DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.
In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less
NASA Astrophysics Data System (ADS)
Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen
2014-09-01
As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.
NASA Astrophysics Data System (ADS)
Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin
2018-01-01
The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.
Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin
2017-06-28
Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.
Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn
2016-03-15
Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.
Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming
2018-04-11
Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.
NASA Astrophysics Data System (ADS)
Sastry, D. Nagesa; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. Ravi; Raghavendra, S. C.
2018-05-01
This paper highlights the Electromagnetic Interference (EMI) Shielding Effectiveness and electromagnetic wave attenuation behavior of Polyaniline/Camphor Sulphonic Acid (PANI-CSA) - tungsten oxide (WO3) composites. Insitu polymerization of aniline monomer with camphor sulphonic acid (CSA) as a dopant was carried out in the presence of ammonium persulphate an oxidizing agent to synthesize PANI-CSA tungsten oxide composites (PANI/CSA-WO3) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of tungsten oxide in PANI/CSA matrix. The EMI shielding measurements were carried out in the broad microwave spectrum covering the frequency range from 12 to 18 GHz (Ku-Band). The results show the influence of tungsten oxide in PANI/CSA over the EMI shielding Effectiveness. The composites have shown excellent microwave absorption behavior confirmed by the EMI Shielding Effectiveness values of the order of -15 to -16 dB.
Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin
2016-01-01
Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578
Intercalated graphite fiber composites as EMI shields in aerospace structures
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.
Pothupitiya Gamage, Sudesh Jayashantha; Yang, Kihun; Braveenth, Ramanaskanda; Raagulan, Kanthasamy; Kim, Hyun Suk; Lee, Yun Seon; Yang, Cheol-Min; Moon, Jai Jung; Chai, Kyu Yun
2017-01-01
A series of multi-walled carbon nanotube (MWCNT) coated carbon fabrics was fabricated using a facile dip coating process, and their performance in electrical conductivity, thermal stability, tensile strength, electromagnetic interference (EMI) and shielding effectiveness (SE) was investigated. A solution of MWCNT oxide and sodium dodecyl sulfate (SDS) in water was used in the coating process. MWCNTs were observed to coat the surfaces of carbon fibers and to fill the pores in the carbon fabric. Electrical conductivity of the composites was 16.42 S cm−1. An EMI shielding effectiveness of 37 dB at 2 GHz was achieved with a single layer of C/C composites, whereas the double layers resulted in 68 dB EMI SE at 2.7 GHz. Fabricated composites had a specific SE of 486.54 dB cm3 g−1 and an absolute SE of approximately 35,000 dB cm2 g−1. According to the above results, MWCNT coated C/C composites have the potential to be used in advanced shielding applications such as aerospace and auto mobile electronic devices.
Nanostructured conductive polymeric materials
NASA Astrophysics Data System (ADS)
Al-Saleh, Mohammed H.
Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in EM shielding effectiveness, system-level EMC, EMP effects, circuit-level EMI testing, EMI control, analysis techniques for system-level EMC, EMP protective measures, EMI test methods, electrostatic-discharge testing, printed circuit-board design for EMC, and EM environment effects. Also discussed are EMI measurement procedures, EM spectrum-management issues for the 21st century, antenna and propagation effects on EMI testing, EMI control in cables, socioeconomic aspects of EMC, systemwide EMI controls, and EM radiation and coupling.
EMI shielding performance of lead hexaferrite/polyaniline composite in 8-18 GHz frequency range
NASA Astrophysics Data System (ADS)
Choudhary, Harish Kumar; Pawar, Shital Patangrao; Bose, Suryasarathi; Sahoo, Balaram
2018-05-01
EMI shielding properties of nanocomposite containing lead hexaferrite (PFO) and polyaniline (PANI), a conducting polymer, was studied in X and Ku band frequencies. The nanocomposite shows enhanced EMI shielding properties than that of the pure PANI. Incorporation of PFO particles in the PANI enhances the total shielding effectiveness (SET) up to -24 dB at 18 GHz. This means that these nanocomposites can shield ˜99 % of the incoming EM radiation. The PFO/PANI shows much higher attenuation constant values over the measured frequency range. By adding the PFO in the PANI we have created more interfaces between Wax-PFO, Wax-PANI, PANI-PFO and PFO-PANI. These enhanced interfaces lead to Maxwell-Wagner polarization which results in a higher dielectric loss than only PANI.
Lee, Seung Hwan; Yu, Seunggun; Shahzad, Faisal; Kim, Woo Nyon; Park, Cheolmin; Hong, Soon Man; Koo, Chong Min
2017-09-21
Lightweight dual-functional materials with high EMI shielding performance and thermal conductivity are of great importance in modern cutting-edge applications, such as mobile electronics, automotive, aerospace, and military. Unfortunately, a clear material solution has not emerged yet. Herein, we demonstrate a simple and effective way to fabricate lightweight metal-based polymer composites with dual-functional ability of excellent EMI shielding effectiveness and thermal conductivity using expandable polymer bead-templated Cu hollow beads. The low-density Cu hollow beads (ρ ∼ 0.44 g cm -3 ) were fabricated through electroless plating of Cu on the expanded polymer beads with ultralow density (ρ ∼ 0.02 g cm -3 ). The resulting composites that formed a continuous 3D Cu network with a very small Cu content (∼9.8 vol%) exhibited excellent EMI shielding (110.7 dB at 7 GHz) and thermal conductivity (7.0 W m -1 K -1 ) with isotropic features. Moreover, the densities of the composites are tunable from 1.28 to 0.59 g cm -3 in accordance with the purpose of their applications. To the best of our knowledge, the resulting composites are the best lightweight dual-functional materials with exceptionally high EMI SE and thermal conductivity performance among synthetic polymer composites.
NASA Astrophysics Data System (ADS)
Yao, Kai; Wu, Xueyan; An, Zhentao
2017-01-01
A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.
NASA Astrophysics Data System (ADS)
Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao
2018-05-01
Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.
Prospects for using carbon-carbon composites for EMI shielding
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.
NASA Astrophysics Data System (ADS)
Narong, L. C.; Sia, C. K.; Yee, S. K.; Ong, P.; Zainudin, A.; Nor, N. H. M.; Kasim, N. A.
2017-01-01
In order to solve the electromagnetic interference (EMI) issue and provide a new application for palm oil fuel ash (POFA), POFA was used as the cement filler for enhancing the EMI absorption of cement-based composites. POFA was refined by using water precipitation for 24 hours to remove the filthiness and distinguish the layer 1 (floated) and layer 2 (sink) of POFA. Both layers POFA were dried for 24 hours at 100 ± 5 °C and grind separately for sieve at 140 μm (Fine) and 45 цш sizes (Ultrafine). The micro structure and element content of the both layers POFA were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) respectively. The results showed layer 1 POFA has potentialities for EMI shielding effectiveness (SE) due to its higher carbon content and porous structure. The study reveals that EMI SE also influenced by the particle size of POFA, where smaller particle size can increase 5 % to 13 % of EMI SE. When the specimen consists of 50% POFA with passing through 45 μm sieve, the EMI was shield -13.08 dB in between 50 MHz to 2 GHz range. Flower Pollination Algorithm (FPA) proves that POFA passing 45 μm sieve with 50% mixed to OPC is optimal parameter. The error between experimental and FPA simulation data is below 1.2 for both layers POFA.
Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin
2018-05-30
Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang
This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less
Shielding techniques tackle EMI excesses. V - EMI shielding
NASA Astrophysics Data System (ADS)
Grant, P.
1982-10-01
The utilization of shielding gaskets in EMI design is presented in terms of seam design, gasket design, groove design, and fastener spacing. The main function of seam design is to minimize the coupling efficiency of a seam, and for effective shielding, seam design should include mating surfaces which are as flat as possible, and a flange width at least five times the maximum anticipated separation between mating surfaces. Seam surface contact with a gasket should be firm, continuous, and uniform. Gasket height, closure pressure, and compression set as a function of the applied pressure parameters are determined using compression/deflection curves. Environmental seal requirements are given and the most common materials used are neoprene, silicone, butadiene-acrylonitrile, and natural rubber. Groove design is also discussed, considering gasket heights and cross-sectional areas. Finally, fastener spacing is considered, by examining deflection as a percentage of gasket height.
77 FR 48514 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... emission; Use as an additive for electromagnetic interface (EMI) shielding; Use as a pigment; use as a... additive for heat transfer and thermal emission; Use as an additive for electromagnetic interface (EMI... electromagnetic interface (EMI) shielding; Use as a pigment; Use as a functional additive in composites and paints...
NASA Astrophysics Data System (ADS)
Kim, Kwan-Woo; Han, Woong; Kim, Byoung-Suhk; Kim, Byung-Joo; An, Kay-Hyeok
2017-09-01
In order to develop the high quality electromagnetic interference shielding efficiency (EMI-SE) materials, Ni-plated carbon fiber fabrics (Ni-CFFs) were prepared by an electroless method. Effects of post heat-treatment conditions on EMI-SE and electrical conductivity of Ni-CFFs/epoxy composites were also investigated. The morphologies and structural properties of Ni-CFFs were measured by a SEM and a XRD. It was found that all the Ni peaks increased with increasing post-heat treatment temperature, indicating that some impurities were removed and nickel particle sharp crystalline peaks. Also, It was found that the EMI-SE of composites enhanced was increased after post heat-treatment. In the frequency range of electromagnetic wave occurred from appliances (3.0 × 107-6.0 × 108), EMI-SE of post-heat treatment Ni-CFs was increased. This result concludes that the EMI-SE of the composites can be enhanced according to the microstructure of Ni in the Ni-CFFs/epoxy composites.
Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing
2017-08-01
Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang
2015-01-01
Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808
Department of Defense Standard Family of Tactical Shelters (Rigid/Soft/Hybrid)
2012-05-01
01-092-0892 Shelter, Electrical Equipment, S-280(C)/G, EMI Shielded 5411-01-304-3069 Shelter, Electrical Equipment, Lightweight, S-788/G Type I 5411...Electrical Equipment, S-250/G, Unshielded 5411-00-999-4935 Shelter, Electrical Equipment, S-250/G, EMI Shielded 5411-00-489-6076 MARINE CORPS (LEGACY) ISO...10 Foot, General Purpose 5411-01-287-4341 ISO, 10 Foot, EMI Shielded 5411-01-206-6079 ISO, 20 Foot, General Purpose 5411-01-209-3451 ISO, 20 Foot
Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen
2017-04-15
We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.
Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin
2017-12-06
Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.
2011-01-01
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633
Power converter having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-06-13
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele
2017-01-11
A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding ability.
NASA Astrophysics Data System (ADS)
Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch
2017-10-01
Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.
NASA Astrophysics Data System (ADS)
Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk
2018-03-01
This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.
Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined
NASA Technical Reports Server (NTRS)
1996-01-01
Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.
Vehicle drive module having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-11-28
EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng
2017-11-30
Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.
Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing
2018-06-06
Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.
NASA Astrophysics Data System (ADS)
Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua
2018-06-01
Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.
NASA Astrophysics Data System (ADS)
Dai, Xiaoqing
2017-02-01
Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) with superior electromagnetic interferece (EMI) shielding efficiency (SE) was fabricated through a UV enhanced hydrothermal process. In this study, a composite with 10 wt% of 3D-RGO/ZnO was tested in a broadband frequency range from 2 to 18 GHz. Under the whole test conditions, the ratio of SEA/SET is higher than 50% and the maximum value can reach to 94%, indicating the shielding mechanism mainly attributes to absorption. The EMI SE showed that the thinnest thicknesses to shield different frequency range are 0.7 mm for 10 dB, 1.6 mm for 20 dB and 3.7 mm for 30 dB, which suggests 3D-RGO/ZnO could meet the requirement of new generate EMI shielding material.
NASA Astrophysics Data System (ADS)
Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo
2018-03-01
A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.
Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian
2013-01-01
Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277
Umrao, Sima; Gupta, Tejendra K; Kumar, Shiv; Singh, Vijay K; Sultania, Manish K; Jung, Jung Hwan; Oh, Il-Kwon; Srivastava, Anchal
2015-09-09
The electromagnetic interference (EMI) shielding of reduced graphene oxide (MRG), B-doped MRG (B-MRG), N-doped MRG (N-MRG), and B-N co-doped MRG (B-N-MRG) have been studied in the Ku-band frequency range (12.8-18 GHz). We have developed a green, fast, and cost-effective microwave assisted route for synthesis of doped MRG. B-N-MRG shows high electrical conductivity in comparison to MRG, B-MRG and N-MRG, which results better electromagnetic interference (EMI) shielding ability. The co-doping of B and N significantly enhances the electrical conductivity of MRG from 21.4 to 124.4 Sm(-1) because N introduces electrons and B provides holes in the system and may form a nanojunction inside the material. Their temperature-dependent electrical conductivity follows 2D-variable range hopping (2D-VRH) and Efros-Shklovskii-VRH (ES-VRH) conduction model in a low temperature range (T<50 K). The spatial configuration of MRG after doping of B and N enhances the space charge polarization, natural resonance, dielectric polarization, and trapping of EM waves by internal reflection leading to a high EMI shielding of -42 dB (∼99.99% attenuation) compared to undoped MRG (-28 dB) at a critical thickness of 1.2 mm. Results suggest that the B-N-MRG has great potential as a candidate for a new type of EMI shielding material useful in aircraft, defense industries, communication systems, and stealth technology.
Cost efficient PMMA/NG nanocomposites for electromagnetic interference shielding applications
NASA Astrophysics Data System (ADS)
Yadav, Prachi; Rattan, Sunita; Tripathi, Ambuj; Kumar, Sandeep
2017-06-01
Cost-efficient polymethylmethacrylate/exfoliated nanographite (PMMA/NG) nanocomposites were prepared through the melt blending technique. The crystalline size of NG in nanocomposites was estimated using Scherrer’s formula and was found to be in the range of 42.4-50.6 nm. Scanning electron micrographs showed the homogeneous dispersion of NG in the PMMA matrix. The thermal degradation temperature (T d) of nanocomposites was found to rise monotonically with increase in the loading of NG. Differential scanning calorimetry measurement showed a significant improvement in glass transition temperature (T g) from 97.2 °C for neat PMMA to 106.4 °C for 4.0 wt% PMMA/NG nanocomposites. DC electrical conductivity measurement revealed that the prepared nanocomposites exhibited a low percolation threshold of 0.45 vol%. The s-parameters (S 11 and S 21) were measured through vector network analyser and were explored in the estimation of electromagnetic interference (EMI) shielding effectiveness (SE). The EMI SE of 19.2 dB (~ 99% attenuation of incoming microwave (MW) power) was attained in the 4.0 wt% PMMA/NG nanocomposite at 12.7 GHz MW frequency. Moreover, the observed broadband EMI SE spectra indicate that the prepared nanocomposites can be employed in lightweight and low-cost commercial EMI shielding applications.
NASA Astrophysics Data System (ADS)
Chaudhary, Anisha; Teotia, Satish; Kumar, Rajeev; Ramesha, K.; Dhakate, Sanjay R.; Kumari, Saroj
2018-04-01
To assess the challenge of affordable technology, present synthetic strategies can be extended to new low-cost synthesis and processing methods that have potential to tailor the properties of the materials. Here we report, a novel method for the synthesis of mesocarbon microbeads (MCMB) through a pre-processing involved pyrolysis technique. The resulting MCMB is compressed into a product and effects of heat treatment temperature on different properties of MCMB is studied. The use of MCMB for the electromagnetic interference (EMI) shielding is new and hence, the effect of heat treatment temperature on EMI shielding effectiveness is studied in X-band. It is observed that EMI shielding effectiveness increases to ‑39.6 dB on increasing the heat treatment temperature. The high conductivity of MCMB plate heat treated upto 2500 °C contributes to highly conducting networks. Additionally, to investigate the electrochemical performance of MCMB as an anode material for lithium ion batteries, 2500 °C heat treated MCMB powder is used to fabricate the electrode. The MCMB electrode exhibits high discharge capacity of 345 mAh g‑1 with a stable capacity for over 50 cycles and good rate capability. Thus, MCMB synthesized by this novel approach can be used for the development of high performance anode materials for Li-ion batteries.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2014-01-01
The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.
Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N
2015-07-28
In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.
Wiring design for the control of electromagnetic interference (EMI)
NASA Technical Reports Server (NTRS)
Kopasakis, George
1995-01-01
Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.
Wan, Caichao; Li, Jian
2017-04-01
Eco-friendly cellulose-derived carbon aerogels (CDCA) were employed as porous substrate to integrate with α-Fe 2 O 3 and polypyrrole (PPy) via pyrolysis and vapor-phase polymerization. The SEM and TEM observations present that the wrinkled PPy sheets and the α-Fe 2 O 3 nanoparticles were well dispersed in CDCA. The strong interactions (such as hydrogen bonding) between the substrate and the nanomaterials were demonstrated by the FTIR and XPS analysis. When utilized as electromagnetic interference (EMI) shielding materials, the α-Fe 2 O 3 /PPy/CDCA (FPCA) composite has the highest total shielding effectiveness (SE total ) of 39.4dB, about 2.0, 2.9, and 1.3 times that of the acid-treated CDCA (19.3dB), PPy (13.6dB), and α-Fe 2 O 3 /CDCA (29.3dB), respectively. Moreover, the shielding effectiveness due to absorption accounts for 78.2%-84.2% of SE total for FPCA, indicative of the absorption-dominant shielding mechanism contributing to alleviating secondary radiation. These features make the composite a useful alternative candidate for EMI shielding. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-01
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-11
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
International Symposium on Electromagnetic Compatibility, Wakefield, MA, August 20-22, 1985, Record
NASA Astrophysics Data System (ADS)
Various papers on electromagnetic compatibility are presented. The general topics addressed include: EMI transient/impulsive disturbances, electromagnetic shielding, antennas and propagation, measurement technology, anechoic chamber/open site measurements, communications systems, electrostatic discahrge, cables/transmission lines. Also considered are: elecromagnetic environments, antennas, electromagnetic pulse, nonlinear effect, computer/data transmission systems, EMI standards and requirements, enclosures/TEM cells, systems EMC, and test site measurements.
Multifunctional Stiff Carbon Foam Derived from Bread.
Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin
2016-07-06
The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.
Army Logistician. Volume 40, Issue 4, July-August 2008
2008-08-01
has industrial-grade connectors. It has no additional electromagnetic interference ( EMI ) shielding and no tests for EMI , no internal relay for...Transit Visibility During Operations Desert Shield and Desert Storm, thousands of containers had to be opened, inventoried, resealed, and reinserted...900-gallon “Camel” water trailers and 5-gallon water jugs for resupplying company and platoon locations. Field feeding. Each FSC will require an
Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang
2017-09-06
A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.
New Materials for EMI Shielding
NASA Technical Reports Server (NTRS)
Gaier, James R.
1999-01-01
Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.
Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.
2015-01-01
In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827
Lim, Guh-Hwan; Woo, Seongwon; Lee, Hoyoung; Moon, Kyoung-Seok; Sohn, Hiesang; Lee, Sang-Eui; Lim, Byungkwon
2017-11-22
The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe 2 O 4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe 2 O 4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.
Electroless shielding of plastic electronic enclosures
NASA Astrophysics Data System (ADS)
Thompson, D.
1985-12-01
The containment or exclusion of radio frequency interference (RFI) via metallized plastic enclosures and the electroless plating as a solution are examined. The electroless coating and process, shielding principles and test data, shielding design requirements, and shielding advantages and limitations are reviewed. It is found that electroless shielding provides high shielding effectiveness to plastic substrates. After application of a conductive metallic coating by electroless plating, various plastics have passed the ASTM adhesion test after thermal cycle and severe environmental testing. Electroless shielding provides a lightweight, totally metallized housing to EMI/RFI shielding. Various compositions of electroless deposits are found to optimize electroless shielding cost/benefit ratio.
Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu
2016-05-25
We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.
NASA Astrophysics Data System (ADS)
Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed
2017-02-01
Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.
NASA Astrophysics Data System (ADS)
Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.
2018-05-01
Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.
NASA Astrophysics Data System (ADS)
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-01
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-27
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
NASA Astrophysics Data System (ADS)
Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.
2015-09-01
We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.
An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration
Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-01-01
The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718
NASA Astrophysics Data System (ADS)
Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar
2018-05-01
This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.
Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites
NASA Astrophysics Data System (ADS)
Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.
2013-04-01
Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.
Filter line wiring designs in aircraft
NASA Astrophysics Data System (ADS)
Rowe, Richard M.
1990-10-01
The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.
Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling
2017-10-04
Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran, R.; Alagar, M.; Dinesh Kumar, S.
We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDFmore » matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.« less
Polyaniline/Fe3O4-RGO Nanocomposites for Microwave Absorption
NASA Astrophysics Data System (ADS)
Mathew, Jithin; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.; Sabarish Narayanan, B.
2018-02-01
Fe3O4 nanoparticles were synthesized by co-precipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2). Reduced graphene oxide (RGO) was prepared by reducing the graphene oxide, which was synthesized by Hummer’s method, using hydrazine hydrate. Three nanocomposites based on sodium dodecyl benzene sulphonate (SDBS)-doped polyaniline were synthesized through in situ polymerization in the presence of the fillers (i) Fe3O4, (ii) reduced graphene oxide (RGO) and (iii) Fe3O4-decorated RGO respectively. The synthesized PANI and the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. Their microstructures, electrical conductivities, and EMI shielding effectiveness were studied. The nanocomposite containing 10 % RGO showed the maximum electrical conductivity and the one with 10 % RGO and 10 % Fe3O4 showed the maximum EMI shielding effectiveness of 7.5 dB for a 1 mm thick sample.
Applications of thin carbon coatings and films in injection molding
NASA Astrophysics Data System (ADS)
Cabrera, Eusebio Duarte
In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (<10 wt. %) due to the dispersion difficulty and exponential increase in viscosity. In this research, the technical feasibility of a new approach to EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. For many years, in-mold coating (IMC) has been commercially applied to Sheet Molding Compound (SMC) compression molded parts, as an environmentally friendly approach to improve its surface quality and provide the required conductivity for electrostatic painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).
Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G
2003-04-01
We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same.
Power converter connection configuration
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2008-11-11
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Wu, Ying; Wang, Zhenyu; Liu, Xu; Shen, Xi; Zheng, Qingbin; Xue, Quan; Kim, Jang-Kyo
2017-03-15
Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10 -3 g/cm 3 and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm 3 /g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excellent electrical conductivities of composites arising from both the GFs with three-dimensionally interconnected conductive networks and the conductive polymer coating, as well as the left-handed composites with absolute permittivity and/or permeability larger than one give rise to significant microwave attenuation by absorption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2010 CFR
2010-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2012 CFR
2012-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2013 CFR
2013-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
Code of Federal Regulations, 2011 CFR
2011-07-01
... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...
NASA Astrophysics Data System (ADS)
Lu, Zhengang; Ma, Limin; Tan, Jiubin; Wang, Heyan; Ding, Xuemei
2017-06-01
A high-performance transparent electromagnetic interference (EMI) shielding material based on a graphene/metallic mesh/transparent dielectric (GMTD) hybrid structure is designed and characterized. It consists of stacked graphene and metallic mesh layers, with neighboring layers separated by a quartz-glass substrsate. The GMTD hybrid structure combines the microwave-reflecting characteristics of the metallic mesh and the microwave-absorbing characteristics of graphene to achieve simultaneously high visible transmittance, strong microwave shielding effectiveness (SE), and low microwave reflection. Experiments show that a double-graphene and double-metallic mesh GMTD hybrid structure with a mesh periodicity of 160 µm provides microwave SE exceeding 47.79 dB in the K u-band, and an SE exceeding 32.12 dB in the K a-band, with a maximum value of 37.78 dB at 26.5 GHz. SE by absorption exceeds 30.78 dB in the K a-band, with a maximum value of 34.55 dB at 26.5 GHz, while maintaining a normalized visible transmittance of ~85% at 700 nm. This remarkable performance favors the application of the proposed structure as a transparent microwave shield and absorber, and offers a new strategy for transparent EMI shielding.
Predicted and measured transmission and diffraction by a metallic mesh coating
NASA Astrophysics Data System (ADS)
Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew
2009-05-01
Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.
Panigrahi, Ritwik; Srivastava, Suneel K.
2015-01-01
In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59–23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported. PMID:25560384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roan, M.-L.; Chen, Y.-H.; Huang, C.-Y.
2008-08-28
In this study, a variety of concentrations of chelating agents were added to obtain the anchoring effect and chelating effect in the electroless plating bath. The mechanism of the Cu{sub x(x=1,2)}S growth and the electromagnetic interference shielding effectiveness (EMI SE) of the composite were studied. It was found that the vinyl acetate residued in PAN substrate would be purged due to the swelling effect by chelating agents solution. And then, the anchoring effect occurred due to the hydrogen bonding between the pits of PAN substrate and the chelating agent. Consequently, the copper sulfide layer deposited by the electroless plating reactionmore » with EDTA and TEA. The swelling degree (S{sub d}) was proposed and evaluated from the FT-IR spectra. The relationship between swelling degree of the PAN films and EDTA (C) is expressed as: S{sub d} = 0.13+0.90xe and (-15.15C). And TEA series is expressed as: S{sub d} = 0.07+1.00xe and (-15.15C). On the other hand, the FESEM micrograph showed that the average thickness of copper sulfide increased from 76 nm to 383 nm when the concentration of EDTA increased from 0.00M to 0.20M. Consequently, the EMI SE of the composites increased from 10{approx}12 dB to 25{approx}27 dB. The GIA-XRD analyze indicated that the deposited layer consisted of CuS and Cu{sub 2}S.« less
2010-01-01
An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498
Electromagnetic interference assessment of an ion drive electric propulsion system
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.
1979-01-01
The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.
NASA Astrophysics Data System (ADS)
Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang
2017-10-01
The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.
EMC design for actuators in the FAST reflector
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Wu, Ming-Chang; Yue, You-Ling; Gan, Heng-Qian; Hu, Hao; Huang, Shi-Jie
2018-04-01
An active reflector is one of the three main innovations incorporated in the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables. For each different tracking process of the telescope, more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction. This means that some of these actuators are inevitably located within the main beam of the receiver, and Electromagnetic Interference (EMI) from the actuators must be mitigated to ensure the scientific output of the telescope. Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements, the shielding efficiency (SE) requirement for each actuator is set to be 80 dB in the frequency range from 70 MHz to 3 GHz. Therefore, Electromagnetic Compatibility (EMC) was taken into account in the actuator design by measures such as power line filters, optical fibers, shielding enclosures and other structural measures. In 2015, all the actuators had been installed at the FAST site. Till now, no apparent EMI from the actuators has been detected by the receiver, which demonstrates the effectiveness of these EMC measures.
Wan, Caichao; Jiao, Yue; Qiang, Tiangang; Li, Jian
2017-01-20
We describe a rapid and facile chemical precipitation method to grow goethite (α-FeOOH) nanoneedles and nanoflowers on the carbon aerogels which was obtained from the pyrolysis of cellulose aerogels. When evaluated as electromagnetic interference (EMI) shielding materials, the α-FeOOH/cellulose-derived carbon aerogels composite displays the highest SE total value of 34.0dB at the Fe 3+ /Fe 2+ concentration of 0.01M, which is about 4.8 times higher than that of the individual α-FeOOH (5.9dB). When the higher or lower Fe 3+ /Fe 2+ concentrations were used, the EMI shielding performance deterioration occurred. The integration of α-FeOOH with the carbon aerogels transforms the reflection-dominant mechanism for α-FeOOH into the adsorption-dominant mechanism for the composite. The adsorption-dominant mechanism undoubtedly makes contribution to alleviating secondary radiation, which is regarded as more attractive alternative for developing electromagnetic radiation protection products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys
NASA Astrophysics Data System (ADS)
Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning
2017-06-01
The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.
Shielded multi-stage EMI noise filter
Kisner, Roger Allen; Fugate, David Lee
2016-11-08
Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.
Smaller but Fully Functional Backshell for Cable Connector
NASA Technical Reports Server (NTRS)
Stephenson, Gregory
2009-01-01
An improved design for the backshell of a connector for a shielded, multiplewire cable reduces the size of the backshell, relative to traditional designs of backshells of otherwise identical cable connectors. Notwithstanding the reduction in size, the design provides all the functionality typically demanded of such a backshell, including (1) termination of the cable shield (that is, grounding of the shield to the backshell), (2) strain relief for the cable, and (3) protection against electromagnetic interference (EMI).
1978-03-17
the trailers as Electro-magnetic Interference ( EMI ) tight as possible; such items included removal of all unnecessary wiring penetrations, conductive...20 12. CABLE TRAYS, GROUT-FILLED ............ .................. 21 13. THE MESA TRAILER PARK CONSIDERATIONS...enclosed cable shields. 12. The mesa trailer park received some attention regarding the GSP, although not as intense as the tunnel environment. Specifically
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wang, Wei; Yu, Dan
2017-12-01
In this work, a three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with a layer by layer structure was designed and prepared to obtain excellent microwave attenuation performance. Firstly, PANI/PI fabric was prepared via in-situ deposition method. Then, the NiFe2O4 nanoparticles functionalized by oleic acid were uniformly dispersed in epoxy resin and coated on the top and bottom of PANI/PI fabric with 0.041 mm total thickness. The investigation of chemical structure and surface morphologies indicated the composite structure of f-NiFe2O4/PANI/PI fabric. Various parameters like magnetic property, reflection loss and attenuation constant were used to evaluate its microwave attenuation performance. The results demonstrated that the 30f-NiFe2O4/PANI/PI fabric had a highest attenuation effectiveness with the minimum reflection loss value of -42.5 dB (>90% attenuation) at 12.5 GHz and the effective absorption bandwidth was 3.4 GHz. The study of attenuation mechanism indicated that the dielectric loss from PANI, the magnetic loss caused by f-NiFe2O4 and the layer by layer structure effectively improved microwave attenuation performance of composite fabric. Furthermore, the favorable flexibility and dimensional stability of this resultant fabric would allow the composite fabric for a long time service under pressure or foldable conditions. In sum, the study clearly indicated that three-phase heterostructures f-NiFe2O4/PANI/PI fabric was a good candidate as electromagnetic shielding materials in many fields.
Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns
NASA Technical Reports Server (NTRS)
Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.
Reliability enhancement of common module systems
NASA Astrophysics Data System (ADS)
Schellenberger, Gisbert; Ruehlich, Ingo; Korf, Herbert; Petrie, Juergen J.; Muenter, Rolf
2004-08-01
Several thousands of 1st Gen IR Systems operated by Integral Stirling Cooler HD1033 are still in service worldwide. Replacing the HD 1033 Stirling by a Linear Drive Cooler will result in a significant reliability enhancement of these IR system of about a factor of three. These attempts had been unsuccessful in the past due to excessive EMI noise induced by the linear cooler compressor. So a main goal for such a development is the elimination of various EMI distortions in the IR system by EMI filtering and shielding. Additionally, the synchronization of the cooler power to the predominant scanning frequency of the IR system significantly improves the image quality. Technical details of the solution, MTTF data and performance data are described in detail.
NASA Astrophysics Data System (ADS)
Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao
2018-01-01
Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.
2017-12-01
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
Arteche, F.; Rivetta, C.; Iglesias, M.; ...
2017-12-05
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation effects in power supply distribution systems for high-energy physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arteche, F.; Rivetta, C.; Iglesias, M.
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Miniature, shielded electrical connector with strain relief
NASA Technical Reports Server (NTRS)
Diep, Chuong H. (Inventor)
2006-01-01
An electrical connector assembly includes a wire bundle having at least one wire with a metal shield surrounding at least a portion of the wire. The shield has an end portion and provides electromagnetic interference protection to the wire. A backshell includes a body and a cover secured to the body together defining an internal cavity with the wire at least partially arranged within the cavity. The backshell provides EMI protection for the portion of the wire bundle not covered by the shield. The backshell includes a hole in a wall of either the body or the cover with the end portion of the shield extending through the hole. The clamp is secured about the body and the cover with the end portion of the shield arranged between the clamp and the backshell grounding the shield to the backshell. The clamp forces the backshell into engagement with the wire bundle to provide strain relief for the wire bundle.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Sai; Shen, Yong; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting
2016-11-01
The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV-vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1-5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27-31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz-3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.
Wan, Caichao; Li, Jian
2016-10-05
Hybrid aerogels consisting of graphene oxide (GO) and cellulose were prepared via a solution mixing-regeneration-freeze drying process. The presence of GO affected the micromorphology of the hybrid aerogels, and a self-assembly behavior of cellulose was observed after the incorporation of GO. Moreover, there is no remarkable modification in the crystallinity index and thermal stability after the insertion of GO. After the reduction of GO in the hybrid aerogels by l-ascorbic acid and the subsequent pyrolysis of the aerogels, the resultant displays some interesting characteristics, including good electromagnetic interference (EMI) shielding capacity (SEtotal=58.4dB), high electrical conductivity (19.1Sm(-1)), hydrophobicity, and fire resistance, which provide an opportunity for some advanced applications such as EMI protection, electrochemical devices, water-proofing agents, and fire retardants. Moreover, this work possibly helps to facilitate the development of both cellulose and GO-based materials and expand their application scope. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shim, Youngseon; Kim, Hyung J; Jung, Younjoon
2012-01-01
Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.
2017-09-01
Ulrich, Karl T., and Steven D. Eppinger. 2012. Product Design and Development, 5th ed. New York: McGraw-Hill Irwin. Warner, Jamie H., Franziska Schaffel...of tasks that an organization or business generally follows to transform a thought or idea of a product to a manufactured good. In the early stages...established product design and development processes. Karl Ulrich and Steven Eppinger (2012) state that one of the initial steps in the opportunity
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2015-01-01
Test specimen configuration was provided by Parker Chomerics. The EMI gasket used in this project was Cho-Seal 6503E. Black oxide alloy steel socket head bolts were used to hold the plates together. Non-conductive spacers were used to control the amount of compression on the gaskets. The following test fixture specifications were provided by Parker Chomerics. The CHO-TP09 test plate sets selected for this project consist of two aluminum plates manufactured to the specifications detailed in CHO-TP09. The first plate, referred to as the test frame, is illustrated in Figure 1. The test frame is designed with a cutout in the center and two alternating bolt patterns. One pattern is used to bolt the test frame to the corresponding test cover plate (Figure 2), forming a test plate set. The second pattern accepts the hardware used to mount the fully assembled test plate set to the main adapter plate (Figure 3).
Multifunctional Nanocomposites for Improved Sustainability and Protection of Facilities
2015-05-01
ballistic panels. In addition, the team’s work tested various options for adding self - healing , CNT reinforcement, EMI shielding, and self ...and functional- ization methods; introducing a self - healing agent directly to the matrix or contained in embedded hollow glass fibers; using layers...using CNT sheet reinforcement ...................... 23 5 Ballistic Testing of Self - Healing GFRP Panel
Earth Observations taken by Expedition 26 crewmember
2011-01-11
ISS026-E-017074 (11 Jan. 2011) --- Emi Koussi volcano in Chad is featured in this image photographed by an Expedition 26 crew member on the International Space Station. The large Emi Koussi volcano is located in northern Chad at the southeastern end of the Tibesti Range. The dark volcanic rocks of the volcano provide a sharp contrast to the underlying tan and light brown sandstones exposed to the west, south, and east. Emi Koussi is a shield volcano formed from relatively low viscosity lavas—flowing more like motor oil as opposed to toothpaste—and explosively-erupted ignimbrites that produce a characteristic low and broad structure that covers a wide area (approximately 60 x 80 kilometers). This photograph highlights the entire volcanic structure; at 3,415 meters above sea level, Emi Koussi is the highest summit of the Sahara region. The summit area contains three calderas formed by powerful eruptions. Two older, and overlapping, calderas form a depression approximately 12 x 15 kilometers in area bounded by a distinct rim (center). According to scientists, the youngest and smallest caldera, Era Kohor, formed as a result of eruptive activity that occurred within the past 2 million years. Young volcanic features including lava flows and scoria cones are also thought to be less than 2 million years old. There are no historical records of eruptive activity at Emi Koussi, but there is an active thermal area on the southern flank of the volcano.
NASA Technical Reports Server (NTRS)
Greening, Gage J.
2016-01-01
The Project Management and Engineering Branch (SF4) supports the Human Health and Performance Directorate (HH&P) and is responsible for developing and supporting human systems hardware for the International Space Station (ISS). When a principal investigator's (PI) medical research project on the ISS is accepted, SF4 develops the necessary hardware and software to transport to the ISS. The two projects I primarily worked on were the centrifuge and ultrasound projects. Centrifuge: One concern with spacecraft such as the ISS is electromagnetic interference (EMI) from onboard equipment, typically from radio waves (frequencies of 3 kHz to 300 GHz), which can negatively affect nearby circuitry. Standard commercial centrifuges produce EMI above safety limits, so my task was to help reduce EMI production from this equipment. Two centrifuges were tested: one unmodified as a control and one modified. To reduce EMI below safety limits, one centrifuge was modified to become a Faraday shield, in which significant electrical contact was made between all regions of the centrifuge housing. This included removing non-conductive paint, applying conductive fabric to the lid and foam sealer, adding a 10,000 µF decoupling capacitor across the power supply, and adding copper adhesive-mount gaskets to the housing interior. EMI testing of both centrifuges was performed in the EMI/EMC Control Test and Measurement Facility. EMI for both centrifuges was below safety limits for frequencies between 10 MHz and 15 GHz (pass); however, between 14 kHz and 10 MHz, EMI for the unmodified centrifuge exceeded safety limits (fail) as expected. Alternatively, for the modified centrifuge with the Faraday shield, EMI was below the safely limit of 55 dBµV/m for electromagnetic frequencies between 14 kHz and 10 MHz. This result indicates our modifications were successful. The successful EMI test allowed us to communicate with the vendor what modifications they needed to make to their commercial unit to meet our specifications and to understand what needs to be done in lab to the new centrifuge. Our modifications will provide a standard for readying centrifuges for future missions. Once the new modified centrifuge arrives by the vendor, it will need to undergo EMI testing again for validation. The centrifuge is also in the process of compatibility testing with a custom stowage drawer, which is an ongoing project in SF4. Both of these items will be payloads on future missions to the ISS for various research purposes. Ultrasound: ISS currently has an onboard ultrasound (Ultrasound 2 system) for research and medical purposes. Every piece of medical flight hardware has an equivalent ground-unit so instrumentation can be routinely evaluated and transported to the ISS if necessary. The ground-unit ultrasound equipment must be evaluated every six months using a task performance sheet (TPS). A TPS is a document, written by the appropriate scientists and engineers, which describes how to run equipment and is written in such a way that astronauts with unspecialized training can follow the tasks. I was responsible for performing six TPSs on a combination of three ultrasounds and two video power converters (VPCs). Performing a TPS involves checking out and computationally documenting each piece of equipment removed from storage locations, setting up hardware and software, performing tasks to verify functionality, returning equipment, and logging items back into the computerized system. My work revealed all ground-unit ultrasounds were functioning properly. Because of proper function, a discrepancy report (DR) did not have to be opened. The TPS was then passed along to the Quality Engineering (QE) for review and ultimately given to Quality Assurance (QA). Other projects: In addition to my main projects, I participated in other tasks including troubleshooting an EEG headband, volunteering for an ultrasound training research study, and conformal coating printed circuit boards. My internship at SF4 has helped me understand how space systems hardware development for the ISS fits into NASA's mission and vision.
3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance
NASA Astrophysics Data System (ADS)
Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi
2018-06-01
To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.
NASA Astrophysics Data System (ADS)
Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei
2010-12-01
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
NASA Technical Reports Server (NTRS)
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda
2004-01-01
The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.
Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda
1996-01-01
The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.
Nanocomposites in Multifuntional Structures for Spacecraft Platforms
NASA Astrophysics Data System (ADS)
Marcos, J.; Mendizabal, M.; Elizetxea, C.; Florez, S.; Atxaga, G.; Del Olmo, E.
2012-07-01
The integration of functionalities as electrical, thermal, power or radiation shielding inside carrier electronic boxes, solar panels or platform structures allows reducing weight, volume, and harness for spacecraft. The multifunctional structures represent an advanced design approach for space components and subsystems. The development of such multifunctional structures aims the re-engineering traditional metallic structures by composites in space, which request to provide specific solutions for thermal conductivity, EMI-EMC, radiation shielding and integration. The use of nanomaterials as CNF and nano-adds to reinforce composite structures allows obtaining local solutions for improving electrical conductivity, thermal conductivity and radiation shielding. The paper summarises the results obtained in of three investigations conducted by Tecnalia based on carbon nanofillers for improving electro-thermal characteristics of spacecraft platform, electronic substrates and electronics boxes respectively.
Soghomonyan, Diana; Trchounian, Armen
2013-01-01
The effects of low-intensity electromagnetic irradiation (EMI) with the frequencies of 51.8 and 53 GHz on Lactobacillus acidophilus growth and survival were revealed. These effects were compared with antibacterial effects of antibiotic ceftazidime. Decrease in bacterial growth rate by EMI was comparable with the inhibitory effect of ceftazidime (minimal inhibitory concentration-16 μM) and no enhanced action was observed with combined effects of EMI and the antibiotic. However, EMI-enhanced antibiotic inhibitory effect on bacterial survival. The kinetics of the bacterial suspension oxidation-reduction potential up to 24 h of the growth was changed by EMI and ceftazidime. The changes were more strongly expressed by combined effects of EMI and antibiotic especially up to 12 h. Moreover, EMI did not change overall energy (glucose)-dependent H(+) efflux across the membrane but it increased N,N'-dicyclohexylcarbodiimide (DCCD)-inhibited H(+) efflux. In contrast, this EMI in combination with ceftazidime decreased DCCD-sensitive H(+) efflux. Low-intensity EMI had inhibitory effect on L. acidophilus bacterial growth and survival. The effect on bacterial survival was more significant in the combination with ceftazidime. The H(+)-translocating F 0 F 1-ATPase, for which DCCD is specific inhibitor, might be a target for EMI and ceftazidime. The revealed bactericide effects on L. acidophilus can be applied in biotechnology, food producing and safety technology.
Earth Observations taken by Expedition 30 crewmember
2011-11-26
ISS030-E-005456 (26 Nov. 2011) --- Emi Koussi Volcano and Aorounga Impact Crater, Chad are featured in this image photographed by an Expedition 30 crew member on the International Space Station. This striking photograph features two examples of circular landscape features?labeled as craters?that were produced by very different geological processes. At left, the broad grey-green shield volcano of Emi Koussi is visible. The volcano is marked by three overlapping calderas formed by eruptions; these form a large oblong depression at the 3,415 meter ASL summit of the volcano. A smaller crater sits within the larger caldera depression. While volcanic activity has not been observed, nor is mentioned in the historical record, an active thermal area is located on the southern flank. The circular Aorounga Impact Crater is located approximately 110 kilometers to the southeast of Emi Koussi and has its origin in forces from above rather than eruptions from below. According to scientists, the Aorounga structure is thought to record a meteor impact approximately 345-370 million years ago. The circular feature visible at upper right may be only one of three impact craters formed by the same event ? the other two are buried by sand deposits. The linear features (lower right) that arc around Emi Koussi and overprint Aorounga and the surrounding bedrock are known as yardangs; these are rock ridges formed by wind erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai
2015-10-15
A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less
Loo Gee, Brendan; Griffiths, Kathleen M; Gulliver, Amelia
2016-01-01
Mobile technologies may be suitable for delivering Ecological Momentary Interventions (EMI) to treat anxiety in real-time. This review aims to synthesize evidence on the effectiveness of EMI for treating anxiety conditions. Four databases and the reference lists of previous studies were searched. A total of 1949 abstracts were double screened for inclusion. Sufficient studies were available to undertake a quantitative meta-analysis on EMIs on generalized anxiety symptoms. The 15 randomized trials and randomized controlled trials examined anxiety (n = 7), stress (n = 3), anxiety and stress (n = 2), panic disorder (n = 2), and social phobia (n = 1). Eight EMIs comprised self-monitoring integrated with therapy modules, seven comprised multimedia content, and three comprised self-monitoring only. The quality of studies presented high risk of biases. Meta-analysis (n = 7) demonstrated that EMIs reduced generalized anxiety compared to control and/or comparison groups (Effect Size (ES) = 0.32, 95% CI, 0.12-0.53). Most EMIs targeting stress were reported effective relative to control as were the two EMIs targeting panic disorders. The EMI targeting social phobia was not effective. EMIs have potential in treating both anxiety and stress. However, few high-quality trials have been conducted for specific anxiety disorders. Further trials are needed to assess the value of EMI technologies for anxiety in enhancing existing treatments. This study found a small significant effect of EMI studies on reducing generalized anxiety. Studies on stress demonstrated EMI was effective compared to control, with the small number of studies on panic and social phobia demonstrating mixed results. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Inertial Upper Stage Thermal Test Program
1989-04-12
EPDM , a tnermal insuiative rubber material covering the SRM ignitor housing, were made in both convective and radiative heater environments under...N2 to ensure an inert environment for these tests. 11 EPDM RUBBER FIBERGLAS PHENOLIC Fig. 2. IUS SRM-2 ignitor. 12 RADIA TOR EMI SHIELD-,," MOVABLE...testing. EPDM Grafoil seal, Viton Thermal-protection materials , IBSTRACT (Continue on reve4 if necessary and identify by block number) An extensive ther
Evaluation of Fuzzy Fiber Sensors for Structural Health Monitoring
2010-11-01
detect damage. Should damage occur at other unanticipated regions, it may go undetected. Methods have been devised to use the sensors in a network...graphene tubes around the core of an SWCNT lead to multi-walled carbon nanotubes ( MWCNTs ). These CNTs have diameters in a range between one to tens...performance carbon-carbon composites, EMI shielding, lightning strike, energy storage, thermal management, bio-implants, and bone regeneration (pend- ing
Cabling design for phased arrays
NASA Technical Reports Server (NTRS)
Kruger, I. D.; Turkiewicz, L.
1972-01-01
The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.
Multifunctional Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu
With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.
Tracking Next-Generation Automatic Identification Technology (AIT) into 2035
2010-04-01
Non-proliferation and Treaty inspections Shielding / EMI issues Security/Integrity/Encryption Taiwan Shipment Fact Sheet http...followed the technical data, but had no idea that they had a live nuclear warhead. While the nuclear ALCM was loaded on the munitions trailer , the...three-man team continued to assemble the other seven ALCMs. As the end of shift neared, all eight ALCMs were loaded on the munitions trailers and the
XM-1 Tank EMP Susceptibility and Survivability Test Program and Plan
1980-11-01
electric field vector. The Vertical EMP Electromagnetic interference (EMI) shielding Simulator ( VEMPS ) produces a non-threat- is used on cable...polarized fields in the VEMPS to determine 2.3 Oveiall Program Activity Flow 5 , bulk current waveforms on interior cabling Figure 1 (p. 8) expresses...measured. The vertically polarized VEMPS the ground, it is not readily obvious how the will be used to measure harness sheath cur- currents on the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuo; Maillet, Yoann; Wang, Fei
2010-01-01
High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.
Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding
NASA Astrophysics Data System (ADS)
Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing
2018-04-01
A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2015-08-03
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
Scott, Christy K; Dennis, Michael L; Gustafson, David H
2017-08-10
Alcohol abuse, other substance use disorders, and risk behaviors associated with the human immunodeficiency virus (HIV) represent three of the top 10 modifiable causes of mortality in the US. Despite evidence that continuing care is effective in sustaining recovery from substance use disorders and associated behaviors, patients rarely receive it. Smartphone applications (apps) have been effective in delivering continuing care to patients almost anywhere and anytime. This study tests the effectiveness of two components of such apps: ongoing self-monitoring through Ecological Momentary Assessments (EMAs) and immediate recovery support through Ecological Momentary Interventions (EMIs). The target population, adults enrolled in substance use disorder treatment (n = 400), are being recruited from treatment centers in Chicago and randomly assigned to one of four conditions upon discharge in a 2 × 2 factorial design. Participants receive (1) EMAs only, (2) EMIs only, (3) combined EMAs + EMIs, or (4) a control condition without EMA or EMI for 6 months. People in the experimental conditions receive smartphones with the apps (EMA and/or EMI) specific to their condition. Phones alert participants in the EMA and EMA + EMI conditions at five random times per day and present participants with questions about people, places, activities, and feelings that they experienced in the past 30 min and whether these factors make them want to use substances, support their recovery, or have no impact. Those in the EMI and EMA + EMI conditions have continual access to a suite of support services. In the EMA + EMI condition, participants are prompted to use the EMI(s) when responses to the EMA(s) indicate risk. All groups have access to recovery support as usual. The primary outcome is days of abstinence from alcohol and other drugs. Secondary outcomes are number of HIV risk behaviors and whether abstinence mediates the effects of EMA, EMI, or EMA + EMI on HIV risk behaviors. This project will enable the field to learn more about the effects of EMAs and EMIs on substance use disorders and HIV risk behaviors, an understanding that could potentially make treatment and recovery more effective and more widely accessible. ClinicalTrials.gov, ID: NCT02132481 . Registered on 5 May 2014.
Torgomyan, H
2012-12-01
The effects of low intensity (flux capacity 0.06 mW/cm2) coherent electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies and their combined effects with antibiotics--ceftriaxone or kanamycin (0.4 or 15 microM, correspondingly) on E. coli K12 growth and survival have been reported previously. To further study the effects of EMI and antibiotics and mechanisms, decrease in overall energy (glucose)-dependent H+ and K+ fluxes across the cell membrane was investigated in E. coli. The depression of H+ and K+ fluxes rate was maximally achieved with the 73 GHz frequency. The EMI strengthened the effect of N,N'-dicyclohexycarbodiimide (DCCD, an inhibitor of the F0F1-ATPase). The 73 GHz EMI had more influence on H+ efflux inhibition, whereas 70.6 GHz on K+ influx. Also, EMI strengthened the depressive effects of ceftriaxone and kanamycin on the overall and DCCD-inhibited H+ and K+ fluxes. The 73 GHz EMI strengthened the effect of ceftriaxone on both ions fluxes. Kanamycin depressed H+ efflux more as compared to ceftriaxone, which was also strengthened with EMI. The results of E. coli H+ and K+ transport systems activities depression by irradiation and the irradiation effect on DCCD and antibiotics action indicated the EMI and antibiotics causing primary changes in the bacterial membrane.
Study on the electrical behavior of MWCNTs in GF/Epoxy composites.
Yan, Zhao; Lu, Yuan; Yuexin, Duan
2010-08-01
The multi-wall nanotubes (MWCNTs) were divisionalized equably by the fabric of glass in composites. Then the electrical properties such as permittivity, conductance and electromagnetic interference (EMI) shielding effectiveness (SE) of MWCNTs in GF/EP composite were studied. The effect of the content and dispersion of MWCNTs were researched in this work. Firstly the permittivity of MWCNTs/GF/EP composites were studied respectively by keeping layers of glass fabric and increasing content of MWCNTs or keeping content of MWCNTs and changing layers of glass fabric in electromagnetic wave band (5.85-18 GHz). Then the conductance of MWCNTs/GF/EP composites with different MWCNTs contents was tested. Furthermore, the EMI SE of composites with different MWCNTs contents in electromagnetic wave band (5.85-18 GHz) were studied. In addition, the morphologies of MWCNTs/GF/EP composites with the different MWCNTs weight percent were observed. The results show that the real part of permittivity of composites can be improved highest up to 75 and the imaginary part increase maximum up to 80. However there is no disciplinarian about effect of layers of glass fabric on dielectric property. The MWCNTs/GF/EP composite can be changed from the insulator to the semiconductor along with increasing the weight percent of MWCNTs. In electromagnetic wave band 5.85-18 GHz, the values of SE are increasing with increasing content of the MWCNTs.
Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M
2017-04-19
This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8.2-12.4 GHz. Dielectric properties were improved considerably by the substitution of Ce 3+ ions in PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Impedance spectroscopy was used to study the effect of grain and grain boundaries on the electrical properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Cole-Cole plots showed the formation of single semi-circles for all samples in the measured frequency range. This showed that the composite material was composed of good conducting grains and poorly conducting grain boundaries.
In The Dark: Military Planning for a Catastrophic Critical Infrastructure Event
2011-05-01
source), and can be designed very easily. A trailer can carry a larger sized generator and multiple sites could be impacted by a coordinated attack...limited ingress and egress options. This scenario does not address EMP/ EMI , but for starters, this should be enough of a challenge with all normal...election of President Obama, warning that Russia would not tolerate the Bush Administration’s NATO missile shield , and that Russia would take steps to
NASA Astrophysics Data System (ADS)
Brown, C. G.; Ayers, J.; Felker, B.; Ferguson, W.; Holder, J. P.; Nagel, S. R.; Piston, K. W.; Simanovskaia, N.; Throop, A. L.; Chung, M.; Hilsabeck, T.
2012-10-01
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.
Gabrielyan, Lilit; Sargsyan, Harutyun; Trchounian, Armen
2016-09-01
The present work was focused on the effects of low-intensity (the flux capacity was of 0.06mWcm(-2)) electromagnetic irradiation (EMI) of extremely high frequencies or millimeter waves on the growth and hydrogen (H2) photoproduction by purple non-sulfur bacteria Rhodobacter sphaeroides MDC6521 (from Armenian mineral springs). After exposure of R. sphaeroides, grown under anaerobic conditions upon illumination, to EMI (51.8GHz and 53.0GHz) for 15min an increase of specific growth rate by ~1.2-fold, in comparison with control (non-irradiated cells), was obtained. However, the effect of EMI depends on the duration of irradiation: the exposure elongation up to 60min caused the delay of the growth lag phase and the decrease specific growth rate by ~1.3-fold, indicating the bactericidal effect of EMI. H2 yield of the culture, irradiated by EMI for 15min, determined during 72h growth, was ~1.2-fold higher than H2 yield of control cells, whereas H2 production by cultures, irradiated by EMI for 60min was not observed during 72h growth. This difference in the effects of extremely high frequency EMI indicates a direct effect of radiation on the membrane transfer and the enzymes of these bacteria. Moreover, EMI increased DCCD-inhibited H(+) fluxes across the bacterial membrane and DCCD-sensitive ATPase activity of membrane vesicles, indicating that the proton FoF1-ATPase is presumably a basic target for extremely high frequency EMI related to H2 production by cultures. Copyright © 2016 Elsevier B.V. All rights reserved.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
Effect of External Vibration on PZT Impedance Signature.
Yang, Yaowen; Miao, Aiwei
2008-11-01
Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.
Standard design for National Ignition Facility x-ray streak and framing cameras.
Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S
2010-10-01
The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torgomyan, Heghine; Trchounian, Armen, E-mail: Trchounian@ysu.am
2011-10-14
Highlights: {yields} Low intensity 70.6 and 73 GHz electromagnetic irradiation (EMI) strongly suppressed Escherichia coli growth at 73 GHz and pH 7.3. {yields} Reducer DL-dithiothreitol had bactericidal effect and disturbed the SH-groups number. {yields} EMI enhanced E. coli sensitivity toward dithiothreitol. {yields} EMI decreased the SH-groups number of membrane disturbed by ATP and N,N'-dicyclohexycarbodiimide. {yields} The changed membrane oxidation-reduction state could be the primary mechanisms in EMI effects. -- Abstract: Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm{sup -2}) had bactericidal effects on Escherichia coli. This EMI (1 h) exposure suppressed themore » growth of E. coli K-12({lambda}). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.« less
A statistical approach to EMI - Theory and experiment
NASA Astrophysics Data System (ADS)
Weiner, Donald; Capraro, Gerard
A probabilistic approach to electromagnetic interference (EMI) is presented. The approach is illustrated by analyzing an experimental circuit in which EMI occurs. Both random and weakly nonlinear effects are accounted for in the analysis.
Cruz, Heidy; Son, Younggon
2018-02-01
Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.
Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D
2001-01-01
A comparative analysis was made of the effect of two kinds of EMI MMD-radiation: EMI MMD-waves, generated by a vehicle "Jav-1 M" (42.2 and 53.5 HHz), and EMI MMD-waves exerting influence with frequencies of molecular spectrum of radiation and nitric oxide absorption (150.176-150.644 HHz), obtained with a specially created generator, with respect to their influence on the functional ability of platelets of unstable angina pectoris patients. It was shown that in vitro EMI MMD-fluctuations with frequencies of molecular spectrum of radiation and nitric oxide absorption exert a stronger inhibiting influence on the functional activity of platelets of unstable angina pectoris patients. Features of the action of various kinds of EMI MMD-effect on the activative-high-speed characteristics of platelet aggregation are shown.
Technological hurdles to the application of intercalated graphite fibers
NASA Technical Reports Server (NTRS)
Gaier, James R.
1988-01-01
Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.
Torgomyan, Heghine; Hovnanyan, Karlen; Trchounian, Armen
2013-04-01
Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris-phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation-reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ayers, M J; Felker, B
2012-04-20
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less
The History of Electromagnetic Induction Techniques in Soil Survey
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, Jim
2014-05-01
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.
Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; de Araújo, Marcos César Pimenta; de Moraes, Luis Gustavo Belo; Risso, Patrícia de Andrade
2016-03-01
Assess the electromagnetic interference (EMI) of endodontic equipment with cardiovascular implantable electronic devices (CIEDs) and related factors. The laser device, electronic apex locators (EAL), optical microscope, endodontic rotary motors, gutta-percha heat carrier (GH), gutta-percha gun and ultrasonic device were tested next to CIEDs (Medtronic and Biotronik) with varied sensitivity settings and distances. CIEDs were immersed in a saline solution to simulate the electrical resistence of the human body. The endodontic equipment was tested in both horizontal and vertical positions in relation to the components of the CIED. The tests were performed on a dental chair in order to assess the cumulative effect of electromagnetic fields. It was found no EMI with the Biotronik pacemaker. EALs caused EMI with Medtronic PM at a 2 cm distance, with the NSK(®) EAL also affecting the Medtronic defibrillator. GH caused EMI at 2 cm and 5 cm from the Medtronic defibrillator. EMI occurred when devices were horizontally positioned to the CIED. In the majority of the cases, EMI occurred when the pacemaker was set to maximum sensitivity. There was cumulative effect of electromagnetic fields between GH and dental chair. EALs and GH caused EMI which ranged according to type and sensitivity setting of the CIEDs and the distance. However, no endodontic equipment caused permanent damage to the CIED. The use of GH caused a cumulative effect of electromagnetic fields. It suggests that during the treatment of patients with CIEDs, only the necessary equipments should be kept turned on. Patients with CIEDs may be subject to EMI from electronic equipment used in dental offices, as they remain turned on throughout the treatment. This is the first article assessing the cumulative effect of electromagnetic fields. Copyright © 2016. Published by Elsevier Ltd.
A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, James
2017-04-01
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-09-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-12-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Compact fluid cooled power converter supporting multiple circuit boards
Radosevich, Lawrence D.; Meyer, Andreas A.; Beihoff, Bruce C.; Kannenberg, Daniel G.
2005-03-08
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Adjusting Permittivity by Blending Varying Ratios of SWNTs
NASA Technical Reports Server (NTRS)
Tour, James M.; Stephenson, Jason J.; Higginbotham, Amanda
2012-01-01
A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, R.; Srivastava, S.K., E-mail: sunit@chem.iitkgp.ernet.in
Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused onmore » synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.« less
Report of the EMI Testing of the Johnson Noise Thermometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton Jr., Charles L.; Roberts, Michael
This report summarizes the Electromagnetic Interference (EMI) testing of the Johnson Noise Thermometry System developed at ORNL. The EMI performance is very important for Johnson Noise Thermometry because it requires accurate measurement of a very small noise signal that is amplified 10,000 times. Any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Testing is therefore very important in determining the effects of these external noise sources. Results from testing in several environments with various sources of EMI are presented here.
NASA Technical Reports Server (NTRS)
Barber, Peter W.; Demerdash, Nabeel A. O.; Wang, R.; Hurysz, B.; Luo, Z.
1991-01-01
The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards.
Spectrum Management and Electromagnetic Environmental Effects (E3) Business Process
2010-05-06
HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE ( HERO ) SURVEY. XM11: IS THERE A CURRENT ELECTROMAGNETIC INTERFERENCE (EMI) SITE SURVEY. SM & EMI Navy...PERSONNEL (HERP) / FUEL (HERF) SURVEY. XM10: IS THERE A CURRENT HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE ( HERO ) SURVEY. XM11...OF ALL KNOWN ELECTROMAGNETIC INTERFERENCE (EMI) FIXES INSTALLED ONE YEAR AFTER SURVEY COMPLETION. M05: OF ALL RADIATION HAZARDS
Electromagnetic interference in cardiac rhythm management devices.
Sweesy, Mark W; Holland, James L; Smith, Kerry W
2004-01-01
Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.
Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing
2018-06-01
With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.
NASA Astrophysics Data System (ADS)
Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
Guag, Joshua; Addissie, Bisrat; Witters, Donald
2017-03-20
There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED EMI susceptibilities over a broader range of security systems.
Conducting nanotubes or nanostructures based composites, method of making them and applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)
2013-01-01
An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.
Dielectric and electrical study of PPy doped PVA-PVP films
NASA Astrophysics Data System (ADS)
Jha, Sushma; Tripathi, Deepti
2018-05-01
Dielectric parameters of free standing films of pure PVA (PolyvinylAlcohol) and PVA with varying concentrations of PVP(Polyvinylpyrrolidone) and Polypyrrole were prepared and studied in low frequency range (100Hz - 2MHz). The results show that dielectric constant, loss tangent and conductivity increase sharply on increasing the concentration of PVP above 50wt% in polymer matrix. PVA-PVP film with low concentration of PPy showed improvement in the values of complex permittivity, loss tangent and ac conductivity within the experimental frequency range. This eco - friendly polymeric material will be studied for its probable application for RFI/EMI shielding, biosensors, capacitors & insulation purposes.
Electrical power converter method and system employing multiple output converters
Beihoff, Bruce C [Wauwatosa, WI; Radosevich, Lawrence D [Muskego, WI; Meyer, Andreas A [Richmond Heights, OH; Gollhardt, Neil [Fox Point, WI; Kannenberg, Daniel G [Waukesha, WI
2007-05-01
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Electrical power converter method and system employing multiple-output converters
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2006-03-21
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.
Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho
2011-01-01
Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper deals with a leakage current flowing out of the heat sink of a voltage-source PWM inverter. The heat-sink leakage current is caused by a steep change in the common-mode voltage produced by the inverter. It flows through parasitic capacitors between the heat sink and power semiconductor devices when no EMI filter is connected. Experimental results reveal that the heat-sink leakage current flows not into the supply side, but into the motor side. These understandings succeed in describing an equivalent common-mode circuit taking the parasitic capacitors into account. The authors have proposed a passive EMI filter that is unique in access to the ungrounded motor neutral line. It is discussed from this equivalent circuit that the passive EMI filter is effective in preventing the leakage current from flowing. Moreover, installation of another small-sized common-mode inductor at the ac side of the diode rectifier prevents the leakage current from flowing into the supply side. Experimental results obtained from a 200-V, 3.7-kW laboratory system confirm the effectiveness and viability of the EMI filter.
Structural and functional polymer-matrix composites for electromagnetic applications
NASA Astrophysics Data System (ADS)
Wu, Junhua
This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES) bulk composites. At 13 vol.%, it gives 90 dB of shielding at 1.0 GHz, compared to 46 dB for nickel powder (20-40 mum) and the prior value of 87 dB reported by Shui and Chung for nickel filament (0.4 mum diameter). The minimum filler content for high shielding is 7-13 vol.% for both nickel powders, compared to 3-7 vol.% for nickel filament. Due to the skin effect, a small filler unit size helps the shielding, which is dominated by reflection. Carbon filament (0.1 mum, >100 mum long, >1000 in aspect ratio) is effective for enhancing the shielding effectiveness of a coating made from a water-based colloid that contains graphite particle (0.7-0.8 mum, 22 wt.%) and a starch-type binder. The filament addition increases the shielding from 11 to 20 dB at 1.0 GHz. This increase in shielding is associated with increase in reflectivity and decrease in electrical resistivity. Graphite flake (5 mum) at the same volume proportion is even more effective; its addition increases the shielding from 11 to 28 dB. The combined use of the graphite flake and a low proportion of stainless steel fiber (11 mum diameter, 2 mm long, 180 in aspect ratio) is yet more effective; it increases the shielding from 11 to 34 dB. Alumina particle (5 mum size, 15 vol.%) is effective for increasing the impedance of a coating made from the graphite colloid by 290%, though the shielding effectiveness is reduced from 18 to 11 dB at 1.0 GHz. The high impedance is attractive for MRIcompatible pacemaker leads. The interface between filler and matrix also affects the shielding. Silane treatment of the surface of graphite flake (5 mum) used in the graphite colloid decreases the viscosity (e.g., from 1750 to 1460 CP), but it also decreases the shielding effectiveness (e.g., from 20 to 16 dB at 1 GHz). Ozone treatment gives a similar effect. The decrease of the shielding effectiveness is attributed to the increase in resistivity due to the surface treatment. Measured and calculated values of the reflection loss are comparable, with the measured value lower than the corresponding calculated value, when the resistivity is sufficiently low (e.g., resistivity below 10 O.cm in case of PES-matrix composites) and a strongly magnetic filler such as mumetal is absent. The agreement is better when the skin depth approaches the specimen thickness. The agreement is worse for the latex paint-based composites than the PES-matrix composites, probably due to superior electrical connectivity in the latter.
NASA Technical Reports Server (NTRS)
Ely, Jay J.
2005-01-01
Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.
NASA Technical Reports Server (NTRS)
Barber, Peter W.; Demerdash, Nabeel A. O.; Hurysz, B.; Luo, Z.; Denny, Hugh W.; Millard, David P.; Herkert, R.; Wang, R.
1992-01-01
The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards.
Consideration of an Applied Model of Public Health Program Infrastructure
Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith
2015-01-01
Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417
A methodology to enhance electromagnetic compatibility in joint military operations
NASA Astrophysics Data System (ADS)
Buckellew, William R.
The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.
Self-Shielding Of Transmission Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christodoulou, Christos
The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust componentmore » must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.« less
Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles
NASA Technical Reports Server (NTRS)
Aldridge, Edward; Curry, Bruce; Scully, Robert
2015-01-01
Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!
Photonic Bandgap (PBG) Shielding Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.
2007-01-01
Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects
Beinart, Roy; Nazarian, Saman
2013-12-24
The overall risk of clinically significant adverse events related to EMI in recipients of CIEDs is very low. Therefore, no special precautions are needed when household appliances are used. Environmental and industrial sources of EMI are relatively safe when the exposure time is limited and distance from the CIEDs is maximized. The risk of EMI-induced events is highest within the hospital environment. Physician awareness of the possible interactions and methods to minimize them is warranted.
Prefire identification for pulse-power systems
Longmire, J.L.; Thuot, M.E.; Warren, D.S.
1982-08-23
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Avionics electromagnetic interference immunity and environment
NASA Technical Reports Server (NTRS)
Clarke, C. A.
1986-01-01
Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.
Prefire identification for pulse power systems
Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.
1985-01-01
Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-08-22
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Vehicle drive module having improved cooling configuration
Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.
2007-02-13
An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Power converter having improved fluid cooling
Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.
2007-03-06
A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2005-05-24
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Thermally matched fluid cooled power converter
Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.
2005-06-21
A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Torgomyan, Heghine; Trchounian, Armen
2011-10-14
Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm(-2)) had bactericidal effects on Escherichia coli. This EMI (1h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies. Copyright © 2011 Elsevier Inc. All rights reserved.
Wireless multi-channel single unit recording in freely moving and vocalizing primates
Roy, Sabyasachi; Wang, Xiaoqin
2011-01-01
The ability to record well-isolated action potentials from individual neurons in naturally behaving animals is crucial for understanding neural mechanisms underlying natural behaviors. Traditional neurophysiology techniques, however, require the animal to be restrained which often restricts natural behavior. An example is the common marmoset (Callithrix jacchus), a highly vocal New World primate species, used in our laboratory to study the neural correlates of vocal production and sensory feedback. When restrained by traditional neurophysiological techniques marmoset vocal behavior is severely inhibited. Tethered recording systems, while proven effective in rodents pose limitations in arboreal animals such as the marmoset that typically roam in a three-dimensional environment. To overcome these obstacles, we have developed a wireless neural recording technique that is capable of collecting single-unit data from chronically implanted multi-electrodes in freely moving marmosets. A lightweight, low power and low noise wireless transmitter (headstage) is attached to a multi-electrode array placed in the premotor cortex of the marmoset. The wireless headstage is capable of transmitting 15 channels of neural data with signal-to-noise ratio (SNR) comparable to a tethered system. To minimize radio-frequency (RF) and electro-magnetic interference (EMI), the experiments were conducted within a custom designed RF/EMI and acoustically shielded chamber. The individual electrodes of the multi-electrode array were periodically advanced to densely sample the cortical layers. We recorded single-unit data over a period of several months from the frontal cortex of two marmosets. These recordings demonstrate the feasibility of using our wireless recording method to study single neuron activity in freely roaming primates. PMID:21933683
2016-01-01
Background In moving toward malaria elimination, one strategy is to implement an active surveillance system for effective case management. Thailand has developed and implemented the electronic Malaria Information System (eMIS) capturing individualized electronic records of suspected or confirmed malaria cases. Objective The main purpose of this study was to determine how well the eMIS improves the quality of Thailand’s malaria surveillance system. In particular, the focus of the study was to evaluate the effectiveness of the eMIS in terms of the system users’ perception and the system outcomes (ie, quality of data) regarding the management of malaria patients. Methods A mixed-methods technique was used with the framework based on system effectiveness attributes: data quality, timeliness, simplicity, acceptability, flexibility, stability, and usefulness. Three methods were utilized: data records review, survey of system users, and in-depth interviews with key stakeholders. From the two highest endemic provinces, paper forms matching electronic records of 4455 noninfected and 784 malaria-infected cases were reviewed. Web-based anonymous questionnaires were distributed to all 129 eMIS data entry staff throughout Thailand, and semistructured interviews were conducted with 12 management-level officers. Results The eMIS is well accepted by system users at both management and operational levels. The data quality has enabled malaria personnel to perform more effective prevention and control activities. There is evidence of practices resulting in inconsistencies and logical errors in data reporting. Critical data elements were mostly completed, except for a few related to certain dates and area classifications. Timeliness in reporting a case to the system was acceptable with a delay of 3-4 days. The evaluation of quantitative and qualitative data confirmed that the eMIS has high levels of simplicity, acceptability, stability, and flexibility. Conclusions Overall, the system implemented has achieved its objective. The results of the study suggested that the eMIS helps improve the quality of Thailand’s malaria surveillance system. As the national malaria surveillance system, the eMIS’s functionalities have provided the malaria staff working at the point of care with close-to-real-time case management data quality, covering case detection, case investigation, drug compliance, and follow-up visits. Such features has led to an improvement in the quality of the malaria control program; the government officials now have quicker access to both individual and aggregated data to promptly react to possible outbreak. The eMIS thus plays one of the key roles in moving toward the national goal of malaria elimination by the next decade. PMID:27227156
Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C
2014-01-10
The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.
Characteristics of electromagnetic interference generated by arc discharges. [in spacecraft
NASA Technical Reports Server (NTRS)
Leung, Philip
1986-01-01
Electromagnetic interference (EMI) signatures resulting from arc discharges are characterized, and the effects of electrostatic discharges (ESDs) on the design of spacecraft systems are investigated. EMI characterization experiments were performed on Mylar, Teflon, Kapton, fused silica, and fiberglass in a vacuum chamber with acrylic walls; the experimental design and procedures are described. Discharge current pulses and RF spectra generated by the sample materials are examined. The relation between the magnitude of EMI generated during an ESD event and the material, environment, and geometry is studied. The solar-array/plasma interaction is analyzed; particular attention is given to the rate of discharge as a function of plasma density. The physical mechanisms of ESD-generated EMI are discussed. The data reveal that ESD parameters are dependent on the test environment.
Optimised Spectral Kurtosis for bearing diagnostics under electromagnetic interference
NASA Astrophysics Data System (ADS)
Smith, Wade A.; Fan, Zhiqi; Peng, Zhongxiao; Li, Huaizhong; Randall, Robert B.
2016-06-01
The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.
Electroless silver coating of rod-like glass particles.
Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon
2008-09-01
An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.
Digital avionics susceptibility to high energy radio frequency fields
NASA Astrophysics Data System (ADS)
Larsen, William E.
Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.
Uncovering English-Medium Instruction: Glocal Issues in Higher Education
ERIC Educational Resources Information Center
Margic, Branka Drljaca; Vodopija-Krstanovic, Irena
2017-01-01
English-medium instruction (EMI) is a complex educational innovation and a prerequisite for active participation in the process of internationalizing academia. Given its impact on today's universities, it is crucial that EMI should be effectively and responsibly implemented. This book draws on a range of theoretical and empirical insights to…
Characteristics of Lithium Ions and Superoxide Anions in EMI-TFSI and Dimethyl Sulfoxide.
Jung, Sun-ho; Federici Canova, Filippo; Akagi, Kazuto
2016-01-28
To clarify the microscopic effects of solvents on the formation of the Li(+)-O2(–) process of a Li–O2 battery, we studied the kinetics and thermodynamics of these ions in dimethyl sulfoxide (DMSO) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) using classical molecular dynamics simulation. The force field for ions–solvents interactions was parametrized by force matching first-principles calculations. Despite the solvation energies of the ions are similar in both solvents, their mobility is much higher in DMSO. The free-energy profiles also confirm that the formation and decomposition rates of Li(+)-O2(–) pairs are greater in DMSO than in EMI-TFSI. Our atomistic simulations point out that the strong structuring of EMI-TFSI around the ions is responsible for these differences, and it explains why the LiO2 clusters formed in DMSO during the battery discharge are larger than those in EMI-TFSI. Understanding the origin of such properties is crucial to aid the optimization of electrolytes for Li–O2 batteries.
Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells
Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G.; Kuemmerle, John F.; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I.
2014-01-01
Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. PMID:25143399
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan
2014-01-01
To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar
2014-01-01
ABSTRACT Background To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl2) induced toxicity in Swiss albino mice. Materials and methods Toxicity in mice was induced with HgCl2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. Results and discussion The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24. PMID:29264314
Compact vehicle drive module having improved thermal control
Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.
2006-01-03
An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
2016-11-01
focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the
Safety and interaction of patients with implantable cardiac defibrillators driving a hybrid vehicle.
Tondato, Fernando; Bazzell, Jane; Schwartz, Linda; Mc Donald, Bruce W; Fisher, Robert; Anderson, S Shawn; Galindo, Arcenio; Dueck, Amylou C; Scott, Luis R
2017-01-15
Electromagnetic interference (EMI) can affect the function of implantable cardioverter defibrillators (ICD). Hybrid electric vehicles (HEV) have increased popularity and are a potential source of EMI. Little is known about the in vivo effects of EMI generated by HEV on ICD. This study evaluated the in vivo interaction between EMI generated by HEV with ICD. Thirty patients (73±9 y/o; 80% male) with stable ICD function were exposed to EMI generated by a Toyota Prius Hybrid®. The vehicle was lifted above the ground, allowing safe changes in engine rotation and consequent variations in electromagnetic emission. EMI was measured (NARDA STS® model EHP-50C) and expressed in A/m (magnetic), Volts/m (electrical), and Hertz (frequency). Six positions were evaluated: driver, front passenger, right and left back seats, outside, at the back and front of the car. Each position was evaluated at idle, 30 mph, 60 mph and variable speeds (acceleration-deceleration-brake). All ICD devices were continuously monitored during the study. The levels of EMI generated were low (highest mean levels: 2.09A/m at right back seat at 30 mph; and 3.5V/m at driver seat at variable speeds). No episode of oversensing or inadvertent change in ICD programming was observed. It is safe for patients with ICD to interact with HEV. This is the first study to address this issue using an in vivo model. Further studies are necessary to evaluate the interaction of different models of HEV or electric engine with ICD or unipolar pacemakers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Doumoto, Takafumi; Akagi, Hirofumi
This paper proposes a small-sized passive EMI filter for the purpose of eliminating high-frequency shaft voltage and ground leakage current from an ac motor. The motor is driven by a general-purpose PWM inverter connected to a three-phase grounded voltage source. The passive EMI filter requires access to the ungrounded neutral point of the motor. This unique circuit configuration makes the common-mode inductor effective in reducing the high-frequency common-mode voltage generated by the PWM inverter with a carrier frequency of 15kHz. As a result, both high-frequency shaft voltage and ground leakage current can be eliminated very efficiently. However, the common-mode inductor may not play any role in reducing the low-frequency common-mode voltage generated by the diode rectifier, so that a low-frequency component still remains in the shaft voltage. Such a low-frequency shaft voltage may not produce any bad effect on motor bearings. The validity and effectiveness of the EMI filter is verified by experimental results obtained from a 200-V 5-kVA laboratory system.
Torgomyan, Heghine; Tadevosyan, Hasmik; Trchounian, Armen
2011-03-01
Antibacterial effects of the electromagnetic irradiation (EMI) of 51.8 and 53 GHz frequencies with low intensity (the flux capacity of 0.06 mW/cm(2)) and non-thermal action were investigated upon direct irradiation of E. coli K12. Significant decrease in bacterial growth rate and in the number of viable cells, marked change in H(+) and K(+) transport across membrane were shown. Subsequent addition of kanamycin or ceftriaxone (15 or 0.4 μM, respectively) enhanced the effects of irradiation. This was maximally achieved at the frequency of 53 GHz. These all might reveal membrane as probable target for antibacterial effects. Apparently, the action of EMI on bacteria might lead to changed membrane properties and to antibiotic resistance. The results should improve using extremely high frequency EMI in combination with antibiotics in biotechnology, therapeutic practice, and food industry.
NASA Astrophysics Data System (ADS)
Chubb, Scott
2007-03-01
Only recently (talk by P.A. Mosier-Boss et al, in this session) has it become possible to trigger high energy particle emission and Excess Heat, on demand, in LENR involving PdD. Also, most nuclear physicists are bothered by the fact that the dominant reaction appears to be related to the least common deuteron(d) fusion reaction,d+d ->α+γ. A clear consensus about the underlying effect has also been illusive. One reason for this involves confusion about the approximate (SU2) symmetry: The fact that all d-d fusion reactions conserve isospin has been widely assumed to mean the dynamics is driven by the strong force interaction (SFI), NOT EMI. Thus, most nuclear physicists assume: 1. EMI is static; 2. Dominant reactions have smallest changes in incident kinetic energy (T); and (because of 2), d+d ->α+γ is suppressed. But this assumes a stronger form of SU2 symmetry than is present; d+d ->α+γ reactions are suppressed not because of large changes in T but because the interaction potential involves EMI, is dynamic (not static), the SFI is static, and because the two incident deuterons must have approximate Bose Exchange symmetry and vanishing spin. A generalization of this idea involves a resonant form of reaction, similar to the de-excitation of an atom. These and related (broken gauge) symmetry EMI effects on LENR are discussed.
NASA Astrophysics Data System (ADS)
Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry
2014-05-01
Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.
Jiang, Yan; You, Xiao-Ying; Fu, Kong-Long; Yin, Wan-Le
2012-01-01
The leaves of Mangifera indica L. (Anacardiaceae) is used as a medicinal material in traditional herb medicine for a long time in India, China, and other Eastern Asian countries. Our present study investigated the therapeutic effects of the ethanol extract from Mangifera indica (EMI) in rat with monosodium urate (MSU) crystals-induced gouty arthritis. Effects of EMI (50, 100, and 200 mg/kg, p.o.) administrated for 9 days on the ankle swelling, synovial tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β) levels were assessed in MSU crystal rat. Data from our study showed that rat with gouty arthritis induced by MSU crystal demonstrated an elevation in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. Oral administration of 100 and 200 mg/kg EMI for 9 days reversed the abnormalities in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. The results indicated that the beneficial antigouty arthritis effect of EMI may be mediated, at least in part, by inhibiting TNF-α and IL-1β expression in the synovial tissues. Our study suggests that Mangifera indica and its extract may have a considerable potential for development as an anti-gouty arthritis agent for clinical application. PMID:23304232
NASA Astrophysics Data System (ADS)
Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun
2016-08-01
To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate < PP13-TFSI < EMI-mesylate < PP13-triflate < EMI-TFSI for rating; and 2) EMI-hydrogen sulfate < EMI-mesylate < PP13-Triflate < PP13-TFSI < EMI-TFSI for life-time. The fluoro-containing group of ILs, i.e., PP13-Triflate, PP13-TFSI and EMI-TFSI can give a specific capacitance between 100 and 170 F/g for various scan rates for a conventional carbon electrode, and an extended lifetime test of 10, 000 cycles with a capacitance degradation of less than 10%, indicating that these two ion liquids can be used for SC electrolytes operated at high temperature.
Song, Yuexian; Hu, Jiugang; Tang, Jia; Gu, Wanmiao; He, Lili; Ji, Xiaobo
2016-11-23
The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF 6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF 6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF 6 , or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.
Implications of arcing due to spacecraft charging on spacecraft EMI margins of immunity
NASA Technical Reports Server (NTRS)
Inouye, G. T.
1981-01-01
Arcing due to spacecraft charging on spacecraft EMI margins of immunity was determined. The configuration of the P78-2 spacecraft of the SCATHA program was analyzed. A brushfire arc discharge model was developed, and a technique for initiating discharges with a spark plug trigger was for data configuration. A set of best estimate arc discharge parameters was defined. The effects of spacecraft potentials in limiting the discharge current blowout component are included. Arc discharge source models were incorporated into a SEMCAP EMI coupling analysis code for the DSP spacecraft. It is shown that with no mission critical circuits will be affected.
Optical link by using optical wiring method for reducing EMI
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Kwon, Jong-Hwa; Choi, Sung-Woong; Bondarik, Alexander; Yun, Je-Hoon; Kim, Chang-Joo; Ahn, Seung-Beom; Jeong, Myung-Yung; Park, Hyo Hoon
2008-12-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx) for reducing EMI (electromagnetic interference). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. The key benefit of fiber optic link is the absence of electromagnetic interference (EMI) noise creation and susceptibility. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (i) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (ii) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (iii) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. Electronic interconnections have uniquely electronic problems such as EMI, shorting, and ground loops. Since these problems only arise during transduction (electronics-to-optics or opticsto- electronics), the purely optical part and optical link(interconnection) is free of these problems. 1 An optical link system constructed with TRx modules was fabricated and the optical characteristics about data links and EMI levels were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for reducing EMI of inter-chip interconnect. We successfully achieved a 4.5 Gb/s data transmission rate without EMI problems.
Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D
2001-01-01
A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.
Ecological momentary interventions in psychiatry.
Myin-Germeys, Inez; Klippel, Annelie; Steinhart, Henrietta; Reininghaus, Ulrich
2016-07-01
In this review, we discuss feasibility, content, and where possible efficacy of ecological momentary interventions (EMIs) in psychiatry. EMIs adopt mobile devices, such as personal digital assistants or smartphones, for the delivery of treatments in the daily life of patients. We will discuss EMIs in the field of schizophrenia, bipolar disorder and major depression disorder, as well as one generic, transdiagnostic EMI. The few studies that are available all underscore feasibility and acceptability of mobile health approaches in patients with severe mental illness. In terms of content, there is a huge variety in approaches ranging from a mixture of face-to-face contacts augmented with EMI components to a fully automated EMI. With regard to efficacy, only two randomized clinical trials have been conducted, supporting the efficacy of EMIs in mental health. Evidence seems to point toward greater efficacy when EMI is integrated with real-life assessment using experience sampling methodology, preferentially tailoring the intervention toward the specific needs of the individual as well as toward those moments when intervention is needed. The review demonstrates that mobile health may be an important asset to the mental health field but underscores that it still is in its very early ages. In the discussion, we point toward ways of improving EMIs for severe mental illness, changing our perspective from testing feasibility to testing efficacy and ultimately implementing EMIs in routine mental health services.
NASA Astrophysics Data System (ADS)
Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.
2016-05-01
Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.
Khamsiriwatchara, Amnat; Sudathip, Prayuth; Sawang, Surasak; Vijakadge, Saowanit; Potithavoranan, Thanapon; Sangvichean, Aumnuyphan; Satimai, Wichai; Delacollette, Charles; Singhasivanon, Pratap; Lawpoolsri, Saranath; Kaewkungwal, Jaranit
2012-07-29
The Bureau of Vector-borne Diseases, Ministry of Public Health, Thailand, has implemented an electronic Malaria Information System (eMIS) as part of a strategy to contain artemisinin resistance. The attempt corresponds to the WHO initiative, funded by the Bill & Melinda Gates Foundation, to contain anti-malarial drug resistance in Southeast Asia. The main objective of this study was to demonstrate the eMIS' functionality and outputs after implementation for use in the Thailand artemisinin-resistance containment project. The eMIS had been functioning since 2009 in seven Thai-Cambodian border provinces. The eMIS has covered 61 malaria posts/clinics, 27 Vector-borne Disease Units covering 12,508 hamlets at risk of malaria infections. The eMIS was designed as an evidence-based and near real-time system to capture data for early case detection, intensive case investigation, monitoring drug compliance and on/off-site tracking of malarial patients, as well as collecting data indicating potential drug resistance among patients. Data captured by the eMIS in 2008-2011 were extracted and presented. The core functionalities of the eMIS have been utilized by malaria staff at all levels, from local operational units to ministerial management. The eMIS case detection module suggested decreasing trends during 2009-2011; the number of malaria cases detected in the project areas over the years studied were 3818, 2695, and 2566, with sero-positive rates of 1.24, 0.98, and 1.16%, respectively. The eMIS case investigation module revealed different trends in weekly Plasmodium falciparum case numbers, when classified by responsible operational unit, local and migrant status, and case-detection type. It was shown that most Thai patients were infected within their own residential district, while migrants were infected either at their working village or from across the border. The data mapped in the system suggested that P. falciparum-infected cases and potential drug-resistant cases were scattered mostly along the border villages. The mobile technology application has detected different follow-up rates, with particularly low rates among seasonal and cross-border migrants. The eMIS demonstrated that it could capture essential data from individual malaria cases at local operational units, while effectively being used for situation and trend analysis at upper-management levels. The system provides evidence-based information that could contribute to the control and containment of resistant parasites. Currently, the eMIS is expanding beyond the Thai-Cambodian project areas to the provinces that lie along the Thai-Myanmar border.
Torgomyan, Heghine; Ohanyan, Vahe; Blbulyan, Syuzanna; Kalantaryan, Vitaly; Trchounian, Armen
2012-04-01
Exposure to electromagnetic irradiation (EMI) of 51.8 and 53.0 GHz and low intensity (flux capacity of 0.06 mW cm(-2) ) for 1 h markedly decreased the energy-dependent H(+) and K(+) transport across membranes of Enterococcus hirae ATCC 9790. After EMI, there was also a significant decrease of overall and N,N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity of the membrane vesicles. These measures were considerably lower at 53.0 GHz. EMI in combination with different antibiotics, such as ceftriaxone and kanamycin at their minimal inhibitory concentrations (100 and 200 μM, respectively), enhanced bacterial cell growth and altered their membrane transport properties. Total H(+) efflux was most sensitive to ceftriaxone but DCCD-inhibited H(+) efflux and total K(+) influx were sensitive to kanamycin. The results indicate that cell membrane proteins could be a target in the action of EMI and enhanced antibacterial effects in combination with antibiotics. The DCCD-sensitive F(0) F(1) -ATPase or this ATPase in combination with K(+) uptake protein probably plays a key role in these effects. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
MC EMiNEM maps the interaction landscape of the Mediator.
Niederberger, Theresa; Etzold, Stefanie; Lidschreiber, Michael; Maier, Kerstin C; Martin, Dietmar E; Fröhlich, Holger; Cramer, Patrick; Tresch, Achim
2012-01-01
The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network. In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of its internal information flow, which is putatively transmitted through structural changes within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of Mediator subunits and transcription factors.
Vehicle drive module having improved terminal design
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-04-25
A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Power converter having improved terminal structure
Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.
2007-03-06
A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
NASA Astrophysics Data System (ADS)
Clark, T. L.; McCollum, M. B.; Trout, D. H.; Javor, K.
1995-06-01
The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.
NASA Technical Reports Server (NTRS)
Clark, T. L.; Mccollum, M. B.; Trout, D. H.; Javor, K.
1995-01-01
The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.
ERIC Educational Resources Information Center
Dang, Thi Kim Anh; Nguyen, Hoa Thi Mai; Le, Truc Thi Thanh
2013-01-01
Recent research on language planning and policy highlights the effects of globalisation in spreading the English language as a medium of instruction (EMI) in non-native English speaking (NNES) countries. This trend has encouraged many universities in NNES countries to offer EMI education programmes with the objective of developing national human…
Real Time Quality Control Methods for Cued EMI Data Collection
2016-03-14
contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product...This project evaluated the effectiveness of in-field quality control (QC) procedures during cued electromagnetic induction (EMI) data collection. The...electromagnetic induction ESTCP Environmental Security Technology Certification Program hr hour ISO Industry Standard Object IVS Instrument
van der Togt, Remko; van Lieshout, Erik Jan; Hensbroek, Reinout; Beinat, E; Binnekade, J M; Bakker, P J M
2008-06-25
Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never been reported. To assess and classify incidents of EMI by RFID on critical care equipment. Without a patient being connected, EMI by 2 RFID systems (active 125 kHz and passive 868 MHz) was assessed under controlled conditions during May 2006, in the proximity of 41 medical devices (in 17 categories, 22 different manufacturers) at the Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. Assessment took place according to an international test protocol. Incidents of EMI were classified according to a critical care adverse events scale as hazardous, significant, or light. In 123 EMI tests (3 per medical device), RFID induced 34 EMI incidents: 22 were classified as hazardous, 2 as significant, and 10 as light. The passive 868-MHz RFID signal induced a higher number of incidents (26 incidents in 41 EMI tests; 63%) compared with the active 125-kHz RFID signal (8 incidents in 41 EMI tests; 20%); difference 44% (95% confidence interval, 27%-53%; P < .001). The passive 868-MHz RFID signal induced EMI in 26 medical devices, including 8 that were also affected by the active 125-kHz RFID signal (26 in 41 devices; 63%). The median distance between the RFID reader and the medical device in all EMI incidents was 30 cm (range, 0.1-600 cm). In a controlled nonclinical setting, RFID induced potentially hazardous incidents in medical devices. Implementation of RFID in the critical care environment should require on-site EMI tests and updates of international standards.
Shoji, Shisako; Muto, Yutaka; Ikeda, Mariko; He, Fahu; Tsuda, Kengo; Ohsawa, Noboru; Akasaka, Ryogo; Terada, Takaho; Wakiyama, Motoaki; Shirouzu, Mikako; Yokoyama, Shigeyuki
2014-01-01
Anaphase-promoting complex or cyclosome (APC/C) is a multisubunit ubiquitin ligase E3 that targets cell-cycle regulators. Cdc20 is required for full activation of APC/C in M phase, and mediates substrate recognition. In vertebrates, Emi2/Erp1/FBXO43 inhibits APC/C-Cdc20, and functions as a cytostatic factor that causes long-term M phase arrest of mature oocytes. In this study, we found that a fragment corresponding to the zinc-binding region (ZBR) domain of Emi2 inhibits cell-cycle progression, and impairs the association of Cdc20 with the APC/C core complex in HEK293T cells. Furthermore, we revealed that the ZBR fragment of Emi2 inhibits in vitro ubiquitin chain elongation catalyzed by the APC/C cullin-RING ligase module, the ANAPC2–ANAPC11 subcomplex, in combination with the ubiquitin chain-initiating E2, E2C/UBE2C/UbcH10. Structural analyses revealed that the Emi2 ZBR domain uses different faces for the two mechanisms. Thus, the double-faced ZBR domain of Emi2 antagonizes the APC/C function by inhibiting both the binding with the coactivator Cdc20 and ubiquitylation mediated by the cullin-RING ligase module and E2C. In addition, the tail region between the ZBR domain and the C-terminal RL residues [the post-ZBR (PZ) region] interacts with the cullin subunit, ANAPC2. In the case of the ZBR fragment of the somatic paralogue of Emi2, Emi1/FBXO5, these inhibitory activities against cell division and ubiquitylation were not observed. Finally, we identified two sets of key residues in the Emi2 ZBR domain that selectively exert each of the dual Emi2-specific modes of APC/C inhibition, by their mutation in the Emi2 ZBR domain and their transplantation into the Emi1 ZBR domain. PMID:25161877
Preschool Units EMIS Staff Report. EMIS Staff ECE Units 2005. Report Documentation. Version 1.0
ERIC Educational Resources Information Center
Ohio Department of Education, 2004
2004-01-01
The purpose of Preschool Units EMIS Staff Report is twofold. First, it helps School Districts and Educational Service Centers (ESC) ensure accuracy and validity of preschool staff, student and program data submitted to the Ohio Department of Education (ODE) through the Education Management Information System (EMIS). From this report, school…
Boh, Bastiaan; Lemmens, Lotte H J M; Jansen, Anita; Nederkoorn, Chantal; Kerkhofs, Vincent; Spanakis, Gerasimos; Weiss, Gerhard; Roefs, Anne
2016-03-22
Long-term weight loss maintenance is difficult to achieve. Effectiveness of obesity interventions could be increased by providing extended treatment, and by focusing on person-environment interactions. Ecological Momentary Intervention (EMI) can account for these two factors by allowing an indefinite extension of a treatment protocol in everyday life. EMI relies on observations in daily life to intervene by providing appropriate in-the-moment treatment. The Think Slim intervention is an EMI based on the principles of cognitive behavioural therapy (CBT), and its effectiveness will be investigated in the current study. A randomised controlled trial (RCT) will be conducted. At least 134 overweight adults (body mass index (BMI) above 25 kg/m(2)) will be randomly assigned to an 8-week immediate intervention group (Diet + Think Slim intervention, n = 67) or to an 8-week diet-only control group (followed by the Think Slim intervention, n = 67). The Think Slim intervention consists of (1) an app-based EMI that estimates and intervenes when people are likely to overeat, based on Ecological Momentary Assessment data, and (2) ten online computerised CBT sessions which work in conjunction with an EMI module in the app. The primary outcome is BMI. Secondary outcomes include (1) scores on self-report questionnaires for dysfunctional thinking, eating styles, eating disorder pathology, general psychological symptomatology, and self-esteem, and (2) eating patterns, investigated via network analysis. Primary and secondary outcomes will be obtained at pre- and post-intervention measurements, and at 3- and 12-month follow-up measurements. This is the first EMI aimed at treating obesity via a cognitive approach, provided via a smartphone app and the Internet, in the context of an RCT. This trial has been registered at the Netherlands Trial Register, part of the Dutch Cochrane Centre ( NTR5473 ; registration date: 26 October 2015).
MC EMiNEM Maps the Interaction Landscape of the Mediator
Niederberger, Theresa; Etzold, Stefanie; Lidschreiber, Michael; Maier, Kerstin C.; Martin, Dietmar E.; Fröhlich, Holger; Cramer, Patrick; Tresch, Achim
2012-01-01
The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between proteins that have pleiotropic effects on mRNA transcription. MC EMiNEM is based on Nested Effects Models (NEMs), a class of probabilistic graphical models that extends the idea of hierarchical clustering. It combines mode-hopping Monte Carlo (MC) sampling with an Expectation-Maximization (EM) algorithm for NEMs to increase sensitivity compared to existing methods. A meta-analysis of four Mediator perturbation studies in Saccharomyces cerevisiae, three of which are unpublished, provides new insight into the Mediator signaling network. In addition to the known modular organization of the Mediator subunits, MC EMiNEM reveals a hierarchical ordering of its internal information flow, which is putatively transmitted through structural changes within the complex. We identify the N-terminus of Med7 as a peripheral entity, entailing only local structural changes upon perturbation, while the C-terminus of Med7 and Med19 appear to play a central role. MC EMiNEM associates Mediator subunits to most directly affected genes, which, in conjunction with gene set enrichment analysis, allows us to construct an interaction map of Mediator subunits and transcription factors. PMID:22737066
NASA Astrophysics Data System (ADS)
Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.
2006-05-01
The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.
Torgomian, É; Oganian, V; Blbulian, C; Trchunian, A
2013-01-01
It was ascertained that one-hour exposure of Enterococcus hirae ATCC9790 bacteria grown under anaerobe condition during sugar (glucose) fermentation to coherent electromagnetic irradiation (EMI) of 51,8 and 53,0 GHz frequencies or millimeter waves (5,79 and 5,66 mm wavelengths) of low-intensity (flux capacity of 0,06 mW/sm2) caused a significant decrease in energy-dependent H+ and K+ transports across the membranes of whole cells. Therewith, K+ influx into cells was appreciably less at the frequency of 53,0 GHz. Likewise, a significant decrease of total and N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity of the membrane vesicles occurred after EMI of 51,8 and 53,0 GHz. These results indicated the input of membranous changes in bacterial action of low intensity extremely high frequency EMI, when the F0F1-ATPase was probably playing a key role. Additionally, the enhancement of the effects of antibiotics--ceftriaxone, kanamycin and ampicillin at their minimal inhibitory concentrations (100, 200 and 1,4 microM, correspondingly) on the bacterial growth by these irradiations was shown. Also, combined action of EMI and antibiotics depressed strongly H+ and K+ fluxes across membrane. Especially, H+ flux was more sensitive to the action of ceftriaxone, but K+ flux was sensitive to kanamycin. All these made the assumption that EMI of 51,8 and 53,0 GHz frequencies, especially 53,0 GHz, was followed by change in bacterial sensitivity toward antibiotics that was more obvious with ceftriaxone and ampicillin.
Innovative signal processing for Johnson Noise thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Jr, Charles L.; Roberts, Michael
This report summarizes the newly developed algorithm that subtracted the Electromagnetic Interference (EMI). The EMI performance is very important to this measurement because any interference in the form on pickup from external signal sources from such as fluorescent lighting ballasts, motors, etc. can skew the measurement. Two methods of removing EMI were developed and tested at various locations. This report also summarizes the testing performed at different facilities outside Oak Ridge National Laboratory using both EMI removal techniques. The first EMI removal technique reviewed in previous milestone reports and therefore this report will detail the second method.
ERIC Educational Resources Information Center
Chen, Yih-Lan Ellen; Kraklow, Deborah
2015-01-01
To promote internationalization in Taiwan's higher education system, one initiative is to create international programs that accommodate both international and domestic students and that use English as the medium of instruction (EMI). Most EMI studies have focused on program results; however, the current study investigates the factors that lead…
Automated Terrestrial EMI Emitter Detection, Classification, and Localization
NASA Astrophysics Data System (ADS)
Stottler, R.; Bowman, C.; Bhopale, A.
2016-09-01
Clear operating spectrum at ground station antenna locations is critically important for communicating with, commanding, controlling, and maintaining the health of satellites. Electro Magnetic Interference (EMI) can interfere with these communications so tracking down the source of EMI is extremely important to prevent it from occurring in the future. The Terrestrial RFI-locating Automation with CasE based Reasoning (TRACER) system is designed to automate terrestrial EMI emitter localization and identification, providing improved space situational awareness, realizing significant manpower savings, dramatically shortening EMI response time, providing capabilities for the system to evolve without programmer involvement, and offering increased support for adversarial scenarios (e.g. jamming). TRACER has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication antennas and sweeping Direction Finding (DF) antennas located near them. TRACER monitors the satellite communication and DF antenna signals to detect and classify EMI using neural network technology trained on past cases of both normal communications and EMI events. Based on details of the signal (its classification, its direction and strength, etc.) one or more cases of EMI investigation methodologies are retrieved, represented as graphical behavior transition networks (BTNs), which very naturally represent the flowchart-like process often followed by experts in time pressured situations, are intuitive to SMEs, and easily edited by them. The appropriate actions, as determined by the BTN are executed and the resulting data processed by Bayesian Networks to update the probabilities of the various possible platforms and source types of the EMI. Bearing sweep of the EMI is used to determine if the EMI's platform is aerial, a ground vehicle or ship, or stationary. If moving, the Friis transmission equation is used to plot the emitter's location and compare it to current flights or moving vehicles. This paper describes the TRACER technologies and results of prototype testing.
Brookie, Kate L; Mainvil, Louise A; Carr, Anitra C; Vissers, Margreet C M; Conner, Tamlin S
2017-01-01
To develop and test the effectiveness of a mobile-phone based ecological momentary intervention (EMI) to increase fruit and vegetable (FV) consumption in low-consuming young adults. A two-week randomised controlled trial of low-FV consuming young adults ages 18-25 years (n = 171) compared three conditions: ecological momentary intervention (EMI), fruit and vegetable intervention (FVI), and a diet-as-usual control (ANZCTRN12615000183583). Participants in the EMI condition were sent two targeted text messages a day for 13 days and were asked to increase daily FV consumption to at least five servings. These messages were designed, using the Health Action Process Approach, to address salient beliefs identified as effective in a preliminary focus group investigation. Participants in the FVI condition were provided two servings of FV a day (carrots, kiwifruit or oranges, and apples) to eat in addition to their current diet. Control participants ate their normal diet. Participants reported their daily servings of FV each evening during the study using a smartphone-delivered survey. Blood samples testing plasma vitamin C and total carotenoids were taken pre- and post-intervention as an objective biomarker of FV intake. Participants in the EMI and FVI conditions reported higher daily servings of FV - approximately +1 serving per day more compared to control (EMI = 3.7 servings/day; FVI = 3.7 servings/day; Control = 2.8 servings/day) and approximately +1.2 servings compared to baseline. Increases in objective biomarkers for the experimental conditions supported the validity of self-reported FV consumption. Our results provide initial proof of concept that EMI strategies (with minor financial assistance) are as effective as giving FV in increasing FV consumption in educated, low-consuming young adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
Testing parameters of TMR heads affected by dynamic-tester induced EMI
NASA Astrophysics Data System (ADS)
Kruesubthaworn, A.; Sivaratana, R.; Ungvichian, V.; Siritaratiwat, A.
2007-09-01
A variety of expected electromagnetic interference (EMI) sources of both radiated and conducted EMI emissions produced by a dynamic tester is studied. It is determined that the power cable connector of the robot arm radiates a significant electric field (E-field) of about 197 V/m at 1 foot away and an estimated calculation of the E-field of about 212 mV/m is at the spindle motor. These fields can be attenuated by about 20-30 dB when using a copper lined Faraday's cage. Furthermore, the study has revealed that the radiated EMI plays a more significant role than the conducted EMI. In addition, it is determined that out of seven selected testing parameters, the SGAW is rather more sensitive to EMI than conventional failure parameters, especially static glitche during the write cycle.
Riordan, Benjamin C; Moradi, Saleh; Carey, Kate B; Conner, Tamlin S; Jang, Kyungho; Reid, Kelly E; Scarf, Damian
2018-05-15
Alcohol use among university students is common, and those who drink often choose to drink heavily (ie, 4 or more drinks per session for women or 5 or more for men). Web-based interventions (WBIs), in which students complete assessments and receive personalized feedback about their alcohol use, and ecological momentary interventions (EMIs), which use mobile devices as a method of delivering intervention information, are 2 methods that have had some success in reducing alcohol use among university students. The aim of this study was to investigate the effectiveness of a combined WBI and EMI intervention to reduce alcohol use among university students. The study is a 3-arm randomized controlled trial. Participants will be randomized into either a WBI+EMI condition, a WBI-only condition, or an assessment-only control. Our sample will consist of first-year university students, recruited through 5 residential colleges at the University of Otago, New Zealand. All participants will complete an online survey at baseline (ie, before Orientation Week); those in the WBI-only and WBI+EMI conditions will immediately receive personalized feedback (ie, the WBI), whereas participants in the assessment-only condition will receive no feedback. In addition, participants randomized into the WBI+EMI, but not those in the WBI-only or assessment-only groups, will receive 8 Orientation Week (2 per day on nights with large social events) and 6 academic year EMIs (delivered fortnightly). Participants in all conditions will complete brief surveys at the end of the first and second semester and report their weekend alcohol use fortnightly throughout each semester via ecological momentary assessments. The primary hypothesis is that participants in the WBI+EMI group will consume significantly fewer drinks during weekends in their first semester at university compared with WBI-only and assessment-only groups. Secondary hypotheses are that, when compared with the WBI-only and assessment-only groups, the WBI+EMI group will report consuming fewer drinks during Orientation Week, report experiencing fewer negative alcohol-related consequences after first semester, and report lower Alcohol Use Disorder Identification Test-Consumption scores following their first semester. This study adds to a growing body of work investigating the utility of WBIs and EMIs in curbing alcohol consumption. In addition, the study will help to inform policy approaches aimed at curbing alcohol consumption and alcohol-related harm in university students. Australian New Zealand Clinical Trials Registry ACTRN12618000015246; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374104&isReview=true (Archived by WebCite at http://www.webcitation.org/6z9jRLTz6). RR1-10.2196/10164. ©Benjamin C Riordan, Saleh Moradi, Kate B Carey, Tamlin S Conner, Kyungho Jang, Kelly E Reid, Damian Scarf. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 15.05.2018.
2015-07-01
concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction (EMI) sensor. A total of...centimeter DGM digital geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin
2010-08-01
Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.
Heron, Kristin E.; Smyth, Joshua M.
2009-01-01
Purpose Psychosocial and health behavior treatments and therapies can be extended beyond traditional research or clinical settings by using mobile technology to deliver interventions to individuals as they go about their daily lives. These Ecological Momentary Interventions [EMI] are treatments that are provided to people during their everyday lives (i.e., in real time) and in natural settings (i.e., real world). The goal of the present review is to synthesize and critique mobile technology-based EMI aimed at improving health behaviors and psychological and physical symptoms. Methods Twenty-seven interventions using palmtop computers or mobile phones to deliver ambulatory treatment for smoking cessation, weight loss, anxiety, diabetes management, eating disorders, alcohol use, and healthy eating and physical activity were identified. Results There is evidence that EMI can be successfully delivered, are accepted by patients, and are efficacious for treating a variety of health behaviors and physical and psychological symptoms. Limitations of the existing literature were identified and recommendations and considerations for research design, sample characteristics, measurement, statistical analyses, and clinical implementation are discussed. Conclusions Mobile technology-based EMI can be effectively implemented as interventions for a variety of health behaviors and psychological and physical symptoms. Future research should integrate the assessment and intervention capabilities of mobile technology to create dynamically and individually tailored EMI that are ecologically sensitive. PMID:19646331
Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.
Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I
2014-10-15
Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A Summary of Actinide Enrichment Technologies and Capability Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D.; Robinson, Sharon M.
2017-01-01
The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less
Johnson, Carole D.; White, Eric A.; Joesten, Peter K.
2012-01-01
Time‐lapse geophysical surveys using frequency‐domain electromagnetics (FDEM) can indirectly measure time‐varying hydrologic parameters such as fluid saturation or solute concentration. Monitoring of these processes provides insight into aquifer properties and the effectiveness of constructed controls (such as leachate interceptor trenches), as well as aquifer responses to natural or induced stresses. At the University of Connecticut landfill, noninvasive, electromagnetic induction (EMI) methods were used to monitor changes in subsurface electrical conductivity that were related to the landfill‐closure activities. After the landfill was closed, EMI methods were used to monitor changes in water saturation and water quality. As part of a long‐term monitoring plan to observe changes associated with closure, redevelopment, and remediation of the former landfill, EMI data were collected to supplement information from groundwater samples collected in wells to the south and north of the landfill. In comparison to single‐point measurements that could have been collected by conventional installation of additional monitoring wells, the EMI methods provided increased spatial coverage, and were less invasive and therefore less destructive to the wetland north of the landfill. To monitor effects of closure activities on the subsurface conductivity, EMI measurements were collected from 2004 to 2011 along discrete transects north and south of the landfill prior to, during, and after the landfill closure. In general, the results indicated an overall decline in subsurface electrical conductivity with time and with distance from the former landfill. This decline in electrical conductivity indicated that the closure and remediation efforts reduced the amount of leachate that originated from the landfill and that entered the drainages to the north and south of the landfill.
Methods to Control EMI Noises Produced in Power Converter Systems
NASA Astrophysics Data System (ADS)
Mutoh, Nobuyoshi; Ogata, Mitukatu
A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.
Radiated interference in rapid transit systems. volume 2. suggested test procedures.
DOT National Transportation Integrated Search
1987-06-30
The purpose of this report is to present a suggested test procedure for measuring the radiated electromagnetic interference (EMI) emanating from rail transit systems. This report points out that, unlike inductive and conductive EMI, radiated EMI has ...
Massage Therapy Restores Peripheral Vascular Function following Exertion
Franklin, Nina C.; Ali, Mohamed M.; Robinson, Austin T.; Norkeviciute, Edita; Phillips, Shane A.
2014-01-01
Objective To determine if lower extremity exercise-induced muscle injury (EMI) reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after EMI. Design Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. Setting Clinical research center at an academic medical center and laboratory Participants Thirty-six sedentary young adults were randomly assigned to one of three groups: 1) EMI + MT (n=15; mean age ± standard error (SE): 26.6±0.3), 2) EMI only (n=10; mean age ± SE: 23.6±0.4), and 3) MT only (n=11; mean age ± SE: 25.5 ± 0.4). Intervention Participants were assigned to either EMI only (a single bout of bilateral, eccentric leg-press exercise), MT only (30-minute lower extremity massage using Swedish technique), or EMI + MT. Main outcome measures Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin-induced dilation was also assessed (NTG; 0.4 mg). Results Brachial FMD increased from baseline in the EMI + MT group and the MT only group (7.38±0.18 to 9.02±0.28%, p<0.05 and 7.77±0.25 to 10.20±0.22%, p < 0.05, respectively) at 90 minutes remaining elevated until 72 hrs. In the EMI only group FMD was reduced from baseline at 24 and 48 hrs (7.78±0.14 to 6.75±0.11%, p<0.05 and 6.53±0.11, p<0.05, respectively) returning to baseline after 72 hrs. Dilations to NTG were similar over time. Conclusions Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity EMI in sedentary young adults. PMID:24583315
Automated Terrestrial EMI Emitter Detection, Classification, and Localization
NASA Astrophysics Data System (ADS)
Stottler, R.; Ong, J.; Gioia, C.; Bowman, C.; Bhopale, A.
Clear operating spectrum at ground station antenna locations is critically important for communicating with, commanding, controlling, and maintaining the health of satellites. Electro Magnetic Interference (EMI) can interfere with these communications, so it is extremely important to track down and eliminate sources of EMI. The Terrestrial RFI-locating Automation with CasE based Reasoning (TRACER) system is being implemented to automate terrestrial EMI emitter localization and identification to improve space situational awareness, reduce manpower requirements, dramatically shorten EMI response time, enable the system to evolve without programmer involvement, and support adversarial scenarios such as jamming. The operational version of TRACER is being implemented and applied with real data (power versus frequency over time) for both satellite communication antennas and sweeping Direction Finding (DF) antennas located near them. This paper presents the design and initial implementation of TRACER’s investigation data management, automation, and data visualization capabilities. TRACER monitors DF antenna signals and detects and classifies EMI using neural network technology, trained on past cases of both normal communications and EMI events. When EMI events are detected, an Investigation Object is created automatically. The user interface facilitates the management of multiple investigations simultaneously. Using a variant of the Friis transmission equation, emissions data is used to estimate and plot the emitter’s locations over time for comparison with current flights. The data is also displayed on a set of five linked graphs to aid in the perception of patterns spanning power, time, frequency, and bearing. Based on details of the signal (its classification, direction, and strength, etc.), TRACER retrieves one or more cases of EMI investigation methodologies which are represented as graphical behavior transition networks (BTNs). These BTNs can be edited easily, and they naturally represent the flow-chart-like process often followed by experts in time pressured situations.
Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin
2018-01-01
With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.
Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin
2018-01-01
With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.
Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; ...
2016-08-26
2D titanium carbide (Ti 3C 2T x MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti 3C 2T x electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI + cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti 3C 2T x flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effectmore » between intercalated TFSI– anions and positively charged Ti 3C 2T x nanosheets or steric effect caused by de-intercalation of EMI + cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.« less
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Zhiling; Wei, Wei; Turlapaty, Anish
2012-07-01
At the United States Army's test sites, fired penetrators made of Depleted Uranium (DU) have been buried under ground and become hazardous waste. Previously, we developed techniques for detecting buried radioactive targets. We also developed approaches for locating buried paramagnetic metal objects by utilizing the electromagnetic induction (EMI) sensor data. In this paper, we apply data fusion techniques to combine results from both the radiation detection and the EMI detection, so that we can further distinguish among DU penetrators, DU oxide, and non- DU metal debris. We develop a two-step fusion approach for the task, and test it with surveymore » data collected on simulation targets. In this work, we explored radiation and EMI data fusion for detecting DU, oxides, and non-DU metals. We developed a two-step fusion approach based on majority voting and a set of decision rules. With this approach, we fuse results from radiation detection based on the RX algorithm and EMI detection based on a 3-step analysis. Our fusion approach has been tested successfully with data collected on simulation targets. In the future, we will need to further verify the effectiveness of this fusion approach with field data. (authors)« less
Applied Nanotechnology for Human Space Exploration
NASA Technical Reports Server (NTRS)
Yowell, Leonard L.
2007-01-01
A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.
Nano-scaled graphene platelets with a high length-to-width aspect ratio
Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.
2010-09-07
This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.
Monolithic short wave infrared (SWIR) detector array
NASA Technical Reports Server (NTRS)
1983-01-01
A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.
Highly-reliable fly-by-light/power-by-wire technology
NASA Technical Reports Server (NTRS)
Pitts, Felix L.
1993-01-01
This paper presents in viewgraph format an overview of the program at NASA Langley Research Center to develop fly-by-light/power-by-wire (FBL/PBW) technology. Benefits of FBL/PBW include intrinsic electromagnetic interference (EMI) immunity and lifetime immunity to signal EMI of optics; simplified certification; the elimination of hydraulics, engine bleed air, and variable speed, constant frequency drive; and weight and volume reduction. The paper summarizes a study on the electromagnetic environmental effects on FBL/PBW systems. The paper concludes with FY 1993 plans.
Satellite-Based EMI Detection, Identification, and Mitigation
NASA Astrophysics Data System (ADS)
Stottler, R.; Bowman, C.
2016-09-01
Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.
An EMI Pedagogy That Facilitates Students' Learning
ERIC Educational Resources Information Center
Chuang, Yung-Ting
2015-01-01
In recent decades, increasing numbers of EMI (English as Medium of Instructions) courses have been added to university course offerings in countries where English is not the first language, as a way of supporting university internalization and addressing the global status of English. However, some studies argue that EMI courses might affect the…
English Medium Instruction (EMI) as Linguistic Capital in Nepal: Promises and Realities
ERIC Educational Resources Information Center
Sah, Pramod Kumar; Li, Guofang
2018-01-01
This article reports on a critical qualitative case study of an EMI-based, underresourced public school in Nepal through Bourdieu's lens of linguistic capital. As the data analysis revealed, parents, students, and teachers regarded EMI as a privileged form of linguistic capital for developing advanced English skills, enhancing educational…
Learner Resistance to English-Medium Instruction Practices: A Qualitative Case Study
ERIC Educational Resources Information Center
Huang, Yi-Ping
2018-01-01
The internationalization of higher education has resulted in the growth of English-medium instruction (EMI) practices and research. The existing EMI research has documented learners' favorable attitudes toward EMI but not necessarily its practices. Learners' dissatisfaction has not been viewed as a form of resistance. Through the notion of learner…
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-21
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-01
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.
2017-12-01
Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.
Dennis, Michael L.; Scott, Christy K; Funk, Rodney R.; Nicholson, Lisa
2014-01-01
Background Smartphone applications can potentially provide recovery monitoring and support in real-time, real-life contexts. Study aims included determining feasibility of: a) Adolescents completing ecological momentary assessments (EMA) and utilizing phone-based ecological momentary interventions (EMI); and b) Using EMA and EMI data to predict substance use in the subsequent week. Methods Twenty-nine adolescents were recruited at discharge from residential treatment, regardless of their discharge status or length of stay. During the 6-week pilot, youth were prompted to complete an EMA at 6 random times per day and were provided access to a suite of recovery support EMI. Youth completed 87% of the 5,580 EMAs. Based on use in the next 7 days, EMA observations were classified into 3 risk groups: “Current Use” in the past 30 minutes (3% of observations), “Unrecognized Risk” (42%), or “Recognized Risk” (55%). All youth had observations in 2 or more risk groups and 38%, in all three. Youth accessed an EMI on-average 162 times each week. Results Participants were: 31% female, 48% African American, 21% Caucasian, 7% Hispanic, 24% Mixed/Other, average age 16.6 years. During the 90 days prior to entering treatment, youth reported using alcohol (38%), marijuana (41%), and other drugs (7%). When compared to the “Recognized Risk” group’s use in the following week (31%), both the “Unrecognized Risk” (50%, OR=2.08) and “Current Use” (96%, OR=50.30) groups reported significantly higher rates of use in the next week. When an EMI was accessed 2 or more times within the hour following an EMA, the rate of using during the next week was significantly lower than when EMIs were not accessed (32% vs. 43%, OR=0.62). Conclusions Results demonstrate the feasibility of using smartphones for recovery monitoring and support with adolescents, with potential to reduce use. PMID:25310057
EMI induced by HUT (Helsinki University of Technology) aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valmu, H.; Nikulainen, M.; Bagge, R.
1996-10-01
The different EMI behaviors of typical turboprop and piston engine aircraft were measured. As expected the level of EMI induced by piston engines were found significantly higher than the interferences induced by turboprop engines and interferences were detected in the whole band covered in the measurements (100-1000 MHz). Finally the interferences induced by the HUT remote sensing aircraft, Short SC7 Skyvan (turboprop), were analyzed and disturbances were found only in a narrow band below 100 MHz and the level of these interferences were significantly lower than the EMI induced by piston engines. 2 figs.
EMI / EMC Design for Class D Payloads (Resource Prospector / NIRVSS)
NASA Technical Reports Server (NTRS)
Forgione, Josh; Benton, Joshua Eric; Thompson, Sarah; Colaprete, Anthony
2015-01-01
EMI/EMC techniques are applied to a Class D instrument (NIRVSS) to achieve low noise performance and reduce risk of EMI/EMC testing failures and/or issues during system integration and test. Basic techniques are not terribly expensive or complex, but do require close coordination between electrical and mechanical staff early in the design process. Low-cost methods to test subsystems on the bench without renting an EMI chamber are discussed. This method was applied to the NIRVSS instrument and achieved improvements up to 59dB on conducted emissions measurements between hardware revisions.
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Implanted medical devices in the radiation environment of commercial spaceflight.
Reyes, David P; McClure, Steven S; Chancellor, Jeffery C; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M
2014-11-01
Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment. A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs. The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function. Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.
Effects of mobile phone use on specific intensive care unit devices.
Hans, Nidhi; Kapadia, Farhad N
2008-10-01
To observe the effects of mobile phone use in the vicinity of medical devices used in a critical care setting. Electromagnetic interference (EMI) was tested by using two types of mobile phones - GSM and CDMA. Mobile phones were placed at a distance of one foot from three medical devices - syringe pump, mechanical ventilator, and the bedside monitor - in switch off, standby, and talking modes of the phone. Medical devices were observed for any interference caused by the electromagnetic radiations (EMR) from the mobile phones. Out of the three medical devices that were tested, EMI occurred while using the mobile phone in the vicinity of the syringe pump, in the 'talk mode.' The mean variation observed in the calculated and delivered volume of the syringe pump was 2.66 ml. Mechanical ventilator did not show any specific adverse effects with mobile phone use in the one-foot vicinity. No other adverse effects or unexplained malfunctions or shutdown of the syringe pump, mechanical ventilator, or the bedside monitor was noted during the study period of 36 hours. EMI from mobile phones have an adverse effect on the medical devices used in critical care setup. They should be used at least one foot away from the diameter of the syringe pump.
The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT
NASA Technical Reports Server (NTRS)
da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano
2008-01-01
The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.
A Model for QoS – Aware Wireless Communication in Hospitals
Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza
2012-01-01
In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers’ error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations. PMID:23493832
A Model for QoS - Aware Wireless Communication in Hospitals.
Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza
2012-01-01
In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers' error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations.
Ramírez-González, Pedro E; Ren, Gan; Saielli, Giacomo; Wang, Yanting
2016-06-30
In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations. [VIO(2+)][BF4(-)]2 and [VIO(2+)][Tf2N(-)]2 have similar dynamics much slower than [EMI(+)][BF4(-)], and [VIO(2+)][Tf2N(-)]2 shows a more isotropic molecular distribution than [VIO(2+)][BF4(-)]2 and [EMI(+)][BF4(-)]. Additionally, we have simulated two modified viologen-based ILs to reinforce our interpretations. We conclude from the above simulation results that the rigidity of anions influences the alignment of cations and that the rigidity of cations shows a large obstacle to their rotational capacity. Moreover, we have observed a slower diffusion of [VIO(2+)][BF4(-)]2 due to the electrostatic correlations, which stabilizes the ion-cage effect.
NASA Astrophysics Data System (ADS)
Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan
2017-04-01
Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m transect line that covers a range of conductivities between 5 and 40 mS/m. Inverted calibrated EMI data of the transect line showed very similar electrical conductivity distributions and layer interfaces of the subsurface compared to reference data obtained from vertical electrical sounding (VES) measurements. These results show that a combined calibration and inversion of multi-configuration EMI data is possible when including measurements at different elevations, which will speed up the measurement process to obtain quantitative EMI data since the labor intensive electrical resistivity measurement or soil coring is not necessary anymore.
Effects of electromagnetic pulse (EMP) on cardiac pacemakers. Final report, Nov 88-Oct 89
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, V.J.
1991-11-01
The U.S. Army Harry Diamond Laboratories' (HDL's) Woodbridge Research Facility (WRF) has conducted an investigation into the effects of electromagnetic pulse (EMP) on medical electronics. This report specifically documents the findings on the effects of WRF's Army EMP Simulator Operations (AESOP) on cardiac pacemakers (CPMs). Empirical data are furnished and compared to the results of two independent analytical studies. The studies support the conclusion that damage to CPMs that might be located near the WRF boundaries is not likely. Furthermore, any upset in a CPM's operation is considered unlikely and inconsequential to the health of the CPM wearer. Cardiac pacemakersmore » (CPMs) have experienced significant technological advancements over the last decade, evolving from simple and bulky pulse generators to the small and sophisticated computerized units implanted today. With the implementation of sensitive digital electronics in modern pacemaker designs, concerns have been expressed for the possibility of an increased sensitivity of CPMs to electromagnetic interference (EMI). To some extent these concerns have abated to the increased awareness of the EMI problem by the manufacturers, as evident in better peacemaker designs and the decline in reported malfunctions due to EMI.« less
Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, C.; Liu, K.; Van Aken, Katherine L.
Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less
Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures
Lian, C.; Liu, K.; Van Aken, Katherine L.; ...
2016-04-18
Formulating room-temperature ionic liquid (RTIL) mixed electrolytes was recently proposed as an effective and convenient strategy to increase the capacitive performance of electrochemical capacitors. In this paper, we investigate the electrical double-layer (EDL) structure and the capacitance of two RTILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4), and their mixtures with onion-like carbon electrodes using experiment and classical density functional theory. The principal difference between these ionic liquids is the smaller diameter of the BF 4 – anion relative to the TFSI – anion and the EMI + cation. A volcano-shaped trend is identified for the capacitance versus themore » composition of the RTIL mixture. The mixture effect, which makes more counterions pack on and more co-ions leave from the electrode surface, leads to an increase of the counterion density within the EDL and thus a larger capacitance. Finally, these theoretical predictions are in good agreement with our experimental observations and offer guidance for designing RTIL mixtures for EDL supercapacitors.« less
The electromagnetic interference of mobile phones on the function of a γ-camera.
Javadi, Hamid; Azizmohammadi, Zahra; Mahmoud Pashazadeh, Ali; Neshandar Asli, Isa; Moazzeni, Taleb; Baharfar, Nastaran; Shafiei, Babak; Nabipour, Iraj; Assadi, Majid
2014-03-01
The aim of the present study is to evaluate whether or not the electromagnetic field generated by mobile phones interferes with the function of a SPECT γ-camera during data acquisition. We tested the effects of 7 models of mobile phones on 1 SPECT γ-camera. The mobile phones were tested when making a call, in ringing mode, and in standby mode. The γ-camera function was assessed during data acquisition from a planar source and a point source of Tc with activities of 10 mCi and 3 mCi, respectively. A significant visual decrease in count number was considered to be electromagnetic interference (EMI). The percentage of induced EMI with the γ-camera per mobile phone was in the range of 0% to 100%. The incidence of EMI was mainly observed in the first seconds of ringing and then mitigated in the following frames. Mobile phones are portable sources of electromagnetic radiation, and there is interference potential with the function of SPECT γ-cameras leading to adverse effects on the quality of the acquired images.
Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.
Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade
2017-11-01
Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.
NASA Technical Reports Server (NTRS)
Valdez, A.
1999-01-01
This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Electromagnetic Interference (EMI), Electromagnetic Susceptibility, and Electromagnetic Compatibility (EMC) qualification test for the Meteorological Satellite (METSAT) and the Meteorological Operation Platform (METOP) projects. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/5D. This document describes the EMI/EMC test performed by Aerojet and it is presented in the following manner: Section-1 contains introductory material and a brief summary of the test results. Section 2 contains more detailed descriptions of the test plan, test procedure, and test results for each type of EMI/EMC test conducted. Section 3 contains supplementary information that includes test data sheets, plots, and calculations collected during the qualification testing.
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
NASA Astrophysics Data System (ADS)
Yang, Le; Wang, Shuo; Feng, Jianghua
2017-11-01
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.
Application of nomographs for analysis and prediction of receiver spurious response EMI
NASA Astrophysics Data System (ADS)
Heather, F. W.
1985-07-01
Spurious response EMI for the front end of a superheterodyne receiver follows a simple mathematic formula; however, the application of the formula to predict test frequencies produces more data than can be evaluated. An analysis technique has been developed to graphically depict all receiver spurious responses usig a nomograph and to permit selection of optimum test frequencies. The discussion includes the math model used to simulate a superheterodyne receiver, the implementation of the model in the computer program, the approach to test frequency selection, interpretation of the nomographs, analysis and prediction of receiver spurious response EMI from the nomographs, and application of the nomographs. In addition, figures are provided of sample applications. This EMI analysis and prediction technique greatly improves the Electromagnetic Compatibility (EMC) test engineer's ability to visualize the scope of receiver spurious response EMI testing and optimize test frequency selection.
NASA Technical Reports Server (NTRS)
Swanson, David J.
1990-01-01
The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.
Convergent Validity of the Early Memory Index in Two Primary Care Samples.
Porcerelli, John H; Cogan, Rosemary; Melchior, Katherine A; Jasinski, Matthew J; Richardson, Laura; Fowler, Shannon; Morris, Pierre; Murdoch, William
2016-01-01
Karliner, Westrich, Shedler, and Mayman (1996) developed the Early Memory Index (EMI) to assess mental health, narrative coherence, and traumatic experiences in reports of early memories. We assessed the convergent validity of EMI scales with data from 103 women from an urban primary care clinic (Study 1) and data from 48 women and 24 men from a suburban primary care clinic (Study 2). Patients provided early memory narratives and completed self-report measures of psychopathology, trauma, and health care utilization. In both studies, lower scores on the Mental Health scale and higher scores on the Traumatic Experiences scale were related to higher scores on measures of psychopathology and childhood trauma. Less consistent associations were found between the Mental Health and Traumatic Experiences scores and measures of health care utilization. The Narrative Coherence scale showed inconsistent relationships across measures in both samples. In analyses assessing the overall fit between hypothesized and actual correlations between EMI scores and measures of psychopathology, severity of trauma symptoms, and health care utilization, the Mental Health scale of the EMI demonstrated stronger convergent validity than the EMI Traumatic Experiences scale. The results provide support for the convergent validity of the Mental Health scale of the EMI.
Monitoring of bone healing by piezoelectric-EMI method
NASA Astrophysics Data System (ADS)
Mazlina, M. H.; Sarpinah, Bibi; Tawie, Rudy; Daho, Claira Dalislone; Annuar, Ishak
2016-02-01
Smart Piezoelectric devices which have excellent piezoelectric properties have been employed for various sensor and actuators applications. The work presented here is an attempt to demonstrate the feasibility of bone healing monitoring by using piezoelectric-electromechanical impedance (EMI) method that have several advantages such as low cost, portable, light weight and simplicity in measurement. A Piezoelectric sensor (PZT) has been widely used in damage detection of various structures including concrete, pipes and bones due to their unique sensing and actuating properties. The EMI technique has emerged as a universal Structural Health Monitoring (SHM) tool suitable for almost all engineering materials and structures. The method used for this proposed study consists of put healing agent in the host structure in particular cracks bone to be monitored by PZT-needle sensor which is embedded to the host structure. The measurements were taken in the frequency range between 0.04 to 100 kHz at 1 kHz interval using AD5933 evaluation board. The signals retrieved from the AD5933 evaluation board, were quantify and analyse to obtain Root Mean Square Deviation (RMSD) percentage value. Measurements were taken every hour for 12 hours. The result from the study shows the feasibility of the piezoelectric-EMI method to effectively detect changes during bone-cracks healing process until the cracks bone is fully recovered.
Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies
NASA Astrophysics Data System (ADS)
Hamel, Caroline; Pinet, Éric
2006-02-01
We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.
NASA Astrophysics Data System (ADS)
Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing
2018-05-01
The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.
NASA Astrophysics Data System (ADS)
Gyoda, Koichi; Shinozuka, Takashi
1995-06-01
An open-field test site with measurement equipment, a turn table, antenna positioners, and measurement auxiliary equipment was remodelled at the CRL north-site. This paper introduces the configuration, specifications and characteristics of this new open-field test site. Measured 3-m and 10-m site attenuations are in good agreement with theoretical values, and this means that this site is suitable for using 3-m and 10-m method EMI/EMC measurements. The site is expected to be effective for antenna measurement, antenna calibration, and studies on EMI/EMC measurement methods.
Dhumal, Nilesh R; Kiefer, Johannes; Turton, David; Wynne, Klaas; Kim, Hyung J
2017-05-11
Dielectric relaxation of the ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate (EMI + ETS - ), is studied using molecular dynamics (MD) simulations. The collective dynamics of polarization arising from cations and anions are examined. Characteristics of the rovibrational and translational components of polarization dynamics are analyzed to understand their respective roles in the microwave and terahertz regions of dielectric relaxation. The MD results are compared with the experimental low-frequency spectrum of EMI + ETS - , obtained via ultrafast optical Kerr effect (OKE) measurements.
2015-07-01
electromagnetic induction (EMI) sensor. A total of 2,116 targets were selected from the dynamic data for cued investigation, and 1,398 targets were...geophysical mapping DSB Defense Science Board EE/CA Engineering Evaluation/Cost Analysis EMI electromagnetic induction ESTCP Environmental Security...performed a live site demonstration project using the Geometrics MetalMapper advanced electromagnetic induction (EMI) sensor at the former Southwestern
Advances in Classification Methods for Military Munitions Response
2010-12-01
Response Herb Nelson Objective of the Course Provide an update on the sensors , methods, and status of the classification of military munitions...advanced EMI sensors 2Advances in Classification - Introduction Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Electromagnetics (EM): Fundamentals and Parameter Extraction Stephen Billings EM Module Outline ● EMI Fundamentals How EMI sensors work and what they measure
EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program
1996-08-27
communication range is reduced, computers malfunction, or monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their...electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial electromagnetic environment...monitoring systems fail. Various electric vehicles ( EVs ) were measured to evaluate their potential EMI emissions when used in today’s hostile commercial
Genetic link between EMI and EMII: An adakite connection
NASA Astrophysics Data System (ADS)
Shimoda, Gen
2009-10-01
Geochemical modeling of the origin of enriched mantle I (EMI) and enriched mantle II (EMII) is conducted from the perspective of adakite production. For the model, the average composition of adakites is re-estimated from published data for eighteen trace elements. Although the concentrations determined for highly incompatible elements are very high (about 100 times of primitive mantle), these high concentrations can be explained by melting of oceanic crust without sediment contribution. The compiled data further suggest that the mantle-slab melt reaction would play a major role in the production of basic adakites. In addition, crystal fractionation in the magma chamber should produce additional chemical variations in adakites, in particular for acidic adakites. To examine the effect of chemical variations on the isotopic composition of recycled adakites, broad correlations between trace elements and SiO 2 concentrations, and the MELTS program are employed. The results suggest that recycling of a basic adakite (SiO 2 = 55%) can account for EMI isotopic signatures with storage times of about 2.0 Gyr. The isotopic compositions of less-basic adakites and their evolved magmas shift towards EMII values with increasing SiO 2 concentrations. In particular, evolved acidic adakite can yield EMII isotopic signatures. These lines of evidence suggest that the recycling of adakites at various stages of evolution can conceivably produce the entire isotopic range between EMI and EMII reservoirs. Consequently, adakite recycling via sediment subduction or subduction erosion can account for the origins of EMI and EMII reservoirs. In this context, residual garnet under high pressure and plagioclase fractionation at low pressure might play an essential role in producing the chemical variations among adakites that ultimately govern the isotopic compositions of these geochemical reservoirs.
Burri, Haran; Mondouagne Engkolo, Louis Paulin; Dayal, Nicolas; Etemadi, Abdul; Makhlouf, Anne-Marie; Stettler, Carine; Trentaz, Florence
2016-05-01
Manufacturers of implantable cardioverter defibrillators (ICDs) recommend that cell phones be maintained at a distance of ∼15 cm from the implanted device in order to avoid risk of dysfunction due to electromagnetic interference (EMI). Data relating to this issue are outdated and do not reflect modern technology. Our aim was to evaluate whether EMI is still an issue with contemporary ICDs and smartphones. Consecutive patients implanted with a wireless-enabled ICD were tested for potential interference with two models of recent 4G smartphones in conditions intended to maximize risk of EMI. A magnet effect (due to the phone speakers) was tested by placing the smartphones in the standby mode directly over the ICD generator. The presence of EMI artefacts on the real-time electrograms was evaluated by placing the smartphones in the standby, dialling, and operating modes directly over the generator casing and over the parasternal region in the vicinity of the ventricular lead. A total of 63 patients equipped with 29 different models of single, dual, or biventricular ICDs from five major manufacturers were included. None of the patients showed any evidence of interference with the smartphones during any of the 882 tests. The risk of EMI between modern smartphones and contemporary ICDs is low. This is probably due to the filters incorporated in the ICDs and low emission by the phones, as well as the small size of the magnets in the smartphones tested. NCT02330900 (http://www.clinicaltrials.gov). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Black, Christopher; McMichael, Ian; Riggs, Lloyd
2005-06-01
Electromagnetic induction (EMI) sensors and magnetometers have successfully detected surface laid, buried, and visually obscured metallic objects. Potential military activities could require detection of these objects at some distance from a moving vehicle in the presence of metallic clutter. Results show that existing EMI sensors have limited range capabilities and suffer from false alarms due to clutter. This paper presents results of an investigation of an EMI sensor designed for detecting large metallic objects on a moving platform in a high clutter environment. The sensor was developed by the U.S. Army RDECOM CERDEC NVESD in conjunction with the Johns Hopkins University Applied Physics Laboratory.
EMI survey for maritime satellite 1535-1645-MHz shipboard terminal
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Brandel, D. L.; Hill, J. S.
1977-01-01
A 15,690-ton commercial container ship was selected as lead ship for an onboard electromagnetic-interference (EMI) survey prior to installation of 1535-1645-MHz (L-Band) shipboard terminals for communication via a maritime satellite. In general, the EMI survey revealed tolerable interference levels on board ship. Radiometer measurements indicate antenna-noise temperatures less than 70 K at elevation angles of 5 deg and greater at 1559 MHz at the output terminals of the 1.2-m diameter parabolic-dish antenna for the L-band shipboard terminal. Other EMI measurements include field intensity from 3-cm and 10-cm wavelength pulse radars, and conducted-emission tests of primary power lines to both onboard radars.
NASA Astrophysics Data System (ADS)
Yi, Yong; Chen, Zhengying; Wang, Liming
2018-05-01
Corona-originated discharge of DC transmission lines is the main reason for the radiated electromagnetic interference (EMI) field in the vicinity of transmission lines. A joint time-frequency analysis technique was proposed to extract the radiated EMI current (excitation current) of DC corona based on corona current statistical measurements. A reduced-scale experimental platform was setup to measure the statistical distributions of current waveform parameters of aluminum conductor steel reinforced. Based on the measured results, the peak value, root-mean-square value and average value with 9 kHz and 200 Hz band-with of 0.5 MHz radiated EMI current were calculated by the technique proposed and validated with conventional excitation function method. Radio interference (RI) was calculated based on the radiated EMI current and a wire-to-plate platform was built for the validity of the RI computation results. The reason for the certain deviation between the computations and measurements was detailed analyzed.
ERIC Educational Resources Information Center
Baker, Will; Hüttner, Julia
2017-01-01
The rapid increase in English medium instruction (EMI) in higher education has resulted in the need for a greater evidence base documenting EMI in practice spanning a range of settings. Studies of EMI focusing on linguistic issues are beginning to emerge but there are few comparative studies looking at multiple sites, levels and stakeholders. In…
Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch
NASA Astrophysics Data System (ADS)
Jiang, Liang; Betts, Anthony; Kennedy, David; Jerrams, Stephen
2016-07-01
Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO3, BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated.
NASA Astrophysics Data System (ADS)
Brogi, Cosimo; Huisman, Johan Alexander; Kaufmann, Manuela Sarah; von Hebel, Christian; van der Kruk, Jan; Vereecken, Harry
2017-04-01
Soil subsurface structures can play a key role in crop performance, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI have been shown to be able of providing information about dominant shallow subsurface features. However, previous work with EMI has typically not reached beyond the field scale. The objective of this study is to use large-scale multi-configuration EMI to characterize patterns of soil structural organization (layering and texture) and the associated impact on crop vegetation at the km2 scale. For this, we carried out an intensive measurement campaign and collected high spatial resolution multi-configuration EMI data on an agricultural area of approx. 1 km2 (102 ha) near Selhausen (North Rhine-Westphalia, Germany) with a maximum depth of investigation of around 2.5 m. We measured using two EMI instruments simultaneously with a total of nine coil configurations. The instruments were placed inside polyethylene sleds that were pulled by an all-terrain-vehicle along parallel lines with a spacing of 2 to 2.5 m. The driving speed was between 5 and 7 km h-1 and we used a 0.2 Hz sampling frequency to obtain an in-line resolution of approximately 0.3 m. The survey area consists of almost 50 different fields managed in different way. The EMI measurements were collected between April and December 2016 within a few days after the harvest of each field. After data acquisition, EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid. The resulting EMI maps allowed us to identify three main areas with different subsurface heterogeneities. The differences between these areas are likely related to the late quaternary geological history (Pleistocene and Holocene) of the area that resulted in spatially variable soil texture and layering, which has a strong impact on spatio-temporal soil water content variability. The high resolution surveys also allowed us to identify small scale geomorphological structures as well as anthropogenic activities such as soil management and drainage networks carried out in the last 150 years. To identify areas with similar subsurface structures with high spatial resolution, we applied multiband image classification using the nine coil configurations as bands of a single image. We compared both supervised and unsupervised classification and obtained promising preliminary results showing a good degree of conformity between EMI supervised classification maps and observed patterns in plant productivity.
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John
2015-05-01
This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.
Arco-Tirado, J L; Fernández-Martín, F; Ramos-García, A M; Littvay, L; Villoria, J; Naranjo, J A
2018-06-01
This observational study intends to estimate the causal effects of an English as a Medium of Instruction (EMI) program (as predictor) on students Grade Point Average (GPA) (as outcome) at a particular University in Spain by using a Counterfactual Impact Evaluation (CIE). The need to address the crucial question of causal inferences in EMI programs to produce credible evidences of successful interventions contrasts, however, with the absence of experimental or quasi-experimental research and evaluation designs in the field. CIE approach is emerging as a methodologically viable solution to bridge that gap. The program evaluated here consisted in delivering an EMI program in a Primary Education Teacher Training Degree group. After achieving balance on the observed covariates and recreating a situation that would have been expected in a randomized experiment, three matching approaches such as genetic matching, nearest neighbor matching and Coarsened Exact Matching were used to analyze observational data from a total of 1288 undergraduate students, including both treatment and control group. Results show unfavorable effects of the bilingual group treatment condition. Potential interpretations and recommendations are provided in order to strengthen future causal evidences of bilingual education programs' effectiveness in Higher Education. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Estimation of fatigue life using electromechanical impedance technique
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Soh, Chee Kiong
2010-04-01
Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.
2012-01-01
discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI models such as, the...detection and discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI...Shubitidze of Sky Research and Dartmouth College, conceived, implemented , and tested most of the approaches presented in this report. He developed
Technique for Geolocation of EMI Emitters by O3B Satellites
2016-06-01
1. Why EMI/Jamming Is an Issue for the DOD ..............................6 2. How Jamming Occurs...professor in the field. I would also like to thank O3b Networks, particularly Ken Mentasti and J.J. Shaw , for their extensive support by providing...breaking the primary research question into pieces and developing the subject, it is first important to develop what SATCOM EMI is and why it is an issue
EMI from solar panels and inverters
NASA Astrophysics Data System (ADS)
1983-01-01
Results are given of an exploratory investigation to ascertain the potential of electromagnetic interference (EMI) caused by radiation from photovoltaic (PV) systems. This includes a determination of the appropriate parameters to be measured and a review of present standards with emphasis on the FCC docket on incidental radiators. It also includes small residential installations having roof-mounted PV arrays. The results will be used to make recommendations as to what further work, if any, is needed to ensure that EMI from a PV system is negligible. Measured data so far show that the inverters in the solar-panel system tested caused severe EMI problems in the AM broadcast band (0.5 to 1.6 MH2), while FM and television reception was not significantly affected.
Mobile phone interference with medical equipment and its clinical relevance: a systematic review.
Lawrentschuk, Nathan; Bolton, Damien M
2004-08-02
To conduct a systematic review of studies on clinically relevant digital mobile phone electromagnetic interference with medical equipment. MEDLINE and SUMSEARCH were searched for the period 1966-2004. The Cochrane Library and Database of Abstracts of Reviews of Effects were also searched for systematic reviews. Studies were eligible if published in a peer-reviewed journal in English, and if they included testing of digital mobile phones for clinically relevant interference with medical equipment used to monitor or treat patients, but not implantable medical devices. As there was considerable heterogeneity in medical equipment studied and the conduct of testing, results were summarised rather than subjected to meta-analysis. Clinically relevant electromagnetic interference (EMI) secondary to mobile phones potentially endangering patients occurred in 45 of 479 devices tested at 900 MHz and 14 of 457 devices tested at 1800 MHz. However, in the largest studies, the prevalence of clinically relevant EMI was low. Most clinically relevant EMI occurred when mobile phones were used within 1 m of medical equipment. Although testing was not standardised between studies and equipment tested was not identical, it is of concern that at least 4% of devices tested in any study were susceptible to clinically relevant EMI. All studies recommend some type of restriction of mobile phone use in hospitals, with use greater than 1 m from equipment and restrictions in clinical areas being the most common.
APC/C--the master controller of origin licensing?
Sivaprasad, Umasundari; Machida, Yuichi J; Dutta, Anindya
2007-02-23
DNA replication must be tightly controlled to prevent initiation of a second round of replication until mitosis is complete. So far, components of the pre-replicative complex (Cdt1, Cdc6 and geminin) were considered key players in this regulation. In a new study, Machida and Dutta have shown that depletion of Emi1 caused cells to replicate their DNA more than once per cell cycle 1. This effect was dependent on the ability of Emi1 to inhibit the APC/C. In addition to its role in regulating entry into mitosis, oscillation of APC/C activity regulates pre-RC formation: high APC/C activity in late M/G1 allows pre-RC formation and low APC/C activity in S/G2 prevents pre-RC formation for a second time thereby preventing rereplication. Each redundant pathway to prevent rereplication is dependent on regulating one of the pre-RC components, and all of the pathways are co-regulated by Emi1 through the APC/C. In this commentary we discuss how this new role of Emi1 adds to our understanding of the regulation of replication initiation. We also review the literature to analyze whether APC/C has a role in regulating endoreduplication (a normal state of polyploidy in some differentiated cells). Similarly a role of premature APC/C activation in genomic instability of tumors is discussed.
Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui
2016-01-01
Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697
Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui
2016-01-01
Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.
Realization of the electrical Sentinel 4 detector integration
NASA Astrophysics Data System (ADS)
Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.
2017-09-01
The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided
Bicket, Mark C; Hanna, George M
2016-02-01
Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.
A new EMI system for detection and classification of challenging targets
NASA Astrophysics Data System (ADS)
Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.
2013-06-01
Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.
Selective endosomal microautophagy is starvation-inducible in Drosophila.
Mukherjee, Anindita; Patel, Bindi; Koga, Hiroshi; Cuervo, Ana Maria; Jenny, Andreas
2016-11-01
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.
Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.
2000-01-01
A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.
Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility
NASA Astrophysics Data System (ADS)
Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun
2016-10-01
Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)
Operational and biological effects zones from base stations of cellular telephony
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geronikolou, St. A., E-mail: sgeronik@bioacademy.gr; Zimeras, S., E-mail: zimste@aegean.gr; Tsitomeneas, S. Th., E-mail: stsit@teipir.gr
2016-03-25
The possible environmental impacts of cellular base stations are operational and biological. The operational effects comprise Εlectro-Μagnetic Interference (EMI), lightning alterations and aesthetic degradation. Both thermal and non-thermal biological effects depend on the absorption of UHF radiofrequencies used. We measured, calculated and estimated the impact zones. The results are: (a) The lightning lethal zone equal to the antenna height, (b) the EMI impact in a zone up to 40m and (c) the ICNIRP’s limits exceed to a zone of 8∼20m into the antenna’s radiation pattern (for 2G GSM and 3G UMTS station). Finally we conclude the adverse effects must notmore » expected in a zone of more than 150m from the radiated antenna, whereas, there is possibility of stochastic effects in intermediate distances (20/40-150m).« less
Science Instrument Sensitivities to Radioisotope Power System Environment
NASA Technical Reports Server (NTRS)
Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June
2016-01-01
Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.
Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements
NASA Astrophysics Data System (ADS)
Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio
2018-02-01
This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This calibration strategy consists of a linear mapping of the original inversion results into a new conductivity spatial distribution with the coefficients of the transformation uniquely based on the statistics of the two original measurement datasets (EMI and TDR conductivities).
NASA Technical Reports Server (NTRS)
Shooman, Martin L.
1994-01-01
This report presents the methodology and results of a subjective study done by Polytechnic University to investigate Electromagnetic Interference (EMI) events on aircraft. The results cover various types of EMI from on-board aircraft systems, passenger carry-on devices, and externally generated disturbances. The focus of the study, however, was on externally generated EMI, termed High Intensity Radiated Fields (HIRF), from radars, radio and television transmitters, and other man-made emitters of electromagnetic energy. The study methodology used an anonymous questionnaire distributed to experts to gather the data. This method is known as the Delphi or Consensus Estimation technique. The questionnaire was sent to an expert population of 230 and there were 57 respondents. Details of the questionnaire, a few anecdotes, and the statistical results of the study are presented.
NASA Astrophysics Data System (ADS)
Nasrollahi, Amir; Ma, Zhaoyun; Rizzo, Piervincenzo
2017-04-01
In this paper we present a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. The paradigm uses guided ultrasonic waves (GUWs) in pitch-catch mode and EMI simultaneously. The two methodologies are driven by the same sensing/hardware/software unit. To assess the feasibility of this unified system an aluminum plate was monitored for varying damage location. Damage was simulated by adding small masses to the plate. The results associated with pitch-catch GUW testing mode were used in ultrasonic tomography, and statistical analysis was used to detect the damages using the EMI measurements. The results of GUW and EMI monitoring show that the proposed system is robust and can be developed further to address the challenges associated with the SHM of complex structures.
Interference by new-generation mobile phones on critical care medical equipment.
van Lieshout, Erik Jan; van der Veer, Sabine N; Hensbroek, Reinout; Korevaar, Johanna C; Vroom, Margreeth B; Schultz, Marcus J
2007-01-01
The aim of the study was to assess and classify incidents of electromagnetic interference (EMI) by second-generation and third-generation mobile phones on critical care medical equipment. EMI was assessed with two General Packet Radio Service (GPRS) signals (900 MHz, 2 W, two different time-slot occupations) and one Universal Mobile Telecommunications System (UMTS) signal (1,947.2 MHz, 0.2 W), corresponding to maximal transmit performance of mobile phones in daily practice, generated under controlled conditions in the proximity of 61 medical devices. Incidents of EMI were classified in accordance with an adjusted critical care event scale. A total of 61 medical devices in 17 categories (27 different manufacturers) were tested and demonstrated 48 incidents in 26 devices (43%); 16 (33%) were classified as hazardous, 20 (42%) as significant and 12 (25%) as light. The GPRS-1 signal induced the most EMI incidents (41%), the GRPS-2 signal induced fewer (25%) and the UMTS signal induced the least (13%; P < 0.001). The median distance between antenna and medical device for EMI incidents was 3 cm (range 0.1 to 500 cm). One hazardous incident occurred beyond 100 cm (in a ventilator with GRPS-1 signal at 300 cm). Critical care equipment is vulnerable to EMI by new-generation wireless telecommunication technologies with median distances of about 3 cm. The policy to keep mobile phones '1 meter' from the critical care bedside in combination with easily accessed areas of unrestricted use still seems warranted.
The clinical engineer: a ghost hunter or manager of EMI.
Paperman, W D; David, Y
1998-01-01
The management of EMI and risk control in the clinical environment presents the clinical engineer with new challenges and responsibilities. The keys to successfully meeting these challenges and responsibilities are education, cooperation, and the ability to be creative in the quest for solutions to problems of ever-increasing complexity. Experience in detecting and analyzing test results, which is gained over time, enhances the skills that clinical engineering professionals bring to this challenge. Attention to EMI risks has been influenced by a number of factors, including a spirit of cooperation between manufacturers and users, concerns over patient care and perceived product efficacy, and an increasing number of regulations by European and U.S. regulatory agencies. As a result, device emissions are being reduced and device immunity to EMI is improving. Further improvements in device immunity are still needed. The radio spectrum with regard to intentional radiators is in a continual state of flux. As industry attempts to improve labor efficiency through the use of radio communications, new and higher-powered sources of RF--both internal and external to the physical plant--appear each day in the clinical environment. Since the distance between intentional radiators and potentially susceptible devices is usually beyond the control of an institution, industry must continue to reduce device susceptibility. There should be a stronger dialogue between institutions (even if they do not have proactive EMI reduction programs) and manufacturers to identify ways to improve device immunity to EMI and to increase product designers' and users' awareness of potential problems.
Evaluation of cable tension sensors of FAST reflector from the perspective of EMI
NASA Astrophysics Data System (ADS)
Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao
2016-06-01
The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.
Interference by new-generation mobile phones on critical care medical equipment
van Lieshout, Erik Jan; van der Veer, Sabine N; Hensbroek, Reinout; Korevaar, Johanna C; Vroom, Margreeth B; Schultz, Marcus J
2007-01-01
Introduction The aim of the study was to assess and classify incidents of electromagnetic interference (EMI) by second-generation and third-generation mobile phones on critical care medical equipment. Methods EMI was assessed with two General Packet Radio Service (GPRS) signals (900 MHz, 2 W, two different time-slot occupations) and one Universal Mobile Telecommunications System (UMTS) signal (1,947.2 MHz, 0.2 W), corresponding to maximal transmit performance of mobile phones in daily practice, generated under controlled conditions in the proximity of 61 medical devices. Incidents of EMI were classified in accordance with an adjusted critical care event scale. Results A total of 61 medical devices in 17 categories (27 different manufacturers) were tested and demonstrated 48 incidents in 26 devices (43%); 16 (33%) were classified as hazardous, 20 (42%) as significant and 12 (25%) as light. The GPRS-1 signal induced the most EMI incidents (41%), the GRPS-2 signal induced fewer (25%) and the UMTS signal induced the least (13%; P < 0.001). The median distance between antenna and medical device for EMI incidents was 3 cm (range 0.1 to 500 cm). One hazardous incident occurred beyond 100 cm (in a ventilator with GRPS-1 signal at 300 cm). Conclusion Critical care equipment is vulnerable to EMI by new-generation wireless telecommunication technologies with median distances of about 3 cm. The policy to keep mobile phones '1 meter' from the critical care bedside in combination with easily accessed areas of unrestricted use still seems warranted. PMID:17822524
Natchev, Nikolay; Tzankov, Nikolay; Werneburg, Ingmar; Heiss, Egon
2015-01-01
Almost all extant testudinids are highly associated with terrestrial habitats and the few tortoises with high affinity to aquatic environments are found within the genus Manouria. Manouria belongs to a clade which forms a sister taxon to all remaining tortoises and is suitable as a model for studying evolutionary transitions within modern turtles. We analysed the feeding behaviour of Manouria emys and due to its phylogenetic position, we hypothesise that the species might have retained some ancestral features associated with an aquatic lifestyle. We tested whether M. emys is able to feed both in aquatic and terrestrial environments. In fact, M. emys repetitively tried to reach submerged food items in water, but always failed to grasp them-no suction feeding mechanism was applied. When feeding on land, M. emys showed another peculiar behaviour; it grasped food items by its jaws-a behaviour typical for aquatic or semiaquatic turtles-and not by the tongue as generally accepted as the typical feeding mode in all tortoises studied so far. In M. emys, the hyolingual complex remained retracted during all food uptake sequences, but the food transport was entirely lingual based. The kinematical profiles significantly differed from those described for other tortoises and from those proposed from the general models on the function of the feeding systems in lower tetrapods. We conclude that the feeding behaviour of M. emys might reflect a remnant of the primordial condition expected in the aquatic ancestor of the tortoises.
Emergency management training program: Guide to good practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-07-01
The Emergency Management Training Program Guide to Good Practice is a project of the Training Resources and Data Exchange (TRADE) Emergency Management Issues Special Interest Group (EMI SIG). EMI SIG members expressed interest in a resource to assist in development of a comprehensive emergency management training program. This publication provides guidelines, methods, and materials for EMI SIG members to use, assisting in complete and effective emergency management programs. The purposes of the Emergency Management Training Program Guide to Good Practice are: Provide guidance in the development and management of Emergency Management (EM) training programs; Assist EM trainers to incorporate componentsmore » of the DOE Emergency Management System philosophy of planning, preparedness, readiness assurance, and response into EM training programs; Help EM training managers meet EM training requirements and conditions established by current regulations and policies; Supplement other TRADE EMI SIG documents and complement individual facility training documents. This program is designed for emergency management personnel who are responsible for providing or overseeing EM training but who do not necessarily possess expertise in developing training. It provides good practices from the manager's point of view on how to produce, administer, and document facility EM training programs in the spirit of the DOE EM system philosophy. Basic guidance is also included for personnel who design, develop, deliver, and/or evaluate EM training programs or parts. This guidance includes key points of EM training programs and identifies other documents that contain useful and/or more detailed training information.« less
Emergency management training program: Guide to good practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-07-01
The Emergency Management Training Program Guide to Good Practice is a project of the Training Resources and Data Exchange (TRADE) Emergency Management Issues Special Interest Group (EMI SIG). EMI SIG members expressed interest in a resource to assist in development of a comprehensive emergency management training program. This publication provides guidelines, methods, and materials for EMI SIG members to use, assisting in complete and effective emergency management programs. The purposes of the Emergency Management Training Program Guide to Good Practice are: Provide guidance in the development and management of Emergency Management (EM) training programs; Assist EM trainers to incorporate componentsmore » of the DOE Emergency Management System philosophy of planning, preparedness, readiness assurance, and response into EM training programs; Help EM training managers meet EM training requirements and conditions established by current regulations and policies; Supplement other TRADE EMI SIG documents and complement individual facility training documents. This program is designed for emergency management personnel who are responsible for providing or overseeing EM training but who do not necessarily possess expertise in developing training. It provides good practices from the manager`s point of view on how to produce, administer, and document facility EM training programs in the spirit of the DOE EM system philosophy. Basic guidance is also included for personnel who design, develop, deliver, and/or evaluate EM training programs or parts. This guidance includes key points of EM training programs and identifies other documents that contain useful and/or more detailed training information.« less
Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.
Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun
2016-03-21
Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
NASA Astrophysics Data System (ADS)
Gresil, Matthieu; Yu, Lingyu; Sutton, Mike; Guo, Siming; Pollock, Patrick
2012-04-01
The advancement of composite materials in aircraft structures has led to on increased need for effective structural health monitoring (SHM) technologies that are able to detect and assess damage present in composites structures. The work presented in this paper is interested in understanding using self-sensing piezoelectric wafer active sensors (PWAS) to conduct electromechanical impedance spectroscopy (EMIS) in glass fiber reinforced plastic (GFRP) to perform structures health monitoring. PWAS are bonded to the composite material and the EMIS method is used to analyze the changes in the structural resonance and anti-resonance. As the damage progresses in the specimen, the impedance spectrum will change. In addition, multi-physics based finite element method (MP-FEM) is used to model the electromechanical behavior of a free PWAS and its interaction with the host structure on which it is bonded. The MPFEM permits the input and the output variables to be expressed directly in electric terms while the two way electromechanical conversion is done internally in the MP_FEM formulation. To reach the goal of using the EMIS approach to detect damage, several damages models are generated on laminated GFRP structures. The effects of the modeling are carefully studied through experimental validation. A good match has been observed for low and very high frequencies.
Morison, Gordon; Boreham, Philip
2018-01-01
Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030
EMI datalib - joining the best of ARC and gLite data libraries
NASA Astrophysics Data System (ADS)
Nilsen, J. K.; Cameron, D.; Devresse, A.; Molnar, Zs; Nagy, Zs; Salichos, M.
2012-12-01
To manage data in the grid, with its jungle of protocols and enormous amount of data in different storage solutions, it is important to have a strong, versatile and reliable data management library. While there are several data management tools and libraries available, they all have different strengths and weaknesses, and it can be hard to decide which tool to use for which purpose. EMI is a collaboration between the European middleware providers aiming to take the best out of each middleware to create one consolidated, all-purpose grid middleware. When EMI started there were two main tools for managing data - gLite had lcg util and the GFAL library, ARC had the ARC data tools and libarcdata2. While different in design and purpose, they both have the same goal; to manage data in the grid. The design of the new EMI datalib was ready by the end of 2011, and a first prototype is now implemented and going through a thorough testing phase. This presentation will give the latest results of the consolidated library together with an overview of the design, test plan and roadmap of EMI datalib.
Behavior of piezoelectric wafer active sensor in various media
NASA Astrophysics Data System (ADS)
Kamas, Tuncay
The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts with respect to the developments in EMIS methods and GWP methods. In the first part, analytical and finite element models have been developed for the simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane mode. Piezoelectric material degradation on certain electrical and mechanical properties as the temperature increases is simulated by our analytical model for in-plane circular PWAS-EMIS that agrees well with the sets of experiments. Then the thickness mode PWAS-EMIS model was further developed for a PWAS resonator bonded on a plate-like structure. The latter analytical model was to determine the resonance frequencies for the normal mode expansion method through the global matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. The proof mass concept was adapted to shift the systems resonance frequencies in thickness mode. PWAS in contact with liquid medium on one of its surface has been analytically modeled and simulated the electro-mechanical response of PWAS with various liquids with different material properties such as the density and the viscosity. The second part discusses the guided wave propagation in elastic structures. The feature guided waves in thick structures and in high frequency range are discussed considering weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves and their interaction with damages in thick plates and thick walled pipes are examined by the finite element models and experiments. The dissertation finishes with a summary of contributions followed by conclusions, and suggestions for future work.
NASA Technical Reports Server (NTRS)
Leung, P. L.
1984-01-01
This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.
NASA Astrophysics Data System (ADS)
André, F.; Lambot, S.; Moghadas, D.; Vereecken, H.
2009-04-01
Electromagnetic induction (EMI) has been widely used since the 70s to retrieve soil physico-chemical properties through the measurement of soil electrical conductivity. Soil electrical conductivity integrates several factors, mainly soil water content, salinity, clay content and temperature, and to a lesser extent, mineralogy, porosity, structure, cation exchange capacity, organic matter and bulk density. EMI has been shown to be useful for a wide range of environmental applications. EMI is non invasive and individual measurements are almost instantaneous, which permits to characterise large areas with fine spatial and/or temporal resolutions. Nevertheless, current EMI systems present some limitations. First, EMI usually operates at a single or at a limited number of fixed frequencies, which limits the information that can be retrieved from the subsurface. In addition, the calibration of existing commercial sensors is generally rather empirical and not accurate, which reduces the reliability of the data. Finally, the data processing techniques that are used to retrieve the soil electrical properties from EMI data often rely on strong simplifying assumptions with respect to wave propagation through the antenna-air-soil system. Performing EMI measurements with Vector Network Analyzer (VNA) technology would overcome a part of these limitations, allowing to work simultaneously at a wide range of frequencies and to readily perform robust calibrations, which are defined as an international standard. On that basis, we have developed a new algorithm for off-ground, zero-offset, frequency domain EMI based on full-waveform inverse modelling. The EMI forward model is based on a linear system of complex transfer functions for describing the loop antenna and its interactions with soil and an exact solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The approach has been validated in laboratory conditions for measurements at different heights above a perfect electric conductor (copper sheet). Although VNA technology has a relatively wide dynamic range, regular loop antennas do not have a sufficient efficiency to ensure enough sensitivity to the soil electrical conductivity in zero-offset, off-ground mode. For higher efficiency, we have designed a specific transmitting antenna based on two coils in series together with a variable capacitor to modify the resonant frequency. The two coils have different diameters and are placed in the same plane, centred on the same point. The current in the inner coil is travelling in opposite direction compared to the outer coil, leading to two magnetic fields with opposite polarity. This produces a magnetic cavity in the middle of the coils (the magnetic field tends to zero), where a regular receiving coil is situated. This set up permits to strongly decrease direct coupling between the antennas, thereby increasing the dynamic range of the system. In addition, a wideband amplifier is used to further strengthen the received wave. The results obtained with this new method show great promise for quantitative and accurate characterization of the soil electrical conductivity with EMI.
Application of pyroelectric crystal and ionic liquid to the production of metal compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imashuku, Susumu; Imanishi, Akira; Kawai, Jun
2013-04-19
Zinc fluoride (ZnF{sub 2}) was deposited on a silicon substrate by changing temperature of a pyroelectric crystal of LiTaO{sub 3} on which ionic liquid (EMI-Tf{sub 2}N) containing zinc ions was dripped at 1 Pa. ZnF{sub 2} was also obtained by bombarding argon ions on EMI-Tf{sub 2}N containing zinc ions. From these results, it is concluded that EMI-Tf{sub 2}N containing zinc ions on the LiTaO{sub 3} crystal was evaporated on the silicon substrate by changing temperature of the LiTaO{sub 3} crystal in vacuum and that the evaporated EMI-Tf{sub 2}N containing metal zinc ions was decomposed to ZnF{sub 2} by the bombardmentmore » of electrons accelerated by the electric field between the LiTaO{sub 3} crystal and the silicon substrate.« less
NASA Astrophysics Data System (ADS)
Tawie, R.; Na, S.; Lee, H. K.
2013-04-01
Up to date, various studies have been conducted using electro-mechanical impedance (EMI) method on concrete, including monitoring the strength development or to find damage in the structure. Since EMI method utilizes a single piezoelectric material to be used as an actuator and a sensor simultaneously, the method has major advantages compared to other non-destructive testing methods. However the method requires a piezoelectric material to be permanently attached or embedded into a structure. Thus when monitoring multiple structures, the method may become quite expensive. In this study, two re-usable EMI methods conducted by researchers Na et al and Tawie et al are overviewed. The idea of re-usable EMI method is still relatively new, resulting in the reduction of monitoring costs since the same piezoelectric material is used as many times as possible, while ensuring better repeatability and reliability in measurements.
Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide
NASA Technical Reports Server (NTRS)
Wheeler, M. L.
1998-01-01
The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.
Maizlin, Zeev V; Vos, Patrick M
2012-01-01
It is commonly believed that the revenues from the selling of the Beatles' records by Electric and Musical Industries (EMI) allowed the company to develop the computed tomography (CT) scanner. Some went to define this as the Beatles' gift to medicine. However, significant controversies and discrepancies arise from analysis of this statement, making its correctness doubtful. The details of financing required for the CT development and the part of EMI in financial input have never been publicly announced. This work analyzes the financial contributions to the CT development and investigates if the revenues received from the sales of the Beatles' records were used for the creation of the CT scanner. Timeline of the development of the EMI CT scanner and the financial inputs of EMI and British Department of Health and Social Security (DHSS) were assessed. Without salary expenses to Godfrey Hounsfield and his team, the development of the CT scanner cost EMI approximately £100,000. The British DHSS's expenses were £606,000. Hence, the financial contribution of DHSS into the development of the CT scanner was significantly bigger than that of EMI. Accordingly, British tax payers and officials of British DHSS are to be thanked for the CT scanner. The Beatles' input into the world's culture is valuable and does not require decoration by nonexistent connection to the development of CT. A positive aspect to this misconception is that it keeps in public memory the name of the company that developed the CT scanner.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute
2017-01-01
Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.
NASA Astrophysics Data System (ADS)
Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang
2017-05-01
High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH4 solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L9(3)4) for Cu-Co-P coating as follows: CoSO4·7H2O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper polyalloy possessed high adhesive strength and the lowest surface resistance (8.06 Ω/sq), while maintaining reliability even after over 1000 times of bending and mechanical stress. The results of scanning electron microscope (SEM) and atomic force microscope (AFM) measurements showed that Cu-Co-P layer formed on PET surface was imparted with fine uniformity and high compactness. Electrochemical test revealed the optimized Cu-Co-P coatings exhibited high corrosion resistance in NaCl, NaOH and HCl solutions, respectively. The excellent electromagnetic interference shielding effectiveness (EMI SE >99.999% at frequency ranging from 30 MHz to 1000 MHz) of copper polyalloy/PET composites was confirmed by the spectrum analyzer. Therefore, this copper polyalloy will have potential applications in microelectronics packaging and coatings for anti-corrosion and electromagnetic interference shielding.
Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2017-04-01
Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.
Metglas 2714A for Low Temperature Transformer Core and EMI Filter
NASA Technical Reports Server (NTRS)
Quach, Hung; Chui, Talso
2003-01-01
We have measured the real and imaginary parts of the relative permeability of Metglas 2714A. The magnetization noise density of a toroid made of this material is also measured with a SQUID magnetometer. This noise density is found to agree very well with the fluctuation dissipation theorem, implying that superconducting transformers with predictable noise characteristic can be designed. We also find that the relative permeability is larger than 10,000 at liquid helium temperature and at frequencies from DC to 100 kHz, making it suitable to be used as EMI filter material. Its usage should be similar to that of ferrites, with the exception that it is also effective at low temperatures.
UMTA Rail Transit EMI/EMC Program : An Overview and Summary
DOT National Transportation Integrated Search
1987-02-01
This report gives a history of the UMTA Rail Transit Electromagnetic Interference and Electromagnetic Compatibility (EMI/EMC) program, together with a listing of significant achievements over the life of the program. This is the lead volume of a nine...
Wireless technology in the ICU: boon or ban?
Gladman, Aviv S; Lapinsky, Stephen E
2007-01-01
Wireless communication and data transmission are playing an increasing role in the critical care environment. Early anecdotal reports of electromagnetic interference (EMI) with intensive care unit (ICU) equipment resulted in many institutions banning these devices. An increasing literature database has more clearly defined the risks of EMI. Restrictions to the use of mobile devices are being lifted, and it has been suggested that the benefits of improved communication may outweigh the small risks. However, increased use of cellular phones and ever changing communication technologies require ongoing vigilance by healthcare device manufacturers, hospitals and device users, to prevent potentially hazardous events due to EMI.
NASA Technical Reports Server (NTRS)
2002-01-01
This is a view of the Emi Koussi Caldera captured by the Expedition Six Crew Observation (CEO) experiment aboard the International Space Station (ISS). Rising 2.3 km above the surrounding sandstone plains, Emi Koussi is a 6.5 km wide volcano located at the south end of the Tibesti Mountains in the central Sahara desert. The volcano is one of several in the Tibesti massif and has been used as a close analog to the famous Martian volcano Elysium Mons. Major charnels can be seen on volcanoes on both planets that indicate low points in caldera rims where lava spilled out of the pre-collapsed craters.
Older adults' intrinsic and extrinsic motivation toward physical activity.
Dacey, Marie; Baltzell, Amy; Zaichkowsky, Len
2008-01-01
To examine how motives discriminate 3 physical activity levels of inactive, active, and sustained maintainers. Six hundred forty-five adults (M age = 63.8) completed stage-of-change and Exercise Motivations Inventory (EMI-2) scales. Exploratory factor analysis established psychometric properties of the EMI-2 suitable for older adults. Six factors emerged in the EMI-2: health and fitness, social/emotional benefits, weight management, stress management, enjoyment, and appearance. Enjoyment contributed most to differentiating activity levels. Moderators of age and gender were delineated. Intrinsic motivation and self-determined extrinsic motivation distinguish older adults' activity levels.
Manimaran, S; Jayakumar, S; Lakshmi, K Bhagya
2016-11-14
Education Management Information System (EMIS) is a widely acceptable and developing technology within the Information Technology field. The advancement in technology in this century is being collaborated with scientific invention or explorer and information strengthening or development. This paper presents the results and experiences gained from applying students oriented EMIS for monitoring and managing mental health. The Mental Health of students depends on the acquiring adequate knowledge on basic concepts within a time period or academic schedule. It's obviously significance to evaluate and appraise the stress stimulators as a challenge or threat. The theoretical framework for the study was designed for analyzing the stress stimulators, academic performance and EMIS accessibility. The sample examined in this study was stratified random sample from 75 students specifically all engineering college in Dindigul District of Tamilnadu. The primary factor is the academic stress stimulators that form one module of EMIS for each of the key variable such as curriculum & instruction related stressors, placement related, teamwork related and assessment related. The Mental Health related stress stimulators namely curriculum & syllabus, placement related, assessment related and team work related have a significant influence on academic performance by students in various institution. The important factor leading to the EMIS application in monitoring stress stimulators is curriculum & syllabus related and assessment related.
The Use of Electromagnetic Induction Techniques for Soil Mapping
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, Jim
2015-04-01
Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.
NASA Astrophysics Data System (ADS)
Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.
2017-12-01
Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.
Infrared transmission of electronic information via LAN in the operating room.
Hagihira, S; Takashina, M; Mori, T; Taenaka, N; Mashimo, T; Yoshiya, I
2000-01-01
Recent advances in technology have brought many kinds of monitoring devices into the operating room (OR). The information gathered by monitors can be channeled to the operating ward information system via a local area network (LAN). Connecting patients to monitors and monitors to the LAN, however, requires a large number of cables. This wiring is generally inconvenient and particularly troublesome if the layout of the OR is rearranged. From this point of view, wireless transmission seems ideally suited to clinical settings. Currently, two modes of wireless connectivity are available: radio-frequency (RF) waves or infrared (IR) waves. Some reports suggest that RF transmission is likely to cause electromagnetic interference (EMI) in medical devices such as cardiac pacemakers or infusion pumps. The risk of malfunctioning life-sustaining devices and the catastrophic consequences this would have on seriously ill patients rules out the use of RF. Here, we report an IR system using IR modems for LAN connectivity in the OR. In this study, we focused on the possible detrimental effects of EMI during wireless connectivity. In our trial, we found no evidence of EMI of IR modems with any of the medical devices we tested. Furthermore, IR modems showed similar performance to a wired system even in an electrically noisy environment. We conclude that IR wireless connectivity can be safely and effectively used in ORs.
Cellular telephone interference with medical equipment.
Tri, Jeffrey L; Severson, Rodney P; Firl, Allen R; Hayes, David L; Abenstein, John P
2005-10-01
To assess the potential electromagnetic interference (EMI) effects that new or current-generation cellular telephones have on medical devices. For this study, performed at the Mayo Clinic in Rochester, Minn, between March 9, 2004, and April 24, 2004, we tested 16 different medical devices with 6 cellular telephones to assess the potential for EMI. Two of the medical devices were tested with both new and old interface modules. The 6 cellular telephones chosen represent the different cellular technology protocols in use: Code Division Multiple Access (2 models), Global System for Mobile communications, Integrated Digital Enhanced Network, Time Division Multiple Access, and analog. The cellular telephones were tested when operating at or near their maximum power output. The medical devices, connected to clinical simulators during testing, were monitored by observing the device displays and alarms. Of 510 tests performed, the incidence of clinically important interference was 1.2%; EMI was Induced in 108 tests (21.2%). Interference occurred in 7 (44%) of the 16 devices tested. Cellular telephones can interfere with medical equipment. Technology changes in both cellular telephones and medical equipment may continue to mitigate or may worsen clinically relevant interference. Compared with cellular telephones tested in previous studies, those currently in use must be closer to medical devices before any interference is noticed. However, periodic testing of cellular telephones to determine their effects on medical equipment will be required.
Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W
2011-10-21
Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process.
2011-01-01
Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. Conclusions We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process. PMID:22014169
NASA Astrophysics Data System (ADS)
Kalyankar-Narwade, Supriya; Kumar, C. Ramesh; Patil, Sanjay A.
2017-11-01
Engine Management ECU plays a vital role in controlling different important features related to the engine performance. ECU is an embedded system which includes hardware and firmware platform for control logics. However, it is necessary to verify its smooth performance by its functionality testing in the Electromagnetic environment for approval. If these requirements are not known at earlier stages, then ECU may not fulfil functional requirements during required automotive electronic test standards. Hence, focusing on EMS ECU, this paper highlights hardware, layout and software guidelines for solving problems related with Electromagnetic Interference (EMI) to comply ISO 7637, CISPR 25 standard, Electromagnetic Compatibility (EMC) to comply ISO 11452-4,5 standard, Electrostatic Discharge (ESD) to comply ISO 10605 standard and Environmental Testing to comply standards as per IEC standards. This paper specifies initially the importance, need and guidelines for reducing the EMI effect on PCB i.e. making ECU more electromagnetically compatible as per automotive standards. The guidelines are useful for the designers to avoid pitfalls at the later stage. After mentioned modifications in the paper, ECU successfully passed the requirements for all standard tests.
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-01-01
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088
Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping
2016-10-22
In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.
NASA Astrophysics Data System (ADS)
Xu, M.; Ivey, D. G.; Qu, W.; Xie, Z.
2015-01-01
Electrodeposition of Zn was conducted in a new electrolyte system composed of an alkaline solution (9 M KOH + 5 wt% ZnO) modified with a small amount (0.5 wt%) of room temperature ionic liquid 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). At a high deposition current density of 80 mA cm-2, a porous, dendrite-free Zn film characterized by clusters of small Zn particles was obtained. The mechanism for the modified Zn morphology in the EMI-DCA containing electrolyte was studied by cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. It was found that the addition of EMI-DCA changed the Zn nucleation process and reduced the potential variation during electrodeposition, which suppressed the uneven growth of Zn deposits and the formation of Zn dendrites. EIS results indicated that there was adsorption of EMI+ cations at the Zn film/electrolyte interface, which may have contributed to suppressed dendritic Zn growth.
A method for identifying EMI critical circuits during development of a large C3
NASA Astrophysics Data System (ADS)
Barr, Douglas H.
The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.
Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide
NASA Technical Reports Server (NTRS)
Wheeler, Mark L.
1998-01-01
This program consisted of: (1) a study to define appropriate EMI test guidelines and test methods for direct sequence (DS) spread spectrum receivers; and (2) preparation of a written test guide to document the recommended test methods. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.
Wireless technology in the ICU: boon or ban?
Gladman, Aviv S; Lapinsky, Stephen E
2007-01-01
Wireless communication and data transmission are playing an increasing role in the critical care environment. Early anecdotal reports of electromagnetic interference (EMI) with intensive care unit (ICU) equipment resulted in many institutions banning these devices. An increasing literature database has more clearly defined the risks of EMI. Restrictions to the use of mobile devices are being lifted, and it has been suggested that the benefits of improved communication may outweigh the small risks. However, increased use of cellular phones and ever changing communication technologies require ongoing vigilance by healthcare device manufacturers, hospitals and device users, to prevent potentially hazardous events due to EMI. PMID:17875225
A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael
Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less
Radiated and conducted EMI from a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.; Peer, W.
1981-01-01
In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.
2012-04-05
C la ss ifi ca tio n TY PE D ep th (M ) A zi m ut h (D eg re es ) D ip (D eg re es ) 1 2 3...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --12-9401 TEMTADS Adjunct Sensor Systems Hand-held EMI Sensor for Cued UXO...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2 . REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4
2012-06-27
notes and team orienteering functions. Data collection with the MP system at the former Camp Beale, CA is shown in Figure 5- 2 (right). 5.3.3...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --12-9424 TEMTADS Adjunct Sensor Systems Hand-held EMI Sensor for Cued UXO...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2 . REPORT TYPE1. REPORT DATE (DD
Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung
2013-11-01
Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.
Polymer composites with graphene nanofillers: electrical properties and applications.
Tjong, Sie Chin
2014-02-01
Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.
Is EMI Enough? Perceptions from University Professors and Students
ERIC Educational Resources Information Center
Corrales, Kathleen Anne; Paba Rey, Lourdes A.; Santiago Escamilla, Nazira
2016-01-01
Internationalization of higher education aims to develop foreign language and intercultural and international competences (IIC). To achieve this, universities worldwide have implemented strategies such as teaching content subjects in English, also known as English mediated instruction (EMI). However, there is scant research on the positive and…
University Students' Understanding of Electromagnetic Induction
ERIC Educational Resources Information Center
Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina
2013-01-01
This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…
Tadevosian, A; Kalantarian, V; Trchunian, A
2007-01-01
It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-01-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
NASA Astrophysics Data System (ADS)
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-11-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
NASA Astrophysics Data System (ADS)
Conejo, L. S.; Costa, M. L.; Oishi, S. S.; Botelho, E. C.
2017-10-01
Lightweight and highly conductive composite associated with good impact and tribological properties could be used in the aerospace industry to replace metal for an aircraft skin and still provide effective shielding against electromagnetic interference (EMI). Also, phenol-furfuryl alcohol resins (PFA) are excellent candidates to replace existing thermoset matrices used for obtaining glassy carbon, both in its pure form and reinforced with nanoscale structures. The synthesis of PFA allow obtaining a resin with better properties than that showed by conventional phenolic resins and with synthesis and cure processes more controlled than observed for the furfuryl alcohol resin. This work has as main purpose the synthesis and thermal characterization of PFA resin and its nanostructured composites with different concentrations of carbon nanotubes (0, 0.1, 0.5 and 1.0 wt%). PFA resin was synthesized with 1:2:1 molar ratio of phenol/formaldehyde/furfuryl alcohol, according to the more appropriate condition obtained previously. The specimens were evaluated by thermogravimetry (TGA) to knowledge of the temperature of thermal degradation, either by actual analyses as simulated by simulation heating rate conversion software (known as Highway Simulation). The introduction of CNT in PFA sample does not affect its thermal stability. The values of residual weight found for samples with CNT additions are close to the values of the phenolic resin in the literature (about 60% residual weight).
NASA Astrophysics Data System (ADS)
Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil solution (and of the water content) induced by natural soil heterogeneity. Thus, the variability of TDR readings is expected to come from a combination of smaller and larger-scale variations. By contrast, an EMI sensor reading partly smoothes the small-scale variability seen by a TDR probe. As a consequence, the variability revealed by profile-integrated EMI and local (within a given depth interval) TDR readings may have completely different characteristics. In this study, a comparison between the variability patterns of σb revealed by TDR and EMI sensors was carried out. The database came from a field experiment conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari). The soil was pedologically classified as Colluvic Regosol, consisting of a silty loam with an average depth of 60 cm on a shallow fractured calcareous rock. The experimental field (30m x 15.6 m; for a total area of 468 m2) consisted of three transects of 30 m length and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3dS/m, 6dS/m). Each transect consisted of seven crop rows irrigated by a drip irrigation system (dripper discharge q=2 l/h.). Water salinity was induced by adding CaCl2 to the tap water. All crop-soil measurements were conducted along the middle row at 24 monitoring sites, 1m apart. The spatial and temporal evolution of bulk electrical conductivity (σb) of soil was monitored by i) an Electromagnetic Induction method (EM38-DD) and ii) Time Domain Reflectometry (TDR). Herein we will focus on the methodology we used to elaborate the database of this experiment. Mostly, the data elaboration was devoted to make TDR and EMI data actually comparable. Specifically, we analysed the effect of the different observation windows of TDR and EMI sensors on the different spatial and temporal variability observed in the data series coming from the two sensors. After exploring the different patterns and structures of variability of the original EMI and TDR data series the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.
A high-resolution superconducting pressure control system for use at low temperatures
NASA Astrophysics Data System (ADS)
Geng, Z. K.; Swanson, D. R.; Nissen, J. A.; Lipa, J. A.
2000-01-01
We have developed a high resolution superconducting pressure gauge and controller system capable of stabilizing pressure to within +/-10-8 bar in the range 0-30 bars at temperatures below about 6K. The system consists of two parts: a transducer and a pressure actuator. The transducer is based on the inductive sensing of the position of a diaphragm using superconducting techniques. A rod attached to the center of the diaphragm supports a superconducting plate which is in close proximity to a flat, spiral superconducting coil. A persistent current of about 1 A is trapped in the coil and is coupled to a dc SQUID magnetometer. The magnetometer produces a partially digitized dc output proportional to the change of pressure applied to the diaphragm. Because of the ability of the magnetometer to count magnetic flux quanta, an extremely wide dynamic range can be achieved with high sensitivity and repeatability. The transducer was used to control the pressure of a sample of liquid helium at temperatures near 2 K and pressures from 1-25 bars. The actuator consisted of two parts: a thermally isolated chamber filled with 3He that could be heated and cooled as desired over the range 1.5 to 10 K, and a beryllium-copper diaphragm assembly. This diaphragm had the 3He on one side and the sample helium on the other. A simple servomechanism was used to convert the output signal from the magnetometer to heat applied to the 3He chamber. The system has been operated routinely over the full range of pressures and so far no significant drift has been detected. It is somewhat sensitive to vibration and EMI, but otherwise appears quite robust. Plans have been made to improve the shielding to reduce the EMI susceptibility. The vibration sensitivity can be reduced by making use of a pair of pressure sensing diaphragms acting in opposite directions. .
Wenze, Susan J.; Armey, Michael F.; Weinstock, Lauren M.; Gaudiano, Brandon A.; Miller, Ivan W.
2016-01-01
We evaluated the feasibility and acceptability of a novel, 12 week, adjunctive, smartphone-assisted intervention to improve treatment adherence in bipolar disorder (BD). Eight participants completed 4 in-person individual therapy sessions over the course of a month, followed by 60 days of twice-daily ecological momentary intervention (EMI) sessions, with a fifth in-person session after 30 days and a sixth in-person session after 60 days. Perceived credibility of the intervention and expectancy for change were adequate at baseline, and satisfaction on completion of the intervention was very high. Participants demonstrated good adherence to the intervention overall, including excellent adherence to the in-person component and fair adherence to the smartphone-facilitated component. Qualitative feedback revealed very high satisfaction with the in-person sessions and suggested a broad range of ways in which the EMI sessions were helpful. Participants also provided suggestions for improving the intervention, which primarily related to the structure and administration of the EMI (smartphone-administered) sessions. Although this study was not designed to evaluate treatment efficacy, most key outcome variables changed in the expected directions from pre- to post-treatment, and several variables changed significantly over the course of the in-person sessions or during the EMI phase. These findings add to the small but growing body of literature suggesting that EMIs are feasible and acceptable for use in populations with BD. PMID:27824786
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Barrowes, Benjamin E.; Shamatava, Irma; Sigman, John; O'Neill, Kevin A.
2018-05-01
Processing electromagnetic induction signals from subsurface targets, for purposes of discrimination, requires accurate physical models. To date, successful approaches for on-land cases have entailed advanced modeling of responses by the targets themselves, with quite adequate treatment of instruments as well. Responses from the environment were typically slight and/or were treated very simply. When objects are immersed in saline solutions, however, more sophisticated modeling of the diffusive EMI physics in the environment is required. One needs to account for the response of the environment itself as well as the environment's frequency and time-dependent effects on both primary and secondary fields, from sensors and targets, respectively. Here we explicate the requisite physics and identify its effects quantitatively via analytical, numerical, and experimental investigations. Results provide a path for addressing the quandaries posed by previous underwater measurements and indicate how the environmental physics may be included in more successful processing.
The Rise and Fall of an Education Management Information System in Liberia.
ERIC Educational Resources Information Center
Chapman, David W.
1991-01-01
Sponsors of education management information systems (EMIS) often underestimate EMIS's impact on other education sector activities and fail to provide individual and organizational incentives for encouraging use of improved educational data at the national level. Liberia's example illustrates the consequences of developing poor incentive…
Shrier, Lydia A; Spalding, Allegra
2017-02-01
Depressed young women are at increased risk for adverse outcomes related to sexual behavior, including unintended pregnancy, HIV, and other sexually transmitted infections. Brief sexual risk reduction interventions have not targeted depressed young women's specific needs for affect management and impulse control. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: We interviewed depressed young women ages 15-23 years engaging in sexual risk behavior about a proposed intervention approach. The approach was described as in-person counseling and cognitive-behavioral skills training, followed by an ecological momentary intervention (EMI) delivered via smartphone application for 4 weeks. The EMI would include reporting multiple times a day on affective states, self-efficacy for safer sex behavior, and sexual behavior, and receiving responsive messages to provide support and prompt use of cognitive-behavioral skills. Participants provided their perspectives on comfort, usability, burden, confidentiality, and potential efficacy of the EMI and recommended message content. Interviews were audio-recorded, transcribed, and analyzed using thematic analysis. Thematic saturation was reached with 16 interviews. Participants expressed positive opinions about the EMI. They believed that reporting at random times would help them to recognize their feelings, receiving the messages would be reassuring, and overall the smartphone application would be experienced as therapeutic. They desired a high degree of personalization of the message quality, style, and voice, and provided a wide variety of message content. Depressed young women believed that a flexible, personalized approach to mobile momentary intervention for addressing the link between their symptoms and behavior would be acceptable, supportive, and effective in reducing sexual risk. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; van der Kruk, Jan; Bechtold, Michel; Tiemeyer, Bärbel; Huismann, Sander
2013-04-01
Intact peatlands are natural sinks of climate-relevant atmospheric CO2 and they are able to store high amounts of organic carbon (C). In addition, intact peatlands are increasingly important given positive effects on biodiversity, hydrological processes and corresponding management issues. Nevertheless, large parts of peatlands in populated areas were modified by human activity during the last centuries. In Germany, more than 90% of the peatlands are drained, mainly for agricultural use. Due to the recent recognition of the positive effects of intact peatlands, there are presently several initiatives for re-wetting parts of these peatlands. However, a restoration to nearly natural conditions needs an evaluation of the current situation as well as an assessment of the restoration potential. Therefore, soil properties like peat layer thickness, bulk density and moisture content need to be known. Non-invasive hydrogeophysical methods offer the possibility for a time and cost-effective characterization of peatlands. In this study, we investigated a medium-scale peatland area (approximately 35 ha) of the 3000 ha large 'Großes Moor' peatland. We present apparent conductivity (ECa) values obtained from Electromagnetic Induction (EMI) measurements representative for three investigation depths (approximately 0.25, 0.5, and 1m). We selected zones with dissimilar ECa to identify areas where strong changes in the subsoil properties with depth are expected (i.e. shallow peat soil on top of sand). Within these areas, additional measurements were made using Ground Penetration Radar (GPR) and soil sampling was performed. In total, six 30 m long GPR profiles and corresponding common midpoint (CMP) measurements were recorded. Additionally, 15 soil cores were taken down to a depth of 0.9 m in order to obtain peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content. Each core was divided into several 5 to 20 cm thick layers to obtain information on the vertical variation of these soil properties with depth. Our results indicate that the peat layer is generally characterized by lower BD, higher pore water EC, higher C content, and higher water contents compared to the underlying sand layer. Preliminary EMI results indicate a ECa - C content correlation that decreases with EMI investigation depth from 0.25 to 1 m. Regarding all soil core properties, the strongest contrast occurs at the peat-sand interface. This contrast also clearly appears in some of the GPR results. The EMI apparent conductivities are positively correlated with soil water content and peat thickness obtained from the soil cores. Preliminary GPR results confirm an increased thickness of the upper layer in areas with increased ECa values. The EMI results also reveal clear patterns linked over several fields with different land use history that represent natural structures in the subsurface.
Measurement of the transient shielding effectiveness of shielding cabinets
NASA Astrophysics Data System (ADS)
Herlemann, H.; Koch, M.
2008-05-01
Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2011-01-01
This report documents an investigation into observed failures associated with conducted susceptibility testing of Crew Quarters (CQ) hardware in the Johnson Space Center (JSC) Electromagnetic Interference (EMI) Measurement Facility, and the work accomplished to identify the source of the observed behavior. Investigation led to the conclusion that the hardware power input impedance was interacting with the facility power impedance leading to instability at the observed frequencies of susceptibility. Testing performed in other facilities did not show this same behavior, pointing back to the EMI Measurement Facility power as the potential root cause. A LISN emulating the Station power bus impedance was inserted into the power circuit, and the susceptibility was eliminated from the measurements.
2010-07-15
Electromagnetic Interference ( EMI ), Transportability, Environmental, Human Factors Engineering (HFE), Reliability, Availability and Maintainability (RAM), and...vehicles and trailers to store, protect, and secure equipment, tools, and other theft-prone items. CBCs are designed not to interfere with the carrier’s...Transportability Test Facility. d. Electromagnetic Interference ( EMI ) Test Facility. e. Areas capable of conducting Blackout, Sound, Sand and Dust tests
EMI-Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface
USDA-ARS?s Scientific Manuscript database
A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...
USDA-ARS?s Scientific Manuscript database
Use of electromagnetic induction (EMI) instruments has increased as a tool to map soils because it provides a means of locating suitable sampling sites that provide the basis for mapping the spatial variability of various soil properties either directly or indirectly measured with EMI, including sa...
English as a Symbol of Internationalization in Higher Education: A Case Study of Vietnam
ERIC Educational Resources Information Center
Duong, Van Anh; Chua, Catherine S. K.
2016-01-01
Vietnam universities have experienced remarkable changes brought about by their internationalization policies. The switch to English as a medium of instruction (EMI) for some academic programs was one of these critical changes. Literature has reported numerous issues related to EMI, including inadequate language proficiency of teaching staff. This…
2012-03-01
collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE MAR 2012 2 . REPORT TYPE 3. DATES COVERED...1 1.4 IMPLEMENTATION ISSUES .............................................................................. 2 2.0...assembled sensor with end caps attached. ................................................................................ 5 Figure 2 . Construction details
NASA Technical Reports Server (NTRS)
Paliwoda, L.
1998-01-01
This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Earth Observing System (EOS) Project, assembly part number 1356008-1, serial number 202, Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMC) qualification test. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/8B, dated 10 September 1998. Aerojet intends that the presentation and submittal of this document, prepared in accordance with the objectives established by the aforementioned Test Plan/Procedure, document number AE-26151/8B, will satisfy the data requirement with respect to the AMSU-A/EOS instrument operational compliance of the EMI/EMC test requirement. Test for the AMSU-A/EOS instrument have been completed and all the requirements per General Interface Requirement Document (GIRD), GSFC 422-11-12-01, for EOS Common Spacecraft/Instruments, paragraph 10.11, were met with the exceptions of the test methods CE03, RE01, and RE02, as described in this document.
Santosh, Arvind Babu Rajendra; Jones, Thaon Jon
2014-03-17
In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.
On the use of the EMI for the health monitoring of bonded elements
NASA Astrophysics Data System (ADS)
Gulizzi, Vincenzo; Rizzo, Piervincenzo; Milazzo, Alberto
2014-03-01
The low weight, robustness and fatigue resistance of adhesive joints make them suitable for structural joints. A fully developed nondestructive evaluation technique however is needed to monitor and assess the quality of bonded joints. In the present paper the application of the electromechanical impedance (EMI) technique is proposed. In the EMI method a piezoelectric transducer (PZT) is attached to the structure of interest. The high sensitivity and low power consumption make the EMI method feasible for real time structural health monitoring. In this study we investigated the sensitivity of the electromechanical response of a PZT to the curing and the quality of the adhesive used for bonded joints. A PXI unit running under LabView and an auxiliary circuit were employed to measure the electric impedance of a PZT glued to an aluminum plate. The system aimed at monitoring the bond line between an aluminum strip and the plate. The conductive signature of the PZT was measured and analyzed during the curing. The experimental results show that the electromechanical impedance technique is sensitive to the curing time and variations are observed for adhesives of different quality.
NASA Astrophysics Data System (ADS)
Kamas, T.; Tekkalmaz, M.
2017-04-01
The cataphoretic electro-coating is one of the most common methods that are used against corrosion as a primary coating layer. The cataphoretic electro-coating is commonly utilized technique especially in protecting of automobile components in automotive industry. This coating method has many advantages such as high corrosion resistance, ability of homogeneous and complete coating of components in any geometry, less pollution, and less risk of ignition. In this study, some specimens in the form of steel sheets coated by the cataphoretic electro-coating method are examined using electro-mechanical impedance spectroscopy (EMIS) method. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. EMIS method has been utilized as a dynamic descriptor of PWAS and the structure on which it is bonded. EMIS of PWAS-structure couple is a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. To simulate the actual EMIS measurements in the present work, two-dimensional and three-dimensional coupled field finite element models are created for both uncoated and coated steel plates in a commercial FEA software, ANSYS®. The EMIS values of the specimens in certain sizes and coated in different thickness are going to be simulated in broad-band of frequency spectra. The thickness of the coating layer and coating time are of paramount importance for the corrosion resistance. The coating layer thickness and the corresponding coating period will be optimized by analyses of the values obtained from the 2D and 3D EMIS simulations.
Tsai, Dah-Shyang; Chang, Chuan-hua; Chiang, Wei-Wen; Lee, Kuei-Yi; Huang, Ying-Sheng
2014-10-24
Capacity degradation and ion insertion of a miniaturized electrochemical capacitor are studied using ionic liquid [EMI] [TFSI] as the electrolyte. This capacitor is featured with two comb-like electrodes of vertical carbon nanotubes, ∼70 μm in height and 20 μm in interelectrode gap. We quantify the levels of ion insertion damage with Raman spectroscopy after the electrode experiences 120 consecutive voltammetric cycles to various potential limits. Distinct structural damage emerges due to [EMI] when the negative potential reaches -1.7 V, and those due to [TFSI] arise when the positive potential reaches 1.7 V vs. RHE. Judging from the peak broadenings, [EMI] is more detrimental than [TFSI]. When the voltage window ΔU is set as less than or equal to 2.8 V, both electrode potentials are within the two intercalation limits, little or no decay is observed in 10(4) charge/discharge cycles. When ΔU is 3.4 V, the positive potential exceeds the upper limit, but the negative potential stays within the lower limit, the cell capacitance decreases moderately. When ΔU increases to 3.8 V, both electrodes suffer from damages because of exceeding the intercalation limits. And the cell capacitance decreases substantially, even leading to a premature failure.
Acquisition and processing of advanced sensor data for ERW and UXO detection and classification
NASA Astrophysics Data System (ADS)
Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon
2014-06-01
The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.
Radiated Interference in Rapid Transit Systems. Volume 1. Theory and Data.
DOT National Transportation Integrated Search
1988-04-01
For the past eight years, the UMTA Office of Systems Engineering, U.S. Department of Transportation, has sponsored a program to delineate and mitigate the effects of electromagnetic interference (EMI) in rail transit operations. Work has proceeded un...
Air Pollution Exposure Model for Individuals (EMI) in Health Studies
In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...
A Systematic Review of English Medium Instruction in Higher Education
ERIC Educational Resources Information Center
Macaro, Ernesto; Curle, Samantha; Pun, Jack; An, Jiangshan; Dearden, Julie
2018-01-01
After outlining why a systematic review of research in English medium instruction (EMI) in higher education (HE) is urgently required, we briefly situate the rapidly growing EMI phenomenon in the broader field of research in which content and language have been considered and compare HE research outputs with those from other phases of education.…
The Forgotten Voices in Higher Education: Students' Satisfaction with English-Medium Instruction
ERIC Educational Resources Information Center
Karakas, Ali
2017-01-01
This study explores how satisfied Turkish students are with English-medium instruction (EMI) in the context of higher education in an era when EMI universities operate as international brands capitalizing on English as a commodity to vie for more customers, that is, national and international students. Data were collected through a questionnaire…
NASA Technical Reports Server (NTRS)
Valdez, A.
2000-01-01
This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).
NASA Technical Reports Server (NTRS)
Horton, Kent; Huffman, Mitch; Eppic, Brian; White, Harrison
2005-01-01
Path Loss Measurements were obtained on three (3) GPS equipped 757 aircraft. Systems measured were Marker Beacon, LOC, VOR, VHF (3), Glide Slope, ATC (2), DME (2), TCAS, and GPS. This data will provide the basis for assessing the EMI (Electromagnetic Interference) safety margins of comm/nav (communication and navigation) systems to portable electronic device emissions. These Portable Electronic Devices (PEDs) include all devices operated in or around the aircraft by crews, passengers, servicing personnel, as well as the general public in the airport terminals. EMI assessment capability is an important step in determining if one system-wide PED EMI policy is appropriate. This data may also be used comparatively with theoretical analysis and computer modeling data sponsored by NASA Langley Research Center and others.
An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Wang, Chuang; Zhao, Kai; Li, Zunchao
2017-07-01
This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.
Efficient mapping of agricultural soils using a novel electromagnetic measurement system
NASA Astrophysics Data System (ADS)
Trinks, Immo; Pregesbauer, Michael
2016-04-01
"Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m depth. Instead of being towed several metres behind the tractor, as common with traditional EMI systems used in precision farming, the novel device is conveniently mounted on the front hitch of a tractor and operated from a terminal in the driver's cabin. A major improvement compared with existing EMI systems is the system's capability to cope with the induced noise from the tractor, through integration of a mechanical shielding mechanism into the sensor housing. Any remaining vehicle induced high-frequency electromagnetic noise is filtered out on-the-fly by the data acquisition software, logging the data and positioning information on a ruggedized small computer. The main purpose of this system is to permit the land owner or farmer the efficient mapping of the electrical soil conductivity across agricultural fields on the scale of the entire acreage. The main objective of the measurements is to obtain detailed information on the long wavelength variability of soil structure, while eliminating short wavelength variations. The calculation of the depth of the agricultural layer, or topsoil thickness, has been implemented by inverting the cumulative response function for all coil configurations. The resulting inverted models of the soil conductivity display the vertical distribution of agriculturally relevant soil parameters and improve the chances to identify different subsoil features. By providing this information on the shallow subsurface in real-time, while passing across the field, permits the agriculturist to variably adjust for instance tillage depth or to control other agricultural implements and machines based to the derived information, rendering the soil cultivation both ecologically as well as economically more efficient. We present the TSM system as well as derived data examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; ...
2016-06-25
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Remote Sensing and Quantization of Analog Sensors
NASA Technical Reports Server (NTRS)
Strauss, Karl F.
2011-01-01
This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.
NASA Astrophysics Data System (ADS)
Tian, H.; Yang, W.; Li, S. G.; Ke, S.; Chu, Z. Y.
2016-12-01
Many studies have focused on the interactions between recycled materials and depleted mantle to explain the origins of EM and HIMU components (e.g., Cohen and O'Nions, 1982; White and Hofmann, 1982). However, little is known about the interactions between recycled materials and enriched mantle and the associated consequences, e.g., late recycled crustal material overprints mantle previously enriched by earlier recycling events of the crust. Recently, light Mg isotopic composition of the basalts from North China Craton (NCC) and South China Block (SCB) has been attributed to recycled carbonate metasomatism from subducted Pacific slab (Yang et al., 2012; Huang et al., 2015). If this explanation is correct, the Cenozoic basalts from Northeast (NE) China should also contain light Mg isotopic compositions. The basalts from NE China have EMI Sr-Nd-Pb isotopic features that are distinct from the NCC and SCB basalts, indicating the contribution of an enriched mantle source (Choi et al., 2006; Chu et al., 2013). Therefore, Mg isotopic compositions of the Cenozoic basalts from NE China will help to determine the interaction between recycled sedimentary carbonates and an enriched mantle. Consistent with the hypothesis, our results show that the Cenozoic basalts from Wudalianchi and Erkeshan, NE China, have homogeneous and light Mg isotopic compositions (δ26Mg =-0.57 to -0.46‰). Based on the similarity to the basalts from NCC and SCB, their light Mg isotopic feature should also be derived from carbonate metasomatism (i.e. carbonated asthenosphere). In addition to that, a question arise that why the interaction between carbonated asthenosphere and the EM-I SLCM significantly modify the trace element and Sr-Nd-Pb isotopic composition of the mantle-derived melt, but have little effect on the Mg isotopes? The possible mechanism is the interaction between low SiO2 melt and peridotite, which converts pyroxene to olivine, as reported in previous studies (e.g., Kelemen et al., 1992; Edwards and Malpas, 1996; Zhou et al., 1996, 2014). During the interaction, the trace elements of the EM-I SCLM largely entered the melt, and all Mg was transferred from Opx and Cpx into the newly formed olivine. Consequently, the Wudalianchi and Erkeshan basalts preserve low δ26Mg and obtain EM-I Sr-Nd-Pb isotopic compositions (Fig. 1).
Challenges in English Medium of Instruction from the Teachers and Students' Eyes
ERIC Educational Resources Information Center
Cankaya, Pinar
2017-01-01
The main concern of the current paper is to discuss English medium instruction (EMI, henceforth) in all aspects with a particular focus on its challenges and difficulties reported by both students and teachers based on the relevant research studies. As EMI is gaining greatest importance among the researchers, policy makers and educators; it is of…
NASA Technical Reports Server (NTRS)
Valdez, A.
2000-01-01
This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).
ERIC Educational Resources Information Center
Goodman, Bridget A.
2014-01-01
English as a medium of instruction (EMI) programs are an increasing phenomenon in European universities. This paper takes an ethnographic approach to understanding the impact of EMI on pedagogy in a private university in eastern Ukraine. Fieldwork was conducted over the 2010-2011 academic year in nine English-medium and three Russian-medium…
ERIC Educational Resources Information Center
Eser, Oktay; Dikilitas, Kenan
2017-01-01
Translation can be used as a learning strategy by students who learn their academic subjects through English as the Medium of Instruction (EMI). The purpose of this study is to investigate the perceptions of students towards the use of translation at university level courses offered in English at various departments. This qualitative research…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... cost State, local or Tribal Government; Business or FEMA/EMI Independent Study 1,682,231 4 6,728,924 0... Tribal Government; Business or FEMA/EMI Independent Study 186,914 4 747,656 0.75 560,742 28.45 15,953,110... Independent Study Course Enrollment and Test Answer Sheet AGENCY: Federal Emergency Management Agency, DHS...
ERIC Educational Resources Information Center
Chang, Ji-Yeon; Kim, Wooyeon; Lee, Heewon
2017-01-01
Many English as a foreign language universities have increased the number of English-medium instruction (EMI) courses regardless of their students' preparedness for them. As a result, previous studies have reflected the necessity of additional language assistance to students who have to take EMI courses with limited English proficiency. Drawing…
ERIC Educational Resources Information Center
Lee, Minho
2017-01-01
Many Christian universities in Korea are pursuing the globalization of Christian higher education to promote maximization of institutional competition, improvement of students' English skills, and enhancement of professors' research development through English Medium Instruction (EMI). EMI's flaws in application are not at all uncommon, as many of…
ERIC Educational Resources Information Center
Ali, Nor Liza
2013-01-01
The literature shows that English-medium instruction (EMI) programmes at the tertiary level in various parts of the world have positioned EMI as a language-planning tool to promote students' mastery of English. English proficiency is believed to be intertwined with the overall economic development of a country. In addition to internationalising…
Military Applications of Fiber Optics Technology
1989-05-01
Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo
2017-04-01
In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.
A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry
Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance; ...
2018-03-30
Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
NASA Astrophysics Data System (ADS)
Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz
2017-10-01
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.
Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N
2014-12-01
Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Emi-Flective Display Device with Attribute of High Glare-Free-Ambient-Contrast-Ratio
NASA Astrophysics Data System (ADS)
Yang, Bo-Ru; Hsu, Chuan-Wei; Shieh, Han-Ping D.
2007-11-01
We have demonstrated the integration of an organic light emitting device (OLED) and a reflective liquid crystal display (R-LCD) which was termed an emi-flective display. The glare-free-ambient-contrast-ratio (GFA-CR) was used to evaluate the image quality of display devices under ambient light. Through integrating the OLED with R-LCD, the GFA-CR of the device achieved an improvement by a factor of 8 compared with that of the OLED alone. Moreover, the integrated R-LCD showed a GFA-CR of 100:1 within a viewing cone of 20° which can suppress the wash-out of OLED and is more power-saving in the sunlight. Therefore, an emi-flective display is a promising technique for mobile applications.
Resonant Electromagnetic Interaction in Low Energy Nuclear Reactions
NASA Astrophysics Data System (ADS)
Chubb, Scott
2008-03-01
Basic ideas about how resonant electromagnetic interaction (EMI) can take place in finite solids are reviewed. These ideas not only provide a basis for conventional, electron energy band theory (which explains charge and heat transport in solids), but they also explain how through finite size effects, it is possible to create many of the kinds of effects envisioned by Giuliano Preparata. The underlying formalism predicts that the orientation of the external fields in the SPAWAR protocolootnotetextKrivit, Steven B., New Energy Times, 2007, issue 21, item 10. http://newenergytimes.com/news/2007/NET21.htm^,ootnotetextSzpak, S.; Mosier-Boss, P.A.; Gordon, F.E. Further evidence of nuclear reactions in the Pd lattice: emission of charged particles. Naturwissenschaften 94,511(2007)..has direct bearing on the emission of high-energy particles. Resonant EMI also implies that nano-scale solids, of a particular size, provide an optimal environment for initiating Low Energy Nuclear Reactions (LENR) in the PdD system.
Treatment of Endometriosis-Associated Pain with Elagolix, an Oral GnRH Antagonist.
Taylor, Hugh S; Giudice, Linda C; Lessey, Bruce A; Abrao, Mauricio S; Kotarski, Jan; Archer, David F; Diamond, Michael P; Surrey, Eric; Johnson, Neil P; Watts, Nelson B; Gallagher, J Chris; Simon, James A; Carr, Bruce R; Dmowski, W Paul; Leyland, Nicholas; Rowan, Jean P; Duan, W Rachel; Ng, Juki; Schwefel, Brittany; Thomas, James W; Jain, Rita I; Chwalisz, Kristof
2017-07-06
Endometriosis is a chronic, estrogen-dependent condition that causes dysmenorrhea and pelvic pain. Elagolix, an oral, nonpeptide, gonadotropin-releasing hormone (GnRH) antagonist, produced partial to nearly full estrogen suppression in previous studies. We performed two similar, double-blind, randomized, 6-month phase 3 trials (Elaris Endometriosis I and II [EM-I and EM-II]) to evaluate the effects of two doses of elagolix - 150 mg once daily (lower-dose group) and 200 mg twice daily (higher-dose group) - as compared with placebo in women with surgically diagnosed endometriosis and moderate or severe endometriosis-associated pain. The two primary efficacy end points were the proportion of women who had a clinical response with respect to dysmenorrhea and the proportion who had a clinical response with respect to nonmenstrual pelvic pain at 3 months. Each of these end points was measured as a clinically meaningful reduction in the pain score and a decreased or stable use of rescue analgesic agents, as recorded in a daily electronic diary. A total of 872 women underwent randomization in Elaris EM-I and 817 in Elaris EM-II; of these women, 653 (74.9%) and 632 (77.4%), respectively, completed the intervention. At 3 months, a significantly greater proportion of women who received each elagolix dose met the clinical response criteria for the two primary end points than did those who received placebo. In Elaris EM-I, the percentage of women who had a clinical response with respect to dysmenorrhea was 46.4% in the lower-dose elagolix group and 75.8% in the higher-dose elagolix group, as compared with 19.6% in the placebo group; in Elaris EM-II, the corresponding percentages were 43.4% and 72.4%, as compared with 22.7% (P<0.001 for all comparisons). In Elaris EM-I, the percentage of women who had a clinical response with respect to nonmenstrual pelvic pain was 50.4% in the lower-dose elagolix group and 54.5% in the higher-dose elagolix group, as compared with 36.5% in the placebo group (P<0.001 for all comparisons); in Elaris EM-II, the corresponding percentages were 49.8% and 57.8%, as compared with 36.5% (P=0.003 and P<0.001, respectively). The responses with respect to dysmenorrhea and nonmenstrual pelvic pain were sustained at 6 months. Women who received elagolix had higher rates of hot flushes (mostly mild or moderate), higher levels of serum lipids, and greater decreases from baseline in bone mineral density than did those who received placebo; there were no adverse endometrial findings. Both higher and lower doses of elagolix were effective in improving dysmenorrhea and nonmenstrual pelvic pain during a 6-month period in women with endometriosis-associated pain. The two doses of elagolix were associated with hypoestrogenic adverse effects. (Funded by AbbVie; Elaris EM-I and EM-II ClinicalTrials.gov numbers, NCT01620528 and NCT01931670 .).
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.
Applying the Flipped Learning Model to an English-Medium Nursing Course.
Choi, Heeseung; Kim, Jeongeun; Bang, Kyung Sook; Park, Yeon Hwan; Lee, Nam Ju; Kim, Chanhee
2015-12-01
An emerging trend in Asian higher education is English-medium instruction (EMI), which uses English as the primary instructional language. EMI prepares domestic students for international leadership; however, students report difficulty in learning, and educators have raised questions concerning the effectiveness of EMI. The flipped learning model (FLM), in which lecture and homework activities for a course are reversed, was applied to an English-medium course offered by a college of nursing in Korea. The aims of this study were to: 1) revise an existing English-medium nursing course using the FLM; 2) explore students' learning experiences and their acceptance of the FLM; and 3) identify key factors in the success of FLM. We used a descriptive, cross-sectional, mixed-methods design and the participants were students at one nursing school in Korea. A series of course development meetings with faculties from the nursing school and the center for teaching and learning were used to develop the course format and content. We conducted course evaluations using the Flipped Course Evaluation Questionnaire with open-ended questions and focus group interviews. Students (N=75) in a 15-week nursing course responded to a survey after completing the course. Among them, seven students participated in one of two focus groups. Overall, students accepted and favored the flipped learning strategy, and indicated that the method enhanced lecture content and their understanding of it. Factors associated with effective instruction included structured monitoring systems and motivational environments. The FLM requires sufficient preparation to facilitate student motivation and maximize learning outcomes.
DOT National Transportation Integrated Search
1998-09-01
Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACIT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emi...
Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A
2008-01-01
It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.
Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M
2010-08-01
Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.
2018-06-01
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lurie, Gordon
2007-01-02
The cell phone software allows any Java enabled cell phone to view sensor and meteorological data via an internet connection using a secure connection to the CB-EMIS Web Service. Users with appropriate privileges can monitor the state of the sensors and perform simple maintenance tasks remotely. All sensitive data is downloaded from the web service, thus protecting sensitive data in the event a cell phone is lost.
Phenomenology and Signal Processing for UXO/Clutter Discrimination
2009-08-01
29 Figure 25. (a) Pasion -Oldenburg model fit to the EMI response of a 4.2 inch mortar aligned transverse to the primary field...b) Comparison between the two-component and Pasion - Oldenburg model fits to the 4.2 inch mortar response...30 Figure 26. Pasion -Oldenburg exponent γ compared to the magnetic crossover time τM for model fits to EMI data collected
ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation
2012-08-01
threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent
ERIC Educational Resources Information Center
Macaro, Ernesto; Akincioglu, Mustafa
2018-01-01
In Turkey, as in much of the rest of the non-Anglophone world, universities are offering an increasing number of courses through English Medium Instruction (EMI) rather than through the medium of the first language (L1) of the majority of the population. Previous research has explored teacher and student perceptions and attitudes towards EMI and…
Jekova, Irena; Krasteva, Vessela; Ménétré, Sarah; Stoyanov, Todor; Christov, Ivaylo; Fleischhackl, Roman; Schmid, Johann-Jakob; Didon, Jean-Philippe
2009-07-01
This paper presents a bench study on a commercial automated external defibrillator (AED). The objective was to evaluate the performance of the defibrillation advisory system and its robustness against electromagnetic interferences (EMI) with central frequencies of 16.7, 50 and 60 Hz. The shock advisory system uses two 50 and 60 Hz band-pass filters, an adaptive filter to identify and suppress 16.7 Hz interference, and a software technique for arrhythmia analysis based on morphology and frequency ECG parameters. The testing process includes noise-free ECG strips from the internationally recognized MIT-VFDB ECG database that were superimposed with simulated EMI artifacts and supplied to the shock advisory system embedded in a real AED. Measurements under special consideration of the allowed variation of EMI frequency (15.7-17.4, 47-52, 58-62 Hz) and amplitude (1 and 8 mV) were performed to optimize external validity. The accuracy was reported using the American Heart Association (AHA) recommendations for arrhythmia analysis performance. In the case of artifact-free signals, the AHA performance goals were exceeded for both sensitivity and specificity: 99% for ventricular fibrillation (VF), 98% for rapid ventricular tachycardia (VT), 90% for slow VT, 100% for normal sinus rhythm, 100% for asystole and 99% for other non-shockable rhythms. In the presence of EMI, the specificity for some non-shockable rhythms (NSR, N) may be affected in some specific cases of a low signal-to-noise ratio and extreme frequencies, leading to a drop in the specificity with no more than 7% point. The specificity for asystole and the sensitivity for VF and rapid VT in the presence of any kind of 16.7, 50 or 60 Hz EMI simulated artifact were shown to reach the equivalence of sensitivity required for non-noisy signals. In conclusion, we proved that the shock advisory system working in a real AED operates accurately according to the AHA recommendations without artifacts and in the presence of EMI. The results may be affected for specificity in the case of a low signal-to-noise ratio or in some extreme frequency setting.
NASA Astrophysics Data System (ADS)
Özdemir, T.; Güngör, A.; Reyhancan, İ. A.
2017-02-01
In this study, EPDM and boron trioxide composite was produced and mechanical, thermal and neutron shielding tests were performed. EPDM rubber (Ethylene Propylene Diene Monomer) having a considerably high hydrogen content is an effective neutron shielding material. On the other hand, the materials containing boron components have effective thermal neutron absorption crossection. The composite of EPDM and boron trioxide would be an effective solution for both respects of flexibility and effectiveness for developing a neutron shielding material. Flexible nature of EPDM would be a great asset for the shielding purpose in case of intervention action to a radiation accident. The theoretical calculations and experimental neutron absorption tests have shown that the results were in parallel and an effective neutron shielding has been achieved with the use of the developed composite material.
Investigation of piezoelectric impedance-based health monitoring of structure interface debonding
NASA Astrophysics Data System (ADS)
Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong
2016-04-01
Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.
Design and construction of a high frame rate imaging system
NASA Astrophysics Data System (ADS)
Wang, Jing; Waugaman, John L.; Liu, Anjun; Lu, Jian-Yu
2002-05-01
A new high frame rate imaging method has been developed recently [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 839-856 (1997)]. This method may have a clinical application for imaging of fast moving objects such as human hearts, velocity vector imaging, and low-speckle imaging. To implement the method, an imaging system has been designed. The system consists of one main printed circuit board (PCB) and 16 channel boards (each channel board contains 8 channels), in addition to a set-top box for connections to a personal computer (PC), a front panel board for user control and message display, and a power control and distribution board. The main board contains a field programmable gate array (FPGA) and controls all channels (each channel has also an FPGA). We will report the analog and digital circuit design and simulations, multiplayer PCB designs with commercial software (Protel 99), PCB signal integrity testing and system RFI/EMI shielding, and the assembly and construction of the entire system. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.F.; Kennedy, E.L.; McCormack, R.G.
1992-09-01
The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less
Bayır, Pınar Türker; Güray, Ümit; Duyuler, Serkan; Demirkan, Burcu; Kayaalp, Oya; Kanat, Selçuk; Güray, Yeşim
2016-02-01
Polycystic ovary syndrome (PCOS) is associated with increased cardiovascular risk, including ischemic stroke. Prolonged atrial electromechanical interval (EMI) is related to increased atrial fibrillation (AF) risk. The aim of the study is to evaluate atrial EMI and electrocardiographic P-wave indices related to increased AF risk in patients with PCOS. Forty PCOS patients diagnosed on the basis of the Rotterdam criteria and 20 age-matched controls were prospectively included. patients with atrioventricular or intraventricular conduction abnormalities, dysrhythmia or taking antiarrhythmic drugs, atherosclerotic heart disease, cardiomyopathies, valvular lesions, pericardial disease, a history of pulmonary emboli or pulmonary hypertension, and abnormal thyroid function were excluded. Intra and interatrial EMI were measured by tissue Doppler imaging and P-wave dispersion (Pd) was calculated on 12-lead electrocardiography (ECG). The Isovolumetric relaxation time was the interval between the aortic valve closure artifact at the end of the LV outflow envelope and the mitral valve opening artifact at the beginning of the mitral E wave. Patients with PCOS had significantly higher interatrial [38 (24-65) ms vs. 16 (9-19) ms p<0.001], left-sided intra-atrial (14.8±6.1 vs. 7±1.7 ms, p<0.001), and right-sided intra-atrial (22.3±8.1 vs. 8.6±3.6 ms, p<0.001) EMI compared with the control group. Pd was significantly greater in the PCOS group compared with control group [45 (27-60) ms vs. 30 (26-38) ms, p<0.001]. Echocardiographic parameters of atrial EMI were significantly correlated with body mass index, Pd, and isovolumetric relaxation time in patients with PCOS. PCOS is associated with prolonged inter- and intra-atrial conduction times, which are related to increased AF risk.
Consolidation and development roadmap of the EMI middleware
NASA Astrophysics Data System (ADS)
Kónya, B.; Aiftimiei, C.; Cecchi, M.; Field, L.; Fuhrmann, P.; Nilsen, J. K.; White, J.
2012-12-01
Scientific research communities have benefited recently from the increasing availability of computing and data infrastructures with unprecedented capabilities for large scale distributed initiatives. These infrastructures are largely defined and enabled by the middleware they deploy. One of the major issues in the current usage of research infrastructures is the need to use similar but often incompatible middleware solutions. The European Middleware Initiative (EMI) is a collaboration of the major European middleware providers ARC, dCache, gLite and UNICORE. EMI aims to: deliver a consolidated set of middleware components for deployment in EGI, PRACE and other Distributed Computing Infrastructures; extend the interoperability between grids and other computing infrastructures; strengthen the reliability of the services; establish a sustainable model to maintain and evolve the middleware; fulfil the requirements of the user communities. This paper presents the consolidation and development objectives of the EMI software stack covering the last two years. The EMI development roadmap is introduced along the four technical areas of compute, data, security and infrastructure. The compute area plan focuses on consolidation of standards and agreements through a unified interface for job submission and management, a common format for accounting, the wide adoption of GLUE schema version 2.0 and the provision of a common framework for the execution of parallel jobs. The security area is working towards a unified security model and lowering the barriers to Grid usage by allowing users to gain access with their own credentials. The data area is focusing on implementing standards to ensure interoperability with other grids and industry components and to reuse already existing clients in operating systems and open source distributions. One of the highlights of the infrastructure area is the consolidation of the information system services via the creation of a common information backbone.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Low eddy current RF shielding enclosure designs for 3T MR applications.
Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S
2018-03-01
Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun
2018-02-15
A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sketoe, J. G.; Clark, Anthony
2000-01-01
This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.
Unexploded Ordnance (UXO) Data Analysis System (DAS). Environmental Quality Technology Program
2009-09-01
is comprised of an EMI sensor, cesium (Cs) vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated power supply...Geometrics model 823A Cs vapor magnetometer . The fluxgate magnetometer is a Bartington model Mag-3MRN60, three- axis fluxgate magnetometer . The system...9. The ERDC hand-held Dual TFM/EMI with ArcSecond positioning system. During standard usage, the fluxgate magnetometer is used to provide the
Naval Air Systems Command Mobile Facility Program
2009-11-03
Julie Trossbach 301-757-3073 Database Manager – Emi McCutcheon 301-757- 8347 BFM – Michelle Moorman 301-757-8328 Comptroller Analyst – Kathy...Jamie McDonald (757) 444-1428 NAVAIR Mobile Facilities MFTool/Database AIR 6.7.6.2 Emi McCutcheon (301) 757-8347 NAVAIR Mobile Facilities Logistics...requirement for mobile trailer -type vans for peculiar jet aircraft maintenance – Needed dust free, temperature & humidity-controlled maintenance
2016-03-14
DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives: Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was
An evaluation of emergency medicine investigators' views on open access to medical literature.
Rodriguez, R M; Wong, J; Hardy, J; Frankel, E
2006-12-01
Scientists and governmental agencies have called for free universal access to research publications via the internet--open access. To examine the current medical literature reading practices of emergency medicine investigators (EMIs) and their views towards open access. Surveys were mailed to the 212 corresponding authors of all original research articles published in years 2002 and 2003 in the Annals of Emergency Medicine, Academic Emergency Medicine and The Journal of Emergency Medicine. The most commonly read forms of medical literature reported by the 129 (61%) EMI respondents were hard-copy medical journals and online literature review services. 59% of EMIs were in favour of open access; 58% stated they would read a wider variety of medical literature; 21% believed open access would improve the quality of publications and 39% thought it would decrease the quality. When asked how a US 1500 dollars fee for open access would affect their ability to publish research, 69% said it would greatly impede and 19% said it would slightly impede their research. Despite concerns that open access may impede their ability to publish research and decrease the quality of publications, most EMIs surveyed favoured open access. They believed open access would increase and broaden their medical literature reading.
ERIC Educational Resources Information Center
Boliver, Vikki
2011-01-01
Conventional political wisdom has it that educational expansion helps to reduce socioeconomic inequalities of access to education by increasing equality of educational opportunity. The counterarguments of Maximally Maintained Inequality (MMI) and Effectively Maintained Inequality (EMI), in contrast, contend that educational inequalities tend to…
Fertilization effects on the electrical conductivity measured by EMI, ERT, and GPR
NASA Astrophysics Data System (ADS)
Weihermueller, L.; Kaufmann, M.; Steinberger, P.; Pätzold, S.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Near surface geophysics such as electromagnetic induction (EMI), electrical resistivity tomography (ERT), and ground penetrating radar (GPR) are widely used for field characterization, to delineate soil units, and to estimate soil texture, bulk densities and/or soil water contents. Hereby, the measured soil apparent conductivity (ECa) is often used. Soil ECa is governed by horizontal and vertical changes in soil texture, mineralogy, soil water content, and temperature, and the single contributions are not easy to disentangle. Within single fields and between fields fertilization management may vary spatially, which holds especially for field trials. As a result, ECa might vary due to differences in electrolyte concentration and subsequent pore fluid conductivity, but secondary fertilization effects might also play a major role in ECa differences such as differences in soil water uptake by growing plants. To study the direct effect of mineral fertilization on ECa, a field experiment was performed on 21 bare soil plots each of a size of 9 m2, where 7 different fertilization treatments were established in triplicates. As mineral fertilizers, commercial calcium ammonium nitrate and potassium chloride were chosen and applied in dosages of 200, 400, and 2000 kg ha-1 N equivalent. Additionally, soil water, soil temperature, and EC were recorded in a pit at different depths using commercial sensors. Changes in ECa were measured every 10 days using EMI and monthly using GPR and ERT. Additionally, soil samples were monthly taken at all plots and nitrate, chloride, and potassium contents were measured in the lab. The poster will show the effect of ECa changes due to fertilization and corresponding leaching of the fertilized elements over time. The experimental results provide information of how fertilization is influencing ECa readings and how long the fertilizers are influencing ECa measurements with geophysical instruments. This study helps to overcome restricted interpretation of ECa measurements on managed agricultural soils.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.
1980-01-01
Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.
Na, Wongi S; Baek, Jongdae
2018-04-24
The birth of smart materials such as piezoelectric (PZT) transducers has aided in revolutionizing the field of structural health monitoring (SHM) based on non-destructive testing (NDT) methods. While a relatively new NDT method known as the electromechanical (EMI) technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works.
Na, Wongi S.; Baek, Jongdae
2018-01-01
The birth of smart materials such as piezoelectric (PZT) transducers has aided in revolutionizing the field of structural health monitoring (SHM) based on non-destructive testing (NDT) methods. While a relatively new NDT method known as the electromechanical (EMI) technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works. PMID:29695067
NASA Astrophysics Data System (ADS)
Sugden, P.; Savov, I. P.; Wilson, M.; Meliksetian, K.; Navasardyan, G.
2017-12-01
Continental collision zones remain the most enigmatic tectonic setting for volcanic activity on earth. The Lesser Caucasus Mts are host to widespread and unique intraplate volcanism, associated with the active Arabia-Eurasia continental collision. Volcanic products range from alkali basalts to rhyolites (including extensive ignimbrites), and occur as basaltic lava flow fields, large composite and shield volcanoes, and regions of distributed (mostly monogenetic) volcanism. Geomorphology, archaeology, and historical accounts suggest volcanic activity has extended in to the Holocene-historical period. The high quality of the exposures and the diversity of unaltered rock types makes Armenia an ideal natural laboratory for studying the sources of magmatism in an active continental collision zone. For the first time, we will present the mineral chemistry (ol, px, amph), whole rock major and trace element, and Sr-Nd isotope compositions of volcanic rocks from southernmost Armenia- namely the Gegham, Vardenis and Syunik volcanic highlands. We compare our dataset with the composition of post-collisional volcanic rocks elsewhere in the Arabia-Eurasia collision zone. Samples from S. Armenia are more mafic, more alkaline and more K2O rich. All volcanic rocks show negative HFSE anomalies and LILE and LREE enrichments reminiscent of continental volcanic arc settings. However, volcanic rocks in Southern Armenia are further enriched in some of the most incompatible trace elements, most notably LREE, Sr and P, and have higher La/Yb, Th/Yb, Ta/Yb, and more variable Th/Nb. Volcanic rocks from Eastern Anatolia and N. Armenia have Sr-Nd isotope compositions similar to those of the Mesozoic volcanic arc (87Sr/86Sr 0.7034-0.7045; 143Nd/144Nd 0.5128-0.5129), whereas samples from S. Armenia deviate towards more enriched compositions resembling a typical EM-I type reservoir (87Sr/86Sr 0.7041- 0.7047; 143Nd/144Nd 0.5127-0.5128). We argue that these distinctive geochemical characteristics result from the addition of an enriched lithospheric component to a ubiquitous subduction-modified baseline asthenospheric mantle. This EM-I like component may be characteristic for not only intraplate hotspot volcanoes but also to collisional and arc settings.
Surface modified carbon nanoparticle papers and applications on polymer composites
NASA Astrophysics Data System (ADS)
Ouyang, Xilian
Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach a tensile strength of 360 MPa and an electrical conductivity of 4.45x104 S/m, much better than any similar materials reported in the literature. However, they didn't show good gas barrier properties. Since the GO paper presented zero gas permeability for both CO2 and H2, a hybrid paper fabrication approach was proposed to combine the advantages of individual GP and GO papers. This was done by filtering GP and GO layer by layer with GO sandwiched in between two layers of GP. The resulting hybrid papers showed high mechanical tensile strength and EMI shielding effectiveness that are close to GP nanopapers, and excellent gas barrier properties that comparable to GO nanopapers. The GP, GO and GP-Go-GP hybrid nanopapers have been successfully coated onto the thermoplastic surface by thermal lamination and injection molding. In the third part, the effect of PANI-CNF nanopapers and a chelating agent, 2, 4- Pentanedione (2, 4-P) on kinetics of an in-mold coating (IMC) resin was investigated. The results showed that the presence of amine functionalized carbon nanoparticles tended to retard the resin reaction, while 2, 4-P was capable of promoting the redox based free radical polymerization by forming a complex with the cobalt promoter in the initiation step. In order to understand the chemical and physical changes during the resin curing process, kinetics study on two major resin components, i.e. hexanediol diacrylate (HDDA) and styrene (St), were carried out using an integrated analysis design: differential scanning calorimetry (DSC) for overall reaction, Fourier transform infrared spectroscopy (FTIR) for individual component reactions, and rheometry for liquid-solid transition during the reaction. The gel point of this radical polymerization resin system was found to be <2% which implied that most curing was conducted in the solid phase. The results showed that the double bonds in acrylates and St followed an azeotropic polymerization pattern.
Electromagnetic interference and shielding: An introduction (revised version of 1991-23)
NASA Astrophysics Data System (ADS)
Dehoop, A. T.; Quak, D.
The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Quantification of Noise Sources in EMI Surveys
2012-04-09
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --12-9400 Quantification of Noise Sources in EMI Surveys ESTCP MR-0508 Final Guidance...NUMBER 2 . REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT NUMBER 7. PERFORMING...Barrow,‡ Jonathan T. Miller,‡ and Thomas H. Bell,‡ Naval Research Laboratory, Code 6110 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR
UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes. Volume 1
NASA Technical Reports Server (NTRS)
Oria, A. J. (Editor); Ely, Jay J.; Martin, Warren L.; Shaver, Timothy W.; Fuller, Gerald L.; Zimmerman, John; Fuschino, Robert L.; Larsen, William E.
2005-01-01
Ultrawideband (UWB) transmitters may soon be integrated into a wide variety of portable electronic devices (PEDs) that passengers routinely carry on board commercial airplanes. Airlines and the FAA will have difficulty controlling passenger use of UWB transmitters during flights with current airline policies and existing wireless product standards. The aeronautical community is concerned as to whether evolving FCC UWB rules are adequate to protect legacy and emerging aeronautical radio systems from electromagnetic interference (EMI) from emerging UWB products. To address these concerns, the NASA Office of Space Communications and Chief Spectrum Managers assembled a multidisciplinary team from NASA LaRC, NASA JPL, NASA ARC, FAA, United Airlines, Sky West Airlines, and Eagles Wings Inc. to carry out a comprehensive series of tests aimed at determining the nature and extent of any EMI to aeronautical communication and navigation systems from UWB devices meeting FCCapproved and proposed levels for unlicensed handheld transmitters.
Smartphone delivery of a hope intervention: Another way to flourish.
Daugherty, Douglas A; Runyan, Jason D; Steenbergh, Timothy A; Fratzke, Betty Jane; Fry, Brian N; Westra, Emma
2018-01-01
Positive interventions have shown promise for fostering hedonic (happiness) and eudaimonic (flourishing) well-being. However, few studies have focused on positive interventions that target hope as a means of increasing well-being, and none have examined the use of smartphone app-based systems for delivering interventions in the moments and contexts of daily life-an approach called ecological momentary intervention (EMI). We conducted a quasi-experimental pilot study using a pretest and posttest design to examine the feasibility and potential impact of a mobile app-based hope EMI. Participants appeared to engage with the intervention and found the experience to be user-friendly, helpful, and enjoyable. Relative to the control group, those receiving the intervention demonstrated significantly greater increases in hope; however, there were no between-group differences in hedonic and eudaimonic well-being. The authors recommend future research to examine the potential of EMI mobile apps to cultivate hope and promote flourishing.
Smartphone delivery of a hope intervention: Another way to flourish
Runyan, Jason D.; Steenbergh, Timothy A.; Fratzke, Betty Jane; Fry, Brian N.; Westra, Emma
2018-01-01
Positive interventions have shown promise for fostering hedonic (happiness) and eudaimonic (flourishing) well-being. However, few studies have focused on positive interventions that target hope as a means of increasing well-being, and none have examined the use of smartphone app-based systems for delivering interventions in the moments and contexts of daily life—an approach called ecological momentary intervention (EMI). We conducted a quasi-experimental pilot study using a pretest and posttest design to examine the feasibility and potential impact of a mobile app-based hope EMI. Participants appeared to engage with the intervention and found the experience to be user-friendly, helpful, and enjoyable. Relative to the control group, those receiving the intervention demonstrated significantly greater increases in hope; however, there were no between-group differences in hedonic and eudaimonic well-being. The authors recommend future research to examine the potential of EMI mobile apps to cultivate hope and promote flourishing. PMID:29856805
Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da
2015-12-01
The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.
NASA Astrophysics Data System (ADS)
Kang, Y. M.; Cho, J. H.; Kim, S. C.
2015-07-01
This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.
Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour
NASA Astrophysics Data System (ADS)
Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.
2018-06-01
Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.
2013-01-01
Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems. PMID:23845013
NASA Astrophysics Data System (ADS)
Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.
Seidman, Seth J; Guag, Joshua W
2013-07-11
The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems.
Portable convertible blast effects shield
Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A
2010-10-26
A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.
Portable convertible blast effects shield
Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA
2007-05-22
A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.
NASA Astrophysics Data System (ADS)
Yan, Wei; Cai, J. B.; Chen, W. Q.
2011-01-01
A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.
[Trial manufacture of a plunger shield for a disposable plastic syringe].
Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki
2008-08-20
A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
Definition of Throw-Away Detectors (TADs) and VLF antenna for the AMPS laboratory
NASA Technical Reports Server (NTRS)
Koons, H. C.; Fennell, J. F.
1975-01-01
A Throw Away Detector (TAD)/subsatellite to be used as an experiment platform for the test flights to map the EMI from the shuttle and during the AMPS science flights is defined. A range of instrument platforms of varying capabilities is examined with emphasis on the EMI test vehicle. The operational support requirements of TAD/subsatellites are determined. The throw away detector is envisioned as a simple instrument package for supporting specific experiments.
Have CT--will travel: to boldly go where no scan has gone before.
Schwamm, Lee H; Starkman, Sidney
2013-01-08
In 1962, a new English rock-and-roll band named The Beatles signed a recording contract with Electric & Music Industries (EMI). The Beatles were so financially successful that EMI was able to fund research and development in other divisions of the company; in particular, the work of an enterprising young engineer named Godfrey Hounsfield. His groundbreaking work in x-ray imaging produced the first commercially available head-only CT scanner, and a Nobel Prize.
The Vulnerabilities of Unmanned Aircraft System Common Data Links to Electronic Attack
2010-06-11
jamming, radar acquisition, and radar tracking (US Joint Forces Command 2009b, 101). Electromagnetic Interference ( EMI ). Any electromagnetic...has a range of up to 125 kilometers, and can remain airborne for up to 6 hours (see figure 6). The Shadow 200 is launched using a trailer mounted...disruption by EMI and friendly EW jamming systems. Second, FM 3-04.115 is the only publication that addresses counter-UAS threats and how enemy forces may
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Electromagnetic Interference in a Private Swimming Pool: Case report.
Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya
2015-01-01
Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.
2013-04-01
Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18
New applications of a model of electromechanical impedance for SHM
NASA Astrophysics Data System (ADS)
Pavelko, Vitalijs
2014-03-01
The paper focuses on the further development of the model of the electromechanical impedance (EMI) of the piezoceramics transducer (PZT) and its application for aircraft structural health monitoring (SHM). There was obtained an expression of the electromechanical impedance common to any dimension of models (1D, 2D, 3D), and directly independent from imposed constraints. Determination of the dynamic response of the system "host structure - PZT", which is crucial for the practical application supposes the use of modal analysis. This allows to get a general tool to determine EMI regardless of the specific features of a particular application. Earlier there was considered the technology of separate determination of the dynamic response for the PZT and the structural element". Here another version that involves the joint modal analysis of the entire system "host structure - PZT" is presented. As a result, the dynamic response is obtained in the form of modal decomposition of transducer mechanical strains. The use of models for the free and constrained transducer, analysis of the impact of the adhesive layer to the EMI is demonstrated. In all cases there was analyzed the influence of the dimension of the model (2D and 3D). The validity of the model is confirmed by experimental studies. Correlation between the fatigue crack length in a thin-walled Al plate and EMI of embedded PZT was simulated and compared with test result.
NASA Astrophysics Data System (ADS)
Sabet Divsholi, Bahador; Yang, Yaowen
2011-04-01
Piezoelectric lead zirconate titanate (PZT) transducers have been used for health monitoring of various structures over the last two decades. There are three methods to install the PZT transducers to structures, namely, surface bonded, reusable setup and embedded PZTs. The embedded PZTs and reusable PZT setups can be used for concrete structures during construction. On the other hand, the surface bonded PZTs can be installed on the existing structures. In this study, the applicability and limitations of each installation method are experimentally studied. A real size concrete structure is cast, where the surface bonded, reusable setup and embedded PZTs are installed. Monitoring of concrete hydration and structural damage is conducted by the electromechanical impedance (EMI), wave propagation and wave transmission techniques. It is observed that embedded PZTs are suitable for monitoring the hydration of concrete by using both the EMI and the wave transmission techniques. For damage detection in concrete structures, the embedded PZTs can be employed using the wave transmission technique, but they are not suitable for the EMI technique. It is also found that the surface bonded PZTs are sensitive to damage when using both the EMI and wave propagation techniques. The reusable PZT setups are able to monitor the hydration of concrete. However they are less sensitive in damage detection in comparison to the surface bonded PZTs.
Effect of Motivation by "Instagram" on Adherence to Physical Activity among Female College Students.
Al-Eisa, Einas; Al-Rushud, Asma; Alghadir, Ahmad; Anwer, Shahnawaz; Al-Harbi, Bashayer; Al-Sughaier, Noha; Al-Yoseef, Noha; Al-Otaibi, Reem; Al-Muhaysin, Hanadi Ali
2016-01-01
To investigate the efficacy of using "Instagram application" with a "home-exercise program" as a motivational stimulus in improving physical activity (PA) adherence levels among female college students. Fifty-eight female undergraduate students with the mean age 20.3 ± 0.96 years participated. Participants were divided into two groups: intervention and the control group; both the groups received an exercise program and the intervention group was additionally motivated by "Instagram." Adherence to PA was measured by using an adherence sheet. The Exercise Motivation Inventory (EMI-2) was used to assess the motivational factors. The most frequent motivational factors were extrinsic as assessed using the EMI-2. "Positive health" was the most frequent factor mentioned of the two types with 47% of the sample. The intervention group adhered with 17% more to the activity program compared to the control group. Moreover, 72% of the participants in the intervention and control groups found the activity program flexible enough to be performed at home; they agreed about its effectiveness on adherence (53%). The use of Instagram with the home exercise program as a motivational modality could be attractive and effective to reinforce adherence and maintain an appropriate PA level.
Design of magnets inside cylindrical superconducting shields
NASA Technical Reports Server (NTRS)
Rigby, K. W.
1988-01-01
The design of magnets inside closed, cylindrical, superconducting shields is discussed. The Green function is given for the magnetic vector potential for cylindrically symmetric currents inside such a shield. The magnetic field everywhere inside the shield can be obtained from this function, which includes the effects of the induced shield currents exactly. The field is given for a thin solenoid as an example and the convergence of the series solution for this case is discussed. The shield can significantly reduce the strength and improve the homogeneity of a magnet. The improvement in homogeneity is of particular importance in the design of correction coils. These effects, and the maximum field on the shield, are examined for a typical solenoid. The results given are also useful, although not exact, for long shields with one or two open ends.
Designing dual-plate meteoroid shields: A new analysis
NASA Technical Reports Server (NTRS)
Swift, H. F.; Bamford, R.; Chen, R.
1982-01-01
Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.
Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets
NASA Astrophysics Data System (ADS)
Kim, S. C.; Lee, H. K.; Cho, J. H.
2014-07-01
Computed tomography (CT) uses a high dose of radiation to create images of the body. As patients are exposed to radiation during a CT scan, the use of shielding materials becomes essential in CT scanning. This study was focused on the radiation shielding materials used for patients during a CT scan. In this study, sheets were manufactured to shield the eyes and the thyroid, the most sensitive parts of the body, against radiation exposure during a CT scan. These sheets are manufactured using silicone polymers, barium sulfate (BaSO4) and tungsten, with the aim of making these sheets equally or more effective in radiation shielding and more cost-effective than lead sheets. The use of barium sulfate drew more attention than tungsten due to its higher cost-effectiveness. The barium sulfate sheets were coated to form a multigate structure by applying the maximum charge rate during the agitator and subsequent mixing processes and creating multilayered structures on the surface. To measure radiation shielding effectiveness, the radiation dose was measured around both eyes and the thyroid gland using sheets in three different thicknesses (1, 2 and 3 mm). Among the 1 and 2 mm sheets, the Pb sheets exhibited greater effectiveness in radiation shielding around both eyes, but the W sheets were more effective in radiation shielding around the thyroid gland. In the 3 mm sheets, the Pb sheet also attenuated a higher amount of radiation around both eyes while the W sheet was more effective around the thyroid gland. In conclusion, the sheets made from barium sulfate and tungsten proved highly effective in shielding against low-dose radiation in CT scans without causing ill-health effects, unlike lead.
Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell
2006-01-01
An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.
Measuring space radiation shielding effectiveness
NASA Astrophysics Data System (ADS)
Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven
2017-09-01
Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.
Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator
NASA Astrophysics Data System (ADS)
Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin
2017-09-01
The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case
aperture size exists, where the SE has its minimum.
A proposed performance index for galactic cosmic ray shielding materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.
1993-01-01
In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.
Effective shielding to measure beam current from an ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayle, H., E-mail: bayle@bergoz.com; Delferrière, O.; Gobin, R.
To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.
Helium Bottle Pressure Measurement by Portable Ultrasonic Technique
1989-02-07
revision extends the study to include EMI testing, and -develorynent of g Rrotgtype tester . The Contractor shall: 1. Perform EMI test of ultrasonic eq...amp/1 watt power ap- plied to the bridgerires. The tester pulse of 250 volts for 100 ns at 1500 pps has an average value of 250v x 100ns x 1500pps...34 connector. Mount transducer in fixture and connect transducer to cable microdot connector. 5. Pulse-Echo transit time measurement: Assure that the
[Restrictions for ICD patients in daily life].
Köbe, Julia; Gradaus, Rainer; Zumhagen, Sven; Böcker, Dirk
2005-11-01
Patients with an implantable cardioverter defibrillator (ICD) may experience loss of consciousness. Electromagnetic interference (EMI) may trigger undesired or inhibit necessary therapy in patients with an ICD. Therefore, questions about personal or professional activities for ICD patients arise. Restricting driving or other personal activities has adverse effects on the patient's quality of life. The national Societies of Cardiology provide recommendations for ICD patients concerning driving of motor vehicles. Patients with an ICD that is implanted prophylactically do not have to refrain from driving after recovery from the implantation procedure. Patients with arrhythmias are classified into different groups depending on the risk of recurrence of tachycardias and symptoms. Commercial driving is not allowed for patients with an ICD in Germany except for those with a prophylactic indication without a history of arrhythmias. Those patients may drive small cars but no trucks or busses. Guidelines for medical fitness in commercial or military flying are regulated by the Joint Aviation Authorities (JAA) and ventricular tachycardias are a contraindication for both. Fortunately, loss of consciousness is not dangerous in most jobs. Strong sources of EMI can occur at special workplaces. Patients have to be advised and tested individually concerning their risk for EMI at their employment site before returning safely. Modern life exposes to an increasing amount of EMI. Intact household devices usually do not interfere with ICDs. Mobile phones may interfere with implanted devices. Interaction can be minimized by special precautions like maintaining a distance of minimum 10 cm between mobile phone and ICD. Electronic surveillance systems work differently and have the potential to interact with devices. Patients should be advised to pass those systems with avoiding longer exposure. The presence of an ICD is presently a contraindication for undergoing magnetic resonance imaging (MRI) because of a high risk of destruction of the system with even potential harm to the patient. High-frequency application for electrocautery devices or ablation is possible under certain precautions that have to be planned before. There is a high sensitivity of ICD systems to ionizing radiation with defect of the devices after a cumulative dose > 5 Gy.
EMP Preferred Test Procedures. Revision
1977-02-01
r _ -P ~PREFERRED TEST PROCEDURES,r- -Hnbo -Tkeltted Elec-ront’c Parts) .... . ITR Projs.E6230,E6261, J.E. Bridges W.C. Emberson V.P. Nanda DNA QQ-72...Connectors Surface Transfer Impedance Shielded Enclosures Surface Transfer Admittance Shielded Rooms E- Field Shielding Conduits Effectiveness Resistor Damage H... Field Shielding Capacitor Damage Effectiveness Inductor Damage Conduit Couplers Transformer Damage Capacitor Characterization Resistor
An analytical and experimental evaluation of shadow shields and their support members
NASA Technical Reports Server (NTRS)
Stochl, R. J.; Boyle, R. J.
1972-01-01
Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.
NASA Astrophysics Data System (ADS)
Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.
2010-12-01
Coalbed natural gas (CBNG) production in the Powder River Basin (PRB) in northeastern Wyoming has increased rapidly since 1997. CBNG production involves the extraction of large amounts of water containing >2000 mg/L total dissolved solids, dominantly sodium bicarbonate. Subsurface drip irrigation (SDI) is a beneficial disposal method of produced waters, provided that waters and associated salts are managed properly. We are studying how water and solute distributions change in soils with progressive irrigation at two PRB sites using a combination of geophysical, geochemical, and mineralogical analyses. Perennial crops are grown at both sites, drip tapes are located at 92 cm depth, and water is applied year-round. The first SDI site is located at the confluence of Crazy Woman Creek and the Powder River. Baseline ground-based and helicopter-borne frequency domain electromagnetic induction (EMI) surveys were completed in 2007 and 2008, respectively, prior to the installation of the SDI system. Since installation, additional ground-based EMI, resistivity, and downhole geophysical log surveys have been completed along with soil geochemical and mineralogical analyses. Determining baseline physical, chemical, and electrical soil characteristics at this study site is an important step in linking the EMI measurements to the soil characteristics they are intended to assess. EMI surveys indicate that soil conductivity has generally increased with irrigation, but lateral migration of water away from the irrigated blocks is minimal. Median downhole electrical conductivity was positively correlated with soil mass wetness but not correlated with soil mineralogy. Soil-water extract results indicate existing salts are chemically heterogeneous throughout the site and in depth. The observed EMI conductivity variations are therefore primarily attributed to water content changes and secondarily to soil texture. The second SDI site, located northeast of Sheridan, WY, has been operating for six years and includes irrigated alfalfa and grass and adjacent non-irrigated grass fields. A single ground-based EMI survey was performed in Feb. 2010, which helped direct subsequent soil sampling. Gypsum distribution can be differentiated into two soil zones: an upper, gypsum-poor zone and a lower gypsum-rich zone. The break between zones is 30 cm deeper in the irrigated soil and is probably due to dissolution and displacement of gypsum by SDI waters infiltrating from the drip tape. Resistivity profiles were acquired in June 2010 over the soil sampling sites and are consistent with the EMI data, which show higher conductivity values in the irrigated fields. In the SDI alfalfa field, there is a strong negative correlation between mass wetness and resistivity with a 75% increase in mass wetness (0.2-0.35 g/g) at 3 m depth corresponding to a 30% resistivity decrease (15-10 ohm-m). When compared to the non-irrigated field profile, the SDI alfalfa field data show a 50% resistivity decrease (20-10 ohm-m) below 3 m depth, indicating a possible accumulation of irrigated waters below the SDI system.
HVI Ballistic Performance Characterization of Non-Parallel Walls
NASA Technical Reports Server (NTRS)
Bohl, William; Miller, Joshua; Christiansen, Eric
2012-01-01
The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.
Alecci, Marcello; Jezzard, Peter
2002-08-01
Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.