in these negative motor phenomena that occur in central disorders of motor control. PMID:8848978

  16. Finite State Machine with Adaptive Electromyogram (EMG) Feature Extraction to Drive Meal Assistance Robot

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi

    Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.

  17. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  18. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  19. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles.

  20. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders. PMID:9658746

  1. Effects of viewing affective pictures on sEMG activity of masticatory and postural muscles.

    PubMed

    D'Attilio, Michele; Rodolfino, Daria; Saccucci, Matteo; Abate, Michele; Romani, Gian Luca; Festa, Felice; Merla, Arcangelo

    2013-06-01

    Recently there has been an upsurge of interest in the question to what extent the human motor control system is influenced by the emotional state of the actor. The aim of this study was to evaluate whether emotional inputs modify the activity of masticatory and postural muscles. Twenty healthy young adults viewed affective pictures, while surface electromyography (sEMG) of masticatory and postural muscles was recorded to investigate the coupling between emotional reactions and body muscular activity. One hundred and twenty pictures, chosen from the International Affective Picture System (IAPS), divided in two blocks of six sets, were presented to the subjects. sEMG data were statistically analyzed (RM ANOVA on Ranks). Root Mean Square (RMS) amplitudes, comparing the subsequent sets (Neutral, Unpleasant, Neutral, Pleasant) with the first and the last Baseline set, changed significantly only randomly. The results show that emotional inputs seems not influence the activity of masticatory and postural muscles, recorded by sEMG.

  2. Examination of motor unit control properties in stroke survivors using surface EMG decomposition: a preliminary report.

    PubMed

    Suresh, Nina; Li, Xiaoyan; Zhou, Ping; Rymer, William Zev

    2011-01-01

    The objective of this pilot study was to examine alterations in motor unit (MU) control properties, (i.e. MU recruitment and firing rate) after stroke utilizing a recently developed high-yield surface electromyogram (EMG) decomposition technique. Two stroke subjects participated in this study. A sensor array was used to record surface EMG signals from the first dorsal interosseous (FDI) muscle during voluntary isometric contraction at varying force levels. The recording was performed in both paretic and contralateral muscles using a matched force protocol. Single motor unit activity was extracted using the surface EMG decomposition software from Delsys Inc. The results from the two stroke subjects indicate a reduction in the mean motor unit firing rate and a compression of motor unit recruitment range in paretic muscle as compared with the contralateral muscles. These findings provide further evidence of spinal motoneuron involvement after a hemispheric brain lesion, and help us to understand the complex origins of stroke induced muscle weakness.

  3. Development of a learning module using a virtual environment to demonstrate EMG and telerobotic control principles.

    PubMed

    Patterson, P E

    2002-01-01

    A prototype system was developed for use as a teaching tool, allowing students to link EMG monitoring, data smoothing, robotic control, and neural network training within a rapid prototyping virtual environment (VE). The VE software allowed for the rapid development of scenarios and, when linked with EMG data input to a neural network, allowed the user to control an artificial world containing a virtual arm. Student teams then attempted to control the arm in the VE while performing the tasks by use of a neural network system they had specifically developed and trained using their own EMG signals. The results from their system were then translated into a form that enabled the control of a real robot. Students enjoyed the challenge and uniqueness of the module, and were enthusiastic about extending the concept to other areas of interest.

  4. Trust sensor interface for improving reliability of EMG-based user intent recognition.

    PubMed

    Liu, Yuhong; Zhang, Fan; Sun, Yan Lindsay; Huang, He

    2011-01-01

    To achieve natural and smooth control of prostheses, Electromyographic (EMG) signals have been investigated for decoding user intent. However, EMG signals can be easily contaminated by diverse disturbances, leading to errors in user intent recognition and threatening the safety of prostheses users. To address this problem, we propose a trust sensor interface (TSI) that contains 2 modules: (1) abnormality detector that detects diverse disturbances with high accuracy and low latency and (2) trust evaluation that dynamically evaluates the reliability of EMG sensors. Based on the output of the TSI, the user intention recognition (UIR) algorithm is able to dynamically adjust their operations or decisions. Our experiments on an able-bodied subject have demonstrated that the proposed TSI can effectively detect two types of disturbances (i.e. motion artifacts and baseline shifts) and improve the reliability of the UIR.

  5. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    PubMed

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills. PMID:24788591

  6. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders.

  7. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    PubMed

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills.

  8. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces.

    PubMed

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2013-06-01

    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  9. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.

    PubMed

    Suberbiola, Aaron; Zulueta, Ekaitz; Lopez-Guede, Jose Manuel; Etxeberria-Agiriano, Ismael; Graña, Manuel

    2015-05-01

    This paper shows experimental results on electromyography (EMG)-based system control applied to motorized orthoses. Biceps and triceps EMG signals are captured through two biometrical sensors, which are then filtered and processed by an acquisition system. Finally an output/control signal is produced and sent to the actuators, which will then perform the actual movement, using algorithms based on autoregressive (AR) models and neural networks, among others. The research goal is to predict the desired movement of the lower arm through the analysis of EMG signals, so that the movement can be reproduced by an arm orthosis, powered by two linear actuators. In this experiment, best accuracy has achieved values up to 91%, using a fourth-order AR-model and 100ms block length.

  10. Agreement between clinical and portable EMG/ECG diagnosis of sleep bruxism.

    PubMed

    Castroflorio, T; Bargellini, A; Rossini, G; Cugliari, G; Deregibus, A; Manfredini, D

    2015-10-01

    The aim of this study was to compare clinical sleep bruxism (SB) diagnosis with an instrumental diagnosis obtained with a device providing electromyography/electrocardiography (EMG/ECG) recordings. Forty-five (N = 45) subjects (19 males and 26 females, mean age 28 ± 11 years) were selected among patients referring to the Gnathology Unit of the Dental School of the University of Torino. An expert clinician assessed the presence of SB based on the presence of one or more signs/symptoms (i.e., transient jaw muscle pain in the morning, muscle fatigue at awakening, presence of tooth wear, masseter hypertrophy). Furthermore, all participants underwent an instrumental recording at home with a portable device (Bruxoff; OT Bioelettronica, Torino, Italy) allowing a simultaneous recording of EMG signals from both the masseter muscles as well as heart frequency. Statistical procedures were performed with the software Statistical Package for the Social Science v. 20.0 (SPSS 20.0; IBM, Milan, Italy). Based on the EMG/ECG analysis, 26 subjects (11 males, 15 females, mean age 28 ± 10 years) were diagnosed as sleep bruxers, whilst 19 subjects (7 males, 12 females, mean age 30 ± 10 years) were diagnosed as non-bruxers. The correlation between the clinical and EMG/ECG SB diagnoses was low (ϕ value = 0.250), with a 62.2% agreement (28/45 subjects) between the two approaches (kappa = 0.248). Assuming instrumental EMG/ECG diagnosis as the standard of reference for definite SB diagnosis in this investigation, the false-positive and false-negative rates were unacceptable for all clinical signs/symptoms. In conclusion, findings from clinical assessment are not related with SB diagnosis performed with a portable EMG/ECG recorder.

  11. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  12. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  13. Subspace based adaptive denoising of surface EMG from neurological injury patients

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  14. Usefulness of electromyography of the cavernous corpora (CC EMG) in the diagnosis of arterial erectile dysfunction.

    PubMed

    Virseda-Chamorro, M; Lopez-Garcia-Moreno, A M; Salinas-Casado, J; Esteban-Fuertes, M

    2012-01-01

    Electromyography (EMG) of the corpora cavernosa (CC-EMG) is able to record the activity of the erectile tissue during erection, and thus has been used as a diagnostic technique in patients with erectile dysfunction (ED). The present study examines the usefulness of the technique in the diagnosis of arterial ED. A cross-sectional study was made of 35 males with a mean age of 48.5 years (s.d. 11.34), referred to our center with ED for >1 year. The patients were subjected to CC-EMG and a penile Doppler ultrasound study following the injection of 20 μg of prostaglandin E1 (PGE1). The patients were divided into three groups according to their response to the intracavernous injection of PGE1: Group 1 (adequate erection and reduction/suppression of EMG activity); Group 2 (insufficient erection and persistence of EMG activity); and Group 3 (insufficient erection and reduction/suppression of EMG activity). Patient classification according to response to the intracavernous injection of PGE1 was as follows: Group 1: six patients (17%), Group 2: 18 patients (51%), and Group 3: 11 patients (31%). Patients diagnosed with arterial insufficiency according to Doppler ultrasound (systolic arterial peak velocity <30 mm s(-1) in both arteries) were significantly older than those without such damage (54.5 versus 41.8 years, respectively; s.d. 11.12). The patients in Group 3 showed a significantly lower maximum systolic velocity in both arteries than the subjects belonging to Group 2. Likewise, a statistically significant relationship was observed between the diagnosis of arterial insufficiency and patient classification in Group 3. The confirmation of insufficient erection associated with reduction/suppression of EMG activity showed a sensitivity of 66.7% (confidence interval between 50 and 84%) and a specificity of 92.9% (confidence interval between 84 and 100%) in the diagnosis of arterial ED. Owing to the high specificity of CC-EMG response to the injection of PGE1, this test is

  15. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat

  16. Discrimination of Combined Motions for Prosthetic Hands Using Surface EMG Signals

    NASA Astrophysics Data System (ADS)

    Ibe, Ayuko; Gouko, Manabu; Ito, Koji

    The present paper proposes a multiple step discrimination method to determine single and combined movements intended by an amputee from surface electromyogram (EMG) signals. Most previous approaches to the discrimination of movement using EMG signals have been restricted to single joint movements. Our approach enables the amputee's intended movement to be determined from among four single and two combined limb functions using an initial rise zone 125 msec long. Experiments with ten subjects and four electrodes demonstrated that our proposal determines six forearm movements at a discrimination rate exceeding than 90%.

  17. [Study on the surface EMG pattern classification with BP neural networks].

    PubMed

    Wang, R; Huang, C; Li, B; Jin, D; Zhang, J

    1998-03-01

    This paper presents a surface electromyography (EMG) motion pattern classifier which combines Neural Network (NN) with parametric model such as autoregressive (AR) model. This motion pattern classifier can successfully identify four types of movement of human hand, wrist flexion, wrist extension, forearm pronation and forearm supination, by using of the surface EMG detected from the flexor carpi radialis and the extensor carpi ulnaris. The result shows that it has a great potential application to the control of bionic man-machine systems such as prostheses because of its fast calculating speed, high recognition ability, and good robust.

  18. Coverage centralities for temporal networks*

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi

    2016-02-01

    Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7

  19. Temporal Effect of In Vivo Tendon Fatigue Loading on the Apoptotic Response Explained in the Context of Number of Fatigue Loading Cycles and Initial Damage Parameters

    PubMed Central

    Andarawis-Puri, Nelly; Philip, Anaya; Laudier, Damien; Schaffler, Mitchell B.; Flatow, Evan L.

    2014-01-01

    Accumulation of damage is a leading factor in the development of tendinopathy. Apoptosis has been implicated in tendinopathy, but the biological mechanisms responsible for initiation and progression of these injuries are poorly understood. We assessed the relationship between initial induced damage and apoptotic activity 3 and 7 days after fatigue loading. We hypothesized that greater apoptotic activity (i) will be associated with greater induced damage and higher number of fatigue loading cycles, and (ii) will be higher at 7 than at 3 days after loading. Left patellar tendons were fatigue loaded for either 100 or 7,200 cycles. Diagnostic tests were applied before and after fatigue loading to determine the effect of fatigue loading on hysteresis, elongation, and loading and unloading stiffness (damage parameters). Cleaved Caspase-3 staining was used to identify and calculate the percent apoptosis in the patellar tendon. While no difference in apoptotic activity occurred between the 100 and 7,200 cycle groups, greater apoptotic activity was associated with greater induced damage. Apoptotic activity was higher at 7 than 3 days after loading. We expect that the decreasing number of healthy cells that can repair the induced damage in the tendon predispose it to further injury. PMID:24838769

  20. Temporal variability in bioassays of the stomatal ammonia compensation point in relation to plant and soil nitrogen parameters in intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Mattsson, M.; Herrmann, B.; David, M.; Loubet, B.; Riedo, M.; Theobald, M. R.; Sutton, M. A.; Bruhn, D.; Neftel, A.; Schjoerring, J. K.

    2009-02-01

    The exchange of ammonia between crop canopies and the atmosphere depends on a range of plant parameters and climatic conditions. However, little is known about effects of management factors. We have here investigated the stomatal ammonia compensation point in response to cutting and fertilization of a grass sward dominated by Lolium perenne. Tall grass had a very low NH3 compensation point (around 1 nmol mol-1), reflecting the fact that leaf nitrogen (N) concentration was very low. During re-growth after cutting, leaf tissue concentrations of NO3-, NH4+, soluble N and total N increased along with apoplastic NH4+ concentrations. In contrast, apoplastic pH decreased resulting in largely unaltered NH3 compensation points. Nitrogen fertilization one week after cutting caused the apoplastic NH4+ concentration of the newly emerging leaves to increase dramatically. The NH3 compensation point peaked between 15 and 25 nmol mol-1 the day after the fertiliser was applied and thereafter decreased over the following 10 days until reaching the same level as before fertilisation. Ammonium concentrations in leaf apoplast, bulk tissue and litter were positively correlated (P=0.001) throughout the experimental period. Bulk tissue NH4+ concentrations, total plant N and soil NH4+ concentrations also showed a positive correlation. A very high potential for NH3 emission was shown by the plant litter.

  1. Temporal changes of 7Be, 137Cs and 210Pb activity concentrations in surface air at Monaco and their correlation with meteorological parameters.

    PubMed

    Pham, Mai K; Betti, Maria; Nies, Hartmut; Povinec, Pavel P

    2011-11-01

    Results of analysis of (7)Be, (137)Cs and (210)Pb on aerosol filters carried out from 1998 to 2010 in Monaco show that a weak correlation between activity concentrations of these radionuclides in the atmosphere and meteorological parameters has been found for (7)Be and temperature (r = 0.50), (210)Pb and temperature and humidity (r = 0.43 and 0.41, respectively), and (137)Cs and precipitation (r = 0.51). The minimum and maximum (7)Be activity concentrations were observed during 2000 and 2009, corresponding with the maximum and minimum solar activity, respectively. The maximum (137)Cs activity concentration found in May-June 1998 was due to the accident at Algeciras in Spain. The deposition velocities of (7)Be, (137)Cs and (210)Pb depended on the precipitation rate, and attained maximum values during dry seasons. The investigated radionuclides may be used as atmospheric tracers, especially in long-term periods.

  2. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    PubMed

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  3. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. PMID:27570104

  4. Predicting Differential Response to EMG Biofeedback and Relaxation Training: The Role of Cognitive Structure.

    ERIC Educational Resources Information Center

    Hart, James D.

    1984-01-01

    Analyzed treatment outcome data for 102 headache patients who had been assigned randomly to receive either EMG biofeedback (N=70) or relaxation training (N=32). Analysis demonstrated that relaxation training was significantly more effective than biofeedback and that mixed headache patients improved significantly less than either migraine or…

  5. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions

    PubMed Central

    Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri

    2016-01-01

    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165

  6. Quantitative evaluation of muscle relaxation induced by Kundalini yoga with the help of EMG integrator.

    PubMed

    Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A

    1990-10-01

    The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.

  7. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot.

    PubMed

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai

    2014-01-01

    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods. PMID:24403424

  8. EMG responses in leg muscles to postural perturbations in Huntington's disease.

    PubMed Central

    Huttunen, J; Hömberg, V

    1990-01-01

    This paper compares leg muscle electromyogram (EMG) responses to sudden toe-up tilts of a moveable platform in patients with Huntington's disease (HD), clinically normal offspring at risk of developing HD (HD risks) and healthy controls. The EMG pattern in standing subjects and patients consisted of short- and middle-latency responses (SL and ML) in the stretched triceps surae muscles and long-latency responses (LL) in the shortened tibialis anterior muscles. The SL response could be further divided into two distinct subcomponents termed SL1 and SL2. An ML response was identified in only 50% of normal subjects and patients. HD patients differed from normal subjects by showing delayed onset latencies and prolonged durations for the LL response, and smaller amplitudes for the ML response. The subjects at risk also showed diminished ML amplitudes and prolonged LL durations, but normal LL onset latencies. In the sitting condition, the EMG responses of the HD patients and of the HD risks did not differ from those of controls: in all groups SL1 was reduced and delayed, SL2 slightly enhanced, while ML and LL were absent. Because both afferent and efferent conduction times are normal in HD, the delayed LL onset reflects abnormal supraspinal organisation of postural control in HD, and indicates that basal ganglia may have a modulatory effect on the LL responses. The normal EMG responses in the sitting patients suggest appropriate regulation of these responses according to postural set in HD. PMID:2154557

  9. Automatic identification and classification of muscle spasms in long-term EMG recordings.

    PubMed

    Winslow, Jeffrey; Martinez, Adriana; Thomas, Christine K

    2015-03-01

    Spinal cord injured (SCI) individuals may be afflicted by spasticity, a condition in which involuntary muscle spasms are common. EMG recordings can be analyzed to quantify this symptom of spasticity but manual identification and classification of spasms are time consuming. Here, an algorithm was created to find and classify spasm events automatically within 24-h recordings of EMG. The algorithm used expert rules and time-frequency techniques to classify spasm events as tonic, unit, or clonus spasms. A companion graphical user interface (GUI) program was also built to verify and correct the results of the automatic algorithm or manually defined events. Eight channel EMG recordings were made from seven different SCI subjects. The algorithm was able to correctly identify an average (±SD) of 94.5 ± 3.6% spasm events and correctly classify 91.6 ± 1.9% of spasm events, with an accuracy of 61.7 ± 16.2%. The accuracy improved to 85.5 ± 5.9% and the false positive rate decreased to 7.1 ± 7.3%, respectively, if noise events between spasms were removed. On average, the algorithm was more than 11 times faster than manual analysis. Use of both the algorithm and the GUI program provide a powerful tool for characterizing muscle spasms in 24-h EMG recordings, information which is important for clinical management of spasticity.

  10. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Johnson, Glen O; Hendrix, C Russell; Zuniga, Jorge M; Mielke, Michelle; Schmidt, Richard J

    2010-01-01

    The purposes of this investigation were twofold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWC(FT)) from electromyographic (EMG) amplitude data could be applied to the frequency domain of the signal to derive a new fatigue threshold for cycle ergometry called the mean power frequency fatigue threshold (MPF(FT)), and (2) to compare the power outputs associated with the PWC(FT), MPF(FT), ventilatory threshold (VT), and respiratory compensation point (RCP). Sixteen men [mean (SD) age = 23.4 (3.2) years] performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences for PWC(FT) [mean (SD) = 168 (36) W] versus MPF(FT) [208 (37) W] and VT [152 (33) W] versus RCP [205 (84) W], but no mean differences for PWC(FT) versus VT or MPF(FT) versus RCP. The mean difference between PWC(FT) and MPF(FT) may be due to the effects of specific metabolites that independently influence the time and frequency domains of the EMG signal. These findings indicated that the PWC(FT) model could be applied to the frequency domain of the EMG signal to estimate MPF(FT). Furthermore, the current findings suggested that the PWC(FT) may demarcate the moderate from heavy exercise domains, while the MPF(FT) demarcates heavy from severe exercise intensities.

  11. Supralaryngeal muscle activity during sustained vibrato in four sopranos: surface EMG findings.

    PubMed

    Sapir, S; Larson, K K

    1993-09-01

    Four classically trained sopranos, aged 22-41 years, sustained a vibrato at a comfortable loudness level, and at different vowels (/u/, /i/, or /a/) and pitch levels (220, 277, 349, 440, 554, 698, or 880 Hz). Pairs of surface electrodes were placed on each singer's right side over the submandibular region, the thyroid cartilage, mandibular ramus, and upper lip to record electromyographic (EMG) activity from the anterior suprahyoid (ASH), extralaryngeal (ELAR), massetter (MAS), and perioral (PER) muscles, respectively. A headset-mounted miniature microphone transduced the voice, and a Kay Visi-Pitch extracted the voice fundamental frequency (F0). The output of the Visi-Pitch, a voltage analog of the F0 (VF0), and the EMG signals were digitized, the EMG signals rectified and smoothed, and the VF0 and smoothed EMG signals were subjected to Fast Fourier Transform (FFT) analysis. Spectral peaks in the FFT records indicated vibrato-related activity in the ASH and ELAR muscles, with occasional vibrato-related activity in the MAS and PER muscles. The role of supralaryngeal muscles in vibrato is discussed. PMID:8353638

  12. The Averaged EMGs Recorded from the Arm Muscles During Bimanual "Rowing" Movements.

    PubMed

    Tomiak, Tomasz; Gorkovenko, Andriy V; Tal'nov, Arkadii N; Abramovych, Tetyana I; Mishchenko, Viktor S; Vereshchaka, Inna V; Kostyukov, Alexander I

    2015-01-01

    The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in bimanual "rowing" movements, which were produced under identical elastic loads applied to the levers ("oars"). The muscles of PM group ("pulling" muscles: elbow flexors, shoulder extensors) generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group ("returning" muscles: elbow extensors, shoulder flexors) co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject's skilling in motor performance; on the other hand, the diversity can be connected with redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue. PMID:26640440

  13. Stress Management and Anxiety Reduction Through EMG Biofeedback/Relaxation Training upon Junior High School Students.

    ERIC Educational Resources Information Center

    Lang, Darrel

    The effectiveness of electromyographic (EMG) biofeedback/relaxation training on the stress management and anxiety levels of 18 eighth-grade students was tested. Chapter I serves as an introduction and presents information on the need for the study, hypotheses, limitations, and definition of terms. Chapter II contains a review of related…

  14. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  15. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions.

    PubMed

    Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri

    2016-01-01

    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165

  16. Discrimination of EMG and acceleration measurements between patients with Parkinson's disease and healthy persons.

    PubMed

    Rissanen, Saara M; Kankaanpaa, Markku; Tarvainen, Mika P; Meigal, Alexander; Nuutinen, Juho; Jakala, Pekka; Airaksinen, Olavi; Karjalainen, Pasi A

    2010-01-01

    In this paper, we examine the potential of electromyographic (EMG) and acceleration measurements in discriminating patients with Parkinson's disease (PD) from healthy persons. Two types of muscle contractions are examined: static contractions of biceps brachii muscles and elbow extension movements. Twelve features are extracted from static and ten features from extension measurements. These features describe signal morphology and nonlinear characteristics, power spreading in EMG wavelet scalograms and spectral coherence. Principal component approach is applied separately for static and extension trial to reduce the number of features before discrimination. The discrimination between subjects is done in a two-dimensional space by applying cluster analysis to the best discriminating principal components. The discrimination power of the used method was estimated with EMG and acceleration data measured from 56 patients with PD and 59 healthy controls. In the cluster analysis, three clusters were formed: one cluster with most (85%) of the healthy persons and two clusters with 80% of patients. Patients were divided into two clusters based on their type of motor disability (problems during movement and/or static contraction). Discrimination results show that EMG and acceleration measurements are potential for discriminating patients with PD from healthy persons. Furthermore, they have potential in the objective clinical assessment of PD. PMID:21096652

  17. Impact of early life adversity on EMG stress reactivity of the trapezius muscle.

    PubMed

    Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel

    2016-09-01

    Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  18. Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device.

    PubMed

    Paek, Andrew Y; Brown, Jeremy D; Gillespie, R Brent; O'Malley, Marcia K; Shewokis, Patricia A; Contreras-Vidal, Jose L

    2013-01-01

    In this study, seven able-bodied human subjects controlled a robotic gripper with surface electromyography (sEMG) activity from the biceps. While subjects controlled the gripper, they felt the forces measured by the robotic gripper through an exoskeleton fitted on their non-dominant left arm. Subjects were instructed to identify objects with the force feedback provided by the exoskeleton. While subjects operated the robotic gripper, scalp electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) were recorded. We developed neural decoders that used scalp EEG to reconstruct the sEMG used to control the robotic gripper. The neural decoders used a genetic algorithm embedded in a linear model with memory to reconstruct the sEMG from a plurality of EEG channels. The performance of the decoders, measured with Pearson correlation coefficients (median r-value = 0.59, maximum r-value = 0.91) was found to be comparable to previous studies that reconstructed sEMG linear envelopes from neural activity recorded with invasive techniques. These results show the feasibility of developing EEG-based neural interfaces that in turn could be used to control a robotic device.

  19. Knee extensor torque and quadriceps femoris EMG during perceptually-guided isometric contractions.

    PubMed

    Pincivero, D M; Coelho, A J; Campy, R M; Salfetnikov, Y; Suter, E

    2003-04-01

    The aim of this study was to examine superficial quadriceps femoris (QF) EMG and torque at perceived voluntary contraction efforts. Thirty subjects (15 males, 15 females) performed 9, 5 s, sub-maximal contractions at prescribed levels of perceived voluntary effort at points 1-9 on an 11-point scale (0-10), in a random order. Surface electromyograms (EMG) of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles, as well as QF peak torque (PT), average torque (AT), and torque coefficient of variation (C.V.), were sampled. The raw EMG signals were full-wave rectified and integrated over the middle three s of each contraction. The sampled EMG signals, and PT and AT at each perceived exertion level were normalized to the average of three maximal voluntary contractions. The normalized EMG and torque values at each perceived exertion level were then compared to equivalent percent values (i.e., 10% at a perceived level of 1). The results demonstrated that at all perceived exertion levels, with the exception of the RF at a level of 2 which was equivalent to 20%, and the VL and RF muscles at a level 1 in which activation was greater than 10%, activation was significantly less than the equivalent percent value at each point on the scale. VM EMG was found to be less than the VL and RF from contraction levels 3-9. PT was shown to be less than the equivalent percent values at contraction levels 6-9. The AT was found to be lower than the expected percent value at perceived effort levels 2-9. Torque C.V. was not found to be different across the range of perceived effort. The major findings of this study suggested that humans over-estimate voluntary QF muscle torque when guided by perceptual sensations. It is also suggested that the produced EMG signals revealed a reliance on the VL muscle for knee extensor torque generation at sub-maximal levels.

  20. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different

  1. EMG-based facial gesture recognition through versatile elliptic basis function neural network

    PubMed Central

    2013-01-01

    Background Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating. Methods In this study, EMGs of ten facial gestures were recorded from ten subjects using three pairs of surface electrodes in a bi-polar configuration. The signals were filtered and segmented into distinct portions prior to feature extraction. Ten different time-domain features, namely, Integrated EMG, Mean Absolute Value, Mean Absolute Value Slope, Maximum Peak Value, Root Mean Square, Simple Square Integral, Variance, Mean Value, Wave Length, and Sign Slope Changes were extracted from the EMGs. The statistical relationships between these features were investigated by Mutual Information measure. Then, the feature combinations including two to ten single features were formed based on the feature rankings appointed by Minimum-Redundancy-Maximum-Relevance (MRMR) and Recognition Accuracy (RA) criteria. In the last step, VEBFNN was employed to classify the facial gestures. The effectiveness of single features as well as the feature sets on the system performance was examined by considering the two major metrics, recognition accuracy and training time. Finally, the proposed classifier was assessed and compared with conventional methods support vector machines and multilayer perceptron neural network. Results The average classification results showed that the best performance for recognizing facial gestures among all single/multi-features was achieved by Maximum Peak Value with 87.1% accuracy

  2. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  3. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  4. Influence of sleep on tensor palatini EMG and upper airway resistance in normal men.

    PubMed

    Tangel, D J; Mezzanotte, W S; White, D P

    1991-06-01

    We propose that a sleep-induced decrement in the activity of the tensor palatini (TP) muscle could induce airway narrowing in the area posterior to the soft palate and therefore lead to an increase in upper airway resistance in normal subjects. We investigated the TP to determine the influence of sleep on TP muscle activity and the relationship between changing TP activity and upper airway resistance over the entire night and during short sleep-awake transitions. Seven normal male subjects were studied on a single night with wire electrodes placed in both TP muscles. Sleep stage, inspiratory airflow, transpalatal pressure, and TP moving time average electromyogram (EMG) were continuously recorded. In addition, in two of the seven subjects the activity (EMG) of both the TP and the genioglossus muscle simultaneously was recorded throughout the night. Upper airway resistance increased progressively from wakefulness through the various non-rapid-eye-movement sleep stages, as has been previously described. The TP EMG did not commonly demonstrate phasic activity during wakefulness or sleep. However, the tonic EMG decreased progressively and significantly (P less than 0.05) from wakefulness through the non-rapid-eye-movement sleep stages [awake, 4.6 +/- 0.3 (SE) arbitrary units; stage 1, 2.6 +/- 0.3; stage 2, 1.7 +/- 0.5; stage 3/4, 1.5 +/- 0.8]. The mean correlation coefficient between TP EMG and upper airway resistance across all sleep states was (-0.46). This mean correlation improved over discrete sleep-awake transitions (-0.76). No sleep-induced decrement in the genioglossus activity was observed in the two subjects studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  6. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    PubMed Central

    Kuiken, Todd A; Hargrove, Levi J

    2014-01-01

    Objective Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main Results Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts' Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts' Law tasks with high levels of path efficiency. Significance These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control. PMID:25394366

  7. EMG activities and ground reaction forces during fatigued and nonfatigued sprinting.

    PubMed

    Nummela, A; Rusko, H; Mero, A

    1994-05-01

    The present study was designed to investigate EMG activities and ground reaction forces during fatigued and nonfatigued running. Ten male sprint runners volunteered to run a maximal 20-m speed test, a 400-m time trial, and submaximal 20-m runs at the average speed of the first 100 m of the 400 m. During the latter stage of each run, ground reaction forces and EMG activity of four leg muscles were recorded. EMG activities were time averaged during three phases of running: preactivation, braking, and propulsion phase. The resultant ground reaction forces both in the braking (P < 0.001) and in the propulsion phase (P < 0.01) were greater in the maximal and submaximal 20 m than at the end of the 400 m. The averaged EMG during the braking phase (P < 0.01) and during the total ground phase (P < 0.05) was smaller in the submaximal 20 m than at the end of the 400 m. On the other hand the averaged EMG was greater during the maximal 20 m than at the end of the 400 m during the propulsion phase (P < 0.001) and during the total ground phase (P < 0.05). In addition, the more the preactivity increased the less the resultant ground reaction force decreased in the braking phase during the 400 m run (r = 0.77, P < 0.05). It was concluded that the role of the increased neural activation was to compensate for muscular fatigue and the preactivation had an important role in maintaining force production during the 400-m run. In addition, the fatigue was different in each working muscle. PMID:8007809

  8. Selective depletion of spinal monoamines changes the rat soleus EMG from a tonic to a more phasic pattern.

    PubMed Central

    Kiehn, O; Erdal, J; Eken, T; Bruhn, T

    1996-01-01

    1. To assess the role of descending monoaminergic pathways for motor activity long-lasting EMG recordings were performed from the adult soleus muscle before and after selective depletion of spinal monoamines. 2. Rats were chronically implanted with an intrathecal catheter placed in the lumbar subarachnoid space and gross-EMG recording electrodes in the soleus muscle. EMG recordings were performed in control conditions and at different times after intrathecal administration of either 40-55 micrograms 5,6-dihydroxytryptamine (5,6-DHT) and 40-55 micrograms 6-hydroxydopamine (6-OHDA) or 80 micrograms 5,7-dihydroxytryptamine (5,7-DHT) alone. The depletions were evaluated biochemically in brains and spinal cords after recordings. 3. In agreement with previous studies the intrathecal administration of neurotoxins caused a reduction of the noradrenaline (NA) and serotonin (5-HT) content of the lumbar spinal cord to about 2-3% of control, with little or no changes in the monoamine content of the cortex. 4. In non-treated chronically catheterized rats the integrated rectified gross EMG displayed long-lasting EMG episodes composed of phasic high-amplitude events and tonic segments of varying duration and amplitude. 5. After intrathecal administration of neurotoxins the number of long-lasting gross-EMG episodes, the mean episode duration, and the total EMG activity per 24 h, were reduced. These changes were accompanied by a simultaneous increase both in the number of short-lasting EMG episodes and the total number of EMG episodes per 24 h period. The changes were apparent 5-6 days after drug administration and fully developed after 2-3 weeks. 6. No changes in general movement ability were observed, except that the denervated animals had a tendency to a less errect posture. 7. These results indicate that descending monoaminergic pathways are important for the maintained motor output in tonic hindlimb muscles. PMID:8730593

  9. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects.

    PubMed

    Trojaniello, Diana; Ravaschio, Andrea; Hausdorff, Jeffrey M; Cereatti, Andrea

    2015-09-01

    The estimation of gait temporal parameters with inertial measurement units (IMU) is a research topic of interest in clinical gait analysis. Several methods, based on the use of a single IMU mounted at waist level, have been proposed for the estimate of these parameters showing satisfactory performance when applied to the gait of healthy subjects. However, the above mentioned methods were developed and validated on healthy subjects and their applicability in pathological gait conditions was not systematically explored. We tested the three best performing methods found in a previous comparative study on data acquired from 10 older adults, 10 hemiparetic, 10 Parkinson's disease and 10 Huntington's disease subjects. An instrumented gait mat was used as gold standard. When pathological populations were analyzed, missed or extra events were found for all methods and a global decrease of their performance was observed to different extents depending on the specific group analyzed. The results revealed that none of the tested methods outperformed the others in terms of accuracy of the gait parameters determination for all the populations except the Parkinson's disease subjects group for which one of the methods performed better than others. The hemiparetic subjects group was the most critical group to analyze (stride duration errors between 4-5 % and step duration errors between 8-13 % of the actual values across methods). Only one method provides estimates of the stance and swing durations which however should be interpreted with caution in pathological populations (stance duration errors between 6-14 %, swing duration errors between 10-32 % of the actual values across populations).

  10. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson's disease and Huntington's disease subjects.

    PubMed

    Trojaniello, Diana; Ravaschio, Andrea; Hausdorff, Jeffrey M; Cereatti, Andrea

    2015-09-01

    The estimation of gait temporal parameters with inertial measurement units (IMU) is a research topic of interest in clinical gait analysis. Several methods, based on the use of a single IMU mounted at waist level, have been proposed for the estimate of these parameters showing satisfactory performance when applied to the gait of healthy subjects. However, the above mentioned methods were developed and validated on healthy subjects and their applicability in pathological gait conditions was not systematically explored. We tested the three best performing methods found in a previous comparative study on data acquired from 10 older adults, 10 hemiparetic, 10 Parkinson's disease and 10 Huntington's disease subjects. An instrumented gait mat was used as gold standard. When pathological populations were analyzed, missed or extra events were found for all methods and a global decrease of their performance was observed to different extents depending on the specific group analyzed. The results revealed that none of the tested methods outperformed the others in terms of accuracy of the gait parameters determination for all the populations except the Parkinson's disease subjects group for which one of the methods performed better than others. The hemiparetic subjects group was the most critical group to analyze (stride duration errors between 4-5 % and step duration errors between 8-13 % of the actual values across methods). Only one method provides estimates of the stance and swing durations which however should be interpreted with caution in pathological populations (stance duration errors between 6-14 %, swing duration errors between 10-32 % of the actual values across populations). PMID:26163348

  11. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.). PMID:26417459

  12. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  13. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  14. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  15. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  16. A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet.

    PubMed

    Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid

    2016-02-01

    In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05). PMID:26643795

  17. Amplitude and frequency changes in surface EMG of biceps femoris during five days Bruce Protocol treadmill test.

    PubMed

    Jamaluddin, Fauzani N; Ahmad, Siti A; Noor, Samsul Bahari Mohd; Hassan, Wan Zuha Wan; Yaakob, Azhar; Adam, Yunus; Ali, Sawal H M

    2015-08-01

    Electromyography (EMG) is one of the indirect tools in indexing fatigue. Fatigue can be detected when there are changes on amplitude and frequency. However, various outcomes from literature make researchers conclude that EMG is not a reliable tool to measure fatigue. This paper investigates EMG behavior of biceps femoris in median frequency and mean absolute value during five days of Bruce Protocol treadmill test. Before that, surface EMG signals are filtered using band pass filter cut-off at 20-500Hz and are de-noised using db45 1-decimated wavelet transform. Five participants achieved more than 85% of their maximal heart rate during the running activity. The authors also consider other markers of fatigue such as performance, muscle soreness and lethargy as indicators to adaptation and maladaptation conditions. Result shows that turning points of median frequency and mean absolute value are very significant in indexing fatigue and indicators to adaptation of resistive training. PMID:26737713

  18. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-01-01

    An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training on muscular coordination was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5 times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Improvements were found in the muscle co-ordination between the antagonist muscle pair (flexor digitorum and extensor digitorum) as measured by muscle co-contractions in EMG signals; and also in the reduction of excessive muscle activities in the biceps brachii. Reduced spasticity in the fingers was also observed as measured by the Modified Ashworth Score.

  19. Robotic leg control with EMG decoding in an amputee with nerve transfers.

    PubMed

    Hargrove, Levi J; Simon, Ann M; Young, Aaron J; Lipschutz, Robert D; Finucane, Suzanne B; Smith, Douglas G; Kuiken, Todd A

    2013-09-26

    The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation--with seamless transitions between walking on level ground, stairs, and ramps--and of the ability to reposition the leg while the patient was seated.

  20. Comparison study of EMG signals compression by methods transform using vector quantization, SPIHT and arithmetic coding.

    PubMed

    Ntsama, Eloundou Pascal; Colince, Welba; Ele, Pierre

    2016-01-01

    In this article, we make a comparative study for a new approach compression between discrete cosine transform (DCT) and discrete wavelet transform (DWT). We seek the transform proper to vector quantization to compress the EMG signals. To do this, we initially associated vector quantization and DCT, then vector quantization and DWT. The coding phase is made by the SPIHT coding (set partitioning in hierarchical trees coding) associated with the arithmetic coding. The method is demonstrated and evaluated on actual EMG data. Objective performance evaluations metrics are presented: compression factor, percentage root mean square difference and signal to noise ratio. The results show that method based on the DWT is more efficient than the method based on the DCT.

  1. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  2. Effects of self-regulatory strength depletion on muscular performance and EMG activation.

    PubMed

    Bray, Steven R; Martin Ginis, Kathleen A; Hicks, Audrey L; Woodgate, Jennifer

    2008-03-01

    The purpose of the present study was to examine the effects of a self-regulatory strength depletion manipulation on performance of a physical endurance (isometric handgrip) task. In addition, the effect of depletion on EMG activity in the working forearm muscles during the endurance task was explored. Sedentary undergraduates (N=49) were randomly assigned to either a cognitive depletion condition (modified Stroop task) or a control (color word) group and completed two maximal isometric exercise endurance trials separated by the cognitive task. Participants in the depletion group showed significant (p<.05) degradations in performance and exhibited higher EMG activation on the second endurance trial (p<.05) compared to controls. Results are consistent with the limited strength model of self-regulation and are interpreted in light of the central fatigue hypothesis. PMID:17995906

  3. Needle EMG Response of Lumbar Multifidus to Manipulation in the Presence of Clinical Instability.

    PubMed

    Tunnell, John

    2009-01-01

    A proposed mechanism for the persistence of low back pain due to clinical instability is a decrease in control of local spinal musculature, more specifically decreased recruitment of multifidus. Altered segmental mechanoreceptor input has been proposed as a contributing factor responsible for a decrease in local muscle recruitment. In this case report, immediate changes in the recruitment of the deep multifidus following manipulation were examined using needle EMG and isometric testing of trunk rotational force. Trunk rotational force appeared to improve while the multifidus demonstrated a decrease in activity as measured by needle EMG. No specific conclusions can be drawn from this report; however, the results do suggest that immediate multifidus function may be influenced with manipulation, resulting in improved muscular control of the trunk. PMID:20046558

  4. Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis.

    PubMed

    Xie, Hongbo; Wang, Zhizhong

    2006-05-01

    The mean frequency (MNF) of surface electromyography (EMG) signal is an important index of local muscle fatigue. The purpose of this study is to improve the mean frequency (MNF) estimation. Three methods to estimate the MNF of non-stationary EMG are compared. A novel approach based on Hilbert-Huang transform (HHT), which comprises the empirical mode decomposition (EMD) and Hilbert transform, is proposed to estimate the mean frequency of non-stationary signal. The performance of this method is compared with the two existing methods, i.e. autoregressive (AR) spectrum estimation and wavelet transform method. It is observed that our method shows low variability in terms of robustness to the length of the analysis window. The time-varying characteristic of the proposed approach also enables us to accommodate other non-stationary biomedical data analysis.

  5. A mixed FES/EMG system for real time analysis of muscular fatigue.

    PubMed

    Yochum, M; Binczak, S; Bakir, T; Jacquir, S; Lepers, R

    2010-01-01

    In this article, we present a functional electrical stimulator allowing the extraction in real time of M-wave characteristics from resulting EMG recodings in order to quantify muscle fatigue. This system is composed of three parts. A Labview software managing the stimulation output and electromyogram (EMG) input signal, a hardware part amplifying the output and input signal and a link between the two previous parts which is made up from input/output module (NIdaq USB 6251). In order to characterize the fatigue level, the Continuous Wavelet Transform is applied yielding a local maxima detection. The fatigue is represented on a scale from 0 for a fine shaped muscle to 100 for a very tired muscle. Premilary results are given. PMID:21096653

  6. Evaluation and design of a small portable EMG amplifier with potential RMS output.

    PubMed

    Shimomura, Y; Iwanaga, K; Harada, H; Katsuura, T

    1999-03-01

    The present study attempted to design and evaluate a small portable electromyogram (EMG) amplifier that can output enhanced EMG and its root mean square (RMS) value. The production and design were of a laboratory scale without any special or high cost circuit construction. The designed amplifier was actually innovated according to the actual working conditions based on physiological anthropology. The present amplifier was compared with commercially available products and proved to be of practical use. The device was installed with a sufficiently small body depicting 8-channel variable gain AC amplifier and variable time-window RMS-to-DC converter. The prototype was battery-driven and well-shielded to minimize external noise interference. PMID:10388160

  7. High-density EMG E-textile systems for the control of active prostheses.

    PubMed

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing. PMID:21096838

  8. Frenulectomy of the tongue and the influence of rehabilitation exercises on the sEMG activity of masticatory muscles.

    PubMed

    Tecco, Simona; Baldini, Aberto; Mummolo, Stefano; Marchetti, Enrico; Giuca, Maria Rita; Marzo, Giuseppe; Gherlone, Enrico Felice

    2015-08-01

    This study aimed to assess by surface electromyography (sEMG) the changes in sub-mental, orbicularis oris, and masticatory muscle activity after a lingual frenulectomy. Rehabilitation exercises in subjects with ankyloglossia, characterized by Class I malocclusion, were assessed as well. A total of 24 subjects were selected. Thirteen subjects (mean age 7±2.5years) with Class I malocclusion and ankyloglossia were treated with lingual frenulectomy and rehabilitation exercises, while 11 subjects (mean age 7±0.8years) with normal occlusion and normal lingual frenulum were used as controls. The inclusion criteria for both groups were the presence of mixed dentition and no previous orthodontic treatment. The sEMG recordings were taken at the time of the first visit (T0), and after 1 (T1) and 6months (T2) for the treated group. Recordings were taken at the same time for the control group. Due to the noise inherent with the sEMG recording, special attention was paid to obtain reproducible and standardized recordings. The tested muscles were the masseter, anterior temporalis, upper and lower orbicularis oris, and sub-mental muscles. The sEMG recordings were performed at rest, while kissing, swallowing, opening the mouth, clenching the teeth and during protrusion of the mandible. These recordings were made by placing electrodes in the area of muscle contraction. At T0, the treated group showed different sEMG activity of the muscles with respect to the control group, with significant differences at rest and during some test tasks (p<0.05). In the treated group, an increase in sEMG potentials was observed for the masseter muscle, from T0 to T2, during maximal voluntary clenching. During swallowing and kissing, the masseter and sub-mental muscles showed a significant increase in their sEMG potentials from T0 to T2. During the protrusion of the mandible, the masseter and anterior temporalis significantly decreased their sEMG activity, while the sub-mental area increased

  9. Muscle synergies as a predictive framework for the EMG patterns of new hand postures

    NASA Astrophysics Data System (ADS)

    Ajiboye, A. B.; Weir, R. F.

    2009-06-01

    Synchronous muscle synergies have been suggested as a framework for dimensionality reduction in muscle coordination. Many studies have shown that synergies form a descriptive framework for a wide variety of tasks. We examined if a muscle synergy framework could accurately predict the EMG patterns associated with untrained static hand postures, in essence, if they formed a predictive framework. Hand and forearm muscle activities were recorded while subjects statically mimed 33 postures of the American Sign Language alphabet. Synergies were extracted from a subset of training postures using non-negative matrix factorization and used to predict the EMG patterns of the remaining postures. Across the subject population, as few as 11 postures could form an eight-dimensional synergy framework that allowed for at least 90% prediction of the EMG patterns of all 33 postures, including trial-to-trial variations. Synergies were quite robust despite using different postures in the training set, and also despite using a varied number of postures. Estimated synergies were categorized into those which were subject-specific and those which were general to the population. Population synergies were sparser than the subject-specific synergies, typically being dominated by a single muscle. Subject-specific synergies were more balanced in the coactivation of multiple muscles. We suggest as a result that global muscle coordination may be a combination of higher order control of robust subject-specific muscle synergies and lower order control of individuated muscles, and that this control paradigm may be useful in the control of EMG-based technologies, such as artificial limbs and functional electrical stimulation systems.

  10. Effect of spatial filtering on crosstalk reduction in surface EMG recordings.

    PubMed

    Mesin, Luca; Smith, Stuart; Hugo, Suzanne; Viljoen, Suretha; Hanekom, Tania

    2009-04-01

    Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A comparison of the ability of different spatial filters to reduce the amount of crosstalk in surface EMG measurements was conducted in this paper using simulated signals. It focused on the influence of different properties of the muscle anatomy (changing subcutaneous layer thickness, skin conductivity, fibre length) and detection system (single, double and normal double differential, with two inter-electrode distances - IED) on the amount of crosstalk present in the measurements. A cylindrical multilayer (skin, subcutaneous tissue, muscle, bone) analytical model was used to simulate single fibre action potentials (SFAPs). Fibres were grouped together in motor units (MUs) and motor unit action potentials (MUAPs) were obtained by adding the SFAPs of the corresponding fibres. Interference surface EMG signals were obtained, modelling the recruitment of MUs and rate coding. The average rectified value (ARV) and mean frequency (MNF) content of the EMG signals were studied and used as a basis for determining the selectivity of each spatial filter. From these results it was found that the selectivity of each spatial filter varies depending on the transversal location of the measurement electrodes and on the anatomy. An increase in skin conductivity favourably affects the selectivity of normal double differential filters as does an increase in subcutaneous layer thickness. An increase in IED decreases the selectivity of all the analysed filters.

  11. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance.

    PubMed

    Vieira, Taian M; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in

  12. Range of motion and leg rotation affect EMG activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-06-30

    The leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed eight LE REP at their 8-repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP x ROM interaction was detected (p<0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, 8 (p<0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p<0.001). For vastus lateralis (VL), EMG increased across REP (p<0.001) with NEU and TO EMG increasing linearly throughout ROM, and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  13. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in

  14. Classification of upper arm EMG signals during object-specific grasp.

    PubMed

    Martelloni, C; Carpaneto, J; Micera, S

    2008-01-01

    Electromyographic (EMG) signals can represent an interesting solution to control artificial hands because they are easy to record and can allow the user to control different robotic systems. However, after limb amputation the 'homologous' muscles are no more available to control the prosthetic device and for this reason complex pattern recognition approaches have to be developed to extract the voluntary commands by the user. This makes the control strategy less natural and acceptable and asks for alternative approaches. At the same time, it has been recently shown that (in monkeys) it is possible to discriminate grasping tasks just analyzing the activation onset/offset of upper limb muscles during the reaching phase. This kind of information can be very interesting because it can allow the development of a natural EMG-based control strategy based on the natural muscular activities selected by the central nervous system. In this paper, preliminary experiments have been carried out in order to verify whether these results can be confirmed also in human beings. In particular, a support vector machine (SVM) based pattern recognition algorithm has been developed and used for the prediction of grip types from the EMG recorded from proximal and distal muscles during reach to grasp movements of three able bodied subjects.

  15. Minimum detectable change for knee joint contact force estimates using an EMG-driven model

    PubMed Central

    Gardinier, Emily S.; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2013-01-01

    Adequate test–retest reliability of model estimates is a necessary precursor to examining treatment effects or longitudinal changes in individuals. Purpose The purpose of this study was to establish thresholds for minimal detectable change (MDC) for joint contact forces obtained using a patient specific EMG-driven musculoskeletal model of the knee. Design A sample of young, active individuals was selected for this study, and subjects were tested on 2 separate days. Three-dimensional motion analysis with electromyography (EMG) was used to obtain data from each subject during gait for model input. An EMG-driven modeling approach was used to estimate joint contact forces at each session. Results MDC’s for contact force variables ranged from 0.30 to 0.66 BW. The lowest MDC was for peak medial compartment force (0.30 BW) and the highest was for peak tibiofemoral contact force (0.66 BW). Test–retest reliability coefficients were also reported for comparison with previous work. Conclusions Using the present model, changes in joint contact forces between baseline and subsequent measurements that are greater than these MDCs are greater than typical day-to-day variation and can be identified as real change. PMID:23601782

  16. Are External Knee Load and EMG Measures Accurate Indicators of Internal Knee Contact Forces during Gait?

    PubMed Central

    Meyer, Andrew J.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Colwell, Clifford W.; Fregly, Benjamin J.

    2013-01-01

    Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle EMG signals) would be clinically valuable. This study quantifies how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. PMID:23280647

  17. An EMG-driven Model to Estimate Muscle Forces and Joint Moments in Stroke Patients

    PubMed Central

    Shao, Qi; Bassett, Daniel N.; Manal, Kurt; Buchanan, Thomas S.

    2009-01-01

    Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model’s ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. PMID:19818436

  18. Noninvasive imaging of internal muscle activities from multi-channel surface EMG recordings.

    PubMed

    Zhang, Yingchun

    2013-01-01

    Surface Electromyogram (sEMG) technology provides a non-invasive way for rapid monitoring muscle activities, but its poor spatial resolution and specificity limit its application in clinic. To overcome these limitations, a noninvasive muscle activity imaging (MAI) approach has been developed and used to reconstruct internal muscle activities from multi-channel sEMG recordings. A realistic geometric hand model is developed from high-resolution MR images and a distributed bioelectric dipole source model is employed to describe the internal muscle activity space of the muscles. The finite element method and weighted minimum norm method are utilized solve the forward and inverse problems respectively involved in the proposed MAI technique. A series of computer simulations was conducted to test the performance of the proposed MAI approach. Results show that reconstruction results achieved by the MAI technique indeed provide us more detailed and dynamic information of internal muscle activities, which enhance our understanding of the mechanisms underlying the surface EMG recordings.

  19. Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry.

    PubMed

    Shalaby, Raafat; Schauer, Thomas; Liedecke, Wolfgang; Raisch, Jörg

    2011-02-01

    Functional electrical stimulation leg cycle ergometry (FES-LCE), which is often used as exercise for people with spinal cord injury (SCI), has recently been applied in the motor rehabilitation of stroke patients. Recently completed studies show controversial results, but with a tendency to positive training effects. Current technology is identical to that used in FES-LCE for SCI, whereas the pathology of stroke differs strongly. Most stroke patients with hemiparesis are able to drive an ergometer independently. Depending on the degree of spasticity, the paretic leg will partially support or hinder movements. Electrical stimulation increases muscle force and endurance and both are prerequisites for restoring gait. However, the effect of FES-LCE on improving impaired motor coordination is unclear. To measure motor coordination during FES-LCE, an EMG-amplifier design has been investigated which suppresses stimulation artifacts and allows detection of volitional or reflex induced muscle activity. Direct measurement of EMG from stimulation electrodes between stimulation pulses is an important asset of this amplifier. Photo-MOS switches in front of the preamplifier are utilized to achieve this. The technology presented here can be used to monitor the effects of FES-LCE to adapt the stimulation strategy or to realize EMG-biofeedback training. PMID:21162696

  20. Oral EMG Activation Patterns for Speech Are Similar in Preschoolers Who Do and Do Not Stutter

    PubMed Central

    Walsh, Bridget; Smith, Anne

    2014-01-01

    Purpose We determined whether basic patterns of muscle activation for speech were similar in preschool children who stutter and their fluent peers. Method We recorded right and left lower lip muscle activity during conversational speech and sentence repetition in 64 preschool children (CWS) diagnosed as stuttering and in 40 children who do not stutter (CWNS). Measures of EMG amplitude, right/left asymmetry, and bilateral coordination were computed for fluent speech. The potential presence of tremor-like oscillations during disfluencies of CWS was assessed, and EMG amplitudes of fluent and disfluent speech were compared in CWS. Results Across both speaking tasks lip muscle activation was similar in CWS and CWNS in overall amplitude, bilateral synchrony, and degree of right/left asymmetry. EMG amplitude was reduced during disfluent compared to fluent conversational speech of CWS, and there was no evidence of tremor in the disfluencies of CWS. Conclusion These results support the assertion that stuttering in young children arises not from basic features of muscle contraction, but rather from the command signals that control the timing and amplitude of muscle activity. Our results indicate that no frank abnormality is present in muscle activation patterns in preschoolers who stutter. PMID:23838991

  1. The effects of frontal EMG biofeedback and progressive relaxation upon hyperactivity and its behavioral concomitants.

    PubMed

    Braud, L W

    1978-03-01

    Hyperactive children (N = 15) and nonhyperactive children (N = 15) were compared. Hyperactive children were found to possess significantly higher (p less than .002) muscular tension levels and, in addition, presented more behavioral problems and had lower test scores. Both electromyographic (EMG) biofeedback and progressive relaxation exercises were successful in the significant reduction of muscular tension, hyperactivity, distractability, irritability, impulsivity, explosiveness, aggressivity, and emotionality in hyperactive children. The greatest improvement was seen in the area of "emotionality-aggression" (irritability, explosiveness, impulsivity, low frustration tolerance, aggresion). No differences were seen in the EMG improvement of drug and nondrug hyperactive children; both made progress under these self-control techniques. However, nondrug children made greater improvements in the behavioral area. Both EMG biofeedback and progressive relaxation resulted in improvements on the test scores of hyperactive subjects (Bender-Gestalt, Visual Sequential Memory, Digit Span, Coding). The therapy would appear to be improved by the inclusion of mental relaxation, concentration, meditation, and mind-blanking exercises for mental control.

  2. EMG characteristics and fibre composition: study on rectus femoris of sprinters and long distance runners.

    PubMed

    Goswami, A; Sadhukhan, A K; Gupta, S

    2001-10-01

    The study was conducted on 9 sprinters and 5 long distance runners to investigate the difference in power spectral characteristics of rectus femoris muscle and the feasibility of using electromyographic techniques in categorization of muscle groups in slow dominant and fast dominant types. EMG signal was recorded, after digitization at 4 KHz, from rectus femoris muscle during isometric knee extension (at maximum voluntary contraction level) until fatigue. Digitized signal was processed for Fast Fourier Transform and Root Mean Square (RMS) voltage. Significant difference (P < 0.05) was found in RMS voltage between sprinters and long distance runners. Both groups showed decline in Mean Power Frequency (MPE) and rate of decline in sprinters was rapid. Normalized MPF showed better discrimination between the two groups. It is concluded that the EMG response observed in this study was possibly a result of differences in the muscle fibre composition of the athletes. EMG study using spectral characteristics would be useful in categorizing the sports persons in terms of suitability of the events.

  3. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    SciTech Connect

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  4. Change in EMG with skin friction at different frequencies during elbow flexion.

    PubMed

    Sugawara, Hitoshi; Shimose, Ryota; Tadano, Chigaya; Ushigome, Nobuyuki; Muro, Masuo

    2013-06-01

    Modulation of muscle activation in superficial and deeper regions may be induced by tactile stimulation. The purpose of this study was to examine changes in muscle activation with skin friction. Subjects performed an isometric elbow flexion at 30% maximal voluntary cotraction (MVC) with skin friction at different frequencies (0.5-2.7 Hz). Surface electromyography (S-EMG) and intramuscular EMG were obtained from the elbow flexor muscles (BBS: short head of biceps brachii, BBL: long head of biceps brachii, BRA: brachialis). S-EMG activity decreased at a higher frequency of 2.7 Hz and increased linearly with an increase in skin friction frequency (0.5-2.7 Hz) in BBS. A decrease in high-threshold motor unit (HT-MU) firing rate in superficial regions and an increase in low-threshold motor unit (LT-MU) firing rate in deeper regions were observed with skin friction (2.7 Hz) in BBS. The actions of inhibitory interneurons may be influenced by cutaneous afferent input with skin friction. Muscle activation of BBS depended on the intensity of the stimulus. Skin friction over BBS results in an inhibitory response in superficial regions of BBS, most likely due to the increase in firing rate of low-threshold cutaneous mechanoreceptors.

  5. Examination of Hand Muscle Activation and Motor Unit Indices Derived from Surface EMG in Chronic Stroke

    PubMed Central

    Li, Xiaoyan; Liu, Jie; Li, Sheng; Wang, Ying-Chih

    2014-01-01

    In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly. PMID:24967982

  6. Delayed development of proactive response preparation in adolescents: ERP and EMG evidence.

    PubMed

    Killikelly, Clare; Szűcs, Dénes

    2013-01-01

    The transition from late adolescence to young adulthood is often overlooked in the cognitive neuroscience literature. However this is an important developmental period as even older adolescents have not yet reached adult level ability on many cognitive tasks. Adolescents (16-17-year olds) and young adults (23-30-year olds) were tested on a cued task switching paradigm specifically designed to isolate response preparation from response execution. A combined ERP and eletromyographic (EMG) investigation revealed that adolescents have attenuated contingent negative variation (CNV) activity during response preparation followed by larger P3b amplitude and EMG activity in the incorrect response hand during response execution. This is consistent with deficient response preparation and a reactive control strategy. Conversely young adults engaged increased response preparation followed by attenuated P3b activity and early EMG activity in the correct response hand during response execution which indicates a proactive control strategy. Through real time tracking of response-related processing we provide direct evidence of a developmental dissociation between reactive and proactive control. We assert that adoption of a proactive control strategy by adolescents is an important step in the transition to adulthood. PMID:23245218

  7. Abnormal surface EMG during clinically normal wrist movement in cervical dystonia.

    PubMed

    de Vries, P M; Leenders, K L; van der Hoeven, J H; de Jong, B M; Kuiper, A J; Maurits, N M

    2007-11-01

    We investigated whether patients with cervical dystonia (CD) have abnormal muscle activation in non-dystonic body parts. Eight healthy controls and eight CD patients performed a flexion-extension movement of the right wrist. Movement execution was recorded by surface electromyography (EMG) from forearm muscles. Although patients had no complaints concerning wrist movement and had no apparent difficulty in executing the task, they demonstrated lower mean EMG amplitude (flexor: 0.32 mV and extensor: 0.61 mV) than controls (flexor: 0.67 mV; P = 0.021 and extensor: 1.18 mV; P = 0.068; borderline significant). Mean extensor muscle contraction was prolonged in patients (1860 ms) compared with controls (1334 ms; P = 0.026). Variation in mean EMG amplitude over movements tended to be higher in patients (flexor: 43% and extensor: 35%) than controls (flexor: 34%; P = 0.072 and extensor: 26%; P = 0.073). These results suggest that CD patients also have abnormal muscle activation in non-dystonic body parts at a subclinical level. This would support the concept that in dystonia, non-dystonic limbs are in a 'pre-dystonic state'.

  8. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  9. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    PubMed

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p < 0.001) and the maximum of the cross-relation curve of EMG and ECG (p < 0.001) were selected as the combined characteristic to detect fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  10. Lower arm electromyography (EMG) activity detection using local binary patterns.

    PubMed

    McCool, Paul; Chatlani, Navin; Petropoulakis, Lykourgos; Soraghan, John J; Menon, Radhika; Lakany, Heba

    2014-09-01

    This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used.

  11. A novel feature extraction for robust EMG pattern recognition.

    PubMed

    Veer, Karan; Sharma, Tanu

    2016-01-01

    This paper presents the detailed evaluation and classification of Surface Electromyogram (SEMG) signals at different upper arm muscles for different operations. After acquiring the data from selected locations, interpretation of signals was done for the estimation of parameters using simulated algorithm. First, different types of arm operations were analysed; then statistical techniques were implemented for investigating muscle force relationships in terms of amplitude estimation. The classification (Artificial Neural Network) based results have been presented for detecting different pre-defined arm motions in order to discriminate SEMG signals. The outcome of research indicates that a neural network classifier performs best with an average classification rate of 92.50%. Finally, the result also inferred the operations which were observed to be easy for arm recognition and the study is a step forward to develop powerful, flexible and efficient prosthetic designs. PMID:27004618

  12. Wiener filtering of surface EMG with a priori SNR estimation toward myoelectric control for neurological injury patients.

    PubMed

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-12-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  13. EMG reactivity and oral habits among young adult headache sufferers and painfree controls in a scheduled-waiting task.

    PubMed

    Ong, Jason C; Nicholson, Robert A; Gramling, Sandra E

    2003-12-01

    Previous research has shown that patients with facial pain exhibit a pattern of physiological and behavioral reactivity to scheduled-waiting tasks that may help account for the development of facial pain. The present study extended this line of research by examining the psychophysiological reactivity of headache sufferers in a similar task. A total of 34 frequent headache sufferers screened by International Headache Society (IHS) criteria and 13 painfree controls completed a psychophysiological assessment consisting of 4 phases (adaptation, free-play, scheduled-play, and recovery) that included a scheduled-waiting condition (scheduled-play) designed to produce adjunctive behavior. Masseter and frontalis EMG were measured continuously during each phase and self-reported oral habits and pain ratings were collected following each phase. A significant interaction and group effect was found on frontalis EMG, with the headache group exhibiting elevated EMG levels across the phases, whereas the control group exhibited increasing EMG levels that peaked during the scheduled-play phase. Only a significant phase effect was found on masseter EMG, with the highest EMG levels recorded during the scheduled-play phase for both groups. In addition, a significant phase effect was found on self-reported oral habits data. Overall, these results provide general support for the adjunctive behavior effect, but the predicted difference in magnitude between the groups was not found.

  14. Single-Channel EMG Classification With Ensemble-Empirical-Mode-Decomposition-Based ICA for Diagnosing Neuromuscular Disorders.

    PubMed

    Naik, Ganesh R; Selvan, S Easter; Nguyen, Hung T

    2016-07-01

    An accurate and computationally efficient quantitative analysis of electromyography (EMG) signals plays an inevitable role in the diagnosis of neuromuscular disorders, prosthesis, and several related applications. Since it is often the case that the measured signals are the mixtures of electric potentials that emanate from surrounding muscles (sources), many EMG signal processing approaches rely on linear source separation techniques such as the independent component analysis (ICA). Nevertheless, naive implementations of ICA algorithms do not comply with the task of extracting the underlying sources from a single-channel EMG measurement. In this respect, the present work focuses on a classification method for neuromuscular disorders that deals with the data recorded using a single-channel EMG sensor. The ensemble empirical mode decomposition algorithm decomposes the single-channel EMG signal into a set of noise-canceled intrinsic mode functions, which in turn are separated by the FastICA algorithm. A reduced set of five time domain features extracted from the separated components are classified using the linear discriminant analysis, and the classification results are fine-tuned with a majority voting scheme. The performance of the proposed method has been validated with a clinical EMG database, which reports a higher classification accuracy (98%). The outcome of this study encourages possible extension of this approach to real settings to assist the clinicians in making correct diagnosis of neuromuscular disorders. PMID:26173218

  15. Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces.

    PubMed

    Hashemi Oskouei, Alireza; Paulin, Michael G; Carman, Allan B

    2013-02-01

    Surface electromyography (EMG) is widely used to evaluate forearm muscle function and predict hand grip forces; however, there is a lack of literature on its intra-session and inter-day reliability. The aim of this study was to determine reliability of surface EMG of finger and wrist flexor muscles across varying grip forces. Surface EMG was measured from six forearm flexor muscles of 23 healthy adults. Eleven of these subjects undertook inter-day test-retest. Six repetitions of five randomized isometric grip forces between 0% and 80% of maximum force (MVC) were recorded and normalized to MVC. Intra- and inter-day reliability were calculated through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM). Normalized EMG produced excellent intra-session ICC of 0.90 when repeated measurements were averaged. Intra-session SEM was low at low grip forces, however, corresponding normalized SEM was high (23-45%) due to the small magnitude of EMG signals. This may limit the ability to evaluate finer forearm muscle function and hand grip forces in daily tasks. Combining EMG of functionally related muscles improved intra-session SEM, improving within-subject reliability without taking multiple measurements. Removing and replacing electrodes inter-day produced poor ICC (ICC < 0.50) but did not substantially affect SEM.

  16. Wiener Filtering of Surface EMG with a priori SNR Estimation Toward Myoelectric Control for Neurological Injury Patients

    PubMed Central

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-01-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation. PMID:25443536

  17. Temporal naturalism

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2015-11-01

    Two people may claim both to be naturalists, but have divergent conceptions of basic elements of the natural world which lead them to mean different things when they talk about laws of nature, or states, or the role of mathematics in physics. These disagreements do not much affect the ordinary practice of science which is about small subsystems of the universe, described or explained against a background, idealized to be fixed. But these issues become crucial when we consider including the whole universe within our system, for then there is no fixed background to reference observables to. I argue here that the key issue responsible for divergent versions of naturalism and divergent approaches to cosmology is the conception of time. One version, which I call temporal naturalism, holds that time, in the sense of the succession of present moments, is real, and that laws of nature evolve in that time. This is contrasted with timeless naturalism, which holds that laws are immutable and the present moment and its passage are illusions. I argue that temporal naturalism is empirically more adequate than the alternatives, because it offers testable explanations for puzzles its rivals cannot address, and is likely a better basis for solving major puzzles that presently face cosmology and physics. This essay also addresses the problem of qualia and experience within naturalism and argues that only temporal naturalism can make a place for qualia as intrinsic qualities of matter.

  18. Voluntary EMG-to-force estimation with a multi-scale physiological muscle model

    PubMed Central

    2013-01-01

    Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow

  19. Temporal contingency.

    PubMed

    Gallistel, C R; Craig, Andrew R; Shahan, Timothy A

    2014-01-01

    Contingency, and more particularly temporal contingency, has often figured in thinking about the nature of learning. However, it has never been formally defined in such a way as to make it a measure that can be applied to most animal learning protocols. We use elementary information theory to define contingency in such a way as to make it a measurable property of almost any conditioning protocol. We discuss how making it a measurable construct enables the exploration of the role of different contingencies in the acquisition and performance of classically and operantly conditioned behavior.

  20. Temporal contingency.

    PubMed

    Gallistel, C R; Craig, Andrew R; Shahan, Timothy A

    2014-01-01

    Contingency, and more particularly temporal contingency, has often figured in thinking about the nature of learning. However, it has never been formally defined in such a way as to make it a measure that can be applied to most animal learning protocols. We use elementary information theory to define contingency in such a way as to make it a measurable property of almost any conditioning protocol. We discuss how making it a measurable construct enables the exploration of the role of different contingencies in the acquisition and performance of classically and operantly conditioned behavior. PMID:23994260

  1. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  2. The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis.

    PubMed

    Cukic, M; Oommen, J; Mutavdzic, D; Jorgovanovic, N; Ljubisavljevic, M

    2013-07-01

    The aim of this study was to examine whether single-pulse transcranial magnetic stimulation (spTMS) affects the pattern of corticospinal activity once voluntary drive has been restored after spTMS-induced EMG silence. We used fractal dimension (FD) to explore the 'complexity' of the electromyography (EMG) signal, and median frequency of the spectra (MDF) to examine changes in EMG spectral characteristics. FD and MDF of the raw EMG epochs immediately before were compared with those obtained from epochs after the EMG silence. Changes in FD and MDF after spTMS were examined with three levels of muscle contraction corresponding to weak (20-40%), moderate (40-60%) and strong (60-80% of maximal voluntary contraction) and three intensities of stimulation set at 10, 20 and 30% above the resting motor threshold. FD was calculated using the Higuchi fractal dimension algorithm. Finally, to discern the origin of FD changes between the CNS and muscle, we compared the effects of spTMS with the effects of peripheral nerve stimulation (PNS) on FD and MDF. The results show that spTMS induced significant decrease in both FD and MDF of EMG signal after stimulation. PNS did not have any significant effects on FD nor MDF. Changes in TMS intensity did not have any significant effect on FD or MDF after stimulation nor had the strength of muscle contraction. However, increase in contraction strength decreased FD before stimulation but only between weak and moderate contraction. The results suggest that the effects of spTMS on corticospinal activity, underlying voluntary motor output, outlast the TMS stimulus. It appears that the complexity of the EMG signal is reduced after spTMS, suggesting that TMS alters the dynamics of the ongoing corticospinal activity most likely temporarily synchronizing the neural network activity. Further studies are needed to confirm whether observed changes after TMS occur at the cortical level. PMID:23652725

  3. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    PubMed

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  4. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  5. Fast generation model of high density surface EMG signals in a cylindrical conductor volume.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Ayachi, Fouaz Sofiane

    2016-07-01

    In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered cylindrical description of the volume conductor is presented in this study. Its main peculiarity lies in the generation of a high resolution potential map over the skin related to active Motor Units (MUs). Indeed, the analytical calculus is fully performed in the frequency domain. HD-sEMG signals are obtained by surfacic numerical integration of the generated high resolution potential map following a variety of electrode shapes. The suggested model is implemented using parallel computing techniques as well as by using an object-oriented approach which is comprehensive enough to be fairly quickly understood, used and potentially upgraded. To illustrate the model abilities, several simulation analyses are put forward in the results section. These simulations have been performed on the same muscle anatomy while varying the number of processes in order to show significant speed improvement. Accuracy of the numerical integration method, illustrating electrode shape diversity, is also investigated in comparison to analytical transfer functions definition. An additional section provides an insight on the volume detection of a circular electrode according to its radius. Furthermore, a large scale simulation is introduced with 300MUs in the muscle and a HD-sEMG electrode grid composed of 16×16 electrodes for three constant isometric contractions in 12s. Finally, advantages and limitations of the proposed model are discussed with a focus on perspective works. PMID:27183535

  6. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation.

    PubMed Central

    Baker, S N; Olivier, E; Lemon, R N

    1997-01-01

    1. Recordings were made of local field potential (slow waves) and pyramidal tract neurone (PTN) discharge from pairs of sites separated by a horizontal distance of up to 1.5 mm in the primary motor cortex of two conscious macaque monkeys performing a precision grip task. 2. In both monkeys, the slow wave recordings showed bursts of oscillations in the 20-30 Hz range. Spectral analysis revealed that the oscillations were coherent between the two simultaneously recorded cortical sites. In the monkey from which most data were recorded, the mean frequency of peak coherence was 23.4 Hz. 3. Coherence in this frequency range was also seen between cortical slow wave recordings and rectified EMG of hand and forearm muscles active during the task, and between pairs of rectified EMGs. 4. The dynamics of the coherence were investigated by analysing short, quasi-stationary data segments aligned relative to task performance. This revealed that the 20-30 Hz coherent oscillations were present mainly during the hold phase of the precision grip task. 5. The spikes of identified PTNs were used to compile spike-triggered averages of the slow wave recordings. Oscillations were seen in 11/17 averages of the slow wave recorded on the same electrode as the triggering spike, and 11/17 averages of the slow wave recorded on the distant electrode. The mean period of these oscillations was 45.8 ms. 6. It is concluded that oscillations in the range 20-30 Hz are present in monkey motor cortex, are coherent between spatially separated cortical sites, and encompass the pyramidal tract output neurones. They are discernable in the EMG of active muscles, and show a consistent task-dependent modulation. Images Figure 3 Figure 6 Figure 7 PMID:9175005

  7. Effective low-power wearable wireless surface EMG sensor design based on analog-compressed sensing.

    PubMed

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-12-17

    Surface Electromyography (sEMG) is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1) they are not able to provide real-time monitoring; (2) they suffer from long processing time and low speed; (3) they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS) architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC). At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for the reconstruction process.

  8. EMG analysis of human inspiratory muscle resistance to fatigue during exercise.

    PubMed

    Segizbaeva, M O; Donina, Zh A; Timofeev, N N; Korolyov, Yu N; Golubev, V N; Aleksandrova, N P

    2013-01-01

    The aim of this study was to characterize the pattern of inspiratory muscle fatigue and to assess the resistance to fatigue of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM), and scalene (SC) muscles. Nine healthy, untrained male subjects participated in this study. Electromyographic activity (EMG) of D, PS, SCM, and SC was recorded during an incremental cycling test to exhaustion (workload of 1.0 W/kg with 0.5 W/kg increments every 5 min). The before-to-after exercise measurements of maximal inspiratory pressure (MIP) and EMG power spectrum changes were performed. The maximal inspiratory pressure declined about 8.1 % after exercise compared with that in the control condition (124.3 ± 8.5 vs. 114.2 ± 8.9 cmH2O) (P > 0.05), whereas the peak magnitude of integrated electrical activity of D, PS, SCM, and SC during the post-exercise Müller maneuver was significantly greater in all subjects than that pre-exercise. The extent of inspiratory muscles fatigue was evaluated by analysis of a shift in centroid frequency (fc) of EMG power spectrum. Exercise-induced D fatigue was present in three subjects and PS fatigue was another in two; whereas both D and PC fatigue were observed in four subjects. All subjects demonstrated a significant reduction in fc of SCM and SC. Results indicate that early signs of the fatiguing process might be detected in the D, PS, SCM, and SC muscles during exercise to exhaustion. Fatigue of either D or PS muscles develops selectively or together during exhaustive exercise, depending on the recruitment pattern of respiratory muscles. Accessory inspiratory muscles of the neck are less resistant to fatigue compared with the D and PS muscles.

  9. Effect of manipulation of plasma lactate on integrated EMG during cycling.

    PubMed

    Seburn, K L; Sanderson, D J; Belcastro, A N; McKenzie, D C

    1992-08-01

    This investigation was undertaken to record electromyographic activity of the vastus lateralis muscle during incremental cycling exercise and to determine whether it would be sensitive to altered dynamics of plasma lactate increases seen with intense exercise. Trained cyclists (N = 6) performed two progressive, stepwise exercise tests (23.5 W.min-1) to fatigue on a cycle ergometer at 90 rpm. One of the exercise tests was preceded by arm ergometer exercise in an attempt to elevate the circulating plasma lactate levels prior to starting the criterion exercise test. The starting mean plasma lactate values were 4.59 and 26.69 mmol lactate.-1 for the two exercise sessions. Cardiorespiratory values did not differ significantly between exercise sessions completed in the absence and presence of increased circulating plasma lactate. The no-arm trial (i.e., nonelevated plasma lactate condition) was associated with a plasma lactate inflection point (Tlac) at 72.6% VO2max. Previous arm exercise elevated the lactate such that during the criterion exercise plasma lactate values were decreasing with increasing power output at lower exercise intensities. As exercise intensity increased lactate values also increased beginning at a power output of about 76% VO2 max. Mean per cycle integrated EMG (CIEMG) increased linearly with increased power output in both exercise sessions. The slopes of the EMG-power output curve were not significantly different (P less than 0.05). There were no inflection points in these curves. The absence of an inflection point show that surface EMG does not provide an indication of Tlac. PMID:1406177

  10. Integrating heterogeneous classifier ensembles for EMG signal decomposition based on classifier agreement.

    PubMed

    Rasheed, Sarbast; Stashuk, Daniel W; Kamel, Mohamed S

    2010-05-01

    In this paper, we present a design methodology for integrating heterogeneous classifier ensembles by employing a diversity-based hybrid classifier fusion approach, whose aggregator module consists of two classifier combiners, to achieve an improved classification performance for motor unit potential classification during electromyographic (EMG) signal decomposition. Following the so-called overproduce and choose strategy to classifier ensemble combination, the developed system allows the construction of a large set of base classifiers, and then automatically chooses subsets of classifiers to form candidate classifier ensembles for each combiner. The system exploits kappa statistic diversity measure to design classifier teams through estimating the level of agreement between base classifier outputs. The pool of base classifiers consists of different kinds of classifiers: the adaptive certainty-based, the adaptive fuzzy k -NN, and the adaptive matched template filter classifiers; and utilizes different types of features. Performance of the developed system was evaluated using real and simulated EMG signals, and was compared with the performance of the constituent base classifiers. Across the EMG signal datasets used, the developed system had better average classification performance overall, especially in terms of reducing classification errors. For simulated signals of varying intensity, the developed system had an average correct classification rate CCr of 93.8% and an error rate Er of 2.2% compared to 93.6% and 3.2%, respectively, for the best base classifier in the ensemble. For simulated signals with varying amounts of shape and/or firing pattern variability, the developed system had a CCr of 89.1% with an Er of 4.7% compared to 86.3% and 5.6%, respectively, for the best classifier. For real signals, the developed system had a CCr of 89.4% with an Er of 3.9% compared to 84.6% and 7.1%, respectively, for the best classifier.

  11. Surface EMG-based Sketching Recognition Using Two Analysis Windows and Gene Expression Programming

    PubMed Central

    Yang, Zhongliang; Chen, Yumiao

    2016-01-01

    Sketching is one of the most important processes in the conceptual stage of design. Previous studies have relied largely on the analyses of sketching process and outcomes; whereas surface electromyographic (sEMG) signals associated with sketching have received little attention. In this study, we propose a method in which 11 basic one-stroke sketching shapes are identified from the sEMG signals generated by the forearm and upper arm muscles from 4 subjects. Time domain features such as integrated electromyography, root mean square and mean absolute value were extracted with analysis windows of two length conditions for pattern recognition. After reducing data dimensionality using principal component analysis, the shapes were classified using Gene Expression Programming (GEP). The performance of the GEP classifier was compared to the Back Propagation neural network (BPNN) and the Elman neural network (ENN). Feature extraction with the short analysis window (250 ms with a 250 ms increment) improved the recognition rate by around 6.4% averagely compared with the long analysis window (2500 ms with a 2500 ms increment). The average recognition rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier was 96.26% in the training set and 95.62% in the test set, which was superior to the performance of the BPNN and ENN classifiers. The results show that the GEP classifier is able to perform well with either length of the analysis window. Thus, the proposed GEP model show promise for recognizing sketching based on sEMG signals. PMID:27790083

  12. Fast generation model of high density surface EMG signals in a cylindrical conductor volume.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Ayachi, Fouaz Sofiane

    2016-07-01

    In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered cylindrical description of the volume conductor is presented in this study. Its main peculiarity lies in the generation of a high resolution potential map over the skin related to active Motor Units (MUs). Indeed, the analytical calculus is fully performed in the frequency domain. HD-sEMG signals are obtained by surfacic numerical integration of the generated high resolution potential map following a variety of electrode shapes. The suggested model is implemented using parallel computing techniques as well as by using an object-oriented approach which is comprehensive enough to be fairly quickly understood, used and potentially upgraded. To illustrate the model abilities, several simulation analyses are put forward in the results section. These simulations have been performed on the same muscle anatomy while varying the number of processes in order to show significant speed improvement. Accuracy of the numerical integration method, illustrating electrode shape diversity, is also investigated in comparison to analytical transfer functions definition. An additional section provides an insight on the volume detection of a circular electrode according to its radius. Furthermore, a large scale simulation is introduced with 300MUs in the muscle and a HD-sEMG electrode grid composed of 16×16 electrodes for three constant isometric contractions in 12s. Finally, advantages and limitations of the proposed model are discussed with a focus on perspective works.

  13. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  14. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis

    PubMed Central

    Graham, Ryan B.; Wachowiak, Mark P.; Gurd, Brendon J.

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in

  15. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    PubMed Central

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Surface Electromyography (sEMG) is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1) they are not able to provide real-time monitoring; (2) they suffer from long processing time and low speed; (3) they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS) architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC). At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for the reconstruction process. PMID:25526357

  16. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  17. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    PubMed

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.

  18. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  19. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

    NASA Astrophysics Data System (ADS)

    He, Jiayuan; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Farina, Dario; Zhu, Xiangyang

    2015-08-01

    Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

  20. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction.

    PubMed

    Byrne, C A; O'Keeffe, D T; Donnelly, A E; Lyons, G M

    2007-10-01

    Functional electrical stimulation may be used to correct hemiplegic drop foot. An optimised stimulation envelope to reproduce the EMG pattern observed in the tibialis anterior (TA) during healthy gait has been proposed by O'Keeffe et al. [O'Keeffe, D.T., Donnelly, A.E., Lyons, G.M., 2003. The development of a potential optimised stimulation intensity envelope for drop foot applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering]. However this envelope did not attempt to account for changes in TA activity with walking speed. The objective of this paper was to provide data to enable the specification of an algorithm to control the adaptation of an envelope with walking speed. Ten young healthy subjects walked on a treadmill at 11 different walking speeds while TA EMG was recorded. The results showed that TA EMG recorded around initial contact and at toe off changed with walking speed. At the slowest velocities, equivalent to hemiplegic walking, the toe-off burst (TOB) of EMG activity had larger peak amplitude than that of the heel-strike burst (HSB). The peak amplitude ratio of TOB:HSB was 1:0.69 at the slowest speed compared to, 1:1.18 and 1:1.5 for the self-selected and fastest speed, respectively. These results suggest that an FES envelope, which produces larger EMG amplitude for the TOB than the HSB, would be more appropriate at walking speeds typical of hemiplegic patients. PMID:16990012

  1. Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface EMG.

    PubMed

    Holobar, Ales; Minetto, Marco Alessandro; Botter, Alberto; Negro, Francesco; Farina, Dario

    2010-06-01

    The aim of this study was to compare the decomposition results obtained from high-density surface electromyography (EMG) and concurrently recorded intramuscular EMG. Surface EMG signals were recorded with electrode grids from the tibialis anterior, biceps brachii, and abductor digiti minimi muscles of twelve healthy men during isometric contractions ranging between 5% and 20% of the maximal force. Bipolar intramuscular EMG signals were recorded with pairs of wire electrodes. Surface and intramuscular EMG were independently decomposed into motor unit spike trains. When averaged over all the contractions of the same contraction force, the percentage of discharge times of motor units identified by both decompositions varied in the ranges 84%-87% (tibialis anterior), 84%-86% (biceps brachii), and 87%-92% (abductor digiti minimi) across the force levels analyzed. This index of agreement between the two decompositions was linearly correlated with a self-consistency measure of motor unit discharge pattern that was based on coefficient of variation for the interspike interval (R(2) = 0.68 for tibialis anterior, R(2) = 0.56 for biceps brachii, and R(2) = 0.38 for abductor digiti minimi). These results constitute an important contribution to the validation of the noninvasive approach for the investigation of motor unit behavior in isometric low-force tasks.

  2. Automatic classification of motor unit potentials in surface EMG recorded from thenar muscles paralyzed by spinal cord injury.

    PubMed

    Winslow, Jeffrey; Dididze, Marine; Thomas, Christine K

    2009-12-15

    Involuntary electromyographic (EMG) activity has only been analyzed in the paralyzed thenar muscles of spinal cord injured (SCI) subjects for several minutes. It is unknown if this motor unit activity is ongoing. Longer duration EMG recordings can investigate the biological significance of this activity. Since no software is currently capable of classifying 24h of EMG data at a single motor unit level, the goal of this research was to devise an algorithm that would automatically classify motor unit potentials by tracking the firing behavior of motor units over 24h. Two channels of thenar muscle surface EMG were recorded over 24h from seven SCI subjects with a chronic cervical level injury using a custom data logging device with custom software. The automatic motor unit classification algorithm developed here employed multiple passes through these 24-h EMG recordings to segment, cluster, form global templates and classify motor unit potentials, including superimposed potentials. The classification algorithm was able to track an average of 19 global classes in seven 24-h recordings with a mean (+/-SE) accuracy of 89.9% (+/-0.98%) and classify potentials from these individual motor units with a mean accuracy of 90.3% (+/-0.97%). The algorithm could analyze 24h of data in 2-3 weeks with minimal input from a person, while a human operator was estimated to take more than 2 years. This automatic method could be applied clinically to investigate the fasciculation potentials often found in motoneuron disorders such as amyotrophic lateral sclerosis.

  3. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition.

    PubMed

    Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  4. Entropy measures of back muscles EMG for subjects with and without pain

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Vyhnalek, Bryan; Sung, Paul

    2007-10-01

    We have previously reported that the time-dependent entropy S(t) calculated from electromyography time series of low back muscles exhibit plateau-like behavior for intermediate times [50 ,ms < t < 0.5 ,s]. We proposed that the plateau value can be used to characterize the sEMG signal of subjects with low back pain [J. Rehab. Res. Dev. 44, 599 (2007)]. We report results of a larger study, and compare the entropies for the left -and right thoracic and left- and right lumbar muscles. We also compare entropies from muscles before and after physical therapy intervention.

  5. Comparison of an EMG-based and a stress-based method to predict shoulder muscle forces.

    PubMed

    Engelhardt, Christoph; Malfroy Camine, Valérie; Ingram, David; Müllhaupt, Philippe; Farron, Alain; Pioletti, Dominique; Terrier, Alexandre

    2015-01-01

    The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior-inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.

  6. Fourier and wavelet spectral analysis of EMG signals in supramaximal constant load dynamic exercise.

    PubMed

    Camata, Thiago V; Dantas, Jose L; Abrao, Taufik; Brunetto, Maria A C; Moraes, Antonio C; Altimari, Leandro R

    2010-01-01

    Frequency domain analyses of changes in electromyographic (EMG) signals over time are frequently used to assess muscle fatigue. Fourier based approaches are typically used in these analyses, yet Fourier analysis assumes signal stationarity, which is unlikely during dynamic contractions. Wavelet based methods of signal analysis do not assume stationarity and may be more appropriate for joint time-frequency domain analysis. The purpose of this study was to compare Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) in assessing muscle fatigue in supramaximal constant load dynamic exercise (110% VO(2peak)). The results of this study indicate that CWT and STFT analyses give similar fatigue estimates (slope of median frequency) in supramaximal constant load dynamic exercise (P>0.05). However, the results of the variance was significantly lower for at least one of the muscles studied in CWT compared to STFT (P < 0.05) indicating more variability in the EMG signal analysis using STFT. Thus, the stationarity assumption may not be the sole factor responsible for affecting the Fourier based estimates.

  7. Fourier and wavelet spectral analysis of EMG signals in maximal constant load dynamic exercise.

    PubMed

    Costa, Marcelo V; Pereira, Lucas A; Oliveira, Ricardo S; Pedro, Rafael E; Camata, Thiago V; Abrao, Taufik; Brunetto, Maria A C; Altimari, Leandro R

    2010-01-01

    Frequency domain analyses of changes in electromyographic (EMG) signals over time are frequently used to assess muscle fatigue. Fourier based approaches are typically used in these analyses, yet Fourier analysis assumes signal stationarity, which is unlikely during dynamic contractions. Wavelet based methods of signal analysis do not assume stationarity and may be more appropriate for joint time-frequency domain analysis. The purpose of this study was to compare Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) in assessing muscle fatigue in maximal constant load dynamic exercise (100% W(max)). The results of this study indicate that CWT and STFT analyses give similar fatigue estimates (slope of median frequency) in maximal constant load dynamic exercise (P>0.05). However, the results of the variance was significantly lower for at least one of the muscles studied in CWT compared to STFT (P〈0.05) indicating more variability in the EMG signal analysis using STFT. Thus, the stationarity assumption may not be the sole factor responsible for affecting the Fourier based estimates.

  8. Fourier and wavelet spectral analysis of EMG signals in isometric and dynamic maximal effort exercise.

    PubMed

    Dantas, José L; Camata, Thiago V; Brunetto, Maria A C; Moraes, Antonio C; Abrão, Taufik; Altimari, Leandro R

    2010-01-01

    Frequency domain analyses of changes in electromyographic (EMG) signals over time are frequently used to assess muscle fatigue. Fourier based approaches are typically used in these analyses, yet Fourier analysis assumes signal stationarity, which is unlikely during dynamic contractions. Wavelet based methods of signal analysis do not assume stationarity and may be more appropriate for joint time-frequency domain analysis. The purpose of this study was to compare Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) in assessing muscle fatigue in isometric and dynamic exercise. The results of this study indicate that CWT and STFT analyses give similar fatigue estimates (slope of median frequency) in isometric and dynamic exercise (P>0.05). However, the results of the variance was lower for both types of exercise in CWT compared to STFT (P < 0.05) indicating more variability in the EMG signal analysis using STFT. Thus, the stationarity assumption may not be the sole factor responsible for affecting the Fourier based estimates.

  9. Two-dimensional jaw tracking and EMG recording system implanted in the freely moving rabbit.

    PubMed

    Yamada, Y; Haraguchi, N; Oi, K; Sasaki, M

    1988-04-01

    A system for simultaneously recording mandibular position in the sagittal plane together with masticatory muscle activity was designed and tested in rabbits. Two small magnetic sensors were implanted in the maxillary bone and a powerful magnet made of a rare earth metal attached to the mandibular central incisors. The magnetic sensors detected the mandibular movements in the sagittal plane by movement of the magnet. Masseter EMG was recorded by fine wire electrodes and amplified by a specially designed amplifier. The necessary preamplifiers were assembled as an integrated circuit (IC) chip in a small housing. The signals from the preamplifier were then passed through a signal processing unit and taped on an instrumentation tape. The system was applied to the freely moving rabbit supplied with food and water during the night. It worked without any trouble for more than 24 h. Since the implanted magnetic sensors were stable for more than 4 months, long-term recording could be done by merely reimplanting the magnet, the cables and the EMG electrodes, which was simple.

  10. Wireless Neural/EMG Telemetry Systems for Small Freely Moving Animals.

    PubMed

    Harrison, R R; Fotowat, H; Chan, R; Kier, R J; Olberg, R; Leonardo, A; Gabbiani, F

    2011-04-01

    We have developed miniature telemetry systems that capture neural, EMG, and acceleration signals from a freely moving insect or other small animal and transmit the data wirelessly to a remote digital receiver. The systems are based on custom low-power integrated circuits (ICs) that amplify, filter, and digitize four biopotential signals using low-noise circuits. One of the chips also digitizes three acceleration signals from an off-chip microelectromechanical-system accelerometer. All information is transmitted over a wireless ~ 900-MHz telemetry link. The first unit, using a custom chip fabricated in a 0.6- μm BiCMOS process, weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts as well as transdermal potentials in weakly swimming electric fish. The second unit, using a custom chip fabricated in a 0.35-μ m complementary metal-oxide semiconductor CMOS process, weighs 0.17 g and runs for five hours on a single 1.5-V battery. This system has been used to monitor neural potentials in untethered perching dragonflies.

  11. Wireless Neural/EMG Telemetry Systems for Small Freely Moving Animals.

    PubMed

    Harrison, R R; Fotowat, H; Chan, R; Kier, R J; Olberg, R; Leonardo, A; Gabbiani, F

    2011-04-01

    We have developed miniature telemetry systems that capture neural, EMG, and acceleration signals from a freely moving insect or other small animal and transmit the data wirelessly to a remote digital receiver. The systems are based on custom low-power integrated circuits (ICs) that amplify, filter, and digitize four biopotential signals using low-noise circuits. One of the chips also digitizes three acceleration signals from an off-chip microelectromechanical-system accelerometer. All information is transmitted over a wireless ~ 900-MHz telemetry link. The first unit, using a custom chip fabricated in a 0.6- μm BiCMOS process, weighs 0.79 g and runs for two hours on two small batteries. We have used this system to monitor neural and EMG signals in jumping and flying locusts as well as transdermal potentials in weakly swimming electric fish. The second unit, using a custom chip fabricated in a 0.35-μ m complementary metal-oxide semiconductor CMOS process, weighs 0.17 g and runs for five hours on a single 1.5-V battery. This system has been used to monitor neural potentials in untethered perching dragonflies. PMID:23851198

  12. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions

    PubMed Central

    Contreras, Bret; Schoenfeld, Brad J.; Beardsley, Chris; Cronin, John

    2015-01-01

    Background. The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE). Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion. Results. No statistically significant (p < 0.05) differences were observed between PRONE (upper: 91.94%; lower: 94.52%) and SQUEEZE (upper: 92.04%; lower: 85.12%) for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects. Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples. PMID:26417543

  13. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions.

    PubMed

    Contreras, Bret; Vigotsky, Andrew D; Schoenfeld, Brad J; Beardsley, Chris; Cronin, John

    2015-01-01

    Background. The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE). Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion. Results. No statistically significant (p < 0.05) differences were observed between PRONE (upper: 91.94%; lower: 94.52%) and SQUEEZE (upper: 92.04%; lower: 85.12%) for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects. Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  14. Recurrence quantification analysis and support vector machines for golf handicap and low back pain EMG classification.

    PubMed

    Silva, Luís; Vaz, João Rocha; Castro, Maria António; Serranho, Pedro; Cabri, Jan; Pezarat-Correia, Pedro

    2015-08-01

    The quantification of non-linear characteristics of electromyography (EMG) must contain information allowing to discriminate neuromuscular strategies during dynamic skills. There are a lack of studies about muscle coordination under motor constrains during dynamic contractions. In golf, both handicap (Hc) and low back pain (LBP) are the main factors associated with the occurrence of injuries. The aim of this study was to analyze the accuracy of support vector machines SVM on EMG-based classification to discriminate Hc (low and high handicap) and LBP (with and without LPB) in the main phases of golf swing. For this purpose recurrence quantification analysis (RQA) features of the trunk and the lower limb muscles were used to feed a SVM classifier. Recurrence rate (RR) and the ratio between determinism (DET) and RR showed a high discriminant power. The Hc accuracy for the swing, backswing, and downswing were 94.4±2.7%, 97.1±2.3%, and 95.3±2.6%, respectively. For LBP, the accuracy was 96.9±3.8% for the swing, and 99.7±0.4% in the backswing. External oblique (EO), biceps femoris (BF), semitendinosus (ST) and rectus femoris (RF) showed high accuracy depending on the laterality within the phase. RQA features and SVM showed a high muscle discriminant capacity within swing phases by Hc and by LBP. Low back pain golfers showed different neuromuscular coordination strategies when compared with asymptomatic.

  15. Does quantitative EMG differ myotonic dystrophy type 2 and type 1?

    PubMed

    Szmidt-Salkowska, Elzbieta; Gawel, Malgorzata; Lusakowska, Anna; Nojszewska, Monika; Lipowska, Marta; Sulek, Anna; Krysa, Wioletta; Rajkiewicz, Marta; Seroka, Andrzej; Kaminska, Anna M

    2014-10-01

    Genetic testing is considered the only reliable diagnostic approach in myotonic dystrophy. However it has recently been reported that a considerable number of patients with genetically proven types of the disease have unusual phenotypic presentation. The aim of our study was to evaluate motor unit reorganization reflected by various electrophysiological abnormalities in myotonic dystrophies and to compare findings between type 1 (DM 1) and type 2 myotonic dystrophy (DM2). Quantitative electromyography (EMG) recordings in 63 patients (33 with DM1 and 30 with DM2) from the biceps brachii (BB), rectus femoris (RF), first dorsal interosseus (FDI), and tibialis anterior (TA) muscles were analyzed. Mean amplitude and size index (SI) of motor unit potentials recorded in TA and RF muscles, mean potential duration in TA, and mean SI and the number of outliers with amplitude above the normal range in BB were significantly increased in DM2 as compared to DM1. Myotonic discharges were recorded more frequently in DM1 than in DM2. EMG findings significantly differ between DM1 and DM2. The presence of high amplitude potentials in lower limb muscles in DM2 patients, atypical for myogenic muscle lesions, could be explained by muscle fiber hypertrophy observed in muscle biopsies.

  16. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.

    PubMed

    Dawley, James A; Fite, Kevin B; Fulk, George D

    2013-06-01

    This paper presents the development and experimental evaluation of a volitional control architecture for a powered-knee transfemoral prosthesis that affords the amputee user with direct control of knee impedance using measured electromyogram (EMG) potentials of antagonist muscles in the residual limb. The control methodology incorporates a calibration procedure performed with each donning of the prosthesis that characterizes the co-contraction levels as the user performs volitional phantom-knee flexor and extensor contractions. The performance envelope for EMG control of impedance is then automatically shaped based on the flexor and extensor calibration datasets. The result is a control architecture that is optimized to the user's current co-contraction activity, providing performance robustness to variation in sensor placement or physiological changes in the residual-limb musculature. Experimental results with a single unilateral transfemoral amputee user demonstrate consistent and repeatable control performance for level walking at self-selected speed over a multi-week, multi-session period of evaluation.

  17. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage.

    PubMed

    van Dieën, J H; de Looze, M P; Hermans, V

    2001-06-10

    Seated work has been shown to constitute a risk factor for low-back pain. This is attributed to the prolonged and monotonous low-level mechanical load imposed by a seated posture. To evaluate the potential health effects with respect to the low back of office chairs with a movable seat and back rest, trunk kinematics, erector spinae EMG, spinal shrinkage and local discomfort were assessed in 10 subjects performing simulated office work. On three separate occasions subjects performed a 3 h task consisting of word processing, computer-aided design and reading. Three chairs were used, one with a fixed seat and back rest and two dynamic chairs, one with a seat and back rest movable in a fixed ratio with respect to each other, and one with a freely movable seat and back rest. Spinal shrinkage measurements showed a larger stature gain when working on the two dynamic chairs as compared with working on the chair with fixed seat and back rest. Trunk kinematics and erector spinae EMG were strongly affected by the task performed but not by the chair type. The results imply that dynamic office chairs offer a potential advantage over fixed chairs, but the effects of the task on the indicators of trunk load investigated were more pronounced than the effects of the chair.

  18. Digitally controlled feedback for DC offset cancellation in a wearable multichannel EMG platform.

    PubMed

    Tomasini, M; Benatti, S; Casamassima, F; Milosevic, B; Fateh, S; Farella, E; Benini, L

    2015-01-01

    Wearable systems capable to capture vital signs allow the development of advanced medical applications. One notable example is the use of surface electromyography (EMG) to gather muscle activation potentials, in principle an easy input for prosthesis control. However, the acquisition of such signals is affected by high variability and ground loop problems. Moreover, the input impedance influenced in time by motion and perspiration determines an offset, which can be orders of magnitude higher than the signal of interest. We propose a wearable device equipped with a digitally controlled Analog Front End (AFE) for biopotentials acquisition with zero-offset. The proposed AFE solution has an internal Digital to Analog Converter (DAC) used to adjust independently the reference of each channel removing any DC offset. The analog integrated circuit is coupled with a microcontroller, which periodically estimates the offset and implements a closed loop feedback on the analog part. The proposed approach was tested on EMG signals acquired from 4 subjects while performing different activities and shows that the system correctly acquires signals with no DC offset. PMID:26736970

  19. Muscle-fiber conduction velocity estimated from surface EMG signals during explosive dynamic contractions.

    PubMed

    Pozzo, M; Merlo, E; Farina, D; Antonutto, G; Merletti, R; Di Prampero, P E

    2004-06-01

    Muscle-fiber conduction velocity (CV) was estimated from surface electromyographic (EMG) signals during isometric contractions and during short (150-200 ms), explosive, dynamic exercises. Surface EMG signals were recorded with four linear adhesive arrays from the vastus lateralis and medialis muscles of 12 healthy subjects. Isometric contractions were at linearly increasing force from 0% to 100% of the maximum. The dynamic contractions consisted of explosive efforts of the lower limb on a sledge ergometer. For the explosive contractions, muscle-fiber CV was estimated in seven time-windows located along the ascending time interval of the force. There was a significant correlation between CV values during the isometric ramp and explosive contractions (R = 0.75). Moreover, CV estimates increased significantly from (mean +/- SD) 4.32 +/- 0.46 m/s to 4.97 +/- 0.45 m/s during the increasing-force explosive task. It was concluded that CV can be estimated reliably during dynamic tasks involving fast limb movements and that, in these contractions, it may provide important information on motor-unit control properties.

  20. Recurrence quantification analysis and support vector machines for golf handicap and low back pain EMG classification.

    PubMed

    Silva, Luís; Vaz, João Rocha; Castro, Maria António; Serranho, Pedro; Cabri, Jan; Pezarat-Correia, Pedro

    2015-08-01

    The quantification of non-linear characteristics of electromyography (EMG) must contain information allowing to discriminate neuromuscular strategies during dynamic skills. There are a lack of studies about muscle coordination under motor constrains during dynamic contractions. In golf, both handicap (Hc) and low back pain (LBP) are the main factors associated with the occurrence of injuries. The aim of this study was to analyze the accuracy of support vector machines SVM on EMG-based classification to discriminate Hc (low and high handicap) and LBP (with and without LPB) in the main phases of golf swing. For this purpose recurrence quantification analysis (RQA) features of the trunk and the lower limb muscles were used to feed a SVM classifier. Recurrence rate (RR) and the ratio between determinism (DET) and RR showed a high discriminant power. The Hc accuracy for the swing, backswing, and downswing were 94.4±2.7%, 97.1±2.3%, and 95.3±2.6%, respectively. For LBP, the accuracy was 96.9±3.8% for the swing, and 99.7±0.4% in the backswing. External oblique (EO), biceps femoris (BF), semitendinosus (ST) and rectus femoris (RF) showed high accuracy depending on the laterality within the phase. RQA features and SVM showed a high muscle discriminant capacity within swing phases by Hc and by LBP. Low back pain golfers showed different neuromuscular coordination strategies when compared with asymptomatic. PMID:26027794

  1. Estimating Isometric Tension of Finger Muscle Using Needle EMG Signals and the Twitch Contraction Model

    NASA Astrophysics Data System (ADS)

    Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.

  2. Alteration of Surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement.

    PubMed

    Huebner, Agnes; Faenger, Bernd; Schenk, Philipp; Scholle, Hans-Christoph; Anders, Christoph

    2015-04-01

    Exact electrode positioning is vital for obtaining reliable results in Surface EMG. This study aimed at systematically assessing the influence of defined electrode shifts on measured Surface EMG amplitudes of trunk muscles in a group of 15 middle aged healthy male subjects. The following leftsided muscles were investigated: rectus abdominis muscle, internal and external oblique abdominal muscles, lumbar multifidus muscle, and longissimus muscle. In addition to the recommended electrode positions, extra electrodes were placed parallel to these and along muscle fiber direction. Measurements were performed under isometric conditions in upright body position. Gradually changing, but defined loads were applied considering subject's upper body weight. For the abdominal muscles amplitude differences varied considerably depending on load level, magnitude, and direction. For both back muscles amplitudes dropped consistently but rather little for parallel electrode displacements. However, for the longissimus muscle a caudal electrode shift resulted in an amplitude increase of similar extent and independent from load level. Influence of electrode position variations can be proven for all trunk muscles but are more evident in abdominal than back muscles. Those muscle-specific effects confirm the necessity for an exact definition of electrode positioning to allow comparisons between individual subjects, groups of subjects, and studies.

  3. High efficiency and simple technique for controlling mechanisms by EMG signals

    NASA Astrophysics Data System (ADS)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.

    2016-04-01

    This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.

  4. EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency.

    PubMed

    Limbird, T J; Shiavi, R; Frazer, M; Borra, H

    1988-01-01

    A tear of the anterior cruciate ligament (ACL) disrupts the delicate balance of static stabilizers of the knee, leading to significant alterations in joint kinematics. Little is known about the dynamic compensatory responses of the patient to these kinematic alterations. This lack of quantitative information on the muscle synergy patterns has limited the surgeon's ability to evaluate various operative and rehabilitative techniques. Twelve subjects with documented ACL deficiency for at least 1 year and 15 normal participants were studied. Each subject was asked to walk at free and fast speeds on a 12 m walkway. The right and left foot contact patterns and the linear envelopes from the surface electromyogram (EMG) patterns of the gastrocnemius, medial and lateral hamstrings, rectus femoris, and vastus lateralis were measured. Significant differences were found in the muscle synergy patterns during walking. During the swing-to-stance transition, the ACL-deficient subjects showed significantly less activity in the quadriceps and gastrocnemius muscles and more activity in the biceps femoris than in the normal group. During early swing, the vastus lateralis is more active than normal, and during midstance and terminal stance, the hamstrings appear to be less active than normal subjects. These dynamic compensatory mechanisms suggest that use of the hamstring tendons in reconstructive procedures may alter important compensatory mechanisms about the knee joint. Application of dynamic EMG techniques to the study of reconstructive procedures should provide additional information that will assist the clinician in the rational choice of a surgical procedure.

  5. Facial EMG responses to emotional expressions are related to emotion perception ability.

    PubMed

    Künecke, Janina; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Wilhelm, Oliver

    2014-01-01

    Although most people can identify facial expressions of emotions well, they still differ in this ability. According to embodied simulation theories understanding emotions of others is fostered by involuntarily mimicking the perceived expressions, causing a "reactivation" of the corresponding mental state. Some studies suggest automatic facial mimicry during expression viewing; however, findings on the relationship between mimicry and emotion perception abilities are equivocal. The present study investigated individual differences in emotion perception and its relationship to facial muscle responses - recorded with electromyogram (EMG)--in response to emotional facial expressions. N° = °269 participants completed multiple tasks measuring face and emotion perception. EMG recordings were taken from a subsample (N° = °110) in an independent emotion classification task of short videos displaying six emotions. Confirmatory factor analyses of the m. corrugator supercilii in response to angry, happy, sad, and neutral expressions showed that individual differences in corrugator activity can be separated into a general response to all faces and an emotion-related response. Structural equation modeling revealed a substantial relationship between the emotion-related response and emotion perception ability, providing evidence for the role of facial muscle activation in emotion perception from an individual differences perspective.

  6. Activation deficit correlates with weakness in chronic stroke: evidence from evoked and voluntary EMG recordings

    PubMed Central

    Li, Sheng; Liu, Jie; Bhadane, Minal; Zhou, Ping; Rymer, W. Zev

    2014-01-01

    Objective To use evoked (M-wave) and voluntary (during maximal voluntary contraction (MVC)) EMG recordings to estimate the voluntary activation level in chronic stroke. Methods Nine chronic hemiparetic stroke subjects participated in the experiment. M-wave (EMGM-wave) and MVC (EMGMVC) EMG values of the biceps brachii muscles were recorded. Results Peak torque was significantly smaller on the impaired than non-impaired side. EMGM-wave was also significantly smaller on the impaired than non-impaired side. However, the normalized EMGM-wave/TorqueMVC ratio was not significantly different between two sides. In contrast, both absolute EMGMVC and normalized EMGMVC/TorqueMVC were smaller on the impaired than non-impaired side. The voluntary activation level, EMGMVC/M-wave, was also smaller on the impaired than non-impaired side. The voluntary activation level on the impaired side was highly correlated with weakness (R=0.72), but very low (R=0.32) on the non-impaired side. Conclusion Collectively, our findings suggest that both peripheral and central factors contribute to post-stroke weakness, but activation deficit correlates most closely with weakness as estimated from maximum voluntary torque generation. PMID:24747057

  7. Temporal reproduction.

    PubMed

    Zeiler, M D; Hoyert, M S

    1989-09-01

    A signal appeared for a certain time period. After the period elapsed, pigeons had to begin and complete a sequence of 15 responses in a time window ranging from the signal duration to 50% longer. Sessions involved as many as 10 different signal durations occurring in a random sequence. The times produced by pigeons often were in the same ranges as those that have been found with adult human subjects. The average times were described equally well as linear or power functions of signal duration. However, instead of the overestimation of durations usually found when animals have timed the duration of antecedent stimuli, the linear functions suggested that the pigeons underestimated the durations of their own behavior. The birds showing the strongest control when the conditions involved eight or 10 different duration requirements revealed the constant coefficients of variation that support Weber's law and scalar timing theory. Scalar timing in temporal differentiation appears to depend on non-ambiguous information about the duration required for reinforcement and on a high degree of sensitivity to the duration requirement.

  8. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    PubMed Central

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  9. Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables

    PubMed Central

    Rácz, Kornelius; Valero-Cuevas, Francisco J.

    2013-01-01

    The Uncontrolled Manifold (UCM) hypothesis and Minimal Intervention principle propose that the observed differential variability across task relevant (i.e., task goals) vs. irrelevant (i.e., in the null space of those goals) variables is evidence of a separation of task variables for efficient neural control, ranked by their respective variabilities (sometimes referred to as hierarchy of control). Support for this comes from spatial domain analyses (i.e., structure of) of kinematic, kinetic, and EMG variability. While proponents admit the possibility of preferential as opposed to strictly uncontrolled variables, such distinctions have only begun to be quantified or considered in the temporal domain when inferring control action. Here we extend the study of task variability during tripod static grasp to the temporal domain by applying diffusion analysis. We show that both task-relevant and task-irrelevant parameters show corrective action at some time scales; and conversely, that task-relevant parameters do not show corrective action at other time scales. That is, the spatial fluctuations of fingertip forces show, as expected, greater ranges of variability in task-irrelevant variables (>98% associated with changes in total grasp force; vs. only <2% in task-relevant changes associated with acceleration of the object). But at some time scales, however, temporal fluctuations of task-irrelevant variables exhibit negative correlations clearly indicative of corrective action (scaling exponents <0.5); and temporal fluctuations of task-relevant variables exhibit neutral and positive correlations clearly indicative of absence of corrective action (scaling exponents ≥0.5). In agreement with recent work in other behavioral contexts, these results propose we revise our understanding of variability vis-á-vis task relevance by considering both spatial and temporal features of all task variables when inferring control action and understanding how the CNS confronts task

  10. Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: a review.

    PubMed

    Naik, Ganesh R; Arjunan, Sridhar; Kumar, Dinesh

    2011-06-01

    The surface electromyography (sEMG) signal separation and decphompositions has always been an interesting research topic in the field of rehabilitation and medical research. Subtle myoelectric control is an advanced technique concerned with the detection, processing, classification, and application of myoelectric signals to control human-assisting robots or rehabilitation devices. This paper reviews recent research and development in independent component analysis and Fractal dimensional analysis for sEMG pattern recognition, and presents state-of-the-art achievements in terms of their type, structure, and potential application. Directions for future research are also briefly outlined.

  11. Simulation of surface EMG signals for a multilayer volume conductor with a superficial bone or blood vessel.

    PubMed

    Mesin, Luca

    2008-06-01

    This study analytically describes surface electromyogram (EMG) signals generated by a planar multilayer volume conductor constituted by different subdomains modeling muscle, bone (or blood vessel), fat, and skin tissues. The bone is cylindrical in shape, with a semicircular section. The flat portion of the boundary of the bone subdomain is interfaced with the fat layer tissue, the remaining part of the boundary is in contact with the muscle layer. The volume conductor is a model of physiological tissues in which the bone is superficial, as in the case of the tibia bone, backbone, and bones of the forearm. The muscle fibers are considered parallel to the axes of the bone, so that the model is space invariant in the direction of propagation of the action potential. The proposed model, being analytical, allows faster simulations of surface EMG with respect to previously developed models including bone or blood vessels based on the finite-element method. Surface EMG signals are studied by simulating a library of single-fiber action potentials (SFAP) of fibers in different locations within the muscle domain, simulating the generation, propagation, and extinction of the action potential. The decay of the amplitude of the SFAPs in the direction transversal to the fibers is assessed. The decay in the direction of the bone has a lower rate with respect to the opposite direction. Similar results are obtained by simulating motor unit action potentials (MUAPs) constituted by 100 fibers with territory 5 mm2. M waves and interference EMG signals are also simulated based on the library of SFAPs. Again, the decay of the amplitude of the simulated interference EMG signals is lower approaching the bone with respect to going farther from it. The findings of this study indicate the effect of a superficial bone in enhancing the EMG signals in the transversal direction with respect to the fibers of the considered muscle. This increases the effect of crosstalk. The same mathematical

  12. The Effect of Bicycle Ergometer Exercise at Varying Intensities on the Heart Rate, EMG and Mood State Responses to a Mental Arithmetic Stressor.

    ERIC Educational Resources Information Center

    McGowan, Colleen R.; And Others

    1985-01-01

    This study examined the effect of bicycle ergometer exercise at varying metabolic intensities upon the heart rate, electromyographic (EMG), and mood state responses to a timed mental arithmetric stressor of 12 adult males. Exercise influenced heart rate and EMG but not physiological and psychological responses to the arithmetic stressor.…

  13. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?

    PubMed

    Amarantini, David; Bru, Bertrand

    2015-08-01

    The possibility of using electromyography (EMG) to track muscle activity has raised the question of its relationship with the effort exerted by the muscles around the joints. However, the EMG-moment relationship is yet to be fully defined, and increasing knowledge of this topic could contribute to research in motor control and to the development of EMG-based algorithms and devices. With regards the training-related adaptations at the peripheral and central level, the present study investigated the effect of strength training on EMG-moment relationship. Our aim was to clarify its nature and gain further understanding of how morphological and neural factors may affect its form. The EMG-moment relationship was determined during knee flexion and extension isometric contractions performed by strength-trained male athletes and untrained male participants. The results showed that strength training induced linearity of the EMG-moment relationship concomitantly with enhanced maximum force production capacity and decreased co-activation of knee agonist-antagonist muscle pair. These results clarified discordant results regarding the linear or curved nature of the EMG-moment in isometric conditions and suggested that the remarkable linearity of the EMG-moment found in trained participants could indicate improved control of muscle activation.

  14. Design, Development and Testing of a Low-Cost sEMG System and Its Use in Recording Muscle Activity in Human Gait

    PubMed Central

    Supuk, Tamara Grujic; Skelin, Ana Kuzmanic; Cic, Maja

    2014-01-01

    Surface electromyography (sEMG) is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet—based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics. PMID:24811078

  15. Amplitude and bilateral coherency of facial and jaw-elevator EMG activity as an index of effort during a two-choice serial reaction task.

    PubMed

    Van Boxtel, A; Jessurun, M

    1993-11-01

    In earlier studies, positive but inconsistent relationships have been reported between mental effort and electromyogram (EMG) amplitude in task-irrelevant limb muscles. In this study, we explored whether facial EMG activity would provide more consistent results. Tonic EMG activity of six different facial and jaw-elevator muscles was bilaterally recorded during a two-choice serial reaction task with paced presentation of auditory or visual signals. In Experiment 1, task load (signal presentation rate) was kept constant for 20 min at the level of the subject's maximal capacity. In Experiment 2, task load was increased in a stepwise fashion over six successive 2-min periods from sub- to supramaximal capacity levels. EMG amplitude and coherency between momentary bilateral amplitude fluctuations were measured. In Experiment 1, EMG amplitude of frontalis, corrugator supercilii, and orbicularis oris inferior showed a strong gradual increase throughout the task period, whereas taks performance remained fairly stable. Orbicularis oculi, zygomaticus major, and temporalis EMG showed a much smaller increase or no increase. In Experiment 2, the first three muscles showed a fairly consistent increase in EMG amplitude with increasing task load. Orbicularis oculi and zygomaticus major were not active until task load became supramaximal. Effects of stimulus modality or laterality were not found in any experiment. These results are consistent with the notion that EMG amplitude of frontalis, corrugator, and orbicularis oris provides a sensitive index of the degree of exerted mental effort. PMID:8248451

  16. Delayed-choice Measurement and Temporal Nonlocality

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; Mahler, Günter

    2001-02-01

    We study for a composite quantum system with a quantum Turing architecture the temporal non-locality of quantum mechanics by using the temporal Bell inequality, which will be derived for a discretized network dynamics by identifying the subsystem indices with (discrete) parameter time. However, the direct "observation" of the quantum system will lead to no violation of the temporal Bell inequality and to consistent histories of any subsystem. Its violation can be demonstrated, though, for a delayedchoice measurement

  17. The influence of acoustic and tactile stimulation on vegetative parameters and EEG in persistent vegetative state.

    PubMed

    Keller, Ingo; Hülsdunk, Angelika; Müller, Friedemann

    2007-01-01

    In the present study, we investigated whether different kinds of stimulation in the persistent vegetative state (PVS) lead to specific patterns of physiological reactions. In addition, a possible effect of stimulating drugs was explored by comparing recordings with and without pharmacological stimulation. Eighteen patients in the PVS were submitted to tactile or acoustic stimulation. The latter consisted of white noise and of the voices of close relatives delivered via a digital voice recorder. Additionally, half of the patients were pharmacologically stimulated with amantadine, L-dopa or amphetamine. The effect of stimulation was assessed by recording the electroencephalogram (EEG), electromyogram (EMG), skin conductance response (SCR) and heart rate (HR). Tactile stimulation was associated with statistically significant increases in EEG and EMG parameters, SCR and HR. White noise stimulation led to significant increases in SCR and EMG parameters. The physiological responses to relatives? voices did not differ from baseline activity. Pharmacological stimulation increased the baseline level of activation, but showed no interaction with sensory stimulation. The data presented indicate that the level of arousal in patients in the PVS can be adequately monitored by measuring SCR, HR and EMG parameters.

  18. Estimation of average muscle fiber conduction velocity from simulated surface EMG in pinnate muscles.

    PubMed

    Mesin, Luca; Damiano, Luisa; Farina, Dario

    2007-03-15

    The aim of this simulation study was to assess the bias in estimating muscle fiber conduction velocity (CV) from surface electromyographic (EMG) signals in muscles with one and two pinnation angles. The volume conductor was a layered medium simulating anisotropic muscle tissue and isotropic homogeneous subcutaneous tissue. The muscle tissue was homogeneous for one pinnation angle and inhomogeneous for bipinnate muscles (two fiber directions). Interference EMG signals were obtained by simulating recruitment thresholds and discharge patterns of a set of 100 and 200 motor units for the pinnate and bipinnate muscle, respectively (15 degrees pinnation angel in both cases). Without subcutaneous layer and muscle fibers with CV 4m/s, average CV estimates from the pinnate (bipinnate) muscle were 4.81+/-0.18 m/s (4.80+/-0.18 m/s) for bipolar, 4.71+/-0.19 m/s (4.71+/-0.12 m/s) for double differential, and 4.78+/-0.16 m/s (4.79+/-0.15m/s) for Laplacian recordings. When subcutaneous layer was added (thickness 1mm) in the same conditions, estimated CV values were 4.93+/-0.25 m/s (5.16+/-0.41 m/s), 4.70+/-0.21 m/s (4.83+/-0.33 m/s), and 4.89+/-0.21 m/s (4.99+/-0.39 m/s), for the three recording systems, respectively. The main factor biasing CV estimates was the propagation of action potentials in the two directions which influenced the recording due to the scatter of the projection of end-plate and tendon locations along the fiber direction, as a consequence of pinnation. The same problem arises in muscles with the line of innervation zone locations not perpendicular to fiber direction. These results indicate an important limitation in reliability of CV estimates from the interference EMG when the innervation zone and tendon locations are not distributed perpendicular to fiber direction.

  19. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  20. Dependence Independence Measure for Posterior and Anterior EMG Sensors Used in Simple and Complex Finger Flexion Movements: Evaluation Using SDICA.

    PubMed

    Naik, Ganesh R; Baker, Kerry G; Nguyen, Hung T

    2015-09-01

    Identification of simple and complex finger flexion movements using surface electromyography (sEMG) and a muscle activation strategy is necessary to control human-computer interfaces such as prosthesis and orthoses. In order to identify these movements, sEMG sensors are placed on both anterior and posterior muscle compartments of the forearm. In general, the accuracy of myoelectric classification depends on several factors, which include number of sensors, features extraction methods, and classification algorithms. Myoelectric classification using a minimum number of sensors and optimal electrode configuration is always a challenging task. Sometimes, using several sensors including high density electrodes will not guarantee high classification accuracy. In this research, we investigated the dependence and independence nature of anterior and posterior muscles during simple and complex finger flexion movements. The outcome of this research shows that posterior parts of the hand muscles are dependent and hence responsible for most of simple finger flexion. On the other hand, this study shows that anterior muscles are responsible for most complex finger flexion. This also indicates that simple finger flexion can be identified using sEMG sensors connected only on anterior muscles (making posterior placement either independent or redundant), and vice versa is true for complex actions which can be easily identified using sEMG sensors on posterior muscles. The result of this study is beneficial for optimal electrode configuration and design of prosthetics and other related devices using a minimum number of sensors.

  1. Triceps Brachii in Incomplete Tetraplegia: EMG and Dynamometer Evaluation of Residual Motor Resources and Capacity for Strengthening

    PubMed Central

    2013-01-01

    Background: Candidates for activity-based therapy after spinal cord injury (SCI) are often selected on the basis of manual muscle test scores and the classification of the injury as complete or incomplete. However, these scores may not adequately predict which individuals have sufficient residual motor resources for the therapy to be beneficial. Objective: We performed a preliminary study to see whether dynamometry and quantitative electromyography (EMG) can provide a more detailed assessment of residual motor resources. Methods: We measured elbow extension strength using a hand-held dynamometer and recorded fine-wire EMG from the triceps brachii muscles of 4 individuals with C5, C6, or C7 level SCI and 2 able-bodied controls. We used EMG decomposition to measure motor unit action potential (MUAP) amplitudes and motor unit (MU) recruitment and firing-rate profiles during constant and ramp contractions. Results: All 4 subjects with cervical SCI (cSCI) had increased MUAP amplitudes indicative of denervation. Two of the subjects with cSCI had very weak elbow extension strength (<4 kg), dramatically reduced recruitment, and excessive firing rates (>40 pps), suggesting profound loss of motoneurons. The other 2 subjects with cSCI had stronger elbow extension (>6 kg), more normal recruitment, and more normal firing rates, suggesting a substantial remaining motoneuron population. Conclusions: Dynamometry and quantitative EMG may provide information about the extent of gray matter loss in cSCI to help guide rehabilitation strategies. PMID:24244095

  2. CAN PENNATION ANGLES BE PREDICTED FROM EMGS FOR THE PRIMARY ANKLE PLANTAR AND DORSIFLEXORS DURING ISOMETRIC CONTRACTIONS?

    PubMed Central

    Manal, Kurt; Roberts, Dustyn P.; Buchanan, Thomas S.

    2008-01-01

    Ultrasonography was used to measure pennation angle and electromyography (EMG) to record muscle activity of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL) muscles during graded isometric ankle plantar and dorsiflexion contractions done on a Biodex dynamometer. Data from eight male and eight female subjects were collected in increments of approximately 25% of maximum voluntary contraction (MVC) ranging from rest to MVC. A significant positive linear relationship (p < 0.05) between normalized EMG and pennation angle for all muscles was observed when subject specific pennation angles at rest and MVC were included in the analysis. These were included to account for gender differences and inter-subject variability in pennation angle. The coefficient of determination, R2, ranged between 0.76 for the TA to 0.87 for the SOL. The EMG-pennation angle relationships have ramifications for use in EMG-driven models of muscle force. The regression equations can be used to characterize fiber pennation angle more accurately and to determine how it changes with contraction intensity, thus providing improved estimates of muscle force when using musculoskeletal models. PMID:18579147

  3. DCT domain feature extraction scheme based on motor unit action potential of EMG signal for neuromuscular disease classification.

    PubMed

    Doulah, Abul Barkat Mollah Sayeed Ud; Fattah, Shaikh Anowarul; Zhu, Wei-Ping; Ahmad, M Omair

    2014-01-01

    A feature extraction scheme based on discrete cosine transform (DCT) of electromyography (EMG) signals is proposed for the classification of normal event and a neuromuscular disease, namely the amyotrophic lateral sclerosis. Instead of employing DCT directly on EMG data, it is employed on the motor unit action potentials (MUAPs) extracted from the EMG signal via a template matching-based decomposition technique. Unlike conventional MUAP-based methods, only one MUAP with maximum dynamic range is selected for DCT-based feature extraction. Magnitude and frequency values of a few high-energy DCT coefficients corresponding to the selected MUAP are used as the desired feature which not only reduces computational burden, but also offers better feature quality with high within-class compactness and between-class separation. For the purpose of classification, the K-nearest neighbourhood classifier is employed. Extensive analysis is performed on clinical EMG database and it is found that the proposed method provides a very satisfactory performance in terms of specificity, sensitivity and overall classification accuracy.

  4. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  5. DCT domain feature extraction scheme based on motor unit action potential of EMG signal for neuromuscular disease classification

    PubMed Central

    Doulah, Abul Barkat Mollah Sayeed Ud; Zhu, Wei-Ping; Ahmad, M. Omair

    2014-01-01

    A feature extraction scheme based on discrete cosine transform (DCT) of electromyography (EMG) signals is proposed for the classification of normal event and a neuromuscular disease, namely the amyotrophic lateral sclerosis. Instead of employing DCT directly on EMG data, it is employed on the motor unit action potentials (MUAPs) extracted from the EMG signal via a template matching-based decomposition technique. Unlike conventional MUAP-based methods, only one MUAP with maximum dynamic range is selected for DCT-based feature extraction. Magnitude and frequency values of a few high-energy DCT coefficients corresponding to the selected MUAP are used as the desired feature which not only reduces computational burden, but also offers better feature quality with high within-class compactness and between-class separation. For the purpose of classification, the K-nearest neighbourhood classifier is employed. Extensive analysis is performed on clinical EMG database and it is found that the proposed method provides a very satisfactory performance in terms of specificity, sensitivity and overall classification accuracy. PMID:26609372

  6. Characterization of stroke- and aging-related changes in the complexity of EMG signals during tracking tasks.

    PubMed

    Ao, Di; Sun, Rui; Tong, Kai-Yu; Song, Rong

    2015-04-01

    To explore the stroke- and aging-induced neurological changes in paretic muscles from an entropy point of view, fuzzy approximate entropy (fApEn) was utilized to represent the complexity of EMG signals in elbow-tracking tasks. In the experiment, 11 patients after stroke and 20 healthy control subjects (10 young and 10 age-matched adults) were recruited and asked to perform elbow sinusoidal trajectory tracking tasks. During the tests, the elbow angle and electromyographic (EMG) signals of the biceps brachii and triceps brachii were recorded simultaneously. The results showed significant differences in fApEn values of both biceps and triceps EMG among four groups at six velocities (p < 0.01), with fApEn values in the following order: affected sides of stroke patients < unaffected sides of stroke patients < age-matched controls < young controls. A possible mechanism underlying the smaller fApEn values in the affected sides in comparison with aged-matched controls and in the aged individuals in comparison with young controls might be the reduction in the number and firing rate of active motor units. This method and index provide evidence of neurological changes after stroke and aging by complexity analysis of the surface EMG signals. Further studies are needed to validate and facilitate the application in clinic.

  7. A new method for the extraction and classification of single motor unit action potentials from surface EMG signals.

    PubMed

    Gazzoni, Marco; Farina, Dario; Merletti, Roberto

    2004-07-30

    It has been shown that multi-channel surface EMG allows assessment of anatomical and physiological single motor unit (MU) properties. To get this information, the action potentials of single MUs should be extracted from the interference EMG signals. This study describes an automatic system for the detection and classification of MU action potentials from multi-channel surface EMG signals. The methods for the identification and extraction of action potentials from the raw signals and for their clustering into the MUs to which they belong are described. The segmentation phase is based on the matched Continuous Wavelet Transform (CWT) while the classification is performed by a multi-channel neural network that is a modified version of the multi-channel Adaptive Resonance Theory networks. The neural network can adapt to slow changes in the shape of the MU action potentials. The method does not require any interaction of the operator. The technique proposed was validated on simulated signals, at different levels of force, generated by a structure based surface EMG model. The MUs identified from the simulated signals covered almost the entire recruitment curve. Thus, the proposed algorithm was able to identify a MU sample representative of the muscle. Results on experimental signals recorded from different muscles and conditions are reported, showing the possibility of investigating anatomical and physiological properties of the detected MUs in a variety of practical cases. The main limitation of the approach is that complete firing patterns can be obtained only in specific cases due to MU action potential superpositions.

  8. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy.

    PubMed

    Sun, Rui; Song, Rong; Tong, Kai-yu

    2014-09-01

    The paper presents a novel viewpoint to monitor the motor function improvement during a robot-aided rehabilitation training. Eight chronic poststroke subjects were recruited to attend the 20-session training, and in each session, subjects were asked to perform voluntary movements of elbow flexion and extension together with the robotic system. The robotic system was continuously controlled by the electromyographic (EMG) signal from the affected triceps. Fuzzy approximate entropy (fApEn) was applied to investigate the complexity of the EMG segment, and maximum voluntary contraction (MVC) during elbow flexion and extension was applied to reflect force generating capacity of the affected muscles. The results showed that the group mean fApEn of EMG signals from triceps and biceps increased significantly after the robot-aided rehabilitation training . There was also significant increase in maximum voluntary flexion and extension torques after the robot-aided rehabilitation training . There was significant correlation between fApEn of agonist and MVC , which implied that the increase of motorneuron number is one of factors that may explain the increase in muscle strength. These findings based on fApEn of the EMG signals expand the existing interpretation of training-induced function improvement in patients after stroke, and help us to understand the neurological change induced by the robot-aided rehabilitation training.

  9. Processing of surface EMG through pattern recognition techniques aimed at classifying shoulder joint movements.

    PubMed

    Rivela, Diletta; Scannella, Alessia; Pavan, Esteban E; Frigo, Carlo A; Belluco, Paolo; Gini, Giuseppina

    2015-01-01

    Artificial arms for shoulder disarticulation need a high number of degrees of freedom to be controlled. In order to control a prosthetic shoulder joint, an intention detection system based on surface electromyography (sEMG) pattern recognition methods was proposed and experimentally investigated. Signals from eight trunk muscles that are generally preserved after shoulder disarticulation were recorded from a group of eight normal subjects in nine shoulder positions. After data segmentation, four different features were extracted (sample entropy, cepstral coefficients of the 4th order, root mean square and waveform length) and classified by means of linear discriminant analysis. The classification accuracy was 92.1% and this performance reached 97.9% after reducing the positions considered to five classes. To reduce the computational cost, the two channels with the least discriminating information were neglected yielding to a classification accuracy diminished by just 4.08%. PMID:26736704

  10. A Study of an EMG-Based Exoskeletal Robot for Human Shoulder Motion Support

    NASA Astrophysics Data System (ADS)

    Kiguchi, Kazuo; Iwami, Koya; Watanabe, Keigo; Fukuda, Toshio

    We have been developing exoskeletal robots in order to realize the human motion support (especially for physically weak people). In this paper, we propose a 2-DOF exoskeletal robot and its method of control to support the human shoulder motion. In this exoskeletal robot, the flexion-extension and abduction-adduction motions of the shoulder are supported by activating the arm holder of the robot, which is atached to the upper arm of the human subject, using wires driven by DC motors. A fuzzy-neuro controller is designed to control the robot according to the skin surface electromyogram(EMG) signals in which the intention of the human subject is reflected. The proposed controller controls the flexion-extension and abduction-adduction motion of the human subject. The effectiveness of the proposed exoskeletal robot has been evaluated experimentally.

  11. Combining data fusion with multiresolution analysis for improving the classification accuracy of uterine EMG signals

    NASA Astrophysics Data System (ADS)

    Moslem, Bassam; Diab, Mohamad; Khalil, Mohamad; Marque, Catherine

    2012-12-01

    Multisensor data fusion is a powerful solution for solving difficult pattern recognition problems such as the classification of bioelectrical signals. It is the process of combining information from different sensors to provide a more stable and more robust classification decisions. We combine here data fusion with multiresolution analysis based on the wavelet packet transform (WPT) in order to classify real uterine electromyogram (EMG) signals recorded by 16 electrodes. Herein, the data fusion is done at the decision level by using a weighted majority voting (WMV) rule. On the other hand, the WPT is used to achieve significant enhancement in the classification performance of each channel by improving the discrimination power of the selected feature. We show that the proposed approach tested on our recorded data can improve the recognition accuracy in labor prediction and has a competitive and promising performance.

  12. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  13. Observation and imitation of actions performed by humans, androids, and robots: an EMG study.

    PubMed

    Hofree, Galit; Urgen, Burcu A; Winkielman, Piotr; Saygin, Ayse P

    2015-01-01

    Understanding others' actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others' behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants' arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  14. Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control

    PubMed Central

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2016-01-01

    Pattern recognition-based myoelectric control of upper-limb prostheses has the potential to restore control of multiple degrees of freedom. Though this control method has been extensively studied in individuals with higher-level amputations, few studies have investigated its effectiveness for individuals with partial-hand amputations. Most partial-hand amputees retain a functional wrist and the ability of pattern recognition-based methods to correctly classify hand motions from different wrist positions is not well studied. In this study, focusing on partial-hand amputees, we evaluate (1) the performance of non-linear and linear pattern recognition algorithms and (2) the performance of optimal EMG feature subsets for classification of four hand motion classes in different wrist positions for 16 non-amputees and 4 amputees. Our results show that linear discriminant analysis and linear and non-linear artificial neural networks perform significantly better than the quadratic discriminant analysis for both non-amputees and partial-hand amputees. For amputees, including information from multiple wrist positions significantly decreased error (p < 0.001) but no further significant decrease in error occurred when more than 4, 2, or 3 positions were included for the extrinsic (p = 0.07), intrinsic (p = 0.06), or combined extrinsic and intrinsic muscle EMG (p = 0.08), respectively. Finally, we found that a feature set determined by selecting optimal features from each channel outperformed the commonly used time domain (p < 0.001) and time domain/autoregressive feature sets (p < 0.01). This method can be used as a screening filter to select the features from each channel that provide the best classification of hand postures across different wrist positions. PMID:27807418

  15. Normalizing upper trapezius EMG amplitude: Comparison of ramp and constant force procedures.

    PubMed

    Attebrant, M; Mathiassen, S E; Winkel, J

    1995-12-01

    The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC(2force) = - 0.6 + 0.9 *%MVC(ramp), although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13-79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.

  16. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  17. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    PubMed Central

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  18. An EMG analysis of the shoulder in pitching. A second report.

    PubMed

    Jobe, F W; Moynes, D R; Tibone, J E; Perry, J

    1984-01-01

    This is the second report in a series of projects dealing with electromyographic (EMG) analysis of the upper extremity during throwing. Better understanding of the muscle activation patterns could lead to more effective preseason conditioning regimens and rehabilitation programs. Indwelling wire electrodes recorded the output from the biceps, long and lateral heads of the triceps, pectoralis major, latissimus dorsi,