Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Shan, Liang; Gu, Xinbin; Wang, Paul
2013-09-01
Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD,
Molecular Imaging of Pancreatic Cancer with Antibodies
2015-01-01
Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581
NASA Astrophysics Data System (ADS)
Laoui, Samir
Photoacoustic tomography is a hybrid imaging modality that takes advantage of the high contrast of pure optical imaging and the high intrinsic resolution of ultrasound without the necessity of ionizing radiation. Photoacoustic imaging (PM) is neither purely optical nor purely acoustical in nature, but a combination of the two. It is fundamentally based on light excitation and ultrasonic detection. Photoacoustic imaging has been successful without the introduction of exogenous contrast agents; however, to image deeper regions of biological tissue, a contrast agent is necessary. Several types of photoacoustic contrast agents have been made available for diagnostic purposes; however, the majority of literature has focused on gold nanoparticle systems for which the surface-plasmon resonance effect is important. The only option currently available for molecular PM contrast agents is to choose an existing near infrared absorbing fluorescent probes with the hope that they may generate a substantial photoacoustic (PA) response. However, these dyes have been designed with an optimized fluorescence emission response and are not anticipated to generate an adequate photoacoustic response. This dissertation addresses this lack of precedence in the literature for understanding the mechanism of a photoacoustic signal generation from strongly absorbing dye molecules including BODIPY, cyanine and curcumin systems. This work represents preliminary efforts in bringing novel molecular photoacoustic contrast agents (MPACs) into the photoacoustic imaging arena. To this end, photoacoustic and optical Z-scan experiments, and quenching studies were employed to demonstrate correlation of photoacoustic emission enhancement with excited state absorption mechanisms. To investigate further the photoacoustic emission in a practical imaging setting, MPACs were imaged using a recently developed photoacoustic imaging tomography system which was constructed exclusively for the purpose of this study.
Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress.
Chopra, Arvind; Shan, Liang; Eckelman, W C; Leung, Kam; Latterner, Martin; Bryant, Stephen H; Menkens, Anne
2012-02-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov ) to students, researchers, and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, X-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1,000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4,250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration as well as a comma separated values file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, pre-clinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities, and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments, or suggestions for further improvement of the database by writing to the editors at micad@nlm.nih.gov.
Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress
Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne
2011-01-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943
Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.
Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián
2018-01-01
Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.
Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.
Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B
2010-09-01
Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.
Study and Characterization of Subharmonic Emissions by Using Shaped Ultrasonic Driving Pulse
NASA Astrophysics Data System (ADS)
Masotti, L.; Biagi, E.; Breschi, L.; Vannacci, E.
Subharmonic emissions from Ultrasound Contrast Agents (UCAs) were studied by a Pulse Inversion method in order to assess the feasibility of implementation of this technique to subharmonic imaging. Interesting results concerning the dependence of the subharmonic emission with respect to initial pulse shape are presented. The experimentation was performed also by varying the acoustic pressure and concentration of the contrast agent (SonoVue®)
Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles
Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong
2012-01-01
Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436
Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.
Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong
2012-07-01
Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).
Bimodal MR-PET agent for quantitative pH imaging
Frullano, Luca; Catana, Ciprian; Benner, Thomas; Sherry, A. Dean; Caravan, Peter
2010-01-01
Activatable or “smart” magnetic resonance contrast agents have relaxivities that depend on environmental factors such as pH or enzymatic activity, but the MR signal depends on relaxivity and agent concentration – two unknowns. A bimodal approach, incorporating a positron emitter, solves this problem. Simultaneous positron emission tomography (PET) and MR imaging with the biomodal, pH-responsive MR-PET agent GdDOTA-4AMP-F allows direct determination of both concentration (PET) and T1 (MRI), and hence pH. PMID:20191650
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.
2007-02-01
Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.
Charnley, Natalie; Donaldson, Stephanie; Price, Pat
2009-01-01
There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).
Development and Application of Multifunctional Lanthanide-Doped Nanoparticles in Medical Imaging
NASA Astrophysics Data System (ADS)
Pedraza, Francisco J., III
Medical imaging has become one of the most important tools of modern medicine soon after it was developed. Presently, several imaging modalities are available to clinicians for the detection of skeletal fractures and functional abnormalities of organs and tissues; and also an excellent tool during surgical procedures. Unfortunately, each imaging technique possesses its own strengths and inherent limitations which can be mitigated via the use of multiple imaging modalities and imaging probes. Through the use of multiple imaging modalities, it is possible to gather complementary information for a more reliable diagnosis. Each imaging technique requires its own imaging probes, providing selectivity and improved contrast. However, conventional contrast agents are incapable of providing what the new generation of multifunctional nanomaterials offer. In addition to improved selectivity and contrast, multifunctional materials possess therapeutic capabilities such as photo-thermal therapy and controlled drug delivery. Lanthanide-based nanomaterials are viable candidates for multimodal imaging agents due to possessing multifunctional capabilities, optical and chemical stability, and an intense tunable emission. This doctoral dissertation will delve into the development of lanthanide-based nanoparticles by proposing a novel multifunctional contrast agent for Near Infrared Fluorescence Imaging and Magnetic Resonance Imaging. Furthermore, the study of surface modification effects on upconversion emission and nanoparticle-cell interactions was performed. Results presented will confirm the potential application of multifunctional lanthanide-based nanomaterials as multimodal imaging probes.
Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika
2011-08-24
The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.
New Technologies for Human Cancer Imaging
Frangioni, John V.
2008-01-01
Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 103- to 104-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed. PMID:18711192
Role of positron emission tomography/computed tomography in breast cancer.
Bourgeois, Austin C; Warren, Lance A; Chang, Ted T; Embry, Scott; Hudson, Kathleen; Bradley, Yong C
2013-09-01
Although positron emission tomography (PET) imaging may not be used in the diagnosis of breast cancer, the use of PET/computed tomography is imperative in all aspects of breast cancer staging, treatment, and follow-up. PET will continue to be relevant in personalized medicine because accurate tumor status will be even more critical during and after the transition from a generic metabolic agent to receptor imaging. Positron emission mammography is an imaging proposition that may have benefits in lower doses, but its use is limited without new radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Ye; An, Fei-Fei; Chan, Mark; Friedman, Beth; Rodriguez, Erik A; Tsien, Roger Y; Aras, Omer
2017-01-01
An agent for visualizing cells by positron emission tomography is described and used to label red blood cells. The labeled red blood cells are injected systemically so that intracranial hemorrhage can be visualized by positron emission tomography (PET). Red blood cells are labeled with 0.3 µg of a positron-emitting, fluorescent multimodal imaging probe, and used to non-invasively image cryolesion induced intracranial hemorrhage in a murine model (BALB/c, 2.36 × 108 cells, 100 µCi, <4 mm hemorrhage). Intracranial hemorrhage is confirmed by histology, fluorescence, bright-field, and PET ex vivo imaging. The low required activity, minimal mass, and high resolution of this technique make this strategy an attractive alternative for imaging intracranial hemorrhage. PET is one solution to a spectrum of issues that complicate single photon emission computed tomography (SPECT). For this reason, this application serves as a PET alternative to [99mTc]-agents, and SPECT technology that is used in 2 million annual medical procedures. PET contrast is also superior to gadolinium and iodide contrast angiography for its lack of clinical contraindications. PMID:28054494
Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.
Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo
2012-04-15
Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Functional mesoporous silica nanoparticles for bio-imaging applications.
Cha, Bong Geun; Kim, Jaeyun
2018-03-22
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T
2018-04-24
Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.
Indocyanine green fluorescence in second near-infrared (NIR-II) window
Bhavane, Rohan; Ghaghada, Ketan B.; Vasudevan, Sanjeev A.; Kaay, Alexander; Annapragada, Ananth
2017-01-01
Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called “NIR-I” window (700–900 nm). Recently, imaging in the “NIR-II” window (1000–1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology. PMID:29121078
Imaging of Oxidative Stress in Prostate Cancer
2013-10-01
transformative imaging agent. 15. SUBJECT TERMS Positron Emission Tomography, Oxidative Stress, Hydrogen Peroxide, 18F, 124I, Prostate...AD_________________ Award Number: W81XWH-12-1-0029 TITLE: Imaging of Oxidative Stress in...27September2012-26September2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Imaging of Oxidative Stress in Prostate Cancer 5b. GRANT NUMBER
Emerging applications of conjugated polymers in molecular imaging.
Li, Junwei; Liu, Jie; Wei, Chen-Wei; Liu, Bin; O'Donnell, Matthew; Gao, Xiaohu
2013-10-28
In recent years, conjugated polymers have attracted considerable attention from the imaging community as a new class of contrast agent due to their intriguing structural, chemical, and optical properties. Their size and emission wavelength tunability, brightness, photostability, and low toxicity have been demonstrated in a wide range of in vitro sensing and cellular imaging applications, and have just begun to show impact in in vivo settings. In this Perspective, we summarize recent advances in engineering conjugated polymers as imaging contrast agents, their emerging applications in molecular imaging (referred to as in vivo uses in this paper), as well as our perspectives on future research.
NASA Astrophysics Data System (ADS)
Dutta, Dipa; Gupta, Jagriti; Thakur, Dinbandhu; Bahadur, Dhirendra
2017-12-01
Combining more than one imaging technique into a single system can outweigh the limitations of conventional imaging techniques. Pairing optically active quantum dots (QDs) with superparamagnetic MRI agent is an adorable way to develop probes for bimodal imaging. Tiny SnO2 quantum dot embedded iron oxide (IO) nanocomposite (SQD-IO) is synthesized. This combines the superparamagnetic property of IO nanoparticles (NPs) and special optical properties of SnO2 QDs, and is explored as a bimodal imaging agent. Morphological studies of the nanocomposite reveal that 3 nm tiny SnO2 QDs are embedded in ~30 nm γ-Fe2O3 NPs. The SQD-IO preserves the intrinsic superparamagnetic behaviour of its constituent IO NPs with a magnetization ~21.4 emu g-1 measured at an applied field of 20k Oe. The emission colour of the nanocomposite is tuned by simply varying the excitation wavelength. The centre of the emission band shifts from 570 to 600 nm as the excitation alters from 488 to 535 nm. The cytotoxicity assessment indicates that the nanocomposite is suitable for its in vitro use. Transverse proton relaxivity (141 mM-1 s-1) of the nanocomposite is higher than the widely used negative contrast agent Feridex (R2 = 98.3 mM-1 s-1). The confocal laser scanning microscope images give evidence of the cellular uptake behaviour of SQD-IO in HeLa cells and it is seen that QDs retain their optical properties within the intracellular environment. The high R2 value for MRI and the tunable florescence images of HeLa cells essentially establish SQD-IO as a potential probe for bimodal imaging.
Recent trends in soft-tissue infection imaging.
Petruzzi, Nicholas; Shanthly, Nylla; Thakur, Mathew
2009-03-01
This article discusses the current techniques and future directions of infection imaging with particular attention to respiratory, central nervous system, abdominal, and postoperative infections. The agents currently in use localize to areas of infection and inflammation. An infection-specific imaging agent would greatly improve the utility of scintigraphy in imaging occult infections. The superior spatial resolution of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) and its lack of reliance on a functional immune system, gives this agent certain advantages over the other radiopharmaceuticals. In respiratory tract infection imaging, an important advancement would be the ability to quantitatively delineate lung inflammation, allowing one to monitor the therapeutic response in a variety of conditions. Current studies suggest PET should be considered the most accurate quantitative method. Scintigraphy has much to offer in localizing abdominal infection as well as inflammation. We may begin to see a gradual increase in the usage of (18)F-FDG-PET in detecting occult abdominal infections. Commonly used modalities for imaging inflammatory bowel disease are scintigraphy with (111)In-oxine/(99m)Tc-HMPAO labeled autologous white blood cells. The literature on central nervous system infection imaging is relatively scarce. Few clinical studies have been performed and numerous new agents have been developed for this use with varying results. Further studies are needed to more clearly delineate the future direction of this field. In evaluating the postoperative spine, (99m)Tc-ciprofloxacin single-photon emission computed tomography (SPECT) was reported to be >80% sensitive in patients more than 6 months after surgery. FDG-PET has also been suggested for this purpose and may play a larger role than originally thought. It appears PET/computed tomography (CT) is gaining support, especially in imaging those with fever of unknown origin or nonfunctional immune systems. Although an infection-specific agent is lacking, the development of one would greatly advance our ability to detect, localize, and quantify infections. Overall, imaging such an agent via SPECT/CT or PET/CT will pave the way for greater clinical reliability in the localization of infection.
Imaging Neurotensin Receptor in Prostate Cancer With 64Cu-Labeled Neurotensin Analogs.
Deng, Huaifu; Wang, Hui; Zhang, He; Wang, Mengzhe; Giglio, Ben; Ma, Xiaofen; Jiang, Guihua; Yuan, Hong; Wu, Zhanhong; Li, Zibo
2017-01-01
Neurotensin receptor 1 (NTR-1) is expressed and activated in prostate cancer cells. In this study, we explore the NTR expression in normal mouse tissues and study the positron emission tomography (PET) imaging of NTR in prostate cancer models. Three 64 Cu chelators (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid [DOTA], 1,4,7-triazacyclononane-N,N',N″-triacetic acid [NOTA], or AmBaSar) were conjugated to an NT analog. Neurotensin receptor binding affinity was evaluated using cell binding assay. The imaging profile of radiolabeled probes was compared in well-established NTR + HT-29 tumor model. Stability of the probes was tested. The selected agents were further evaluated in human prostate cancer PC3 xenografts. All 3 NT conjugates retained the majority of NTR binding affinity. In HT-29 tumor, all agents demonstrated prominent tumor uptake. Although comparable stability was observed, 64 Cu-NOTA-NT and 64 Cu-AmBaSar-NT demonstrated improved tumor to background contrast compared with 64 Cu-DOTA-NT. Positron emission tomography/computed tomography imaging of the NTR expression in PC-3 xenografts showed high tumor uptake of the probes, correlating with the in vitro Western blot results. Blocking experiments further confirmed receptor specificity. Our results demonstrated that 64 Cu-labeled neurotensin analogs are promising imaging agents for NTR-positive tumors. These agents may help us identify NTR-positive lesions and predict which patients and individual tumors are likely to respond to novel interventions targeting NTR-1.
Adamiano, Alessio; Iafisco, Michele; Sandri, Monica; Basini, Martina; Arosio, Paolo; Canu, Tamara; Sitia, Giovanni; Esposito, Antonio; Iannotti, Vincenzo; Ausanio, Giovanni; Fragogeorgi, Eirini; Rouchota, Maritina; Loudos, George; Lascialfari, Alessandro; Tampieri, Anna
2018-06-01
The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1 H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99m Tc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T 2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Jian; Lakowicz, Joseph R
2018-01-01
Near-field fluorescence (NFF) effects were employed to develop a novel near-infrared (NIR) luminescent nanoparticle (LNP) with superior brightness. The LNP is used as imaging contrast agent for cellular and small animal imaging and furthermore suggested to use for detecting voltage-sensitive calcium in living cells and animals with high sensitivity. NIR Indocyanine green (ICG) dye was conjugated with human serum albumin (HSA) followed by covalently binding to gold nanorod (AuNR). The AuNR displayed dual plasmons from transverse and longitudinal axis, and the longitudinal plasmon was localized at the NIR region which could efficiently couple with the excitation and emission of ICG dye leading to a largely enhanced NFF. The enhancement factor was measured to be about 16-fold using both ensemble and single nanoparticle spectral methods. As an imaging contrast agent, the ICG-HSA-Au complex (abbreviate as ICG-Au) was conjugated on HeLa cells and fluorescence cell images were recorded on a time-resolved confocal microscope. The emission signals of ICG-Au complexes were distinctly resolved as the individual spots that were observed over the cellular backgrounds due to their strong brightness as well as shortened lifetime. The LNPs were also tested to have a low cytotoxicity. The ICG-Au complexes were injected below the skin surface of mouse showing emission spots 5-fold brighter than those from the same amount of free ICG-HSA conjugates. Based on the observations in this research, the excitation and emission of NIR ICG dyes were found to be able to sufficiently couple with the longitudinal plasmon of AuNRs leading to a largely enhanced NFF. Using the LNP with super-brightness as a contrast agent, the ICG-Au complex could be resolved from the background in the cell and small animal imaging. The novel NIR LNP has also a great potential for detection of voltage-gated calcium concentration in the cell and living animal with a high sensitivity.
Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model
NASA Astrophysics Data System (ADS)
Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Zhao, Xinyu; Sheng, Yang; Tan, Mei-Chee; Roth, Charles M.; Riman, Richard E.; Moghe, Prabhas V.; Pierce, Mark C.
2018-03-01
Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models.
Application of oral contrast media in coregistered positron emission tomography-CT.
Dizendorf, Elena V; Treyer, Valerie; Von Schulthess, Gustav K; Hany, Thomas F
2002-08-01
Coregistration of positron emission tomography (PET) and CT images results in significantly improved localization of abnormal FDG uptake compared with PET images alone. For delineation of intestinal structures, application of oral contrast media is a standard procedure in CT. The influence of oral contrast agents in PET imaging using CT data for attenuation correction was evaluated in a comparative study on an in-line PET-CT system. Sixty patients referred for PET-CT were evaluated in two groups. One group of 30 patients received oral Gastrografin 45 min before data acquisition. The second group received no contrast medium. PET images were reconstructed, using CT data for attenuation correction. Image analysis was performed by two reviewers in consensus, using a 4-point scale comparing FDG-uptake in the gastrointestinal tract in PET images of both groups. Furthermore, correlation of FDG uptake and localization of contrast media in the intestinal tract in CT images were determined. No significant difference in FDG uptake in PET images in all regions of the gastrointestinal tract except the ascending colon was seen in both groups. No correlation was found in the location of increased FDG uptake and contrast media in the CT images. An oral contrast agent can be used for coregistered PET-CT without the introduction of artifacts in PET.
Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images
Frey, Eric C.; Humm, John L.; Ljungberg, Michael
2012-01-01
The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429
A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging
Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M
2014-01-01
Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2013-09-01
objective is to develop dendrimer -based theranostic agent with prostate cancer specificity and positron emission tomography imaging capability that...The goal of this project is to construct dendrimer nanoconjuate containing a prostate specific cell permeation peptide, peptide therapeutic(s) and...bifunctional chelator for PET imaging. Dr. Simanek’s laboratory will make dendrimers that bear functional handles for conjugation with imaging
Nanoparticles and Radiotracers: Advances toward Radio-Nanomedicine
Pratt, Edwin C.; Shaffer, Travis M.; Grimm, Jan
2016-01-01
Here, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Cerenkov Luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β−) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. PMID:27006133
Positron emission tomography with [ 18F]-FDG in oncology
NASA Astrophysics Data System (ADS)
Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.
2003-05-01
Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.
Sampath, Lakshmi; Kwon, Sunkuk; Hall, Mary A; Price, Roger E; Sevick-Muraca, Eva M
2010-01-01
By dual labeling a targeting moiety with both nuclear and optical probes, the ability for noninvasive imaging and intraoperative guidance may be possible. Herein, the ability to detect metastasis in an immunocompetent animal model of human epidermal growth factor receptor 2 (HER-2)-positive cancer metastases using positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging is demonstrated. METHODS: (64Cu-DOTA)n-trastuzumab-(IRDye800)m was synthesized, characterized, and administered to female Balb/c mice subcutaneously inoculated with highly metastatic 4T1.2neu/R breast cancer cells. (64Cu-DOTA)n-trastuzumab-(IRDye800)m (150 µg, 150 µCi, m = 2, n = 2) was administered through the tail vein at weeks 2 and 6 after implantation, and PET/computed tomography and NIR fluorescence imaging were performed 24 hours later. Results were compared with the detection capabilities of F-18 fluorodeoxyglucose (18FDG-PET). RESULTS: Primary tumors were visualized with 18FDG and (64Cu-DOTA)n-trastuzumab-(IRDye800)m, but resulting metastases were identified only with the dual-labeled imaging agent. 64Cu-PET imaging detected lung metastases, whereas ex vivo NIR fluorescence showed uptake in regions of lung, skin, skeletal muscle, and lymph nodes, which corresponded with the presence of cancer cells as confirmed by histologic hematoxylin and eosin stains. In addition to detecting the agent in lymph nodes, the high signal-to-noise ratio from NIR fluorescence imaging enabled visualization of channels between the primary tumor and the axillary lymph nodes, suggesting a lymphatic route for trafficking cancer cells. Because antibody clearance occurs through the liver, we could not distinguish between nonspecific uptake and liver metastases. CONCLUSION: (64Cu-DOTA)n-trastuzumab-(IRDye800)m may be an effective diagnostic imaging agent for staging HER-2-positive breast cancer patients and intraoperative resection. PMID:20885893
Subharmonic emissions from microbubbles: effect of the driving pulse shape.
Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo
2006-11-01
The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic driving pulse.
In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent.
Glaus, Charles; Rossin, Raffaella; Welch, Michael J; Bao, Gang
2010-04-21
A novel nanoparticle-based dual-modality positron emission tomograph/magnetic resonance imaging (PET/MRI) contrast agent was developed. The probe consisted of a superparamagnetic iron oxide (SPIO) core coated with PEGylated phospholipids. The chelator 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to PEG termini to allow labeling with positron-emitting (64)Cu. Radiolabeling with (64)Cu at high yield and high purity was readily achieved. The (64)Cu-SPIO probes produced strong MR and PET signals and were stable in mouse serum for 24 h at 37 degrees C. Biodistribution and in vivo PET/CT imaging studies of the probes showed a circulation half-life of 143 min and high initial blood retention with moderate liver uptake, making them an attractive contrast agent for disease studies.
Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua
2015-09-25
A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.
Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model.
Higgins, Laura M; Ganapathy, Vidya; Kantamneni, Harini; Zhao, Xinyu; Sheng, Yang; Tan, Mei-Chee; Roth, Charles M; Riman, Richard E; Moghe, Prabhas V; Pierce, Mark C
2018-03-01
Rare-earth-doped nanocomposites have appealing optical properties for use as biomedical contrast agents, but few systems exist for imaging these materials. We describe the design and characterization of (i) a preclinical system for whole animal in vivo imaging and (ii) an integrated optical coherence tomography/confocal microscopy system for high-resolution imaging of ex vivo tissues. We demonstrate these systems by administering erbium-doped nanocomposites to a murine model of metastatic breast cancer. Short-wave infrared emissions were detected in vivo and in whole organ imaging ex vivo. Visible upconversion emissions and tissue autofluorescence were imaged in biopsy specimens, alongside optical coherence tomography imaging of tissue microstructure. We anticipate that this work will provide guidance for researchers seeking to image these nanomaterials across a wide range of biological models. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Zhang, Qimei; Morgan, Stephen P; Mather, Melissa L
2017-09-01
A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandara, Nilantha; Sharma, Anuj K; Krieger, Stephanie; Schultz, Jason W; Han, Byung Hee; Rogers, Buck E; Mirica, Liviu M
2017-09-13
Positron emission tomography (PET) imaging agents that detect amyloid plaques containing amyloid beta (Aβ) peptide aggregates in the brain of Alzheimer's disease (AD) patients have been successfully developed and recently approved by the FDA for clinical use. However, the short half-lives of the currently used radionuclides 11 C (20.4 min) and 18 F (109.8 min) may limit the widespread use of these imaging agents. Therefore, we have begun to evaluate novel AD diagnostic agents that can be radiolabeled with 64 Cu, a radionuclide with a half-life of 12.7 h, ideal for PET imaging. Described herein are a series of bifunctional chelators (BFCs), L 1 -L 5 , that were designed to tightly bind 64 Cu and shown to interact with Aβ aggregates both in vitro and in transgenic AD mouse brain sections. Importantly, biodistribution studies show that these compounds exhibit promising brain uptake and rapid clearance in wild-type mice, and initial microPET imaging studies of transgenic AD mice suggest that these compounds could serve as lead compounds for the development of improved diagnostic agents for AD.
Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.
Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio
2017-01-01
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
Hybrid nanotrimers for dual T 1 and T 2-weighted magnetic resonance imaging
Cheng, Kai; Yang, Meng; Zhang, Ruiping; ...
2014-10-04
Development of multifunctional nanoparticle-based probes for dual T 1- and T 2-weighted magnetic resonance imaging (MRI) could allow us to image and diagnose the tumors or other abnormalities in an exceptionally accurate and reliable manner. In this study, by fusing distinct nanocrystals via solid-state interfaces, we built hybrid heteronanostructures to combine both T 1 and T 2- weighted contrast agents together for MRI with high accuracy and reliability. The resultant hybrid heterotrimers showed high stability in physiological conditions and could induce both simultaneous positive and negative contrast enhancements in MR images. Small animal positron emission tomography imaging study revealed thatmore » the hybrid heterostructures displayed favorable biodistribution and were suitable for in vivo imaging. Furthermore, their potential as dual contrast agents for T 1 and T 2-weighted MRI was further demonstrated by in vitro and in vivo imaging and relaxivity measurements.« less
NASA Astrophysics Data System (ADS)
Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu
2013-01-01
We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.
Imaging Alzheimer's disease pathophysiology with PET
Schilling, Lucas Porcello; Zimmer, Eduardo R.; Shin, Monica; Leuzy, Antoine; Pascoal, Tharick A.; Benedet, Andréa L.; Borelli, Wyllians Vendramini; Palmini, André; Gauthier, Serge; Rosa-Neto, Pedro
2016-01-01
ABSTRACT Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD. PMID:29213438
Zong, Shan; Wang, Xin; Lin, Wenhai; Liu, Shi; Zhang, Wei
2018-06-20
Design and synthesis of biocompatible and multi-functional photothermal agents is crucial for effective cancer phototherapy. In order to achieve this ambition, simple D-A-D structural bisbithiophenyl diketopyrrolopyrrole (TDPP) was fabricated. In this molecule, the donor, 2-thiophenylboric acid, was conjugated via Suzuki coupling reaction, which could expand the emission wavelength to the red region of the spectrum. TDPP could self-assemble into stable and uniform nanoparticles (TDPP NPs) in the assistant of amphiphilic Pluronic F-127 polymer. Exposing the TDPP NPs (100 µg/mL) aqueous dispersion to 638 nm (0.61 W/cm2) laser irradiation resulted in a temperature elevation of approximately 30 oC within 5 min, which is high enough for inducing the cytotoxicity and tumor inhibition. Because of the bathochromic shift absorption of TDPP NPs in water, TDPP NPs could also act as a contrast agent for near-infrared fluorescence imaging (NIRF) to visualize the drug distribution in vivo. Coupled with the infrared thermal imaging properties of the photothermal agent, TDPP NPs were proved to be a multifunctional theranostic agent for dual-modal imaging-guided phototherapy.
Radioactive Nanomaterials for Multimodality Imaging
Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao
2016-01-01
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167
Heterobimetallic Complexes for Theranostic Applications.
Fernández-Moreira, Vanesa; Gimeno, M Concepción
2018-03-07
The design of more efficient anticancer drugs requires a deeper understanding of their biodistribution and mechanism of action. Cell imaging agents could help to gain insight into biological processes and, consequently, the best strategy for attaining suitable scaffolds in which both biological and imaging properties are maximized. A new concept arises in this field that is the combination of two metal fragments as collaborative partners to provide the precise emissive properties to visualize the cell as well as the optimum cytotoxic activity to build more potent and selective chemotherapeutic agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain magnetic resonance imaging with contrast dependent on blood oxygenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Lee, T.M.; Kay, A.R.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less
Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation
NASA Astrophysics Data System (ADS)
Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.
Micro-CT of rodents: state-of-the-art and future perspectives
Clark, D. P.; Badea, C. T.
2014-01-01
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g. measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality. PMID:24974176
Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer
2014-09-01
to develop dendrimer -based theranostic agent with prostate cancer specificity and positron emission tomography imaging capability that can prevent...laboratories to develop a new molecular medicine. The goal of this project is to construct dendrimer nanoconjuate containing a prostate specific...cell permeation peptide, peptide therapeutic(s) and bifunctional chelator for PET imaging. Dr. Simanek’s laboratory will make dendrimers that bear
Chen, Chun-Jen; Bando, Kazunori; Ashino, Hiroki; Taguchi, Kazumi; Shiraishi, Hideaki; Fujimoto, Osuke; Kitamura, Chiemi; Matsushima, Satoshi; Fujinaga, Masayuki; Zhang, Ming-Rong; Kasahara, Hiroyuki; Minamizawa, Takao; Jiang, Cheng; Ono, Maiko; Higuchi, Makoto; Suhara, Tetsuya; Yamada, Kazutaka; Ji, Bin
2014-08-01
Non-invasive detection for amyloid-β peptide (Aβ) deposition has important significance for the early diagnosis and medical intervention for Alzheimer's disease (AD). In this study, we developed a series of imidazopyridine derivatives as potential imaging agents for single-photon emission computed tomography (SPECT). Two of them, compounds DRK092 and DRM106, showed higher affinity for synthetic human Aβ 1-40 fibrils than did the well-known amyloid-imaging agent IMPY. A metabolite analysis revealed brain-permeable radioactive metabolites of (125)I-labeled DRK092 and IMPY; no radioactive metabolites from (125)I-labeled DRM106 ([(125)I]DRM106) were detected. In addition, in vitro autoradiography clearly demonstrated specific binding of [(125)I]DRM106 in the hippocampal region of AD enriched with Aβ plaques. Thus, our results strongly suggested that compound DRM106 can be used as an imaging agent for SPECT to detect Aβ deposition in AD brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Joanne; Dobrucki, Lawrence W.; Marjanovic, Marina; Chaney, Eric J.; Suslick, Kenneth S.; Boppart, Stephen A.
2015-01-01
Cerenkov luminescence (CL) imaging is a new molecular imaging modality that utilizes the photons emitted during radioactive decay when charged particles travel faster than the phase velocity of light in a dielectric medium. Here we present a novel agent to convert and increase CL emission at longer wavelengths using multimodal protein microspheres (MSs). The 64Cu-labeled protein microspheres contain quantum dots (QDs) encapsulated within a high-refractive-index-oil core. Dark box imaging of the MSs was conducted to demonstrate the improvement in CL emission at longer wavelengths. To illustrate the versatile design of these MSs and the potential of CL in disease diagnosis, these MSs were utilized for in vitro cell targeting and ex vivo CL-excited QD fluorescence (CL-FL) imaging of atherosclerotic plaques in rats. It was shown that by utilizing both QDs and MSs with a high-refractive-index-oil core, the CL emission increases by four-fold at longer wavelengths. Furthermore, we demonstrate that these MSs generate both an in vivo and ex vivo contrast signal. The design concept of utilizing QDs and high-index core MSs may contribute to future developments of in vivo CL imaging.
Molecular SPECT Imaging: An Overview
Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy
2011-01-01
Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240
Light activated microbubbles for imaging and microsurgery
NASA Astrophysics Data System (ADS)
Cavigli, Lucia; Micheletti, Filippo; Tortoli, Paolo; Centi, Sonia; Lai, Sarah; Borri, Claudia; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto
2017-03-01
Imaging and microsurgery procedures based on the photoacoustic effect have recently attracted much attention for cancer treatment. Light absorption in the nanosecond regime triggers thermoelastic processes that induce ultrasound emission and even cavitation. The ultrasound waves may be detected to reconstruct images, while cavitation may be exploited to kill malignant cells. The potential of gold nanorods as contrast agents for photoacoustic imaging has been extensively investigated, but still little is known about their use to trigger cavitation. Here, we investigated the influence of environment thermal properties on the ability of gold nanorods to trigger cavitation by probing the photoacoustic emission as a function of the excitation fluence. We are confident that these results will provide useful directions to the development of new strategies for therapies based on the photoacoustic effect.
AEG-1 promoter-mediated imaging of prostate cancer
Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C.; Gabrielson, Matthew; Sysa, Polina; Minn, Il; Green, Gilbert; Simmons, Brian; Gabrielson, Kathleen; Sarkar, Siddik; Fisher, Paul B.; Pomper, Martin G.
2014-01-01
We describe a new imaging method for detecting prostate cancer, whether localized or disseminated and metastatic to soft tissues and bone. The method relies on the use of imaging reporter genes under the control of the promoter of AEG-1 (MTDH), which is selectively active only in malignant cells. Through systemic, nanoparticle-based delivery of the imaging construct, lesions can be identified through bioluminescence imaging and single photon emission-computed tomography in the PC3-ML murine model of prostate cancer at high sensitivity. This approach is applicable for the detection of prostate cancer metastases, including bone lesions for which there is no current reliable agent for non-invasive clinical imaging. Further, the approach compares favorably to accepted and emerging clinical standards, including positron emission tomography with [18F]fluorodeoxyglucose and [18F]sodium fluoride. Our results offer a preclinical proof of concept that rationalizes clinical evaluation in patients with advanced prostate cancer. PMID:25145668
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging
NASA Astrophysics Data System (ADS)
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-01
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.
A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging.
He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun
2018-04-15
In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu 2+ and Mn 2+ ions, respectively. The BPN coordinated with Cu 2+ forming [BPNCu] 2+ complex with quenched emission, while Mn 2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu 2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu 2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu 2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood. Copyright © 2018 Elsevier B.V. All rights reserved.
ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.
2010-01-01
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308
A targeted molecular probe for colorectal cancer imaging
NASA Astrophysics Data System (ADS)
Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.
2008-02-01
Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.
Simulation of nanoparticle-mediated near-infrared thermal therapy using GATE
Cuplov, Vesna; Pain, Frédéric; Jan, Sébastien
2017-01-01
Application of nanotechnology for biomedicine in cancer therapy allows for direct delivery of anticancer agents to tumors. An example of such therapies is the nanoparticle-mediated near-infrared hyperthermia treatment. In order to investigate the influence of nanoparticle properties on the spatial distribution of heat in the tumor and healthy tissues, accurate simulations are required. The Geant4 Application for Emission Tomography (GATE) open-source simulation platform, based on the Geant4 toolkit, is widely used by the research community involved in molecular imaging, radiotherapy and optical imaging. We present an extension of GATE that can model nanoparticle-mediated hyperthermal therapy as well as simple heat diffusion in biological tissues. This new feature of GATE combined with optical imaging allows for the simulation of a theranostic scenario in which the patient is injected with theranostic nanosystems that can simultaneously deliver therapeutic (i.e. hyperthermia therapy) and imaging agents (i.e. fluorescence imaging). PMID:28663855
Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT
Rempel, Brian P.; Price, Eric W.
2017-01-01
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents. PMID:28927325
Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.
Rempel, Brian P; Price, Eric W; Phenix, Christopher P
2017-01-01
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Astatine-211 imaging by a Compton camera for targeted radiotherapy.
Nagao, Yuto; Yamaguchi, Mitsutaka; Watanabe, Shigeki; Ishioka, Noriko S; Kawachi, Naoki; Watabe, Hiroshi
2018-05-24
Astatine-211 is a promising radionuclide for targeted radiotherapy. It is required to image the distribution of targeted radiotherapeutic agents in a patient's body for optimization of treatment strategies. We proposed to image 211 At with high-energy photons to overcome some problems in conventional planar or single-photon emission computed tomography imaging. We performed an imaging experiment of a point-like 211 At source using a Compton camera, and demonstrated the capability of imaging 211 At with the high-energy photons for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakagawa, Tomohiko; Gonda, Kohsuke; Kamei, Takashi; Cong, Liman; Hamada, Yoh; Kitamura, Narufumi; Tada, Hiroshi; Ishida, Takanori; Aimiya, Takuji; Furusawa, Naoko; Nakano, Yasushi; Ohuchi, Noriaki
2016-01-01
Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.
Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D
2013-01-01
Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.
Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.
2013-01-01
Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518
Morais, Maurício; Campello, Maria P C; Xavier, Catarina; Heemskerk, Johannes; Correia, João D G; Lahoutte, Tony; Caveliers, Vicky; Hernot, Sophie; Santos, Isabel
2014-11-19
Current methods for sentinel lymph node (SLN) mapping involve the use of radioactivity detection with technetium-99m sulfur colloid and/or visually guided identification using a blue dye. To overcome the kinetic variations of two individual imaging agents through the lymphatic system, we report herein on two multifunctional macromolecules, 5a and 6a, that contain a radionuclide ((99m)Tc or (68)Ga) and a near-infrared (NIR) reporter for pre- and/or intraoperative SLN mapping by nuclear and NIR optical imaging techniques. Both bimodal probes are dextran-based polymers (10 kDa) functionalized with pyrazole-diamine (Pz) or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating units for labeling with fac-[(99m)Tc(CO)3](+) or (68)Ga(III), respectively, mannose units for receptor targeting, and NIR fluorophore units for optical imaging. The probes allowed a clear visualization of the popliteal node by single-photon emission computed tomography (SPECT/CT) or positron emission tomography (PET/CT), as well as real-time optically guided excision. Biodistribution studies confirmed that both macromolecules present a significant accumulation in the popliteal node (5a: 3.87 ± 0.63% IA/organ; 6a: 1.04 ± 0.26% IA/organ), with minimal spread to other organs. The multifunctional nanoplatforms display a popliteal extraction efficiency >90%, highlighting their potential to be further explored as dual imaging agents.
NASA Astrophysics Data System (ADS)
Kandanapitiye, Murthi S.
The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X-ray computed tomography is capable of delineating the 3-D images of soft tissues with superb quality. The variation of X-ray attenuation from one tissue to another is used to generate the well spatial resolved superb quality images. Exogenous radiopaque agents are necessary for the superb visualization of different types of soft tissues. Heavy metals with high atomic number are better suited for biomedical applications to enhance the image contrast due to their high mass attenuation coefficient. Bismuth (Z- 83) is the nonradioactive, heaviest, nontoxic element available among the other closest neighbors (Hg, Tl, Pb and Po) of the periodic table. We have set out to search for compounds that are hydrolytically stable, more efficient and more amenable in terms of biocompatibility. Moreover this new discovery can significantly reduce the average radiation dose in one CT scan. We have discovered a simple one-step aqueous solution route for preparing biocompatible and ultra-small bismuth oxyiodide BiOI nanoparticles and investigated their potential application as an efficient CT contrast agent. Our ultra-small monodisperse BiOI NPs have excellent water dispersability, thermodynamic stability, kinetic inertness, high biocompatibility and superior attenuation power, suggesting their potential as an organ-specific CT contrast agent that may fill the gap left by the other nanoparticulate and iodine-based CT contrasting agents. The chapter 6 of this dissertation discusses synthesis and characterization of novel nanoparticulate therapeutics and theranostics. D-penicillamine has the highest efficacy, and hence is currently the most widely used drug for WD across the world. We have prepared the D-PEN-conjugated Au NPs of the average size of 16 [special character omited] 2 nm with superb water dispersability, and examined the kinetics and selectivity of copper binding of such NPs in aqueous solution. We also studied the cellular uptake, cytotoxicity and intracellular copper removal of these NPs to demonstrate their potential as a novel cell-penetrable copper detoxifying agent. Our approach of tackling these problems focuses on the development of cell-permeable copper-depleting nanoparticles that can be surface-engineered to be potentially organ-specific when targeting agents are used to form new-generation drugs for WD. The latter part of chapter 6, we describe the synthesis, characterization of zinc analogue of Prussian blue (K2Zn3[Fe(CN) 6]2-ZnPB) for intracellular copper detoxification. (Abstract shortened by ProQuest.).
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
NASA Astrophysics Data System (ADS)
Mohd Janib, Siti Najila
The two main problems currently stalling the efficient treatment of cancer has been detecting cancer early enough in the disease process for successful treatment, and treating cancer cells while avoiding excessive toxicity to normal tissues. Arguably the most important factor in the fight against cancer, besides prevention is early detection because the cancer will be easier to treat and less likely to have drug resistance. The work highlighted in this thesis attempts to address the issues related to the effective treatment and management of cancer. The objective of this work is to develop new materials and methods for co-assembly of drugs and imaging agents that permit quantitative imaging of drug delivery and disease progression. By using molecular imaging technique to non-invasively study and detect various molecular markers of diseases can allow for much earlier diagnosis, earlier treatment, and better prognosis that will eventually lead to personalized medicine. Exploration of particulates and polymeric carriers is gaining momentum in diagnostic imaging, initiated by successful therapies using long circulating liposomes. However, liposomes are challenging pharmaceuticals, which include many chemical components, require complex drug encapsulation strategies, and must be physically sheared to control their particle diameter and polydispersity. Polymeric nanocarriers have emerged as an alternative to liposomes as carriers of drugs and imaging agents. Co-inclusion of therapeutic and imaging agents, into these carriers might be advantageous because they increase solubility of hydrophobic agents, may enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce of side effects.
Cavitation-enhanced extravasation for drug delivery.
Arvanitis, Costas D; Bazan-Peregrino, Miriam; Rifai, Bassel; Seymour, Leonard W; Coussios, Constantin C
2011-11-01
A flow-through tissue-mimicking phantom composed of a biocompatible hydro-gel with embedded tumour cells was used to assess and optimize the role of ultrasound-induced cavitation on the extravasation of a macromolecular compound from a channel mimicking vessel in the gel, namely a non-replicating luciferase-expressing adenovirus (Ad-Luc). Using a 500 KHz therapeutic ultrasound transducer confocally aligned with a focussed passive cavitation detector, different exposure conditions and burst mode timings were selected by performing time and frequency domain analysis of passively recorded acoustic emissions, in the absence and in the presence of ultrasound contrast agents acting as cavitation nuclei. In the presence of Sonovue, maximum ultraharmonic emissions were detected for peak rarefactional pressures of 360 kPa, and maximum broadband emissions occurred at 1250 kPa. The energy of the recorded acoustic emissions was used to optimise the pulse repetition frequency and duty cycle in order to maximize either ultraharmonic or broadband emissions while keeping the acoustic energy delivered to the focus constant. Cell viability measurements indicated that none of the insonation conditions investigated induces cell death in the absence of a therapeutic agent (i.e. virus). Phase contrast images of the tissue-mimicking phantom showed that short range vessel disruption can occur when ultra-harmonic emissions (nf0/2) are maximised whereas formation of a micro-channel perpendicular to the flow can be obtained in the presence of broadband acoustic emissions. Following Ad-Luc delivery, luciferase expression measurements showed that a 60-fold increase in its bioavailability can be achieved when broadband noise emissions are present during insonation, even for modest contrast agent concentrations. The findings of the present study suggest that drug delivery systems based on acoustic cavitation may help enhance the extravasation of anticancer agents, thus increasing their penetration distance to hypoxic regions and poorly vascularised tumour regions. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
James, Shelly L; Ahmed, S Kaleem; Murphy, Stephanie; Braden, Michael R; Belabassi, Yamina; VanBrocklin, Henry F; Thompson, Charles M; Gerdes, John M
2014-07-16
Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel β-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the β-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.
Real-time landmark-based unrestrained animal tracking system for motion-corrected PET/SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.S. Goddard; S.S. Gleason; M.J. Paulus
2003-08-01
Oak Ridge National Laboratory (ORNL) and Jefferson Lab and are collaborating to develop a new high-resolution single photon emission tomography (SPECT) instrument to image unrestrained laboratory animals. This technology development will allow functional imaging studies to be performed on the animals without the use of anesthetic agents. This technology development could have eventual clinical applications for performing functional imaging studies on patients that cannot remain still (Parkinson's patients, Alzheimer's patients, small children, etc.) during a PET or SPECT scan. A key component of this new device is the position tracking apparatus. The tracking apparatus is an integral part of themore » gantry and designed to measure the spatial position of the animal at a rate of 10-15 frames per second with sub-millimeter accuracy. Initial work focuses on brain studies where anesthetic agents or physical restraint can significantly impact physiologic processes.« less
Positron emission tomography (PET) imaging with 18F-based radiotracers
Alauddin, Mian M
2012-01-01
Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802
NASA Astrophysics Data System (ADS)
Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.
2008-10-01
Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.
Dental optical tomography with upconversion nanoparticles—a feasibility study
Long, Feixiao; Intes, Xavier
2017-01-01
Abstract. Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications. PMID:28586852
Dental optical tomography with upconversion nanoparticles—a feasibility study
NASA Astrophysics Data System (ADS)
Long, Feixiao; Intes, Xavier
2017-06-01
Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.
Dental optical tomography with upconversion nanoparticles-a feasibility study.
Long, Feixiao; Intes, Xavier
2017-06-01
Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.
Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan
2017-01-01
Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208
Self-demodulation effect on subharmonic response of ultrasound contrast agent
NASA Astrophysics Data System (ADS)
Daeichin, V.; Faez, T.; Needles, A.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.
2012-03-01
In this work the use of the self-demodulation (S-D) signal as a mean of microbubble excitation at the subharmonic (SH) frequency to enhance the SH emission of ultrasound contrast agent (UCA) is studied. SH emission from the UCA is of interest since it is produced only by the UCA and is free of the artifacts produced in harmonic imaging modes. The S-D wave is a low-frequency signal produced by nonlinear propagation of an ultrasound wave in the medium. Single element transducer experiments and numerical simulations were conducted at 10 MHz to study the effect of the S-D signal on the SH response of the UCA by modifying the envelope of the excitation bursts. For 6 and 20 transmitted cycles, the SH response is increased up to 25 dB and 22 dB because of the S-D stimulation for a burst with a rectangular envelope compared with a Gaussian envelope burst. Such optimized excitations were used in an array-based micro-ultrasound system (Vevo 2100, VisualSonics Inc., Toronto, ON, Canada) at 18 MHz for in vitro validation of SH imaging. This study suggests that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA and real-time SH imaging is feasible with shorter transmit burst (6- cycle) and low acoustic pressure (~150 KPa) at high frequencies (>15 MHz).
Nishimura, T; Uehara, T; Shimonagata, T; Nagata, S; Haze, K
1994-01-01
This study was undertaken to evaluate the relationships, between myocardial perfusion and metabolism. Simultaneous beta-methyl-p(123I)iodophenylpentadecanoic acid (123I-BMIPP) and thallium 201 myocardial single-photon emission computed tomography (SPECT) were performed in 25 patients with myocardial infarction (group A) and 16 patients with hypertrophic cardiomyopathy (group B). The severity scores of 123I-BMIPP and 201Tl myocardial SPECT images were evaluated semiquantitatively by segmental analysis. In Group A, dissociations between thallium- and 123I-BMIPP-imaged defects were frequently observed in patients with successful reperfusion compared with those with no reperfusion and those with reinfarction. In four patients with successful reperfusion, repeated 123I-BMIPP and 201Tl myocardial SPECT showed gradual improvement of the 123I-BMIPP severity score compared with the thallium severity score. In group B, dissociations between thallium- and 123I-BMIPP-imaged defects were also demonstrated in hypertrophic myocardium. In addition, nonhypertrophic myocardium also had decreased 123I-BMIPP uptake. In groups A and B, 123I-BMIPP severity scores correlated well with left ventricular function compared with thallium severity scores. These findings indicate that 123I-BMIPP is a suitable agent for the assessment of functional integrity, because left ventricular wall motion is energy dependent and 123I-BMIPP may reflect an aspect of myocardial energy production. This agent may be useful for the early detection and patient management of various heart diseases as an alternative to positron emission tomographic study.
Novel medical imaging technologies for disease diagnosis and treatment
NASA Astrophysics Data System (ADS)
Olego, Diego
2009-03-01
New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.
Imaging Neuroinflammation – from Bench to Bedside
Pulli, Benjamin; Chen, John W
2014-01-01
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.” PMID:25525560
A Green Solvent Induced DNA Package
NASA Astrophysics Data System (ADS)
Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha
2015-03-01
Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.
Mueller, D; Kulkarni, Harshad; Baum, Richard P; Odparlik, Andreas
2017-04-01
99m Tc-labeled MAA is commonly used for single photon emission computed tomography SPECT. In contrast, positron emission tomography/CT (PET/CT) delivers images with significantly higher resolution. The generator produced radionuclide 68 Ga is widely used for PET/CT imaging agents and 68 Ga-labeled MAA represents an attractive alternative to 99m Tc-labeled MAA. We report a simple and rapid NaCl based labeling procedure for the labeling of MAA with 68 Ga using a commercially available MAA labeling kit for 99m Tc. The procedure delivers 68 Ga-labeled MAA with a high specific activity and a high labeling efficiency (>99%). The synthesis does not require a final step of separation or the use of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Piwnica-Worms, David; Kesarwala, Aparna H; Pichler, Andrea; Prior, Julie L; Sharma, Vijay
2006-11-01
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
Biju, Silvanose; Gallo, Juan; Bañobre-López, M; Manshian, Bella B; Soenen, Stefaan J; Himmelreich, Uwe; Vander Elst, Luce; Parac-Vogt, Tatjana N
2018-05-23
A novel type of multimodal, magnetic resonance imaging/optical imaging (MRI/OI) contrast agent was developed, based on core-shell lanthanide fluoride nanoparticles composed of a β-NaHoF4 core plus a β-NaGdF4:Yb 3+ , Tm 3+ shell with an average size of ∼24 nm. The biocompatibility of the particles was ensured by a surface modification with poly acrylic acid (PAA) and further functionalization with an affinity ligand, folic acid (FA). When excited using 980 nm near infrared (NIR) radiation, the contrast agent (CA) shows intense emission at 802 nm with lifetime of 791±3 μs, due to the transition 3 H 4 → 3 H 6 of Tm 3+ . Proton nuclear magnetic relaxation dispersion ( 1 H-NMRD) studies and magnetic resonance (MR) phantom imaging showed that the newly synthesized nanoparticles, decorated with poly(acrylic acid) and folic acid on the surface (NP-PAA-FA), can act mainly as a T 1 -weighted contrast agent below 1.5 T, a T 1 /T 2 dual-weighted contrast agent at 3 T, and as highly efficient T 2 -weighted contrast agent at ultrahigh fields. In addition, NP-PAA-FA showed very low cytotoxicity and no detectable cellular damage up to a dose of 500 μg mL -1 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stasiuk, Graeme J; Long, Nicholas J
2013-04-07
Over the last twenty-five years 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has made a significant impact on the field of diagnostic imaging. DOTA is not the only metal chelate in use in medical diagnostics, but it is the only one to significantly impact on all of the major imaging modalities Magnetic Resonance (MR), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Fluorescence imaging. This crossover of modalities has been possible due to the versatility of DOTA firstly, to complex a variety of metal ions and secondly, the ease with which it can be modified for different disease states. This has driven research over the last two decades into the chemistry of DOTA and the modification of the substituent pendant arms of this macrocycle to create functional, targeted and dual-modal imaging agents. The primary use of DOTA has been with the lanthanide series of metals, gadolinium for MRI, europium and terbium for fluorescence and neodymium for near infra-red imaging. There are now many research groups dedicated to the use of lanthanides with DOTA although other chelates such as DTPA and NOTA are being increasingly employed. The ease with which DOTA can be conjugated to peptides has given rise to targeted imaging agents seen in the PET, SPECT and radiotherapy fields. These modalities use a variety of radiometals that complex with DOTA, e.g.(64)Cu and (68)Ga which are used in clinical PET scans, (111)In, and (90)Y for SPECT and radiotherapy. In this article, we will demonstrate the remarkable versatility of DOTA, how it has crossed the imaging modality boundaries and how it has been successfully transferred into the clinic.
Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger
2013-08-21
A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.
Characterization, catalyzed water oxidation and anticancer activities of a NIR BODIPY-Mn polymer
NASA Astrophysics Data System (ADS)
Lan, Ya-Quan; Xiao, Ke-Jing; Wu, Yun-Jie; Chen, Qiu-Yun
2017-04-01
To obtain near-IR absorbing biomaterials as fluorescence cellular imaging and anticancer agents for hypoxic cancer cell, a nano NIR fluorescence Mn(III/IV) polymer (PMnD) was spectroscopically characterized. The PMnD shows strong emission at 661 nm when excited with 643 nm. Furthermore, PMnD can catalyze water oxidation to generate dioxygen when irradiated by red LED light (10 W). In particular, the PMnD can enter into HepG-2 cells and mitochondria. Both anticancer activity and the inhibition of the expression of HIF-1α for PMnD were concentration dependent. Our results demonstrate that PMnD can be developed as mitochondria targeted imaging agents and new inhibitors for HIF-1 in hypoxic cancer cells.
Molecular imaging of Alzheimer disease pathology.
Kantarci, K
2014-06-01
Development of molecular imaging agents for fibrillar β-amyloid positron-emission tomography during the past decade has brought molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that β-amyloid deposition can be detected many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of β-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However β-amyloid PET alone may be insufficient in distinguishing dementia syndromes that commonly have overlapping β-amyloid pathology, such as dementia with Lewy bodies and vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the pathology targeted by molecular imaging agents. © 2014 by American Journal of Neuroradiology.
Harris, Michael; Henoumont, Céline; Peeters, Wannes; Toyouchi, Shuichi; Vander Elst, Luce; Parac-Vogt, Tatjana N
2018-05-29
Lanthanides, holmium(iii), dysprosium(iii), and terbium(iii), were coordinated to an amphiphilic DOTA bis-coumarin derivative and then further assembled with an amphiphilic europium(iii) DTPA bis-coumarin derivative into mono-disperse micelles. The self-assembled micelles were characterized and assessed for their potential as bimodal contrast agents for high field magnetic resonance and optical imaging applications. All micelles showed a high transverse relaxation (r2) of 46, 34, and 30 s-1 mM-1 at 500 MHz and 37 °C for Dy(iii), Ho(iii) and Tb(iii), respectively, which is a result of the high magnetic moment of these lanthanides and the long rotational correlation time of the micelles. The quantum yield in aqueous solution ranged from 1.8% for Tb/Eu to 1.4% for Dy/Eu and 1.0% for the Ho/Eu micelles. Multi-photon excited emission spectroscopy has shown that due to the two-photon absorption of the coumarin chromophore the characteristic Eu(iii) emission could be observed upon excitation at 800 nm, demonstrating the usefulness of the system for in vivo fluorescence imaging applications. To the best of our knowledge, this is the first example reporting the potential of a holmium(iii) chelate as a negative MRI contrast agent.
Pandey, Vivek; Pandey, Gajanan; Tripathi, Vinay Kumar; Yadav, Sapna; Mudiam, Mohana Krishna Reddy
2016-03-01
Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging. Copyright © 2015 John Wiley & Sons, Ltd.
Thermal luminescence spectroscopy chemical imaging sensor.
Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C
2012-10-01
The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Mimun, L Christopher; Ajithkumar, G; Rightsell, Chris; Langloss, Brian W; Therien, Michael J; Sardar, Dhiraj K
2017-02-25
Compared to conventional core-shell structures, core-shell free nanoparticles with multiple functionalities offer several advantages such as minimal synthetic complexity and low production cost. In this paper, we present the synthesis and characterization of Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 as a core-shell free nanoparticle system with three functionalities. Nanocrystals with 20 nm diameter, high crystallinity and a narrow particle size distributions were synthesized by the solvothermal method and characterized by various analytical techniques to understand their phase and morphology. Fluorescence characteristics under near infrared (NIR) excitation at 808 nm as well as X-ray excitation were studied to explore their potential in NIR optical and X-ray imaging. At 1.0 mol% Nd concentration, we observed a quantum yield of 25% at 1064 nm emission with 13 W/cm 2 excitation power density which is sufficiently enough for imaging applications. Under 130 kVp (5 mA) power of X-ray excitation, Nd 3+ doped Na(Gd 0.5 Lu 0.5 )F 4 shows the characteristic emission bands of Gd 3+ and Nd 3+ with the strongest emission peak at 1064 nm due to Nd 3+ . Furthermore, magnetization measurements show that the nanocrystals are paramagnetic in nature with a calculated magnetic moment per particle of ~570 μB at 2T. These preliminary results support the suitability of the present nanophosphor as a multimodal contrast agent with three imaging features viz. optical, magnetic and X-ray.
NASA Astrophysics Data System (ADS)
Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.
2015-09-01
The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02753e
NASA Astrophysics Data System (ADS)
Carbary-Ganz, Jordan L.; Barton, Jennifer K.; Utzinger, Urs
2014-08-01
We successfully labeled colorectal cancer in vivo using quantum dots targeted to vascular endothelial growth factor receptor 2 (VEGFR2). Quantum dots with emission centered at 655 nm were bioconjugated to anti-VEGFR2 antibodies through streptavidin/biotin linking. The resulting QD655-VEGFR2 contrast agent was applied in vivo to the colon of azoxymethane (AOM) treated mice via lavage and allowed to incubate. The colons were then excised, cut longitudinally, opened to expose the lumen, and imaged en face using a fluorescence stereoscope. The QD655-VEGFR2 contrast agent produced a significant increase in contrast between diseased and undiseased tissues, allowing for fluorescence-based visualization of the diseased areas of the colon. Specificity was assessed by observing insignificant contrast increase when labeling colons of AOM-treated mice with quantum dots bioconjugated to isotype control antibodies, and by labeling the colons of saline-treated control mice. This contrast agent has a great potential for in vivo imaging of the colon through endoscopy.
NASA Astrophysics Data System (ADS)
Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna
2016-04-01
Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.
Patel, Daksha; Kell, Arnold; Simard, Benoit; Xiang, Bo; Lin, Hung Yu; Tian, Ganghong
2011-02-01
A new class of nanoparticle-based dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) contrast agents has been developed. The probe consists of a superparamagnetic iron oxide (SPIO) or manganese oxide core coated with 3,4-dihydroxy-D,L-phenylalanine (DL-DOPA). The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to DOPA termini. The DOTA modified nanoparticles allow chelation of copper for PET imaging. These surface functionalized nanoparticle-based probes have been characterized by various analytical techniques. The cell-labeling efficacy, cytotoxicity and relaxivity of these nanoparticles have been evaluated and compared with the same properties of one of the most commonly utilized MRI contrast agents, Feridex(®). Evidently, this new nanoparticle has a great potential for use in cell tracking with MRI and PET in the absence of transfecting agent. It is noteworthy that there is a sharp increase in r(2) relaxivity of these nanoparticles on coordination with Cu(2+) ions. Thus these iron oxide nanoparticles can also be explored as the smart magnetic resonance (MR) sensor for the detection of micromolar changes in copper concentration for neurodegenerative diseases such as Alzheimer's disease, Menkes and Wilson's diseases, amyotrophic lateral sclerosis and prion diseases. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
RBC micromotors carrying multiple cargos towards potential theranostic applications
NASA Astrophysics Data System (ADS)
Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph
2015-08-01
Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases. Electronic supplementary information (ESI) available: Videos of the propulsion of the multicargo-loaded, RBC-based micromotors and more data are available in the ESI. See DOI: 10.1039/c5nr03730a
Near-infrared fluorescence imaging using organic dye nanoparticles.
Yu, Jia; Zhang, Xiujuan; Hao, Xiaojun; Zhang, Xiaohong; Zhou, Mengjiao; Lee, Chun-Sing; Chen, Xianfeng
2014-03-01
Near-infrared (NIR) fluorescence imaging in the 700-1000 nm wavelength range has been very attractive for early detection of cancers. Conventional NIR dyes often suffer from limitation of low brightness due to self-quenching, insufficient photo- and bioenvironmental stability, and small Stokes shift. Herein, we present a strategy of using small-molecule organic dye nanoparticles (ONPs) to encapsulate NIR dyes to enable efficient fluorescence resonance energy transfer to obtain NIR probes with remarkably enhanced performance for in vitro and in vivo imaging. In our design, host ONPs are used as not only carriers to trap and stabilize NIR dyes, but also light-harvesting agent to transfer energy to NIR dyes to enhance their brightness. In comparison with pure NIR dyes, our organic dye nanoparticles possess almost 50-fold increased brightness, large Stokes shifts (∼250 nm) and dramatically enhanced photostability. With surface modification, these NIR-emissive organic nanoparticles have water-dispersity and size- and fluorescence- stability over pH values from 2 to 10 for almost 60 days. With these superior advantages, these NIR-emissive organic nanoparticles can be used for highly efficient folic-acid aided specific targeting in vivo and ex vivo cellular imaging. Finally, during in vivo imaging, the nanoparticles show negligible toxicity. Overall, the results clearly display a potential application of using the NIR-emissive organic nanoparticles for in vitro and in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei
2015-01-01
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fluorescence lifetime imaging microscopy using near-infrared contrast agents.
Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S
2012-08-01
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.
Fluorescence Lifetime Imaging Microscopy Using Near-Infrared Contrast Agents
Nothdurft, Ralph; Sarder, Pinaki; Bloch, Sharon; Culver, Joseph; Achilefu, Samuel
2013-01-01
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labeled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes’ relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. PMID:22788550
Studies of the brain cannabinoid system using positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatley, S.J.; Volkow, N.D.
Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies ofmore » cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.« less
SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, P; Peng, Y; Sun, M
2015-06-15
Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less
2015-01-01
Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM–1 s–1 at 3T, a high affinity to [18F]-fluoride or radiometal-bisphosphonate conjugates (e.g., 64Cu and 99mTc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432
Luminescent gold nanoparticles for bioimaging
NASA Astrophysics Data System (ADS)
Zhou, Chen
Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in pharmacokinetics while remaining renal clearable. With a rapid distribution half-life and a desirable elimination half-life, these NPs are highly promising for single-photon emission computed tomography (SPECT) and fluorescence dual-modality imaging.
Noninvasive imaging of experimental lung fibrosis.
Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J
2015-07-01
Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.
Development of a QDots 800 based fluorescent solid phantom for validation of NIRF imaging platforms
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Sevick-Muraca, Eva M.
2013-02-01
Over the past decade, we developed near-infrared fluorescence (NIRF) devices for non-invasive lymphatic imaging using microdosages of ICG in humans and for detection of lymph node metastasis in animal models mimicking metastatic human prostate cancer. To validate imaging, a NIST traceable phantom is needed so that developed "first-inhumans" drugs may be used with different luorescent imaging platforms. In this work, we developed a QDots 800 based fluorescent solid phantom for installation and operational qualification of clinical and preclinical, NIRF imaging devices. Due to its optical clearance, polyurethane was chosen as the base material. Titanium dioxide was used as the scattering agent because of its miscibility in polyurethane. QDots 800 was chosen owing to its stability and NIR emission spectra. A first phantom was constructed for evaluation of the noise floor arising from excitation light leakage, a phenomenon that can be minimized during engineering and design of fluorescent imaging systems. A second set of phantoms were constructed to enable quantification of device sensitivity associated with our preclinical and clinical devices. The phantoms have been successfully applied for installation and operational qualification of our preclinical and clinical devices. Assessment of excitation light leakage provides a figure of merit for "noise floor" and imaging sensitivity can be used to benchmark devices for specific imaging agents.
A Generator-Produced Gallium-68 Radiopharmaceutical for PET Imaging of Myocardial Perfusion
Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E.; Prior, Julie L.; Gu, Hannah; Rath, Nigam P.; Piwnica-Worms, David
2014-01-01
Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI. PMID:25353349
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2014-02-01
In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both (64)Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N',N″,N‴-tetraacetic acid. The conjugate was then labeled with (64)Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells.
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2013-01-01
Purpose In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both 64Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. Materials and Methods TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N′,N″,N‴ -tetraacetic acid. The conjugate was then labeled with 64Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. Results μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Conclusions Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells. PMID:23918654
NASA Astrophysics Data System (ADS)
Qiao, Xiao-Fei; Zhou, Jia-Cai; Xiao, Jia-Wen; Wang, Ye-Fu; Sun, Ling-Dong; Yan, Chun-Hua
2012-07-01
Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect.Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect. Electronic supplementary information (ESI) available: More TEM, emission spectra, longitudinal and transverse relaxation times, t2-weighted MR images of the as-prepared nanomaterial, and confocal fluorescent images of HeLa cells. See DOI: 10.1039/c2nr30938f
Gustafson, Tiffany P.; Lim, Young H.; Flores, Jeniree A.; Heo, Gyu Seong; Zhang, Fuwu; Zhang, Shiyi; Samarajeewa, Sandani; Raymond, Jeffery E.; Wooley, Karen L.
2014-01-01
The successful development of degradable polymeric nanostructures as optical probes for use in nanotheranostic applications requires the intelligent design of materials such that their surface response, degradation, drug delivery and imaging properties are all optimized. In the case of imaging, optimization must result in materials that allow differentiation between unbound optical contrast agents and labeled polymeric materials as they undergo degradation. In this study, we have shown that use of traditional electrophoretic gel-plate assays for determination of the purity of dye-conjugated degradable nanoparticles is limited, due to polymer degradation characteristics. To overcome these limitations, we have outlined a holistic approach to evaluating dye-and peptide-polymer nanoparticle conjugation by utilizing steady-state fluorescence, anisotropy, and emission and anisotropy life-time decay profiles, through which nanoparticle-dye binding can be assessed independent of perturbations, such as those presented during the execution of electrolyte gel-based assays. This approach has been demonstrated to provide an overall understanding of the spectral signature-structure-function relationship, ascertaining key information on interactions between the fluorophore, polymer and solvent components that have a direct and measurable impact on the emissive properties of the optical probe. The use of these powerful techniques provides feedback that can be utilized to improve nanotheranostics by evaluating dye emissivity in degradable nanotheranostic systems, which has become increasingly important as modern platforms transition to architectures intentionally reliant on degradation and built-in environmental responses. PMID:24392760
2015-01-01
Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free 64Cu radiolabeling method by chemically reducing 64Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our 64Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated 64Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy. PMID:25019252
Stereocomplexed PLA-PEG Nanoparticles with Dual-Emissive Boron Dyes for Tumor Accumulation
Kersey, Farrell R.; Zhang, Guoqing; Palmer, Gregory M.; Dewhirst, Mark W.; Fraser, Cassandra L.
2010-01-01
Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with “stealth”-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies. PMID:20704337
Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki
2015-07-01
Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yinghong; Yang, Yang; Guan, Xiangming
2012-01-01
Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193
Mukherjee, Prabuddha; Misra, Santosh K; Gryka, Mark C; Chang, Huei-Huei; Tiwari, Saumya; Wilson, William L; Scott, John W; Bhargava, Rohit; Pan, Dipanjan
2015-09-01
In this work, we demonstrate the significance of defined surface chemistry in synthesizing luminescent carbon nanomaterials (LCN) with the capability to perform dual functions (i.e., diagnostic imaging and therapy). The surface chemistry of LCN has been tailored to achieve two different varieties: one that has a thermoresponsive polymer and aids in the controlled delivery of drugs, and the other that has fluorescence emission both in the visible and near-infrared (NIR) region and can be explored for advanced diagnostic modes. Although these particles are synthesized using simple, yet scalable hydrothermal methods, they exhibit remarkable stability, photoluminescence and biocompatibility. The photoluminescence properties of these materials are tunable through careful choice of surface-passivating agents and can be exploited for both visible and NIR imaging. Here the synthetic strategy demonstrates the possibility to incorporate a potent antimetastatic agent for inhibiting melanomas in vitro. Since both particles are Raman active, their dispersion on skin surface is reported with Raman imaging and utilizing photoluminescence, their depth penetration is analysed using fluorescence 3D imaging. Our results indicate a new generation of tunable carbon-based probes for diagnosis, therapy or both. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pushing indium phosphide quantum dot emission deeper into the near infrared
NASA Astrophysics Data System (ADS)
Saeboe, A. M.; Kays, J.; Mahler, A. H.; Dennis, A. M.
2018-02-01
Cadmium-free near infrared (NIR) emitting quantum dots (QDs) have significant potential for multiplexed tissue-depth imaging applications in the first optical tissue window (i.e., 650 - 900 nm). Indium phosphide (InP) chemistry provides one of the more promising cadmium-free options for biomedical imaging, but the full tunability of this material has not yet been achieved. Specifically, InP QD emission has been tuned from 480 - 730 nm in previous literature reports, but examples of samples emitting from 730 nm to the InP bulk bandgap limit of 925 nm are lacking. We hypothesize that by generating inverted structures comprising ZnSe/InP/ZnS in a core/shell/shell heterostructure, optical emission from the InP shell can be tuned by changing the InP shell thickness, including pushing deeper into the NIR than current InP QDs. Colloidal synthesis methods including hot injection precipitation of the ZnSe core and a modified successive ion layer adsorption and reaction (SILAR) method for stepwise shell deposition were used to promote growth of core/shell/shell materials with varying thicknesses of the InP shell. By controlling the number of injections of indium and phosphorous precursor material, the emission peak was tuned from 515 nm to 845 nm (2.41 - 1.47 eV) with consistent full width half maximum (FWHM) values of the emission peak 0.32 eV. To confer water solubility, the nanoparticles were encapsulated in PEGylated phospholipid micelles, and multiplexing of NIR-emitting InP QDs was demonstrated using an IVIS imaging system. These materials show potential for multiplexed imaging of targeted QD contrast agents in the first optical tissue window.
NIR to NIR upconversion in KYb2F7: RE3+ (RE = Tm, Er) nanoparticles for biological imaging
NASA Astrophysics Data System (ADS)
Pedraza, F.; Yust, B.; Tsin, A.; Sardar, D.
2014-03-01
Until recently, many contrast agents widely used in biological imaging have absorbed and emitted in the visible region, limiting their usefulness for deeper tissue imaging. In order to push the boundaries of deep tissue imaging with non-ionizing radiation, contrast agents in the near infrared (NIR) regime, which is not strongly absorbed or scattered by most tissues, are being sought after. Upconverting nanoparticles (UCNPs) are attractive candidates since their upconversion emission is tunable with a very narrow bandwidth and they do not photobleach or blink. The upconversion produced by the nanoparticles can be tailored for NIR to NIR by carefully choosing the lanthanide dopants and dopant ratios such as KYb2F7: RE3+ (RE = Tm, Er). Spectroscopic characterization was done by analyzing absorption, fluorescence, and quantum yield data. In order to study the toxicity of the nanoparticles Monkey Retinal Endothelial Cells (MREC) were cultivated in 24 well plates and then treated with nanoparticles at different concentrations in triplicate to obtain the optimal concentration for in vivo experiments. It will be shown that these UCNPs do not elicit a strong toxic response such as quantum dots and some noble metal nanoparticles. 3-D optical slices of nanoparticle treated fibroblast cells were imaged using a confocal microscope where the nucleus and cytoplasm were stained with DAPI and Alexa Fluor respectively. These results presented support the initial assumption, which suggests that KYb2F7: RE3+ would be excellent candidates for NIR contrast agents.
NASA Astrophysics Data System (ADS)
Qin, Zhengtao
Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and 99mTc. Chapter 5 introduces a 68Ga metal chelating bioorthogonal tetrazine dextran probe for multistep imaging of a colon cancer. Chapter 6 presents the synthesis and in vivo evaluation of a Hepatocellular Carcinoma targeting PET probe 68Ga-Insulin-Dextran. Chapter 7 discusses a novel method to prepare silicon nanoparticles with great yield and size control. The last chapter 8 concludes all probes developed in this thesis and their clinical relevance.
Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.
Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander
2018-05-10
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Simultaneous in vivo positron emission tomography and magnetic resonance imaging.
Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R
2008-03-11
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.
Gao, Duo; Gao, Liquan; Zhang, Chenran; Liu, Hao; Jia, Bing; Zhu, Zhaohui; Wang, Fan; Liu, Zhaofei
2015-06-01
Integrin αvβ6 is widely upregulated in variant malignant cancers but is undetectable in normal organs, making it a promising target for cancer diagnostic imaging and therapy. Using streptavidin-biotin chemistry, we synthesized an integrin αvβ6-targeted near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated whether it could be used for cancer imaging, optical imaging-guided surgery, and phototherapy in pancreatic cancer mouse models. Dye-SA-B-HK specifically bound to integrin αvβ6 in vitro and in vivo with high receptor binding affinity. Using small-animal optical imaging, we detected subcutaneous and orthotopic BxPC-3 human pancreatic cancer xenografts in vivo. Upon optical image-guidance, the orthotopically growing pancreatic cancer lesions could be successfully removed by surgery. Using light irradiation, Dye-SA-B-HK manifested remarkable antitumor effects both in vitro and in vivo. (18)F-FDG positron emission tomography (PET) imaging and ex vivo fluorescence staining validated the observed decrease in proliferation of treated tumors by Dye-DA-B-HK phototherapy. Tissue microarray results revealed overexpression of integrin αvβ6 in over 95% cases of human pancreatic cancer, indicating that theranostic application of Dye-DA-B-HK has clear translational potential. Overall, the results of this study demonstrated that integrin αvβ6-specific Dye-SA-B-HK is a promising theranostic agent for the management of pancreatic cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Camaggi, Valeria; Piscaglia, Fabio; Bolondi, Luigi
2007-07-01
Recent advances in imaging techniques for hepatocellular carcinoma (HCC) offer the possibility of investigating contrast perfusion of liver nodules in cirrhosis. It is now accepted that a non-invasive diagnosis of HCC can be established based on the vascular pattern obtained with pure blood pool contrast agents. The diagnostic pattern consists of contrast enhancement in the arterial phase, indicative of arterial hypervascularization, followed by contrast wash out in the portal and late phases, which leads the nodule to show the same, or, more specifically, a lower contrast signal than the surrounding parenchyma. Such patterns can be obtained by CT, MRI and, more recently, by real time Contrast Enhanced Ultrasonography with second-generation ultrasound contrast agents. A typical vascular pattern in a nodule perceptible also without contrast is highly specific for HCC, so that non-invasive diagnostic algorithms have been developed and recently updated.
Sharma, Anuj K; Schultz, Jason W; Prior, John T; Rath, Nigam P; Mirica, Liviu M
2017-11-20
Positron emission tomography (PET) is emerging as one of the most important diagnostic tools for brain imaging, yet the most commonly used radioisotopes in PET imaging, 11 C and 18 F, have short half-lives, and their usage is thus somewhat limited. By comparison, the 64 Cu radionuclide has a half-life of 12.7 h, which is ideal for administering and imaging purposes. In spite of appreciable research efforts, high-affinity copper chelators suitable for brain imaging applications are still lacking. Herein, we present the synthesis and characterization of a series of bifunctional compounds (BFCs) based on macrocyclic 1,4,7-triazacyclononane and 2,11-diaza[3.3](2,6)pyridinophane ligand frameworks that exhibit a high affinity for Cu 2+ ions. In addition, these BFCs contain a 2-phenylbenzothiazole fragment that is known to interact tightly with amyloid β fibrillar aggregates. Determination of the protonation constants (pK a values) and stability constants (log β values) of these BFCs, as well as characterization of the isolated copper complexes using X-ray crystallography, electron paramagnetic resonance spectroscopy, and electrochemical studies, suggests that these BFCs exhibit desirable properties for the development of novel 64 Cu PET imaging agents for Alzheimer's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George W. Kabalka
The research program was directed at the use of functionalized organometallic reagents that would rapidly react with radiolabeled agents generated by a medical cyclotron or reactor. The radioisotopes included fluorine-18, oxgygen-15, nitrogen-13, carbon-11 and iodine-123; all short lived nuclides of importantce in nuclear medicine imaging studies utilizing emission tomography techniques. The early studies led to the development of extensive new isotope incorporation chemistry. These studies validated the feasibility of using reactive intermediates, such as the organoboranes, and acted as a catalyst for others to investigate organometallic agents based on mercury, tin, and silicon. A large number of radiolabeling techniques andmore » radiopharmaceuticals were developed. These included agents for use in oncology, neurology, and metabolism. The research resulted in the generation of one hundred and one journal articles, eighty seven refereed published abstracts and forty one invited lectures. Thirteen postdoctoral students, fourteen graduate students, and twenty eight undergraduate students were trained in the scientific aspects of nuclear medicine imaging under the asupices of this grant.« less
González-Mancebo, Daniel; Becerro, Ana I; Rojas, T Cristina; Olivencia, Andrés; Corral, Ariadna; Balcerzyk, Marcin; Cantelar, Eugenio; Cussó, Fernando; Ocaña, Manuel
2018-06-15
The singular properties of lanthanide-based inorganic nanoparticles (NPs) has raised the attention of the scientific community in biotechnological applications. In particular, those systems with two or more functionalities are especially interesting. In this work, an effective and commercially attractive procedure has been developed that renders uniform, water-dispersible Ln 3+ :CeF 3 (Ln = Tb, Nd) NPs with different shapes and size. The method consists of the homogeneous precipitation, in a mixture of polyol and water, of cations and anions using precursors that allow the controlled release of the latter. The advantages of the reported method are related to the absence of surfactants, dispersing agents or corrosive precursors as well as to the room temperature of the process. The obtained Tb:CeF 3 NPs produce an intense emission after excitation through the Ce-Tb energy transfer band located in the UV spectral region, thus being potentially useful as phosphors for in-vitro imaging purposes. On the other hand, the synthesized Nd:CeF 3 NPs are good candidates for in-vivo imaging because their excitation and emission wavelengths lie in the biological windows. Finally, the excellent X-ray attenuation efficacy of the Nd:CeF 3 NPs is shown, which confers double functionality to this material as both luminescence bioprobe and contrast agent for X-ray computed-tomography. Copyright © 2018 Elsevier Inc. All rights reserved.
Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy
2010-01-01
Abstract Imaging of neuroendocrine tumours (NET) poses significant challenges because of the heterogeneous biology of the tumours that are represented by this class of neoplasia. NET can range from benign lesions to highly aggressive cancers. Structural imaging techniques have suboptimal sensitivity in most published series and diagnosis is often delayed until metastatic disease is present. Current guidelines emphasise the importance of functional imaging for evaluating the extent of NET. The mainstay of this type of imaging has been somatostatin receptor scintigraphy (SRS) with [111In]diethylenetriaminepentaacetic acid-octreotide (Octreoscan™). Routine use of single-photon emission computed tomography (SPECT) and particularly of hybrid SPECT/computed tomography (CT) has significantly improved localisation of tumour sites and evaluation of somatostatin receptor (SSTR) expression, which is important for predicting the likelihood of response to somatostatin analogues (SSA). Positron emission tomography (PET) can also now be used for evaluating SSTR expression. There are a number of peptides that have been evaluated but [68Ga]tetraazocyclodecanetetraacetic acid (DOTA)-octreotate (GaTate) PET/CT, which has been shown to be significantly more sensitive for detecting small lesions than Octreoscan™, is now probably the preferred agent because high uptake in known sites of disease provides a diagnostic pair for assessing suitability of patients for [177Lu]DOTA-octreotate (LuTate) peptide receptor radionuclide therapy (PRRT). A range of other radiolabelled SSA has also been used for PRRT. Lesions without SSTR expression require alternative imaging and therapeutic strategies. Although fluorodeoxyglucose (FDG) uptake in low-grade NET is not generally increased relative to normal tissues, the loss of differentiation that often accompanies loss of SSTR expression may be associated with a significant increase in glycolytic metabolism and an accompanying improvement in the diagnostic sensitivity of FDG PET/CT. High FDG avidity is associated with a poorer prognosis but increases the likelihood of response to chemotherapy. Functioning tumours also require substrates for their secreted products. This can be exploited for NET imaging with amine precursor uptake being imaged using [18F]3,4-dihydrophenylalanine and serotonin-secreting tumours being sensitively detected using [11C]5-hydroxytryptamine. Both these agents are suitable for imaging with PET. [123I]meta-Iodo-benzyl-guanidine (MIBG) SPECT/CT may also be useful as a staging technique, particularly for NET of the sympathetic neuronal chain, and can identify patients who may be suitable for [131I]MIBG therapy. In the future, paradigms guided by clinical and biopsy features should allow personalised imaging paradigms aligned to therapeutic options. PMID:20880795
Portilho, Filipe Leal; Helal-Neto, Edward; Cabezas, Santiago Sánchez; Pinto, Suyene Rocha; Dos Santos, Sofia Nascimento; Pozzo, Lorena; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph
2018-02-27
Cancer is responsible for more than 12% of all causes of death in the world, with an annual death rate of more than 7 million people. In this scenario melanoma is one of the most aggressive ones with serious limitation in early detection and therapy. In this direction we developed, characterized and tested in vivo a new drug delivery system based on magnetic core-mesoporous silica nanoparticle that has been doped with dacarbazine and labelled with technetium 99 m to be used as nano-imaging agent (nanoradiopharmaceutical) for early and differential diagnosis and melanoma by single photon emission computed tomography. The results demonstrated the ability of the magnetic core-mesoporous silica to be efficiently (>98%) doped with dacarbazine and also efficiently labelled with 99mTc (technetium 99 m) (>99%). The in vivo test, using inducted mice with melanoma, demonstrated the EPR effect of the magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable when injected intratumorally and the possibility to be used as systemic injection too. In both cases, magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable showed to be a reliable and efficient nano-imaging agent for melanoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levenson, Richard; Demos, Stavros
A method is disclosed for analyzing a thin tissue sample and adapted to be supported on a slide. The tissue sample may be placed on a slide and exposed to one or more different exogenous fluorophores excitable in a range of about 300 nm-200 nm, and having a useful emission band from about 350 nm-900 nm, and including one or more fluorescent dyes or fluorescently labeled molecular probes that accumulate in tissue or cellular components. The fluorophores may be excited with a first wavelength of UV light between about 200 nm-290 nm. An optical system collects emissions from the fluorophoresmore » at a second wavelength, different from the first wavelength, which are generated in response to the first wavelength of UV light, to produce an image for analysis.« less
Prospective of 68Ga-Radiopharmaceutical Development
Velikyan, Irina
2014-01-01
Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the 68Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of 68Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the 68Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents. PMID:24396515
Ray Banerjee, Sangeeta; Chen, Zhengping; Pullambhatla, Mrudula; Lisok, Ala; Chen, Jian; Mease, Ronnie C; Pomper, Martin G
2016-06-15
(68)Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three PSMA-targeted radiotracers: (68)Ga-1, using DOTA-monoamide as the chelating agent; (68)Ga-2, containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and (68)Ga-DKFZ-PSMA-11, currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early as 15 min post-injection using small animal PET/computed tomography (PET/CT). (68)Ga-2 demonstrated the fastest rate of clearance from all tissues in this series and displayed higher uptake in PSMA+ PC3 PIP tumor compared to (68)Ga-1 at 1 h post-injection. There was no significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-injection. (68)Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h post-injection. In this preclinical evaluation (68)Ga-2 had the most advantageous characteristics for PSMA-targeted PET imaging.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong
2017-03-01
Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.
RBC micromotors carrying multiple cargos towards potential theranostic applications.
Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph
2015-08-28
Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.
Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru
2008-01-01
Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788
Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru
2007-11-01
Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J
2015-06-15
Purpose: Tc-99m labeled IDA-D-[c(RGDfK){sub 2} ( {sup 99m}Tc-RGD) is a recently developed radiotracer for gamma camera or single photon emission computed tomography (SPECT) imaging and promising agent for the visualization of angiogenesis. In this study, we investigated the internal radiation dosimetry of {sup 99m}Tc-RGD in humans. Methods: Six normal controls (F:M=4:2; 68.3±3.2 years; 56.5±10.7 kg) were participated in this study. Simultaneous anterior and posterior scans of whole-body were performed using dual head gamma camera system. Before the emission scan, transmission scan was performed just before injection of {sup 99m}Tc-RGD using Co-57 flood source. After an intravenous injection of 388.7±29.3 MBqmore » of {sup 99m}Tc-RGD, six serial emission scans were performed at 0, 1, 2, 4, 8 and 24 hours post-injection. The anterior and posterior images were geometrically averaged and attenuation correction was applied using transmission scan image. Regions of interest (ROIs) were drawn on liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Time activity curves were obtained from serial emission scan and ROIs. The number of disintegrations per unit activity administered (residence time) were calculated from the area under the curve of time activity curves and injected dose of each patient. Finally, the radiation dose for each organ and effective doses were obtained using OLINDA/EXM 1.1 software and residence time. Results: High radiation doses were reported on renal and biliary excretion tracks such as urinary bladder wall, upper large intestine, kidneys, liver and gallbladder wall and their doses were 19.15±6.84, 19.28±4.78, 15.67±0.90, 9.13±1.71 and 9.09±2.03 µGy/MBq, respectively. The effective dose and effective dose equivalent were 5.08±0.53 and 7.11±0.58 µSv/MBq, respectively. Conclusion: We evaluated the radiation dose of 99mTc-RGD, which has an acceptable effective radiation dose compare to the other Tc-99m labeled radio-tracers.« less
Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing.
Wang, Xiaowei; Peter, Karlheinz
2017-06-01
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases. © 2017 American Heart Association, Inc.
Shekhar, Himanshu; Doyley, Marvin M.
2013-01-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417
Shekhar, Himanshu; Doyley, Marvin M
2013-05-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.
AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M
2015-10-01
Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
Okumura, Yuki; Kobayashi, Ryohei; Onishi, Takako; Shoyama, Yoshinari; Barret, Olivier; Alagille, David; Jennings, Danna; Marek, Kenneth; Seibyl, John; Tamagnan, Gilles; Tanaka, Akihiro; Shirakami, Yoshifumi
2016-01-01
Abstract Non-invasive imaging of amyloid-β in the brain, a hallmark of Alzheimer’s disease, may support earlier and more accurate diagnosis of the disease. In this study, we assessed the novel single photon emission computed tomography tracer 123 I-ABC577 as a potential imaging biomarker for amyloid-β in the brain. The radio-iodinated imidazopyridine derivative 123 I-ABC577 was designed as a candidate for a novel amyloid-β imaging agent. The binding affinity of 123 I-ABC577 for amyloid-β was evaluated by saturation binding assay and in vitro autoradiography using post-mortem Alzheimer’s disease brain tissue. Biodistribution experiments using normal rats were performed to evaluate the biokinetics of 123 I-ABC577. Furthermore, to validate 123 I-ABC577 as a biomarker for Alzheimer’s disease, we performed a clinical study to compare the brain uptake of 123 I-ABC577 in three patients with Alzheimer’s disease and three healthy control subjects. 123 I-ABC577 binding was quantified by use of the standardized uptake value ratio, which was calculated for the cortex using the cerebellum as a reference region. Standardized uptake value ratio images were visually scored as positive or negative. As a result, 123 I-ABC577 showed high binding affinity for amyloid-β and desirable pharmacokinetics in the preclinical studies. In the clinical study, 123 I-ABC577 was an effective marker for discriminating patients with Alzheimer’s disease from healthy control subjects based on visual images or the ratio of cortical-to-cerebellar binding. In patients with Alzheimer’s disease, 123 I-ABC577 demonstrated clear retention in cortical regions known to accumulate amyloid, such as the frontal cortex, temporal cortex, and posterior cingulate. In contrast, less, more diffuse, and non-specific uptake without localization to these key regions was observed in healthy controls. At 150 min after injection, the cortical standardized uptake value ratio increased by ∼60% in patients with Alzheimer’s disease relative to healthy control subjects. Both healthy control subjects and patients with Alzheimer’s disease showed minimal 123 I-ABC577 retention in the white matter. These observations indicate that 123 I-ABC577 may be a useful single photon emission computed tomography imaging maker to identify amyloid-β in the human brain. The availability of an amyloid-β tracer for single photon emission computed tomography might increase the accessibility of diagnostic imaging for Alzheimer’s disease. PMID:26490333
Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo
2017-11-08
Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.
Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.
Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B
2016-03-17
Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.
Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun
2018-05-01
The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.
Imaging of Biological Cells Using Luminescent Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy
2016-01-01
The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.
Hou, Jinqiang; Kovacs, Michael S; Dhanvantari, Savita; Luyt, Leonard G
2018-02-08
Molecular imaging with positron emission tomography (PET) is an attractive platform for noninvasive detection and assessment of disease. The development of a PET imaging agent targeting the ghrelin receptor (growth hormone secretagogue receptor type 1a or GHS-R1a) has the potential to lead to the detection and assessment of the higher than normal expression of GHS-R1a in diseases such as prostate, breast, and ovarian cancer. To enable the development of 18 F radiopharmaceuticals, we have designed and synthesized three series of quinazolinone derivatives, resulting in the identification of two compound (5i, 17) with subnanomolar binding affinity and one fluorine-bearing compound (10b) with picomolar binding affinity (20 pM), representing the highest binding affinity for GHS-R1a reported to date. Two lead compounds (5b, IC 50 = 20.6 nM; 5e, IC 50 = 9.3 nM) were successfully 18 F-radiolabeled with radiochemical purity of greater than 99%. Molecular modeling studies were performed to shed light on ligand-receptor interactions.
Rapid PD-L1 detection in tumors with PET using a highly specific peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Samit; Lesniak, Wojciech G.; Miller, Michelle S.
Molecular imaging can report on the status of the tumor immune microenvironment and guide immunotherapeutic strategies to enhance the efficacy of immune modulation therapies. Imaging agents that can rapidly report on targets of immunomodulatory therapies are few. The programmed death ligand 1 (PD-L1) is an immune checkpoint protein over-expressed in several cancers and contributes to tumor immune suppression. Tumor PD-L1 expression is indicative of tumor response to PD-1 and PD-L1 targeted therapies. Herein, we report a highly specific peptide-based positron emission tomography (PET) imaging agent for PD-L1. We assessed the binding modes of the peptide WL12 to PD-L1 by dockingmore » studies, developed a copper-64 labeled WL12 ([{sup 64}Cu]WL12), and performed its evaluation in vitro, and in vivo by PET imaging, biodistribution and blocking studies. Our results show that [{sup 64}Cu]WL12 can be used to detect tumor PD-L1 expression specifically and soon after injection of the radiotracer, to fit within the standard clinical workflow of imaging within 60 min of administration. - Highlights: • A highly specific PD-L1 binding peptide, WL12, was developed as a PET imaging agent. • [{sup 64}Cu]WL12 demonstrates specific binding to PD-L1 in vitro and in vivo. • [{sup 64}Cu]WL12-PET allows PD-L1 detection in cancers within 60 min of administration. • WL12 binding interactions with PD-L1 overlaps with that of PD-1.« less
Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan
2015-08-01
Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.
NASA Astrophysics Data System (ADS)
Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H.; Andrade, N. F.; Denardin, J. C.; Mele, G.; Carbone, L.; Mazzetto, S. E.; Fechine, P. B. A.
2013-06-01
Magnetic Fe3O4 nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ( 13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.
No-carrier-added [1.sup.11 c]putrescine
McPherson, Daniel W.; Fowler, Joanna S.; Wolf, Alfred P.
1989-01-01
The invention relates to a new radiolabeled imaging agent, no-carrier-added [1-.sup.11 C]putrescine, and to the use of this very pure material as a radiotracer with positron emission tomography for imaging brain tumors. The invention further relates to the synthesis of no-carrier-added [1-.sup.11 C]putrescine based on the Michael addition of potassium .sup.11 C-labeled cyanide to acrylonitrile followed by reduction of the .sup.11 C-labeled dinitrile. The new method is rapid and efficient and provides radiotracer with a specific activity greater than 1.4 curies per millimol and in a purity greater than 95%.
Cerenkov luminescence imaging of medical isotopes
Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan
2011-01-01
The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear tomographic imaging and radiotherapy have the potential to be used in CLI. The value of CLI lies in its ability to image radionuclides that do not emit either positrons or γ-rays and are, thus, unsuitable for use with current nuclear imaging modalities. Optical imaging of Cerenkov radiation emission shows excellent promise as a potential new imaging modality for the rapid, high-throughput screening of radiopharmaceuticals PMID:20554722
NASA Astrophysics Data System (ADS)
Repenko, Tatjana; Kuehne, Alexander J. C.
2015-10-01
Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.
Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng
2018-05-02
A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.
Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting
Hong, Hao; Wang, Fei; Zhang, Yin; ...
2015-01-21
Multifunctional zinc oxide (ZnO) nanoparticles (NPs) with well-integrated multimodality imaging capacities have generated increasing research interest in the past decade. However, limited progress has been made in developing ZnO NP-based multimodality tumor-imaging agents. In this paper, we developed novel red fluorescent ZnO NPs and described the successful conjugation of 64Cu ( t 1/2 = 12.7 h) and TRC105, a chimeric monoclonal antibody against CD105, to these ZnO NPs via well-developed surface engineering procedures. The produced dual-modality ZnO NPs were readily applicable for positron emission tomography (PET) imaging and fluorescence imaging of the tumor vasculature. Their pharmacokinetics and tumor-targeting efficacy/specificity inmore » mice bearing murine breast 4T1 tumor were thoroughly investigated. In conclusion, ZnO NPs with dual-modality imaging properties can serve as an attractive candidate for future cancer theranostics.« less
Rosset, Antoine; Spadola, Luca; Pysher, Lance; Ratib, Osman
2006-01-01
The display and interpretation of images obtained by combining three-dimensional data acquired with two different modalities (eg, positron emission tomography and computed tomography) in the same subject require complex software tools that allow the user to adjust the image parameters. With the current fast imaging systems, it is possible to acquire dynamic images of the beating heart, which add a fourth dimension of visual information-the temporal dimension. Moreover, images acquired at different points during the transit of a contrast agent or during different functional phases add a fifth dimension-functional data. To facilitate real-time image navigation in the resultant large multidimensional image data sets, the authors developed a Digital Imaging and Communications in Medicine-compliant software program. The open-source software, called OsiriX, allows the user to navigate through multidimensional image series while adjusting the blending of images from different modalities, image contrast and intensity, and the rate of cine display of dynamic images. The software is available for free download at http://homepage.mac.com/rossetantoine/osirix. (c) RSNA, 2006.
Mamedov, Ilgar; Canals, Santiago; Henig, Jörg; Beyerlein, Michael; Murayama, Yusuke; Mayer, Hermann A; Logothetis, Nikos K; Angelovski, Goran
2010-12-15
Contrast agents for magnetic resonance imaging (MRI) that exhibit sensitivity toward specific ions or molecules represent a challenging but attractive direction of research. Here a Gd(3+) complex linked to an aminobis(methylenephosphonate) group for chelating Ca(2+) was synthesized and investigated. The longitudinal relaxivity (r(1)) of this complex decreases during the relaxometric titration with Ca(2+) from 5.76 to 3.57 mM(-1) s(-1) upon saturation. The r(1) is modulated by changes in the hydration number, which was confirmed by determination of the luminescence emission lifetimes of the analogous Eu(3+) complex. The initial in vivo characterization of this responsive contrast agent was performed by means of electrophysiology and MRI experiments. The investigated complex is fully biocompatible, having no observable effect on neuronal function after administration into the brain ventricles or parenchyma. Distribution studies demonstrated that the diffusivity of this agent is significantly lower compared with that of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).
NASA Astrophysics Data System (ADS)
Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.
2010-06-01
A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.
Dual-radiolabeled nanoparticle probes for depth-independent in vivo imaging of enzyme activation
NASA Astrophysics Data System (ADS)
Black, Kvar C. L.; Zhou, Mingzhou; Sarder, Pinaki; Kuchuk, Maryna; Al-Yasiri, Amal Y.; Gunsten, Sean P.; Liang, Kexian; Hennkens, Heather M.; Akers, Walter J.; Laforest, Richard; Brody, Steven L.; Cutler, Cathy S.; Achilefu, Samuel
2018-02-01
Quantitative and noninvasive measurement of protease activities has remained an imaging challenge in deep tissues such as the lungs. Here, we designed a dual-radiolabeled probe for reporting the activities of proteases such as matrix metalloproteinases (MMPs) with multispectral single photon emission computed tomography (SPECT) imaging. A gold nanoparticle (NP) was radiolabeled with 125I and 111In and functionalized with an MMP9-cleavable peptide to form a multispectral SPECT imaging contrast agent. In another design, incorporation of 199Au radionuclide into the metal crystal structure of gold NPs provided a superior and stable reference signal in lungs, and 111In was linked to the NP surface via a protease-cleavable substrate, which can serve as an enzyme activity reporter. This work reveals strategies to correlate protease activities with diverse pathologies in a tissue-depth independent manner.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.
2014-01-01
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.
Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian
2014-01-11
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Massa, Sam; Vikani, Niravkumar; Betti, Cecilia; Ballet, Steven; Vanderhaegen, Saskia; Steyaert, Jan; Descamps, Benedicte; Vanhove, Christian; Bunschoten, Anton; van Leeuwen, Fijs W B; Hernot, Sophie; Caveliers, Vicky; Lahoutte, Tony; Muyldermans, Serge; Xavier, Catarina; Devoogdt, Nick
2016-09-01
A generic site-specific conjugation method that generates a homogeneous product is of utmost importance in tracer development for molecular imaging and therapy. We explored the protein-ligation capacity of the enzyme Sortase A to label camelid single-domain antibody-fragments, also known as nanobodies. The versatility of the approach was demonstrated by conjugating independently three different imaging probes: the chelating agents CHX-A"-DTPA and NOTA for single-photon emission computed tomography (SPECT) with indium-111 and positron emission tomography (PET) with gallium-68, respectively, and the fluorescent dye Cy5 for fluorescence reflectance imaging (FRI). After a straightforward purification process, homogeneous single-conjugated tracer populations were obtained in high yield (30-50%). The enzymatic conjugation did not affect the affinity of the tracers, nor the radiolabeling efficiency or spectral characteristics. In vivo, the tracers enabled the visualization of human epidermal growth factor receptor 2 (HER2) expressing BT474M1-tumors with high contrast and specificity as soon as 1 h post injection in all three imaging modalities. These data demonstrate Sortase A-mediated conjugation as a valuable strategy for the development of site-specifically labeled camelid single-domain antibody-fragments for use in multiple molecular imaging modalities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Bag, S; Tseng, J-C; Rochford, J
2015-02-14
Spectroscopic and in cellulo studies are here reported on the very first BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette where the luminol CL agent is covalently linked to the BODIPY energy-transfer acceptor in a molecular dyad. The efficiency of intramolecular CRET investigated for the BODIPY-luminol dyad was found to be 64% resulting in a dual emissive response. Successful in cellulo biochemiluminescence via CRET was achieved in PMA activated splenocytes.
NASA Astrophysics Data System (ADS)
Kumari, Anshu; Kumar, Amit; Gupta, Sharad
2018-02-01
Flavonoids are one of the important naturally available small molecules found in our daily diets. They have been considered as potential therapeutic agents for anticancer therapy. Despite their anti-cancer properties, their therapeutic application is very limited due to poor water solubility, which results in poor bioavailability to the diseased cells. Hence, to overcome this limitation of Flavonoids, Quercetin (Qct), the most extensively studied flavonoid, prompted us to encapsulate it within nanoparticles. We have successfully encapsulated Qct within cationic polymer based nanoparticles using simple two-step self-assembly fabrication method and studied its effect on absorption and emission properties of Qct. This study was aimed at Qct encapsulation and its effect on the optical properties of Qct for the diagnostic applications. Our results indicate that Qct was efficiently encapsulated within the polymeric nanoparticles. This resulted into 17 times increase in fluorescence emission of encapsulated Qct (Qct-NPs) in comparison with its aqueous suspension. Thus, Qct-NPs can be utilized as a fluorescent probe for various biomedical applications. These probes will have multiple functions integrated into a single nanostructure, enabling the Qct nanoparticles for imaging and therapy. This is the first report on the effect of nanoencapsulation on optical properties of Qct. Thus, Qct-NPs can be harnessed as an effective theranostic agent, and that will not only allow to image and but also treat the cancer in a single clinical procedure.
Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro
2013-01-01
On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.
Ashton, Jeffrey R.; Clark, Darin P.; Moding, Everett J.; Ghaghada, Ketan; Kirsch, David G.; West, Jennifer L.; Badea, Cristian T.
2014-01-01
Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT. PMID:24520351
Lee, Helen; Gaddy, Daniel; Ventura, Manuela; Bernards, Nicholas; de Souza, Raquel; Kirpotin, Dmitri; Wickham, Thomas; Fitzgerald, Jonathan; Zheng, Jinzi; Hendriks, Bart S
2018-01-01
Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. Methods: We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and 64 Cu (copper-64). MM-DX-929 is designed to mimic the biodistribution of similarly sized therapeutic agents and enable quantification of deposition in solid tumors. Results: MM-DX-929 demonstrated sufficient in vitro and in vivo stability with PET images accurately reflecting the disposition of liposome nanoparticles over the time scale of imaging. MM-DX-929 is also representative of the tumor deposition and intratumoral distribution of three different liposomal drugs, including targeted liposomes and those with different degrees of PEGylation. Furthermore, stratification using a single pre-treatment MM-DX-929 PET assessment of tumor deposition demonstrated that tumors with high MM-DX-929 deposition predicted significantly greater anti-tumor activity after multi-cycle treatments with different liposomal drugs. In contrast, MM-DX-929 tumor deposition was not prognostic in untreated tumor-bearing xenografts, nor predictive in animals treated with small molecule chemotherapeutics. Conclusions: These data illustrate the potential of MM-DX-929 PET as a companion diagnostic strategy to prospectively select patients likely to respond to liposomal drugs or nanomedicines of similar molecular size.
Kobayashi, Masaki; Sasaki, Kensuke; Enomoto, Masaru; Ehara, Yoshio
2007-01-01
The hypersensitive response (HR) is one mechanism of the resistance of plants to pathogen infection. It involves the generation of reactive oxygen species (ROS) which have crucial roles in signal transduction or as toxic agents leading to cell death. Often, ROS generation is accompanied by an ultraweak photon emission resulting from radical reactions that are initiated by ROS through the oxidation of living materials such as lipids, proteins, and DNA. This photon emission, referred to as 'biophotons', is extremely weak, but, based on the technique of photon counting imaging, a system has been developed to analyse the spatiotemporal properties of photon emission. Using this system, the dynamics of photon emission which might be associated with the oxidative burst, which promotes the HR, have been determined. Here, the transient generation of biophotons is demonstrated during the HR process in cowpea elicited by cucumber mosaic virus. The distinctive dynamics in spatiotemporal properties of biophoton emission during the HR expression on macroscopic and microscopic levels are also described. This study reveals the involvement of ROS generation in biophoton emission in the process of HR through the determination of the inhibitory effect of an antioxidant (Tiron) on biophoton emission.
Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma.
Carlucci, Giuseppe; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Irwin, Christopher P; Carlin, Sean D; Keliher, Edmund J; Weber, Wolfgang; Reiner, Thomas
2015-12-01
The current study presents [(18)F]PARPi-FL as a bimodal fluorescent/positron emission tomography (PET) agent for PARP1 imaging. [(18)F]PARPi-FL was obtained by (19)F/(18)F isotopic exchange and PET experiments, biodistribution studies, surface fluorescence imaging, and autoradiography carried out in a U87 MG glioblastoma mouse model. [(18)F]PARPi-FL showed high tumor uptake in vivo and ex vivo in small xenografts (< 2 mm) with both PET and optical imaging technologies. Uptake of [(18)F]PARPi-FL in blocked U87 MG tumors was reduced by 84 % (0.12 ± 0.02 %injected dose/gram (%ID/g)), showing high specificity of the binding. PET imaging showed accumulation in the tumor (1 h p.i.), which was confirmed by ex vivo phosphor autoradiography. The fluorescent component of [(18)F]PARPi-FL enables cellular resolution optical imaging, while the radiolabeled component of [(18)F]PARPi-FL allows whole-body deep-tissue imaging of malignant growth.
A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.
Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S
2016-09-01
Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050
Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong
2016-01-01
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.
Effect of self-demodulation on the subharmonic response of contrast agent microbubbles
NASA Astrophysics Data System (ADS)
Daeichin, V.; Faez, T.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.
2012-06-01
Subharmonic (SH) emission from the ultrasound contrast agent (UCA) is of interest since it is produced only by the UCA and not by tissue, opposite to harmonic imaging modes where both tissue and microbubble show harmonics. In this work, the use of the self-demodulation (S-D) signal as a means of microbubble excitation at the SH frequency to enhance the SH emission of UCA is studied. The S-D wave is a low-frequency signal produced by the weak nonlinear propagation of an ultrasound wave. It is proportional to the second time derivative of the squared envelope of the transmitted signal. A diluted population of BR14 UCA (Bracco Research SA, Geneva, Switzerland) was insonified by a 10 MHz transducer focused at 76 mm firing bursts with different envelopes, durations and peak pressure amplitudes. The center frequency of the S-D signal changes from low frequencies (around 0.5 MHz) toward the transmitted frequency (10 MHz) by modifying the envelope function from Gaussian to rectangular. For 6 and 20 transmitted cycles, the SH response is enhanced up to 25 and 22 dB, respectively, when using a rectangular envelope instead of a Gaussian one. The experimental results are confirmed by the numerical simulation. The effects of the excitation duration and pressure amplitude are also studied. This study shows that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA, and the SH imaging is feasible at high frequencies with a shorter transmit burst (six-cycle) and low acoustic pressure (∼100 KPa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutscher, Susan
2014-09-30
The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because ofmore » their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently labeled peptides, including our lectin/carbohydrate- targeting peptides, by displaying the targeting epitopes on small ~29 amino acid cyclic plant protein scaffolds known as cyclotides. Cyclotides are extremely stable molecules with long serum half-lives and low kidney uptake (7). More than one copy of the peptide can be engineered into the cyclotide loops, thus increasing the avidity of the peptide construct for its target.« less
Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents
Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.
2016-01-01
A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748
Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J
2015-10-01
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Greco, Francesco; Cadeddu, Jeffrey A; Gill, Inderbir S; Kaouk, Jihad H; Remzi, Mesut; Thompson, R Houston; van Leeuwen, Fijs W B; van der Poel, Henk G; Fornara, Paolo; Rassweiler, Jens
2014-05-01
Molecular imaging (MI) entails the visualisation, characterisation, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Translating this technology to interventions in real-time enables interventional MI/image-guided surgery, for example, by providing better detection of tumours and their dimensions. To summarise and critically analyse the available evidence on image-guided surgery for genitourinary (GU) oncologic diseases. A comprehensive literature review was performed using PubMed and the Thomson Reuters Web of Science. In the free-text protocol, the following terms were applied: molecular imaging, genitourinary oncologic surgery, surgical navigation, image-guided surgery, and augmented reality. Review articles, editorials, commentaries, and letters to the editor were included if deemed to contain relevant information. We selected 79 articles according to the search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria and the IDEAL method. MI techniques included optical imaging and fluorescent techniques, the augmented reality (AR) navigation system, magnetic resonance imaging spectroscopy, positron emission tomography, and single-photon emission computed tomography. Experimental studies on the AR navigation system were restricted to the detection and therapy of adrenal and renal malignancies and in the relatively infrequent cases of prostate cancer, whereas fluorescence techniques and optical imaging presented a wide application of intraoperative GU oncologic surgery. In most cases, image-guided surgery was shown to improve the surgical resectability of tumours. Based on the evidence to date, image-guided surgery has promise in the near future for multiple GU malignancies. Further optimisation of targeted imaging agents, along with the integration of imaging modalities, is necessary to further enhance intraoperative GU oncologic surgery. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Li, Tingting; Shen, Xue; Chen, Yin; Zhang, Chengchen; Yan, Jie; Yang, Hong; Wu, Chunhui; Zeng, Hongjun; Liu, Yiyao
2015-01-01
Engineering a safe and high-efficiency delivery system for efficient RNA interference is critical for successful gene therapy. In this study, we designed a novel nanocarrier system of polyethyleneimine (PEI)-modified Fe3O4@SiO2, which allows high efficient loading of VEGF small hairpin (sh)RNA to form Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites for VEGF gene silencing as well as magnetic resonance (MR) imaging. The size, morphology, particle stability, magnetic properties, and gene-binding capacity and protection were determined. Low cytotoxicity and hemolyticity against human red blood cells showed the excellent biocompatibility of the multifunctional nanocomposites, and also no significant coagulation was observed. The nanocomposites maintain their superparamagnetic property at room temperature and no appreciable change in magnetism, even after PEI modification. The qualitative and quantitative analysis of cellular internalization into MCF-7 human breast cancer cells by Prussian blue staining and inductively coupled plasma atomic emission spectroscopy analysis, respectively, demonstrated that the Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could be easily internalized by MCF-7 cells, and they exhibited significant inhibition of VEGF gene expression. Furthermore, the MR cellular images showed that the superparamagnetic iron oxide core of our Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites could also act as a T2-weighted contrast agent for cancer MR imaging. Our data highlight multifunctional Fe3O4@SiO2/PEI/VEGF shRNA nanocomposites as a potential platform for simultaneous gene delivery and MR cell imaging, which are promising as theranostic agents for cancer treatment and diagnosis in the future. PMID:26170664
Li, Shihong; Goins, Beth; Zhang, Lujun; Bao, Ande
2012-06-20
Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with noninvasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The premanufactured liposomes were composed of DSPC/cholesterol/Gd-DOTA-DSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively postinserted into the premanufactured liposomes. Doxorubicin could be effectively postloaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with (99m)Tc or (64)Cu for single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high-resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT, and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing noninvasive multimodality NIR fluorescent, MR, SPECT, and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality.
Ren, Feng; Ding, Lihua; Liu, Hanghang; Huang, Qian; Zhang, Hao; Zhang, Lijuan; Zeng, Jianfeng; Sun, Qiao; Li, Zhen; Gao, Mingyuan
2018-08-01
In-vivo intravital short wavelength infrared (SWIR, 1000-2300 nm) fluorescence imaging has attracted considerable attention in the imaging of tumor vasculature due to its low background, high sensitivity, and deep penetration. It can noninvasively provide dynamic feedback on the tumorigenesis, growth, necrosis and metastasis. Herein, monodisperse Nd 3+ -doped core-shell downconversion luminescent nanocrystals with strong emission in the second near-infrared (NIR II) window, strong temperature-dependent paramagnetism and fast attenuation to X-rays were prepared from ultra-small nanoclusters. The use of nanoclusters resulted in very uniform bright nanocrystals with a relative quantum yield comparable to the standard dye IR-26. These bright NIR nanocrystals were modified with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] to endow with excellent water-solubility, biocompatibility and a blood circulation half-life of 5.9 h. They were then successfully used to demonstrate the variation of tumor vasculature with tumor progression from tumorigenesis, growth, to necrosis in the subcutaneous breast tumor through the NIR II fluorescence imaging. They were also used as contrast agent of magnetic resonance imaging (MRI) and X-ray computed tomography (CT) imaging of tumor to provide complementary anatomic structure. Their great potential in NIR II imaging of tumor was further demonstrated with an orthotopic breast tumor. Their in-vivo biosafety was also investigated by hemanalysis and histological analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Crossley, Daniel L; Urbano, Laura; Neumann, Robert; Bourke, Struan; Jones, Jennifer; Dailey, Lea Ann; Green, Mark; Humphries, Martin J; King, Simon M; Turner, Michael L; Ingleson, Michael J
2017-08-30
Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.
Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing
2013-01-01
Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan–vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400–800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan–vitamin C lipid system have achieved tumor-selective imaging in vivo. PMID:23637799
Mai, Liyi; Yao, Anna; Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing
2013-01-01
Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.
Mitchell, Nick; Kalber, Tammy L.; Cooper, Margaret S.; Sunassee, Kavitha; Chalker, Samantha L.; Shaw, Karen P.; Ordidge, Katherine L.; Badar, Adam; Janes, Samuel M.; Blower, Philip J.; Lythgoe, Mark F.; Hailes, Helen C.; Tabor, Alethea B.
2013-01-01
A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd3+, 64Cu2+, or 111In3+, and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)2000] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent. PMID:23131536
TiO2 -coated fluoride nanoparticles for dental multimodal optical imaging.
Braz, Ana K S; Moura, Diógenes S; Gomes, Anderson S L; Ohulchanskyy, Tymish Y; Chen, Guanying; Liu, Maixian; Damasco, Jossana; de Araujo, Renato E; Prasad, Paras N
2018-04-01
Core-shell nanostructures associated with photonics techniques have found innumerous applications in diagnostics and therapy. In this work, we introduce a novel core-shell nanostructure design that serves as a multimodal optical imaging contrast agent for dental adhesion evaluation. This nanostructure consists of a rare-earth-doped (NaYF 4 :Yb 60%, Tm 0.5%)/NaYF 4 particle as the core (hexagonal prism, ~51 nm base side length) and the highly refractive TiO 2 material as the shell (~thickness of 15 nm). We show that the TiO 2 shell provides enhanced contrast for optical coherence tomography (OCT), while the rare-earth-doped core upconverts excitation light from 975 nm to an emission peaked at 800 nm for photoluminescence imaging. The OCT and the photoluminescence wide-field images of human tooth were demonstrated with this nanoparticle core-shell contrast agent. In addition, the described core-shell nanoparticles (CSNps) were dispersed in the primer of a commercially available dental bonding system, allowing clear identification of dental adhesive layers with OCT. We evaluated that the presence of the CSNp in the adhesive induced an enhancement of 67% scattering coefficient to significantly increase the OCT contrast. Moreover, our results highlight that the upconversion photoluminescence in the near-infrared spectrum region is suitable for image of deep dental tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
White, Richard E.; Bally, John
1993-01-01
A large emission 'cavity' whose bright rims extend about 5 deg eastward from the Pleiades, and is pressurized by the soft-UV radiation of the cluster, has been revealed by a mosaic of IRAS images; the emission cavity delineates the wake of the Pleiades as it moves supersonically through the ISM. Photoelectric heating is identified as the most likely agent of the cluster-cloud interaction generating a shock wave, and prompts the hypothesis that transverse expansion of heated gas near the cluster plays a crucial role in driving the shock. The cloud trajectory can be traced back to an origin in Gould's Belt some 15 Myr ago, in a blowout of gas into the Galactic halo.
Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes
2015-01-01
We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011
Optical Imaging in Breast Cancer Diagnosis: The Next Evolution
Ruibal, Alvaro
2012-01-01
Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content) or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy. PMID:23304141
Jiao, Shu-Yan; Li, Kun; Zhang, Wei; Liu, Yan-Hong; Huang, Zeng; Yu, Xiao-Qi
2015-01-21
The terpyridine anthracene ligand was synthesized and characterized. is a ratiometric fluorescent probe for Cd(2+) with a recognition mechanism based on intramolecular charge transfer (ICT). An complex was isolated, and its structure was established using single-crystal XRD. The complex was able to serve as a novel reversible chemosensing ensemble to allow ratiometric response to pyrophosphate (PPi) in aqueous media. Moreover, the fluorescence imaging in living cells from these two emission channels suggested that was a ratiometric probe for Cd(2+), and the in situ generated complex was also a ratiometric ensemble for PPi detection in living cells.
Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi
2014-11-01
A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P < .05). In addition, the intensity decrease in the ROI was significantly correlated with the destruction area (P < .05). By the proposed strategy, microbubbles could be destroyed in a variably sized region, and destruction efficiency as well as the corresponding inertial cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.
Positron emission tomography in renal cell carcinoma: an imaging biomarker in development.
Khandani, Amir H; Rathmell, W Kimryn
2012-07-01
Positron emission tomography (PET) has revolutionized cancer imaging. The current workhorse of molecular imaging, fluorodeoxyglucose (FDG) PET is used in the majority of malignant tumors with a few exceptions. Renal cell carcinoma (RCC) is one of those exceptions because of its variable uptake of FDG, although this variable uptake may actually be an asset in predicting response to some targeted agents, as will be discussed later. Beyond FDG, there is only scattered information in the literature on the use of PET in RCC. The purpose of this review is to summarize the current status of PET usage in RCC and point out its potentials and future directions. We will start with a brief overview of the demographics, molecular pathogenesis, and evolving treatment strategies in RCC because this information is essential for better understanding of uptake of various PET radiotracers in this cancer and their indications. This will be followed by discussing the role of PET in characterization of indeterminate renal masses, in staging and restaging of RCC, and, finally, in predicting and monitoring therapy response. Each of these 3 areas of PET usage will include the relevant radiotracers currently in use or in development. Copyright © 2012 Elsevier Inc. All rights reserved.
Cherenkov imaging and biochemical sensing in vivo during radiation therapy
NASA Astrophysics Data System (ADS)
Zhang, Rongxiao
While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of its kind with external beam irradiation, a dendritic platinum-based phosphor (PtG4) was used at micro-molar concentrations (~5 microM) to generate Cherenkov-induced luminescent signals, which are sensitive to the partial pressure of oxygen. Both tomographic reconstruction methods and linear scanned imaging were investigated here to examine the limits of detection. Recovery of optical molecular distributions was shown in tissue phantoms and small animals, with high accuracy (~1 microM), high spatial resolution (~0.2 mm) and deep-tissue detectability (~2 cm for Cherenkov luminescence scanned imaging (CELSI)), indicating potentials for in vivo and clinical use. In summary, many of the physical and technological details of Cherenkov imaging and Cherenkov-excited emission imaging were specified in this study.
NASA Astrophysics Data System (ADS)
Dey, Joyoni; Segars, W. Paul; Pretorius, P. Hendrik; King, Michael A.
2015-08-01
Purpose: We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. Methods: We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc). We tested these cases with and without emission motion correction and attenuation map alignment/non-alignment. Results: For the NCAT default male anatomy the false count-reduction due to breathing was largely removed upon emission motion correction for the large majority of the cases. Exceptions (for the default male) were for the cases when using the large-breathhold end-inspiration map (TI_EXT), when we used the end-expiration (TE) map, and to a smaller extent, the end-inspiration map (TI). However moving the attenuation maps rigidly to align the heart region, reduced the remaining count-reduction artifacts. For the female patient count-reduction remained post motion correction using rigid map-alignment due to the breast soft-tissue misalignment. Quantitatively, after the transmission (rigid) alignment correction, the polar-map 17-segment RMS error with respect to the reference (motion-less case) reduced by 46.5% on average for the extreme breathhold case. The reductions were 40.8% for end-expiration map and 31.9% for end-inspiration cases on the average, comparable to the semi-ideal case where each state uses its own attenuation map for correction. Conclusions: Two main conclusions are that even rigid emission motion correction to rigidly align the heart region to the attenuation map helps in average cases to reduce the count-reduction artifacts and secondly, within the limits of the study (ex. rigid correction) when there is lung tissue inferior to the heart as with the NCAT phantom employed in this study end-expiration maps (TE) might best be avoided as they may create more artifacts than the end-inspiration (TI) maps.
Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J
2008-04-01
The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.
Copper-64 Labeled Liposomes for Imaging Bone Marrow
Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore
2016-01-01
Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092
Tian, Gan; Zhang, Xiao; Gu, Zhanjun; Zhao, Yuliang
2015-12-16
Lanthanide-doped upconversion nanoparticles (UCNPs) have the ability to generate ultraviolet or visible emissions under continuous-wave near-infrared (NIR) excitation. Utilizing this special luminescence property, UCNPs are approved as a new generation of contrast agents in optical imaging with deep tissue-penetration ability and high signal-to-noise ratio. The integration of UCNPs with other functional moieties can endow them with highly enriched functionalities for imaging-guided cancer therapy, which makes composites based on UCNPs emerge as a new class of theranostic agents in biomedicine. Here, recent progress in combined cancer therapy using functional nanocomposites based on UCNPs is reviewed. Combined therapy referring to the co-delivery of two or more therapeutic agents or a combination of different treatments is becoming more popular in clinical treatment of cancer because it generates synergistic anti-cancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. Here, the recent advances of combined therapy contributed by UCNPs-based nanocomposites on two main branches are reviewed: i) photodynamic therapy and ii) chemotherapy, which are the two most widely adopted therapies of UCNPs-based composites. The future prospects and challenges in this emerging field will be also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Daryaei, Iman; Pagel, Mark D
2015-01-01
Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T 2 -exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T 1 and T 2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.
MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research.
Zimmer, Eduardo R; Parent, Maxime J; Cuello, A Claudio; Gauthier, Serge; Rosa-Neto, Pedro
2014-11-01
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qi; Liu, Weimin; Wu, Jiasheng; Zhou, Bingjiang; Niu, Guangle; Zhang, Hongyan; Ge, Jiechao; Wang, Pengfei
2016-07-01
More and more attention has been paid to the design of new fluorescent imaging agents with good photostability and water solubility, especially those with emissions in the deep-red and near-infrared regions. In this work, we designed and synthesized four novel fluorescent dyes with deep-red or NIR fluorescence by hybridizing coumarin and pyronin moieties based on our previous work. Introduction of carboxylic acid in the dyes not only imparted the dyes with water solubility but also provided a versatile sensing platform for designing the fluorescent probes and sensors of biomolecules. The photophysical properties of these new dyes were investigated through absorption and fluorescence spectroscopy. Cell imaging experiments showed that esterification products could selectively stain lysosomes with good photostability, thereby indicating that they could be useful in the development of fluorescent probes for bioimaging.
Alves, Cátia G; Lima-Sousa, Rita; de Melo-Diogo, Duarte; Louro, Ricardo O; Correia, Ilídio J
2018-05-05
IR780, a molecule with a strong optical absorption and emission in the near infrared (NIR) region, is receiving an increasing attention from researchers working in the area of cancer treatment and imaging. Upon irradiation with NIR light, IR780 can produce reactive oxygen species as well as increase the body temperature, thus being a promising agent for application in cancer photodynamic and photothermal therapy. However, IR780's poor water solubility, fast clearance, acute toxicity and low tumor uptake may limit its use. To overcome such issues, several types of nanomaterials have been used to encapsulate and deliver IR780 to tumor cells. This mini-review is focused on the application of IR780 based nanostructures for cancer imaging, and photothermal, photodynamic and combinatorial therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
Kimura, Richard H; Cheng, Zhen; Gambhir, Sanjiv Sam; Cochran, Jennifer R
2009-01-01
There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with low nM affinity to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or 64Cu-DOTA to their N-termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. Near-infrared fluorescence and microPET imaging both demonstrated that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 h post injection for two high affinity (IC50 ∼20 nM) 64Cu-DOTA-conjugated knottin peptides was 4.47 ± 1.21 and 4.56 ± 0.64 % injected dose/gram (%ID/g), compared to a low affinity knottin peptide (IC50 ∼0.4 μM; 1.48 ± 0.53 %ID/g) and c(RGDyK) (IC50 ∼1 μM; 2.32 ± 0.55 %ID/g), a low affinity cyclic pentapeptide under clinical development. Furthermore, 64Cu-DOTA-conjugated knottin peptides generated lower levels of non-specific liver uptake (∼2 %ID/g) compared to c(RGDyK) (∼4 %ID/g) 1 h post injection. MicroPET imaging results were confirmed by in vivo biodistribution studies. 64Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers. PMID:19276378
Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David
2013-07-01
Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment. Electronic supplementary information (ESI) available: Synthesis and functionalization of NPs. Fig. S1, TEM data of NPs before labeling. Fig. S2, magnetization curve of iron-oxide NPs. Fig. S3, radioactivity measurements for 11C-labeled NPs. Fig. S4, TGA data of iron-oxide NPs. Fig. S5-S8, Radio-TLC chromatograms of 11C-labeled NPs. Fig. S9, radio-HPLC chromatograms of supernatant solutions from washing 11C-labeled NPs to check for impurities. See DOI: 10.1039/c3nr02519e
Li, Shihong; Goins, Beth; Zhang, Lujun; Bao, Ande
2012-01-01
Liposomes are effective lipid nanoparticle drug delivery systems, which can also be functionalized with non-invasive multimodality imaging agents with each modality providing distinct information and having synergistic advantages in diagnosis, monitoring of disease treatment, and evaluation of liposomal drug pharmacokinetics. We designed and constructed a multifunctional theranostic liposomal drug delivery system, which integrated multimodality magnetic resonance (MR), near-infrared (NIR) fluorescent and nuclear imaging of liposomal drug delivery, and therapy monitoring and prediction. The pre-manufactured liposomes were composed of DSPC/cholesterol/Gd-DOTADSPE/DOTA-DSPE with the molar ratio of 39:35:25:1 and having ammonium sulfate/pH gradient. A lipidized NIR fluorescent tracer, IRDye-DSPE, was effectively post-inserted into the pre-manufactured liposomes. Doxorubicin could be effectively post-loaded into the multifunctional liposomes. The multifunctional doxorubicin-liposomes could also be stably radiolabeled with 99mTc or 64Cu for single photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging, respectively. MR images displayed the high resolution micro-intratumoral distribution of the liposomes in squamous cell carcinoma of head and neck (SCCHN) tumor xenografts in nude rats after intratumoral injection. NIR fluorescent, SPECT and PET images also clearly showed either the high intratumoral retention or distribution of the multifunctional liposomes. This multifunctional drug carrying liposome system is promising for disease theranostics allowing non-invasive multimodality NIR fluorescent, MR, SPECT and PET imaging of their in vivo behavior and capitalizing on the inherent advantages of each modality. PMID:22577859
Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason
2012-01-01
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Meixner, Margaret; Panuzzo, P.; Roman-Duval, J.; Engelbracht, C.; Babler, B.; Seale, J.; Hony, S.; Montiel, E.; Sauvage, M.; Gordon, K.;
2013-01-01
We present an overview or the HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds project, which is a Herschel Space Observatory open time key program. We mapped the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) at 100, 160, 250, 350, and 500 micron with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments on board Herschel using the SPIRE/PACS parallel mode. The overriding science goal of HERITAGE is to study the life cycle of matter as traced by dust in the LMC and SMC. The far-infrared and submillimeter emission is an effective tracer of the interstellar medium (ISM) dust, the most deeply embedded young stellar objects (YSOs), and the dust ejected by the most massive stars. We describe in detail the data processing, particularly for the PACS data, which required some custom steps because of the large angular extent of a single observational unit and overall the large amount of data to be processed as an ensemble. We report total global fluxes for LMC and SMC and demonstrate their agreement with measurements by prior missions. The HERITAGE maps of the LMC and SMC are dominated by the ISM dust emission and bear most resemblance to the tracers of ISM gas rather than the stellar content of the galaxies. We describe the point source extraction processing and the critetia used to establish a catalog for each waveband for the HERITAGE program. The 250 micron band is the most sensitive and the source catalogs for this band have approx. 25,000 objects for the LMC and approx. 5500 objects for the SMC. These data enable studies of ISM dust properties, submillimeter excess dust emission, dust-to-gas ratio, Class 0 YSO candidates, dusty massive evolved stars, supemova remnants (including SN1987A), H II regions, and dust evolution in the LMC and SMC. All images and catalogs are delivered to the Herschel Science Center as part of the conummity support aspects of the project. These HERITAGE images and catalogs provide an excellent basis for future research and follow up with other facilities.
Daryaei, Iman; Pagel, Mark D
2016-01-01
Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191
NASA Astrophysics Data System (ADS)
Torres, Veronica C.; Vuong, Victoria D.; Wilson, Todd; Wewel, Joshua; Byrne, Richard W.; Tichauer, Kenneth M.
2017-09-01
Nerve preservation during surgery is critical because damage can result in significant morbidity. This remains a challenge especially for skull base surgeries where cranial nerves (CNs) are involved because visualization and access are particularly poor in that location. We present a paired-agent imaging method to enhance identification of CNs using nerve-specific fluorophores. Two myelin-targeting imaging agents were evaluated, Oxazine 4 and Rhodamine 800, and coadministered with a control agent, indocyanine green, either intravenously or topically in rats. Fluorescence imaging was performed on excised brains ex vivo, and nerve contrast was evaluated via paired-agent ratiometric data analysis. Although contrast was improved among all experimental groups using paired-agent imaging compared to conventional, solely targeted imaging, Oxazine 4 applied directly exhibited the greatest enhancement, with a minimum 3 times improvement in CNs delineation. This work highlights the importance of accounting for nonspecific signal of targeted agents, and demonstrates that paired-agent imaging is one method capable of doing so. Although staining, rinsing, and imaging protocols need to be optimized, these findings serve as a demonstration for the potential use of paired-agent imaging to improve contrast of CNs, and consequently, surgical outcome.
NASA Astrophysics Data System (ADS)
Ge, Xiaoqian; Sun, Lining; Ma, Binbin; Jin, Di; Dong, Liang; Shi, Liyi; Li, Nan; Chen, Haige; Huang, Wei
2015-08-01
We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications.We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications. Electronic supplementary information (ESI) available: DLS of Ru-UCNPs@HmSiO2-PEI in water. The zeta potential. The XRD patterns. EDX spectrum of Ru-UCNPs@HmSiO2-PEI. FT-IR spectra. N2 adsorption-desorption isotherm and pore size distribution. The investigation of the stability of Ru-UCNPs@HmSiO2-PEI. TG curves. UV/Vis absorption spectra of Ru complex at different concentrations. The sensitivity test of Ru-UCNPs@HmSiO2-PEI towards Hg2+. Cell viabilities of HeLa cells incubated with Ru-UCNPs@HmSiO2-PEI. See DOI: 10.1039/c5nr04006j
Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh
2018-02-01
Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.
Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.
2014-01-01
Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198
Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting
2014-08-01
The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery;the impact of PET viability imaging on prognosis (mortality and other patient outcomes); andthe contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. (ABSTRACT TRUNCATED)
Current application and future perspectives of PSMA PET imaging in prostate cancer.
Ceci, Francesco; Castellucci, Paolo; Fanti, Stefano
2018-03-08
As precision medicine evolves, the contribution of molecular imaging to the management of prostate cancer (PCa) patients, especially for Positron Emission Tomography (PET) imaging, is gaining importance. Highly successful approaches to measure the expression of the prostate specific membrane antigen (PSMA) have been introduced recently. PSMA, the glutamate carboxypeptidase II (GCP-II), is a membrane bound metallo-peptidase that is overexpressed in 90-100% of PCa cells. Due to its selective over-expression, PSMA is a reliable tissue marker for prostate cancer and is considered an ideal target for tumor specific imaging and therapy. A variety of PET and SPECT probes targeting this peptide receptor have been introduced. These are undergoing extensive clinical evaluations. Initial results attest to a high accuracy for disease detection compared conventional radiology (CT or MRI) and other nuclear medicine procedure (choline PET or fluciclovine PET). However, prospective evaluation of the impact on patient management for PSMA-ligand PET and its impact on patient outcome is currently missing. Finally, PSMA inhibitors can be radio-labeled with diagnostic (68Ga-PSMA-11), or therapeutic nuclides (177Lu/225Ac PSMA-617) to be used as theranostic agent. Initial results showed that PSMA-targeted radioligand therapy (RLT) can potentially delay disease progression in metastatic castrate-resistant PCa. This review aims to explore the current application of PSMA based imaging in prostate cancer, reporting about main advantages and limitations of this new theranostic procedure. The future perspectives and potential the applications of this agent will be also discussed.
Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection
Sinharay, Sanhita; Pagel, Mark D.
2016-01-01
Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630
PET and NIR Optical Imaging Using Self-Illuminating 64Cu-Doped Chelator-Free Gold Nanoclusters
Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan
2014-01-01
Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster (64Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide 64Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. 64Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, 64Cu-doped AuNCs showed high tumor uptake (14.9%ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. PMID:25224367
PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.
Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan
2014-12-01
Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster ((64)Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide (64)Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. (64)Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, (64)Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. Published by Elsevier Ltd.
Innovations in Nuclear Imaging Instrumentation: Cerenkov Imaging.
Tamura, Ryo; Pratt, Edwin C; Grimm, Jan
2018-07-01
Cerenkov luminescence (CL) is blue glow light produced by charged subatomic particles travelling faster than the phase velocity of light in a dielectric medium such as water or tissue. CL was first discovered in 1934, but for biomedical research it was recognized only in 2009 after advances in optical camera sensors brought the required high sensitivity. Recently, applications of CL from clinical radionuclides have been rapidly expanding to include not only preclinical and clinical biomedical imaging but also an approach to therapy. Cerenkov Luminescence Imaging (CLI) utilizes CL generated from clinically relevant radionuclides alongside optical imaging instrumentation. CLI is advantageous over traditional nuclear imaging methods in terms of infrastructure cost, resolution, and imaging time. Furthermore, CLI is a truly multimodal imaging method where the same agent can be detected by two independent modalities, with optical (CL) imaging and with positron emission tomography (PET) imaging. CL has been combined with small molecules, biomolecules and nanoparticles to improve diagnosis and therapy in cancer research. Here, we cover the fundamental breakthroughs and recent advances in reagents and instrumentation methods for CLI as well as therapeutic application of CL. Copyright © 2018 Elsevier Inc. All rights reserved.
Olaru, Alexandra M.; Robertson, Thomas B. R.; Lewis, Jennifer S.; Antony, Alex; Iali, Wissam
2017-01-01
Abstract Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F‐labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F‐containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve 19F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE. We conclude by presenting 19F MRI results in phantoms, which demonstrate that many of these agents show great promise as future 19F MRI contrast agents for diagnostic investigations. PMID:29318102
Paulsen, Keith D.; Samkoe, Kimberley S.; Elliott, Jonathan T.; Hasan, Tayyaba; Strong, Theresa V.; Draney, Daniel R.; Feldwisch, Joachim
2016-01-01
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents. PMID:27277060
Pogue, Brian W; Paulsen, Keith D; Samkoe, Kimberley S; Elliott, Jonathan T; Hasan, Tayyaba; Strong, Theresa V; Draney, Daniel R; Feldwisch, Joachim
2016-06-01
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.
Tan, Mingqian; Lu, Zheng-Rong
2011-01-01
Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154
Pham, TH Nguyen; Lengkeek, Nigel A; Greguric, Ivan; Kim, Byung J; Pellegrini, Paul A; Bickley, Stephanie A; Tanudji, Marcel R; Jones, Stephen K; Hawkett, Brian S; Pham, Binh TT
2017-01-01
Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT)-magnetic resonance imaging (MRI) were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3) nanoparticles (SPIONs). The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG) or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS). All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe. PMID:28184160
Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B
2012-12-27
We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.
Al Faraj, Achraf; Alotaibi, Basem; Shaik, Abjal Pasha; Shamma, Khaled Z; Al Jammaz, Ibrahim; Gerl, Jürgen
2015-01-01
Despite their advantageous chemical properties for nuclear imaging, radioactive sodium-22 (22Na) tracers have been excluded for biomedical applications because of their extremely long lifetime. In the current study, we proposed, for the first time, the use of 22Na radiotracers for pre-clinical applications by efficiently loading with silica nanoparticles (SiNPs) and thus offering a new life for this radiotracer. Crown-ether-conjugated SiNPs (300 nm; −0.18±0.1 mV) were successfully loaded with 22Na with a loading efficacy of 98.1%±1.4%. Noninvasive positron emission tomography imaging revealed a transient accumulation of 22Na-loaded SiNPs in the liver and to a lower extent in the spleen, kidneys, and lung. However, the signal gradually decreased in a time-dependent manner to become not detectable starting from 2 weeks postinjection. These observations were confirmed ex vivo by quantifying 22Na radioactivity using γ-counter and silicon content using inductively coupled plasma-mass spectrometry in the blood and the different organs of interest. Quantification of Si content in the urine and feces revealed that SiNPs accumulated in the organs were cleared from the body within a period of 2 weeks and completely in 1 month. Biocompatibility evaluations performed during the 1-month follow-up study to assess the possibility of synthesized nanocarriers to induce oxidative stress or DNA damage confirmed their safety for pre-clinical applications. 22Na-loaded nanocarriers can thus provide an innovative diagnostic agent allowing ultra-sensitive positron emission tomography imaging. On the other hand, with its long lifetime, onsite generators or cyclotrons will not be required as 22Na can be easily stored in the nuclear medicine department and be used on-demand. PMID:26504381
EVALUATION OF POLLUTION PREVENTION OPPORTUNITIES FOR MOLD RELEASE AGENTS
The report gives results of an assessment of the processes, materials, installation practices, and emission characteristics associated with the application of mold release agents (MRAs). Emissions were estimated based on available information on MRA composition and consumption. V...
Advances in oncological treatment: limitations of RECIST 1.1 criteria.
Grimaldi, Serena; Terroir, Marie; Caramella, Caroline
2018-06-01
RECIST 1.1 criteria are the standard for the response assessment of most solid tumors on computed tomography (CT). Nevertheless, the emergence of new classes of treatment in the lasts decades has brought new challenges in the evaluation of response. A PubMed online database literature search was performed in order to identify papers in English with full text available published up to September 2017. Some oncologic treatments, such as antiangiogenic agents, immunotherapy and local treatments, have proven to be effective despite atypical patterns of response. In patients undergoing these treatments, size-based evaluations, such as RECIST1.1, show some limitations, since they often underestimate the response. Some modified criteria have been proposed to improve the response assessment in several specific settings, such in gastrointestinal stromal tumors treated by antiangiogenic agents, hepatocellular carcinoma treated by local ablation or solid tumors treated by immunotherapy. New techniques of image analysis and imaging modalities other than CT, such as magnetic resonance imaging and positron emission tomography, may provide additional information and amend some of the limitations of size-based criteria. The emergence of new treatment paradigms and the increasing trend toward personalizing treatment should be associated with a concomitant evolution of response assessment, in both research and clinical settings.
Zhang, Xiaoming; Zeraati, Mohammad; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2007-06-01
A new method for imaging the vibration mode of an object is investigated. The radiation force of ultrasound is used to scan the object at a resonant frequency of the object. The vibration of the object is measured by laser and the resulting acoustic emission from the object is measured by a hydrophone. It is shown that the measured signal is proportional to the value of the mode shape at the focal point of the ultrasound beam. Experimental studies are carried out on a mechanical heart valve and arterial phantoms. The mode images on the valve are made by the hydrophone measurement and confirmed by finite-element method simulations. Compared with conventional B-scan imaging on arterial phantoms, the mode imaging can show not only the interface of the artery and the gelatin, but also the vibration modes of the artery. The images taken on the phantom surface suggest that an image of an interior artery can be made by vibration measurements on the surface of the body. However, the image of the artery can be improved if the vibration of the artery is measured directly. Imaging of the structure in the gelatin or tissue can be enhanced by small bubbles and contrast agents.
Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging
Bright, Vanessa
2011-01-01
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146
State-of-the-art uroradiologic imaging in the diagnosis of prostate cancer.
Heijmink, Stijn W T P J; Fütterer, Jurgen J; Strum, Stephen S; Oyen, Wim J G; Frauscher, Ferdinand; Witjes, J Alfred; Barentsz, Jelle O
2011-06-01
In the diagnostic process of prostate cancer, several radiologic imaging modalities significantly contribute to the detection and localization of the disease. These range from transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) to positron emission tomography (PET). Within this review, after evaluation of the literature, we will discuss the advantages and disadvantages of these imaging modalities in clarifying the patient's clinical status as to whether he has prostate cancer or not and if so, where it is located, so that therapy appropriate to the patient's disease may be administered. TRUS, specifically with the usage of intravenous contrast agents, provides an excellent way of directing biopsy towards suspicious areas within the prostate in the general (screening) population. MRI using functional imaging techniques allows for highly accurate detection and localization, particularly in patients with prior negative ultrasound guided biopsies. A promising new development is the performance of biopsy within the magnetic resonance scanner. Subsequently, a proposal for optimal use of radiologic imaging is presented and compared with the European and American urological guidelines on prostate cancer.
Nanoparticles in practice for molecular-imaging applications: An overview.
Padmanabhan, Parasuraman; Kumar, Ajay; Kumar, Sundramurthy; Chaudhary, Ravi Kumar; Gulyás, Balázs
2016-09-01
Nanoparticles (NPs) are playing a progressively more significant role in multimodal and multifunctional molecular imaging. The agents like Superparamagnetic iron oxide (SPIO), manganese oxide (MnO), gold NPs/nanorods and quantum dots (QDs) possess specific properties like paramagnetism, superparamagnetism, surface plasmon resonance (SPR) and photoluminescence respectively. These specific properties make them able for single/multi-modal and single/multi-functional molecular imaging. NPs generally have nanomolar or micromolar sensitivity range and can be detected via imaging instrumentation. The distinctive characteristics of these NPs make them suitable for imaging, therapy and delivery of drugs. Multifunctional nanoparticles (MNPs) can be produced through either modification of shell or surface or by attaching an affinity ligand to the nanoparticles. They are utilized for targeted imaging by magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), photo acoustic imaging (PAI), two photon or fluorescent imaging and ultra sound etc. Toxicity factor of NPs is also a very important concern and toxic effect should be eliminated. First generation NPs have been designed, developed and tested in living subjects and few of them are already in clinical use. In near future, molecular imaging will get advanced with multimodality and multifunctionality to detect diseases like cancer, neurodegenerative diseases, cardiac diseases, inflammation, stroke, atherosclerosis and many others in their early stages. In the current review, we discussed single/multifunctional nanoparticles along with molecular imaging modalities. The present article intends to reveal recent avenues for nanomaterials in multimodal and multifunctional molecular imaging through a review of pertinent literatures. The topic emphasises on the distinctive characteristics of nanomaterial which makes them, suitable for biomedical imaging, therapy and delivery of drugs. This review is more informative of indicative technologies which will be helpful in a way to plan, understand and lead the nanotechnology related work. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Udovich, Joshua Anthony
Ovarian cancer is the fifth leading cause of cancer related deaths among women. Early detection improves the chances of survival following diagnosis, and new imaging modalities have the potential to reduce deaths due to this disease. The confocal microendoscope (CME) is a non-destructive in-vivo imaging device for visualization of the ovaries that operates in real-time. Two components of the CME system are evaluated in this paper, and initial results from an ongoing clinical trial are presented. Fiber-optic imaging bundles are used in the CME imaging catheter to relay images over distances of up to 20 feet. When detecting fluorescent signals from investigated tissue, any fluorescence in the system can potentially reduce contrast in images. The emission and transmission properties of three commercially available fiber optic imaging bundles were evaluated. Emission maps of fluorescence from bundles were generated at multiple excitation wavelengths to determine the profile and amount of fluorescence present in bundles manufactured by Sumitomo, Fujikura, and Schott. Results are also presented that show the variation of transmittance as a function of illumination angle in these bundles. Users of high-resolution fiber-optic imaging bundles should be aware of these properties and take them into account during system design. Contrast is improved in images obtained with the CME through the application of topical dyes. Acridine orange (AO) and SYTO 16 are two fluorescent stains that are used to show the size, shape, and distribution of cell nuclei. Unfortunately, little is known about the effects of these dyes on living tissues. This study was undertaken to evaluate the effects of dye treatment on peritoneal tissues in mice. Seventy-five Balb/c mice were split into five groups of fifteen and given peritoneal injections of dye or saline. The proportions of negative outcomes for the control and test groups were compared using confidence intervals and the Fisher's exact test. No significant difference was determined between the groups. These data provide preliminary results on determining the effect of these dyes on living tissues. Preliminary results of a clinical trial are presented showing in-vivo use of the CME for imaging of the ovaries. This is the first portion of a two part study to demonstrate the clinical diagnosis potential of the CME system. A mobile version of the bench-top CME was modified to be used in the clinic. Fluorescein sodium is used as an initial contrast agent in these studies to demonstrate fluorescence imaging. Twenty patients were successfully imaged, and results of this study have allowed progression to a clinical validation study showing the diagnostic capabilities of the CME.
Quantitative imaging of disease signatures through radioactive decay signal conversion
Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan
2013-01-01
In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701
Characterization of chemical agent transport in paints.
Willis, Matthew P; Gordon, Wesley; Lalain, Teri; Mantooth, Brent
2013-09-15
A combination of vacuum-based vapor emission measurements with a mass transport model was employed to determine the interaction of chemical warfare agents with various materials, including transport parameters of agents in paints. Accurate determination of mass transport parameters enables the simulation of the chemical agent distribution in a material for decontaminant performance modeling. The evaluation was performed with the chemical warfare agents bis(2-chloroethyl) sulfide (distilled mustard, known as the chemical warfare blister agent HD) and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an organophosphate nerve agent, deposited on to two different types of polyurethane paint coatings. The results demonstrated alignment between the experimentally measured vapor emission flux and the predicted vapor flux. Mass transport modeling demonstrated rapid transport of VX into the coatings; VX penetrated through the aliphatic polyurethane-based coating (100 μm) within approximately 107 min. By comparison, while HD was more soluble in the coatings, the penetration depth in the coatings was approximately 2× lower than VX. Applications of mass transport parameters include the ability to predict agent uptake, and subsequent long-term vapor emission or contact transfer where the agent could present exposure risks. Additionally, these parameters and model enable the ability to perform decontamination modeling to predict how decontaminants remove agent from these materials. Published by Elsevier B.V.
Kang, Kyung Aih; Wang, Jianting
2014-12-07
Molecular sensing/imaging utilizing fluorophores has been one of the most frequently used techniques in biomedical research. As for any molecular imaging techniques, fluorescence mediated sensing always seeks for greater specificity and sensitivity. Since fluorophores emit fluorescence while their electron energy state changes, manipulating the local electromagnetic field around the fluorophores may be a way to enhance the specificity and sensitivity. Gold nanoparticles (GNPs) are known to form a very strong electromagnetic field on their surface [i.e., surface plasmon field (SPF)], upon receiving photonic energy. The level of fluorescence change by GNP-SPF may range from complete quenching to extensive enhancement, depending upon the SPF strength, excitation and emission wavelengths, and quantum yield of the fluorophore. Here, we report a novel design that utilizes BOTH fluorescence quenching and enhancement abilities of the GNP in one single nano-entity, providing high specificity and sensitivity. The construct utilizes a specially designed molecular dual-spacer that places the fluorphore at the location with an appropriate GNP-SFP strength before and after exposed to the biomarker. A model system to test the concept was an optical signal mediator activated by urokinase-type plasminogen activator (uPA; breast cancer secreting enzyme). The resulting contrast agent shows less than 10% of the natural fluorescence but, in the presence of uPA, its fluorescence emission is triggered and emits its fluorescence approximately twice of the natural form. This study demonstrated that our novel design of an optical contrast agent can be conditionally activated with enhanced sensitivity, using both quenching and enhancement phenomena of fluorophores in the electromagnetic field of the appropriate strengths (in this case, locally generated by the GNP-SPF). This entity is similar to molecular beacon in terms of specificity but with greater sensitivity. In addition, it is not restricted to only DNA or RNA sensing but for any designs that cause the change in the distance between the fluorophore and GNP, upon the time of encountering biomarker of interest.
Zheng, Qi-Huang; Liu, Xuan; Fei, Xiangshu; Wang, Ji-Quan; Ohannesian, David W; Erickson, Leonard C; Stone, K Lee; Hutchins, Gary D
2003-05-01
Novel radiolabeled O(6)-benzylguanine (O(6)-BG) derivatives, 2-amino-6-O-[(11)C]-[(methoxymethyl)benzyloxy]-9-methyl purines ([(11)C]p-O(6)-AMMP, 1a; [(11)C]m-O(6)-AMMP, 1b; [(11)C]o-O(6)-AMMP, 1c), 2-amino-6-O-benzyloxy-9-[(11)C]-[(methoxycarbonyl)methyl]purine ([(11)C]ABMMP, 2), and 2-amino-6-O-benzyloxy-9-[(11)C]-[(4'-methoxycarbonyl)benzyl]purine ([(11)C]ABMBP, 3), have been synthesized for evaluation as new potential positron emission tomography (PET) imaging agents for the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) in breast cancer. The appropriate precursors for radiolabeling were obtained in two to three steps from starting material 2-amino-6-chloropurine with moderate to excellent chemical yields. Tracers were prepared by O-[(11)C]methylation of hydroxymethyl or acid precursors using [(11)C]methyl triflate. Pure target compounds were isolated by solid-phase extraction (SPE) purification procedure in 45-65% radiochemical yields (decay corrected to end of bombardment), and a synthesis time of 20-25 min. The activity of unlabeled standard samples of 1-3 was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate the synthesized analogs have similar strong inhibitory effectiveness on AGT in comparison with the parent compound O(6)-BG. The results warrant further evaluation of these radiotracers as new potential PET imaging agents for the DNA repair protein AGT in breast cancer in vivo.
Zhao, Lingzhou; Zhu, Jingyi; Cheng, Yongjun; Xiong, Zhijuan; Tang, Yueqin; Guo, Lilei; Shi, Xiangyang; Zhao, Jinhua
2015-09-09
Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.
Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence.
Tao, Zhimin; Dang, Xiangnan; Huang, Xing; Muzumdar, Mandar D; Xu, Eric S; Bardhan, Neelkanth Manoj; Song, Haiqin; Qi, Ruogu; Yu, Yingjie; Li, Ting; Wei, Wei; Wyckoff, Jeffrey; Birrer, Michael J; Belcher, Angela M; Ghoroghchian, P Peter
2017-07-01
Cell-intrinsic reporters such as luciferase (LUC) and red fluorescent protein (RFP) have been commonly utilized in preclinical studies to image tumor growth and to monitor therapeutic responses. While extrinsic reporters that emit near infrared I (NIR-I: 650-950 nm) or near-infrared II (NIR-II: 1000-1700 nm) optical signals have enabled minimization of tissue autofluorescence and light scattering, it has remained unclear as to whether their use has afforded more accurate tumor imaging in small animals. Here, we developed a novel optical imaging construct comprised of rare earth lanthanide nanoparticles coated with biodegradable diblock copolymers and doped with organic fluorophores, generating NIR-I and NIR-II emissive bands upon optical excitation. Simultaneous injection of multiple spectrally-unique nanoparticles into mice bearing tumor implants established via intraperitoneal dissemination of LUC + /RFP + OVCAR-8 ovarian cancer cells enabled direct comparisons of imaging with extrinsic vs. intrinsic reporters, NIR-II vs. NIR-I signals, as well as targeted vs. untargeted exogenous contrast agents in the same animal and over time. We discovered that in vivo optical imaging at NIR-II wavelengths facilitates more accurate detection of smaller and earlier tumor deposits, offering enhanced sensitivity, improved spatial contrast, and increased depths of tissue penetration as compared to imaging with visible or NIR-I fluorescent agents. Our work further highlights the hitherto underappreciated enhancements in tumor accumulation that may be achieved with intraperitoneal as opposed to intravenous administration of nanoparticles. Lastly, we found discrepancies in the fidelity of tumor uptake that could be obtained by utilizing small molecules for in vivo as opposed to in vitro targeting of nanoparticles to disseminated tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P
2012-01-01
Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.
Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding
2017-01-01
Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting. PMID:28462989
NASA Astrophysics Data System (ADS)
Cachard, Christian; Basset, Olivier
While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.
Intelligent Design of Nano-Scale Molecular Imaging Agents
Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki
2012-01-01
Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326
Intelligent design of nano-scale molecular imaging agents.
Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki
2012-12-12
Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.
From Roentgen to magnetic resonance imaging: the history of medical imaging.
Scatliff, James H; Morris, Peter J
2014-01-01
Medical imaging has advanced in remarkable ways since the discovery of x-rays 120 years ago. Today's radiologists can image the human body in intricate detail using computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and various other modalities. Such technology allows for improved screening, diagnosis, and monitoring of disease, but it also comes with risks. Many imaging modalities expose patients to ionizing radiation, which potentially increases their risk of developing cancer in the future, and imaging may also be associated with possible allergic reactions or risks related to the use of intravenous contrast agents. In addition, the financial costs of imaging are taxing our health care system, and incidental findings can trigger anxiety and further testing. This issue of the NCMJ addresses the pros and cons of medical imaging and discusses in detail the following uses of medical imaging: screening for breast cancer with mammography, screening for osteoporosis and monitoring of bone mineral density with dual-energy x-ray absorptiometry, screening for congenital hip dysplasia in infants with ultrasound, and evaluation of various heart conditions with cardiac imaging. Together, these articles show the challenges that must be met as we seek to harness the power of today's imaging technologies, as well as the potential benefits that can be achieved when these hurdles are overcome.
2003-08-01
ESTCP FINAL REPORT For THE USE OF WETTING AGENTS/ FUME SUPPRESSANTS FOR MINIMIZING THE ATMOSPHERIC EMISSIONS FROM HARD CHROMIUM ...Introduction This project demonstrates that a “third” generation wetting agent / fume suppressant (WA/FS) chemical additive to hard chromium ...DOD operations fall in the same category.) Several papers, including Use of Fume Suppressants in Hard Chromium Baths - Quality Testing and Use
Zhang, Yin; Hong, Hao; Engle, Jonathan W; Yang, Yunan; Barnhart, Todd E; Cai, Weibo
2012-01-01
The pivotal role of vascular endothelial growth factor (VEGF) in cancer is underscored by the approval of bevacizumab (Bev, a humanized anti-VEGF monoclonal antibody) for first line treatment of cancer patients. The aim of this study was to develop a dual-labeled Bev for both positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging of VEGF. Bev was conjugated to a NIRF dye (i.e. 800CW) and 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) before (64)Cu-labeling. Flow cytometry analysis of U87MG human glioblastoma cells revealed no difference in VEGF binding affinity/specificity between Bev and NOTA-Bev-800CW. (64)Cu-labeling of NOTA-Bev-800CW was achieved with high yield. Serial PET imaging of U87MG tumor-bearing female nude mice revealed that tumor uptake of (64)Cu-NOTA-Bev-800CW was 4.6 ± 0.7, 16.3 ± 1.6, 18.1 ± 1.4 and 20.7 ± 3.7 %ID/g at 4, 24, 48 and 72 h post-injection respectively (n = 4), corroborated by in vivo/ex vivo NIRF imaging and biodistribution studies. Tumor uptake as measured by ex vivo NIRF imaging had a good linear correlation with the %ID/g values obtained from PET (R(2) = 0.93). Blocking experiments and histology both confirmed the VEGF specificity of (64)Cu-NOTA-Bev-800CW. The persistent, prominent, and VEGF-specific uptake of (64)Cu-NOTA-Bev-800CW in the tumor, observed by both PET and NIRF imaging, warrants further investigation and future clinical translation of such Bev-based imaging agents.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Positron emission imaging device and method of using the same
Bingham, Philip R.; Mullens, James Allen
2013-01-15
An imaging system and method of imaging are disclosed. The imaging system can include an external radiation source producing pairs of substantially simultaneous radiation emissions of a picturization emission and a verification emissions at an emission angle. The imaging system can also include a plurality of picturization sensors and at least one verification sensor for detecting the picturization and verification emissions, respectively. The imaging system also includes an object stage is arranged such that a picturization emission can pass through an object supported on said object stage before being detected by one of said plurality of picturization sensors. A coincidence system and a reconstruction system can also be included. The coincidence can receive information from the picturization and verification sensors and determine whether a detected picturization emission is direct radiation or scattered radiation. The reconstruction system can produce a multi-dimensional representation of an object imaged with the imaging system.
Clinically Approved Nanoparticle Imaging Agents
Thakor, Avnesh S.; Jokerst, Jesse V.; Ghanouni, Pejman; Campbell, Jos L.; Mittra, Erik
2016-01-01
Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses. PMID:27738007
Stendahl, John C; Sinusas, Albert J
2015-10-01
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foss, Catherine A., E-mail: cfoss1@jhmi.edu; Bedja, Djahida; Faculty of Medicine and Health Sciences, Macquarie University, Sydney
Background: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. Methods and results: We previously developed a low-molecular-weight imaging agent, [{sup 125}I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mousemore » model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. Conclusions: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved. - Highlights: • [{sup 125}I]iodoDPA SPECT detects atherosclerotic plaques in ApoE -/- mice with high contrast. • Plaques are detected in ApoE -/- mice regardless of diet with iodoDPA. • iodoDPA has very low uptake in healthy tissue including healthy TSPO + tissues at 24 h.« less
NASA Astrophysics Data System (ADS)
Wang, Zhen-Ling; Hao, Jianhua; Chan, Helen L. W.; Law, Ga-Lai; Wong, Wing-Tak; Wong, Ka-Leung; Murphy, Margaret B.; Su, T.; Zhang, Z. H.; Zeng, S. Q.
2011-05-01
Water-solubility and biocompatibility are prerequisites for rare-earth up-converting nanophosphors applied to biological imaging. In this work, we have developed a facile and one-step synthesis technique, through which water-soluble NaYF4: Yb3+, Er3+ nanoparticles (NPs) with functional groups including 3-mercaptopropionic acid, 6-aminocaproic acid and poly(ethylene glycol)methyl ether on their surface can be directly prepared without any further surface treatment. Some inorganic salts will be selected as starting materials, water and some low toxic organic agents have been used as reaction media, which differs from earlier works. Structural and up-converting fluorescence are characterized by a variety of techniques. Cell uptake and in-vitro imaging of the as-synthesized NPs have been investigated using a multiphoton con-focal laser scanning microscope with a near-infrared excitation source. Internalization of the bare and functionalized NPs in human lung carcinoma A549 and human cervical carcinoma HeLa cells are studied at a nanoparticle loading of 10 µg mL-1 over an exposure period from 30 min to 24 h. The cytotoxicity of modified NPs in HeLa cells is found to be low. In addition, the feasibility of the NPs in animal imaging has been demonstrated by subcutaneously injecting these NPs into nude mouse. The results indicated that our directly synthesized NPs coated with various functional groups are promising as bio-imaging agents due to their easy uptake, long lasting, low cytotoxicity, emissive in various human carcinoma cell lines and small animals through up-conversion with near-infrared excitation.
NASA Astrophysics Data System (ADS)
Sadeghipour, Negar; Davis, Scott C.; Tichauer, Kenneth M.
2018-02-01
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging
NASA Astrophysics Data System (ADS)
Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo
2015-11-01
Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.
PET imaging of T cells: Target identification and feasibility assessment.
Auberson, Yves P; Briard, Emmanuelle; Rudolph, Bettina; Kaupmann, Klemen; Smith, Paul; Oberhauser, Berndt
2018-06-01
Imaging T cells using positron emission tomography (PET) would be highly useful for diagnosis and monitoring in immunology and oncology patients. There are however no obvious targets that can be used to develop imaging agents for this purpose. We evaluated several potential target proteins with selective expression in T cells, and for which lead molecules were available: PKC , Lck, ZAP70 and Itk. Ultimately, we focused on Itk (interleukin-2-inducible T cell kinase) and identified a tool molecule with properties suitable for in vivo imaging of T cells, (5aR)-5,5-difluoro-5a-methyl-N-(1-((S)-3-(methylsulfonyl)-phenyl)(tetrahydro-2H-pyran-4-yl)methyl)-1H-pyrazol-4-yl)-1,4,4a,5,5a,6-hexahydro-cyclopropa[f]-indazole-3-carboxamide (23). While not having the optimal profile for clinical use, this molecule indicates that it might be possible to develop Itk-selective PET ligands for imaging the distribution of T cells in patients. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cardiac Sarcoidosis: Clinical Manifestations, Imaging Characteristics, and Therapeutic Approach
Houston, Brian A; Mukherjee, Monica
2014-01-01
Sarcoidosis is a multi-system disease pathologically characterized by the accumulation of T-lymphocytes and mononuclear phagocytes into the sine qua non pathologic structure of the noncaseating granuloma. Cardiac involvement remains a key source of morbidity and mortality in sarcoidosis. Definitive diagnosis of cardiac sarcoidosis, particularly early enough in the disease course to provide maximal therapeutic impact, has proven a particularly difficult challenge. However, major advancements in imaging techniques have been made in the last decade. Advancements in imaging modalities including echocardiography, nuclear spectroscopy, positron emission tomography, and magnetic resonance imaging all have improved our ability to diagnose cardiac sarcoidosis, and in many cases to provide a more accurate prognosis and thus targeted therapy. Likewise, therapy for cardiac sarcoidosis is beginning to advance past a “steroids-only” approach, as novel immunosuppressant agents provide effective steroid-sparing options. The following focused review will provide a brief discussion of the epidemiology and clinical presentation of cardiac sarcoidosis followed by a discussion of up-to-date imaging modalities employed in its assessment and therapeutic approaches. PMID:25452702
NASA Astrophysics Data System (ADS)
Tichauer, Kenneth M.
2016-03-01
One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).
Contrast enhanced spectroscopic optical coherence tomography
NASA Technical Reports Server (NTRS)
Xu, Chenyang (Inventor); Boppart, Stephen A. (Inventor)
2010-01-01
A method of forming an image of a sample includes performing SOCT on a sample. The sample may include a contrast agent, which may include an absorbing agent and/or a scattering agent. A method of forming an image of tissue may include selecting a contrast agent, delivering the contrast agent to the tissue, acquiring SOCT data from the tissue, and converting the SOCT data into an image. The contributions to the SOCT data of an absorbing agent and a scattering agent in a sample may be quantified separately.
PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.
Wu, Huizi; Huang, Jiaguo
2016-01-01
Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.
Li, Ling; Zhang, Dongjian; Yang, Shengwei; Song, Shaoli; Li, Jindian; Wang, Qin; Wang, Cong; Feng, Yuanbo; Ni, Yicheng; Zhang, Jian; Liu, Wei; Yin, Zhiqi
2016-12-01
Sennidins are necrosis-avid agents for noninvasive assessment of myocardial viability which is important for patients with myocardial infarction (MI). However, high accumulation of radioactivity in the liver interferes with the assessment of myocardial viability. In this study, we compared sennidins with sennosides to investigate the effects of glycosylation on biodistribution and imaging quality of sennidins. Sennidin A (SA), sennidin B (SB), sennoside A (SSA), and sennoside B (SSB) were labeled with I-131. In vitro binding to necrotic cells and hepatic cells and in vivo biodistribution in rats with muscular necrosis were evaluated by gamma counting, autoradiography, and histopathology. Single photon emission computed tomography/computed tomography (SPECT/CT) images were acquired in rats with acute MI. The uptake of [ 131 I]SA, [ 131 I]SSA, [ 131 I]SB, and [ 131 I]SSB in necrotic cells was significantly higher than that in viable cells (p < 0.05). Hepatic cells uptake of [ 131 I]SSA and [ 131 I]SSB were 7-fold and 10-fold lower than that of corresponding [ 131 I]SA and [ 131 I]SB, respectively. The biodistribution data showed that the radioactivities in the liver and feces were significantly lower with [ 131 I]sennosides than those with [ 131 I]sennidins (p < 0.01). Autoradiography showed preferential accumulation of these four radiotracers in necrotic areas of muscle, confirmed by histopathology. SPECT/CT imaging studies showed better image quality with [ 131 I]SSB than with [ 131 I]SB due to less liver interference. Glycosylation significantly decreased the liver uptake and improved the quality of cardiac imaging. [ 131 I]SSB may serve as a promising necrosis-avid agent for noninvasive assessment of myocardial viability.
Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A
2017-08-16
Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.
NASA Astrophysics Data System (ADS)
Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin
2016-03-01
Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.
NASA Astrophysics Data System (ADS)
Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi
This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.
Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging
Herrmann, Kelsey; Johansen, Mette L.; Craig, Sonya E.; Vincent, Jason; Howell, Michael; Gao, Ying; Lu, Lan; Erokwu, Bernadette; Agnes, Richard S.; Lu, Zheng-Rong; Pokorski, Jonathan K.; Basilion, James; Gulani, Vikas; Griswold, Mark; Flask, Chris; Brady-Kalnay, Susann M.
2015-01-01
Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. PMID:26435847
Evaluation of the effects of patient arm attenuation in SPECT cardiac perfusion imaging
NASA Astrophysics Data System (ADS)
Luo, Dershan; King, M. A.; Pan, Tin-Su; Xia, Weishi
1996-12-01
It was hypothesized that the use of attenuation correction could compensate for degradation in the uniformity of apparent localization of imaging agents seen in cardiac walls when patients are imaged with arms at their sides. Noise-free simulations of the digital MCAT phantom were employed to investigate this hypothesis. Four variations in camera size and collimation scheme were investigated. We observed that: 1) without attenuation correction, the arms had little additional influences on the uniformity of the heart for 180/spl deg/ reconstructions and caused a small increase in nonuniformity for 360/spl deg/ reconstructions, where the impact of both arms was included; 2) change in patient size had more of an impact on count uniformity than the presence of the arms, either with or without attenuation correction; 3) for a low number of iterations and large patient size, slightly better uniformity was obtained from parallel emission data than from fan-beam emission data, independent of whether parallel or fan-beam transmission data was used to reconstruct the attenuation maps; and 4) for all camera configurations, uniformity was improved with attenuation correction and, given sufficient number of iterations, it was compatible among different imaging geometry combinations. Thus, iterative algorithms can compensate for the additional attenuation imposed by larger patients or having the arms on the sides. When the arms are at the sides of the patient, however, a larger radius of rotation may be required, resulting in decreased spatial resolution.
Evaluation of the effects of patient arm attenuation in SPECT cardiac perfusion imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, D.; King, M.A.; Pan, T.S.
1996-12-01
It was hypothesized that the use of attenuation correction could compensate for degradation in the uniformity of apparent localization of imaging agents seen in cardiac walls when patients are imaged with arms at their sides. Noise-free simulations of the digital MCAT phantom were employed to investigate this hypothesis. Four variations in camera size and collimation scheme were investigated. The authors observed that: (1) without attenuation correction, the arms had little additional influences on the uniformity of the heart for 180{degree} reconstructions and caused a small increase in nonuniformity for 360{degree} reconstructions, where the impact of both arms was included; (2)more » change in patient size had more of an impact on count uniformity than the presence of the arms, either with or without attenuation correction; (3) for a low number of iterations and large patient size, slightly better uniformity was obtained from parallel emission data than from fan-beam emission data, independent of whether parallel or fan-beam transmission data was used to reconstruct the attenuation maps; and (4) for all camera configurations, uniformity was improved with attenuation correction and, given sufficient number of iterations, it was compatible among different imaging geometry combinations. Thus, iterative algorithms can compensate for the additional attenuation imposed by larger patients or having the arms on the sides. When the arms are at the sides of the patient, however, a larger radius of rotation may be required, resulting in decreased spatial resolution.« less
Woodard, Pamela K.; Liu, Yongjian; Pressly, Eric D.; Luehmann, Hannah P.; Detering, Lisa; Sultan, Deborah; Laforest, Richard; McGrath, Alaina J.; Gropler, Robert J.; Hawker, Craig J.
2016-01-01
Purpose To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. Methods To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after 64Cu radiolabeling. PET imaging was performed on an apolipoprotein E–deficient (ApoE−/−) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. Results All three 64Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted 64Cu-comb. Of the three nanoparticles, the 25% 64Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE−/− mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. Conclusion The 25% 64Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status. PMID:27286872
Kimura, Richard H.; Miao, Zheng; Cheng, Zhen; Gambhir, Sanjiv S.; Cochran, Jennifer R.
2010-01-01
Previously, we used directed evolution to engineer mutants of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin that bind to αvβ3 and αvβ5 integrin receptors with low nanomolar affinity, and showed that Cy5.5- or 64Cu-DOTA-labeled knottin peptides could be used to image integrin expression in mouse tumor models using near-infrared fluorescence (NIRF) imaging or positron emission tomography (PET). Here, we report the development of a dual-labeled knottin peptide conjugated to both NIRF and PET imaging agents for multimodality imaging in living subjects. We created an orthogonally-protected peptide-based linker for stoichiometric coupling of 64Cu-DOTA and Cy5.5 onto the knottin N-terminus, and confirmed that conjugation did not affect binding to αvβ3 and αvβ5 integrins. NIRF and PET imaging studies in tumor xenograft models showed that Cy5.5 conjugation significantly increased kidney uptake and retention compared to the knottin peptide labeled with 64Cu-DOTA alone. In the tumor, the dual-labeled 64Cu-DOTA/Cy5.5 knottin probe showed decreased wash-out leading to significantly better retention (p < 0.05) compared to the 64Cu-DOTA-labeled knottin probe. Tumor uptake was significantly reduced (p < 0.05) when the dual-labeled probe was co-injected with an excess of unlabeled competitor and when tested in a tumor model with lower levels of integrin expression. Finally, plots of tumor-to-background tissue ratios for Cy5.5 versus 64Cu uptake were well correlated over several time points post injection, demonstrating pharmacokinetic cross validation of imaging labels. This dual-modality NIRF/PET imaging agent is promising for further development in clinical applications where high sensitivity and high-resolution are desired, such as detection of tumors located deep within the body and image-guided surgical resection. PMID:20131753
PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice.
Huda, Pie; Binderup, Tina; Pedersen, Martin Cramer; Midtgaard, Søren Roi; Elema, Dennis Ringkjøbing; Kjær, Andreas; Jensen, Mikael; Arleth, Lise
2015-01-01
64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model was used for the investigations, and it was found that the approximately 13 nm nanodiscs, due to their size, permeate deeply into cancer tissue. This makes them promising candidates for both drug delivery purposes and as advanced imaging agents. For the radiolabelling, a simple approach for 64Cu radiolabelling of proteins via a chelating agent, DOTA, was developed. The reaction was performed at sufficiently mild conditions to be compatible with labelling of the protein part of a lipid-protein particle while fully conserving the particle structure including the amphipathic protein fold.
Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo
2010-08-17
Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.
Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian
2015-03-16
As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of Ga(III) for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl(-)/F(-) exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, (1)H and (19)F{(1)H} NMR spectroscopy and ESI(+) MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free (18)F(-), leading to 60-70% (18)F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98-99% radiochemical purity. The [Ga(18)F(L)] is stable for at least 90 minutes in 10% EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian
2015-01-01
As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of GaIII for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl−/F− exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, 1H and 19F{1H} NMR spectroscopy and ESI+ MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free 18F−, leading to 60–70 % 18F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98–99 % radiochemical purity. The [Ga18F(L)] is stable for at least 90 minutes in 10 % EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET. PMID:25652736
Excretion and toxicity evaluation of 131I-Sennoside A as a necrosis-avid agent.
Yin, Zhiqi; Sun, Lidan; Jin, Qiaomei; Song, Shaoli; Feng, Yuanbo; Liao, Hong; Ni, Yicheng; Zhang, Jian; Liu, Wei
2017-11-01
1. Sennoside A (SA) is a newly identified necrosis-avid agent that shows capability for imaging diagnosis and tumor necrosis targeted radiotherapy. As a water-soluble compound, 131 I-Sennoside A ( 131 I-SA) might be excreted predominately through the kidneys with the possibility of nephrotoxicity. 2. To further verify excretion pathway and examine nephrotoxicity of 131 I-SA, excretion and nephrotoxicity were appraised. The pharmacokinetics, hepatotoxicity and hematotoxicity of 131 I-SA were also evaluated to accelerate its possible clinical translation. All these studies were conducted in mice with ethanol-induced muscular necrosis following a single intravenous administration of 131I-SA at 18.5 MBq/kg or 370 MBq/kg. 3. Excretion data revealed that 131 I-SA was predominately (73.5% of the injected dose (% ID)) excreted via the kidneys with 69.5% ID detected in urine within 72 h post injection. Biodistribution study indicated that 131 I-SA exhibited initial high distribution in the kidneys but subsequently a fast renal clearance, which was further confirmed by the results of autoradiography and single-photon emission computed tomography-computed tomography (SPECT-CT) imaging. The maximum necrotic to normal muscle ratio reached to 7.9-fold at 48 h post injection, which further verified the necrosis avidity of 131 I-SA. Pharmacokinetic parameters showed that 131 I-SA had fast blood clearance with an elimination half-life of 6.7 h. Various functional indexes were no significant difference (p > 0.05) between before administration and 1 d, 8 d, 16 d after administration. Histopathology showed no signs of tissue damage. 4. These data suggest 131 I-SA is a safe and promising necrosis-avid agent applicable in imaging diagnosis and tumor necrosis targeted radiotherapy.
Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.
Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang
2016-02-01
Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.
Li, Kai; Liu, Bin
2014-09-21
Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.
Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method
Chen, Hongtao; Digman, Michelle A.
2015-01-01
Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346
NASA Astrophysics Data System (ADS)
Syamchand, Sasidharanpillai S.; George, Sony
2016-12-01
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.
Two decades of dendrimers as versatile MRI agents: a tale with and without metals.
McMahon, Michael T; Bulte, Jeff W M
2018-05-01
Dendrimers or dendritic polymers are a class of compounds with great potential for nanomedical use. Some of their properties, including their rigidity, low polydispersity and the ease with which their surfaces can be modified make them particularly well suited for use as MRI diagnostic or theranostic agents. For the past 20 years, researchers have recognized this potential and refined dendrimer formulations to optimize these nanocarriers for a host of MRI applications, including blood pool imaging agents, lymph node imaging agents, tumor-targeted theranostic agents and cell tracking agents. This review summarizes the various types of dendrimers according to the type of MR contrast they can provide. This includes the metallic T 1 , T 2 and paraCEST imaging agents, and the non-metallic diaCEST and fluorinated ( 19 F) heteronuclear imaging agents. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals, Inc.
Qin, Zhengtao; Hall, David J.; Liss, Michael A.; Hoh, Carl K.; Kane, Christopher J.; Wallace, Anne M.
2013-01-01
Abstract. The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET–computed tomography imaging. PMID:23958947
Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi
2015-09-01
Due to the limited spatial resolution, partial volume effect has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods include perturbation geometry transfer matrix (pGTM), pGTM followed by multi-target correction (MTC), pGTM with known concentration in blood pool, the former followed by MTC and our newly proposed methods, which perform the MTC method iteratively, where the mean values in all regions are estimated and updated by the MTC-corrected images each time in the iterative process. The NCAT phantom was simulated for cardiovascular imaging with 99mTc-tetrofosmin, a myocardial perfusion agent, and 99mTc-red blood cell (RBC), a pure intravascular imaging agent. Images were acquired at six different count levels to investigate the performance of PVC methods in both high and low count levels for low-dose applications. We performed two large animal in vivo cardiac imaging experiments following injection of 99mTc-RBC for evaluation of intramyocardial blood volume (IMBV). The simulation results showed our proposed iterative methods provide superior performance than other existing PVC methods in terms of image quality, quantitative accuracy, and reproducibility (standard deviation), particularly for low-count data. The iterative approaches are robust for both 99mTc-tetrofosmin perfusion imaging and 99mTc-RBC imaging of IMBV and blood pool activity even at low count levels. The animal study results indicated the effectiveness of PVC to correct the overestimation of IMBV due to blood pool contamination. In conclusion, the iterative PVC methods can achieve more accurate quantification, particularly for low count cardiac SPECT studies, typically obtained from low-dose protocols, gated studies, and dynamic applications.
Gadolinium-Based Contrast Agents for MR Cancer Imaging
Zhou, Zhuxian; Lu, Zheng-Rong
2013-01-01
Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730
Phosphonated Near-Infrared Fluorophores for Biomedical Imaging of Bone**
Hyun, Hoon; Wada, Hideyuki; Bao, Kai; Gravier, Julien; Yadav, Yogesh; Laramie, Matt; Henary, Maged; Frangioni, John V.
2014-01-01
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. In this study we report a new strategy based on incorporation of targeting moieties into the non-resonant structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals as a model system, we have synthesized two families of bifunctional molecules that target bone without the need for a traditional bisphosphonate. With peak fluorescence emission at ≈ 700 nm or ≈ 800 nm, these molecules can be used for FLARE dual-channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near-infrared fluorophores remain stable in bone for over 5 weeks, and histological analysis demonstrates incorporation into bone matrix. Taken together, we describe a new strategy for creating ultracompact, targeted, near-infrared fluorophores for various bioimaging applications. PMID:25139079
NASA Astrophysics Data System (ADS)
Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng
2018-02-01
Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.
Feasibility Study of Compton Cameras for X-ray Fluorescence Computed Tomography with Humans
Vernekohl, Don; Ahmad, Moiz; Chinn, Garry; Xing, Lei
2017-01-01
X-ray fluorescence imaging is a promising imaging technique able to depict the spatial distributions of low amounts of molecular agents in vivo. Currently, the translation of the technique to preclinical and clinical applications is hindered by long scanning times as objects are scanned with flux-limited narrow pencil beams. The study presents a novel imaging approach combining x-ray fluorescence imaging with Compton imaging. Compton cameras leverage the imaging performance of XFCT and abolish the need of pencil beam excitation. The study examines the potential of this new imaging approach on the base of Monte-Carlo simulations. In the work, it is first presented that the particular option of slice/fan-beam x-ray excitation has advantages in image reconstruction in regard of processing time and image quality compared to traditional volumetric Compton imaging. In a second experiment, the feasibility of the approach for clinical applications with tracer agents made from gold nano-particles is examined in a simulated lung scan scenario. The high energy of characteristic x-ray photons from gold is advantageous for deep tissue penetration and has lower angular blurring in the Compton camera. It is found that Doppler broadening in the first detector stage of the Compton camera adds the largest contribution on the angular blurring; physically limiting the spatial resolution. Following the analysis of the results from the spatial resolution test, resolutions in the order of one centimeter are achievable with the approach in the center of the lung. The concept of Compton imaging allows to distinguish to some extend between scattered photons and x-ray fluorescent photons based on their difference in emission position. The results predict that molecular sensitivities down to 240 pM/l for 5 mm diameter lesions at 15 mGy for 50 nm diameter gold nano-particles are achievable. A 45-fold speed up time for data acquisition compared to traditional pencil beam XFCT could be achieved for lung imaging on cost of a small sensitivity decrease. PMID:27845933
Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance
Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So
2009-01-01
Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...
Attenberger, Ulrike; Catana, Ciprian; Chandarana, Hersh; Catalano, Onofrio A; Friedman, Kent; Schonberg, Stefan A; Thrall, James; Salvatore, Marco; Rosen, Bruce R; Guimaraes, Alexander R
2015-08-01
Simultaneous data collection for positron emission tomography and magnetic resonance imaging (PET/MR) is now a reality. While the full benefits of concurrently acquiring PET and MR data and the potential added clinical value are still being evaluated, initial studies have identified several important potential pitfalls in the interpretation of fluorodeoxyglucose (FDG) PET/MRI in oncologic whole-body imaging, the majority of which being related to the errors in the attenuation maps created from the MR data. The purpose of this article was to present such pitfalls and artifacts using case examples, describe their etiology, and discuss strategies to overcome them. Using a case-based approach, we will illustrate artifacts related to (1) Inaccurate bone tissue segmentation; (2) Inaccurate air cavities segmentation; (3) Motion-induced misregistration; (4) RF coils in the PET field of view; (5) B0 field inhomogeneity; (6) B1 field inhomogeneity; (7) Metallic implants; (8) MR contrast agents.
Hu, Fang; Yuan, Youyong; Wu, Wenbo; Mao, Duo; Liu, Bin
2018-06-05
Metabolic glycoengineering of unnatural glycans with bio-orthogonal chemical groups and a subsequent click reaction with fluorescent probes have been widely used in monitoring various bioprocesses. Herein, we developed a dual-responsive metabolic precursor that could specifically generate unnatural glycans with azide groups on the membrane of targeted cancer cells with high selectivity. Moreover, a water-soluble fluorescent light-up probe with aggregation-induced emission (AIE) was synthesized, which turned its fluorescence on upon a click reaction with azide groups on the cancer cell surface, enabling special cancer cell imaging with low background signal. Furthermore, the probe can generate 1 O 2 upon light irradiation, fulfilling its dual role as an imaging and therapeutic agent for cancer cells. Therefore, the concepts of the cancer-cell-specific metabolic precursor cRGD-S-Ac 3 ManNAz and the AIE light-up probe are promising in bio-orthogonal labeling and cancer-specific imaging and therapy.
Lu, Li; Lv, Feng; Cao, Bo; He, Xujun; Liu, Tianjun
2014-01-03
Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-D-glucose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10), 16(17),23(24)-tetrakis((1-(β-D-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato] zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.
Aziz, Farooq; Bano, Khizra; Siddique, Ahmad Hassan; Bajwa, Sadia Zafar; Nazir, Aalia; Munawar, Anam; Shaheen, Ayesha; Saeed, Madiha; Afzal, Muhammad; Iqbal, M Zubair; Wu, Aiguo; Khan, Waheed S
2018-01-09
We report a novel strategy for the fabrication of lecithin-coated gold nanoflowers (GNFs) via single-step design for CT imaging application. Field-emission electron microscope confirmed flowers like morphology of the as-synthesized nanostructures. Furthermore, these show absorption peak in near-infrared (NIR) region at λ max 690 nm Different concentrations of GNFs are tested as a contrast agent in CT scans at tube voltage 135 kV and tube current 350 mA. These results are compared with same amount of iodine at same CT scan parameters. The results of in vitro CT scan study show that GNFs have good contrast enhancement properties, whereas in vivo study of rabbits CT scan shows that GNFs enhance the CT image clearly at 135 kV as compared to that of iodine. Cytotoxicity was studied and blood profile show minor increase of white blood cells and haemoglobin, whereas decrease of red blood cells and platelets.
Bacterial infection imaging with [18F]fluoropropyl-trimethoprim
Lee, Iljung; Hou, Catherine; Weng, Chi-Chang; Li, Shihong; Lieberman, Brian P.; Zeng, Chenbo; Mankoff, David A.; Mach, Robert H.
2017-01-01
There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential. PMID:28716936
Scarborough, J Hunter; Gonzalez, Paulina; Rodich, Sean; Green, Kayla N
2015-03-12
Early detection is a key to successful treatment of most diseases, and is particularly imperative for the diagnosis and treatment of many types of cancer. The most common techniques utilized are imaging modalities such as Magnetic Resonance Imaging (MRI), Positron Emission Topography (PET), and Computed Topography (CT) and are optimal for understanding the physical structure of the disease but can only be performed once every four to six weeks due to the use of imaging agents and overall cost. With this in mind, the development of "point of care" techniques, such as biosensors, which evaluate the stage of disease and/or efficacy of treatment in the clinician's office and do so in a timely manner, would revolutionize treatment protocols.1 As a means to exploring ferrocene based biosensors for the detection of biologically relevant molecules2, methods were developed to produce ferrocene-biotin bio-conjugates described herein. This report will focus on a biotin-ferrocene-cysteine system that can be immobilized on a gold surface.
NASA Astrophysics Data System (ADS)
Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi
2016-05-01
Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01492e
Nanocarriers for nuclear imaging and radiotherapy of cancer.
Mitra, Amitava; Nan, Anjan; Line, Bruce R; Ghandehari, Hamidreza
2006-01-01
Several nanoscale carriers (nanoparticles, liposomes, water-soluble polymers, micelles and dendrimers) have been developed for targeted delivery of cancer diagnostic and therapeutic agents. These carriers can selectively target cancer sites and carry large payloads, thereby improving cancer detection and therapy effectiveness. Further, the combination of newer nuclear imaging techniques providing high sensitivity and spatial resolution such as dual modality imaging with positron emission tomography/computed tomography (PET/CT) and use of nanoscale devices to carry diagnostic and therapeutic radionuclides with high target specificity can enable more accurate detection, staging and therapy planning of cancer. The successful clinical applications of radiolabeled monoclonal antibodies for cancer detection and therapy bode well for the future of nanoscale carrier systems in clinical oncology. Several radiolabeled multifunctional nanocarriers have been effective in detecting and treating cancer in animal models. Nonetheless, further preclinical, clinical and long-term toxicity studies will be required to translate this technology to the care of patients with cancer. The objective of this review is to present a brief but comprehensive overview of the various nuclear imaging techniques and the use of nanocarriers to deliver radionuclides for the diagnosis and therapy of cancer.
Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai
2015-06-23
Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.
Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.
Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2013-10-01
Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.
2009-01-01
Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.
Nuclear magnetic resonance contrast agents
Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.
1997-12-30
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.
Nuclear magnetic resonance contrast agents
Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.
1997-01-01
A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.
Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie
2016-03-22
Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.
Nguyen, Vivien L.; Pichika, Rama; Bhakta, Paayal H.; Kant, Ritu; Mukherjee, Jogeshwar
2010-01-01
A decline of norepinephrine transporter (NET) level is associated with several psychiatric and neurological disorders. Therefore positron emission tomography (PET) imaging agents are greatly desired to study the NET pathway. We have developed a C-fluoropropyl analog of nisoxetine: (R)-N-methyl-3-(3′-[18F]fluoropropyl)phenoxy)-3-phenylpropanamine (18F-MFP3) as a new potential PET radiotracer for NET with the advantage of the longer half-life of fluorine-18 (110 min compared with carbon-11 (20 min). Synthesis of (R)-N-methyl-3-(3′-fluoropropyl)phenoxy)-3-phenylpropanamine (MFP3) was achieved in five steps starting from (S)-N-methyl-3-ol-3-phenylpropanamine in approx. 3–5% overall yields. In vitro binding affinity of nisoxetine and MFP3 in rat brain homogenates labeled with 3H-nisoxetine gave Ki values of 8.02 nM and 23 nM, respectively. For radiosynthesis of 18F-MFP3, fluorine-18 was incorporated into a tosylate precursor, followed by the deprotection of the N-BOC-protected amine group with a 15% decay corrected yield in 2.5 h. Reverse-phase chromatographic purification provided 18F-MFP3 in specific activities of >2000 Ci/mmol. Fluorine-18 labeled 18F-MFP3 has been produced in modest radiochemical yields and in high specific activities. Evaluation of 18F-MFP3 in animal imaging studies is in progress in order to validate this new fluorine-18 radiotracer for PET imaging of NET. PMID:20495670
Policy design and performance of emissions trading markets: an adaptive agent-based analysis.
Bing, Zhang; Qinqin, Yu; Jun, Bi
2010-08-01
Emissions trading is considered to be a cost-effective environmental economic instrument for pollution control. However, the pilot emissions trading programs in China have failed to bring remarkable success in the campaign for pollution control. The policy design of an emissions trading program is found to have a decisive impact on its performance. In this study, an artificial market for sulfur dioxide (SO2) emissions trading applying the agent-based model was constructed. The performance of the Jiangsu SO2 emissions trading market under different policy design scenario was also examined. Results show that the market efficiency of emissions trading is significantly affected by policy design and existing policies. China's coal-electricity price system is the principal factor influencing the performance of the SO2 emissions trading market. Transaction costs would also reduce market efficiency. In addition, current-level emissions discharge fee/tax and banking mechanisms do not distinctly affect policy performance. Thus, applying emissions trading in emission control in China should consider policy design and interaction with other existing policies.
Yi-Qun, Xu; Wei, Liu; Xin-Ye, Ni
2016-10-01
This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning. © The Author(s) 2015.
Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence
NASA Astrophysics Data System (ADS)
LaRochelle, Ethan P. M.; Shell, Jennifer R.; Gunn, Jason R.; Davis, Scott C.; Pogue, Brian W.
2018-04-01
During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100× stronger than CEL signals. As a result, imaging signals from depths <15 mm is reasonable for Cherenkov light, and depths <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.
LaRochelle, Ethan P M; Shell, Jennifer R; Gunn, Jason R; Davis, Scott C; Pogue, Brian W
2018-04-20
During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100× stronger than CEL signals. As a result, imaging signals from depths <15 mm is reasonable for Cherenkov light, and depths <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.
Zhou, Jing; Zhu, Xingjun; Chen, Min; Sun, Yun; Li, Fuyou
2012-09-01
Multimodal imaging is rapidly becoming an important tool for biomedical applications because it can compensate for the deficiencies of individual imaging modalities. Herein, multifunctional NaLuF(4)-based upconversion nanoparticles (Lu-UCNPs) were synthesized though a facile one-step microemulsion method under ambient condition. The doping of lanthanide ions (Gd(3+), Yb(3+) and Er(3+)/Tm(3+)) endows the Lu-UCNPs with high T(1)-enhancement, bright upconversion luminescence (UCL) emissions, and excellent X-ray absorption coefficient. Moreover, the as-prepared Lu-UCNPs are stable in water for more than six months, due to the protection of sodium glutamate and diethylene triamine pentacetate acid (DTPA) coordinating ligands on the surface. Lu-UCNPs have been successfully applied to the trimodal CT/MR/UCL lymphatic imaging on the modal of small animals. It is worth noting that Lu-UCNPs could be used for imaging even after preserving for over six months. In vitro transmission electron microscope (TEM), methyl thiazolyl tetrazolium (MTT) assay and histological analysis demonstrated that Lu-UCNPs exhibited low toxicity on living systems. Therefore, Lu-UCNPs could be multimodal agents for CT/MR/UCL imaging, and the concept can be served as a platform technology for the next-generation of probes for multimodal imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.
DEVELOPMENT OF AUTOMATED SOFTWARE PROGRAM FOR THE ANALYSIS OF ALZHEIMER'S DISEASE BETA-AMYLOID SCANS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariotti, Jack; Zubal, George
2013-12-18
Study goal: A Phase 1 evaluation of the kinetics, clearance and cerebral distribution of one novel peripheral benzodiazepine receptors(PBR)positron emission tomography (PET) imaging agent, 18F-PBR-111 following intravenous administration in healthy volunteers and Alzheimer's disease (AD) patients. Short title: Evaluation of PET imaging with PBR-111 in HV and AD subjects Proof of Mechanism. Primary Objective: To evaluate the cerebral distribution of PBR-111 positron emission tomography (PET) for detection/exclusion of microglial activation in patients with Alzheimer's disease subjects compared to healthy volunteers. Secondary objectives: - To assess the dynamic uptake and washout of [18F]PBR-111, a potential imaging bio-marker for inflammatory changes inmore » brain, using positron emission tomography in subjects with Alzheimer's disease (AD) and healthy volunteers (HV). - To perform blood metabolite characterization of [18F]PBR-111 in subjects with AD and HV to determine the nature of metabolites in assessment of [18F]-PBR-111 as a PET brain imaging agent. Name of radioactive drug substance: PBR-111 Dose(s): The applied PBR-111 radioactive dose will be up to 5.0 mCi, diluted in a maximum of 10 ml of saline. The radioligand will be administered as a slow intravenous bolus injection (i.e., 6 sec/ml) into a large vein (e.g., antecubital vein). Route of administration: Intravenous injection Duration of treatment: Single administration of a diagnostic agent Indication: PBR-111 positron emission tomography (PET) imaging has the potential to detect microglial activation. In the presence of PBR-111 uptake (representative of microglial activation), inflammation in the brain can be detected. Diagnosis and main criteria for inclusion: Study participants will be HVs and patients diagnosed with probable AD. HVs must be 18 years of age (at least four subjects 50 years of age) and have no evidence of cognitive impairment or other neurologic disease by medical history. The lack of cognitive impairment will also be based on a Clinical Dementia Rating (CDR) of 0. Patients with probable AD must be 50 years of age and must fulfill the National Institute of Neurological and Communicative Disorders and Stroke, Alzheimer's Disease and Related Disorders Association [NINCDS-ADRDA] criteria for probable AD. The CDR score must be 1.0 and 2.0 and have a modified Hachinski of 4. All HVs and all patients with probable AD must be able to comply with all study procedures. Study design: This is a Phase 1, open-label, single-center, non-randomized single dose study to assess the kinetics, clearance and cerebral distribution of PBR-111 PET imaging in detecting microglial activation in the brain in patients with probable AD compared to HVs. All aspects related to image acquisition, processing, and visual as well as quantitative evaluation will be developed, optimized, and validated (where required). Each subject will be required to visit the study center during the screening phase and on the PBR-111 PET imaging day (baseline). A telephone follow-up visit will be performed 7 days (± 3 days) after PBR-111 PET administration. At the screening visit, each subject (or caregiver in the case of AD subjects) will be asked to provide written informed consent or assent. During the screening phase (maximum duration of 60 days) subject medical, neurological, and surgical history, clinical assessments, and a neuro-psychiatric evaluation will be performed on all eligible subjects. Subjects will be allowed to leave the center after all evaluations have been completed. During this period an MRI of the brain will be performed during the screening period. If an MRI of the brain has been performed within six months of the imaging visit using the methods described in the protocol, and there has been no medically significant events in the interim, the previous MRI may be used. During the PBR-111 PET imaging day, all subjects will receive a single intravenous injection of PBR-111 and scanning will be performed over a 3.5 hour period. Each subject will have a telephone follow-up 7 days (± 3 days) thereafter to assess for adverse events. Methodology: - Assessments to provide clinical characterization of the AD subjects will be performed. - After administration of PBR-111, images will be generated with state-of-the-art PET imaging. Images will be assessed quantitatively for the presence of microglial activation by a nuclear physician blinded to clinical data. - Total radioactivity and estimation of the fraction of radioactivity associated to the un-metabolized tracer will be determined. In addition, the metabolite patterns of PBR-111 are determined in venous plasma and arterial samples based on high-performance liquid chromatography (HPLC) analyses. - Arterial sampling will be acquired in the initial two AD and two HV subjects and modeling will be assessed to determine if additional arterial sampling is necessary.« less
Synthesis and antitumour activity of 4-aminoquinazoline derivatives
NASA Astrophysics Data System (ADS)
Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.
2016-07-01
Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.
Fan, Quli; Cheng, Kai; Yang, Zhen; ...
2014-11-06
In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect
Nano-graphene oxide composite for in vivo imaging
Oh, Seo Yeong; Vilian, AT Ezhil; Lee, Ilsong; Han, Young-Kyu; Park, Jeong Hoon; Roh, Changhyun; Huh, Yun Suk
2018-01-01
Introduction Positron emission tomography (PET) tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of 18F-labeled graphene-based bio-conjugates with high reproducibility for applications in the biomedicine field. PMID:29379283
Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.
Chan, Minnie; Almutairi, Adah
2016-01-21
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazy, V., E-mail: vincent.blazy@irstea.fr; Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr; Benoist, J.C
Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, compostingmore » odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5–10, when the required threshold dilution factor ranged from 10{sup 5} to 10{sup 6}, to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.« less
Three-photon tissue imaging using moxifloxacin.
Lee, Seunghun; Lee, Jun Ho; Wang, Taejun; Jang, Won Hyuk; Yoon, Yeoreum; Kim, Bumju; Jun, Yong Woong; Kim, Myoung Joon; Kim, Ki Hean
2018-06-20
Moxifloxacin is an antibiotic used in clinics and has recently been used as a clinically compatible cell-labeling agent for two-photon (2P) imaging. Although 2P imaging with moxifloxacin labeling visualized cells inside tissues using enhanced fluorescence, the imaging depth was quite limited because of the relatively short excitation wavelength (<800 nm) used. In this study, the feasibility of three-photon (3P) excitation of moxifloxacin using a longer excitation wavelength and moxifloxacin-based 3P imaging were tested to increase the imaging depth. Moxifloxacin fluorescence via 3P excitation was detected at a >1000 nm excitation wavelength. After obtaining the excitation and emission spectra of moxifloxacin, moxifloxacin-based 3P imaging was applied to ex vivo mouse bladder and ex vivo mouse small intestine tissues and compared with moxifloxacin-based 2P imaging by switching the excitation wavelength of a Ti:sapphire oscillator between near 1030 and 780 nm. Both moxifloxacin-based 2P and 3P imaging visualized cellular structures in the tissues via moxifloxacin labeling, but the image contrast was better with 3P imaging than with 2P imaging at the same imaging depths. The imaging speed and imaging depth of moxifloxacin-based 3P imaging using a Ti:sapphire oscillator were limited by insufficient excitation power. Therefore, we constructed a new system for moxifloxacin-based 3P imaging using a high-energy Yb fiber laser at 1030 nm and used it for in vivo deep tissue imaging of a mouse small intestine. Moxifloxacin-based 3P imaging could be useful for clinical applications with enhanced imaging depth.
A human GRPr-transfected Ace-1 canine prostate cancer model in mice.
Ding, Haiming; Kothandaraman, Shankaran; Gong, Li; Williams, Michelle M; Dirksen, Wessel P; Rosol, Thomas J; Tweedle, Michael F
2016-06-01
A versatile drug screening system was developed to simplify early targeted drug discovery in mice and then translate readily from mice to a dog prostate cancer model that more fully replicates the features of human prostate cancer. We stably transfected human cDNA of the GRPr bombesin (BBN) receptor subtype to canine Ace-1 prostate cancer cells (Ace-1(huGRPr) ). Expression was examined by (125) I-Tyr(4) -BBN competition, calcium stimulation assay, and fluorescent microscopy. A dual tumor nude mouse xenograft model was developed from Ace-1(CMV) (vector transfected Ace-1) and Ace-1(huGRPr) cells. The model was used to explore the in vivo behavior of two new IRDye800-labeled GRPr binding optical imaging agents: 800-G-Abz4-t-BBN, from a GRPr agonist peptide, and 800-G-Abz4-STAT, from a GRPr antagonist peptide, by imaging the tumor mice and dissected organs. Both agents bound Ace-1(huGRPr) and PC-3, a known GRPr-expressing human prostate cancer cell line, with 4-13 nM IC50 against (125) I-Tyr(4) -BBN, but did not bind Ace-1(CMV) cells (vector transfected). Binding was blocked by bombesin. Ca(2+) activation assays demonstrated that Ace-1(huGPRr) expressed biologically active GRPr. Both Ace-1 cell lines grew in the flanks of 100% of the nude mice and formed tumors of ∼0.5 cm diameter in 1 week. In vivo imaging of the mice at 800 nm emission showed GRPr+: GRPr- tumor signal brighter by a factor of two at 24 h post IV administration of 10 nmol of the imaging agents. Blood retention (4-8% ID at 1 h) was greater by a factor >10 and cumulative urine accumulation (28-30% at 4 h) was less by a factor 2 compared to a radioactive analog of the t-BBN containing agent, (177) LuAMBA, probably due to binding to blood albumin, which we confirmed in a mouse serum assay. The dual tumor Ace-1(CMV) /Ace-1(huGRPr) model system provides a rapid test of specific to nonspecific binding of new GRPr avid agents in a model that will extend logically to the known Ace-1 orthotopic canine prostate cancer model. Prostate 76:783-795, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.
Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander
2017-08-07
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications
Longo, Dario Livio; Aime, Silvio
2017-01-01
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents. PMID:28783106
Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.
Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua
2017-04-01
Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang
2017-01-01
To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.
NASA Astrophysics Data System (ADS)
Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.
2015-09-01
Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04400f
Chauhan, Kanchan; Tiwari, Anjani K; Chadha, Nidhi; Kaul, Ankur; Singh, Ajai Kumar; Datta, Anupama
2018-04-02
Homodimeric chalcone based 11 C-PET radiotracer, 11 C-(Chal) 2 DEA-Me, was synthesized, and binding affinity toward beta amyloid (Aβ) was evaluated. The computational studies revealed multiple binding of the tracer at the recognition sites of Aβ fibrils. The bivalent ligand 11 C-(Chal) 2 DEA-Me displayed higher binding affinity compared to the corresponding monomer, 11 C-Chal-Me, and classical Aβ agents. The radiolabeling yield with carbon-11 was 40-55% (decay corrected) with specific activity of 65-90 GBq/μmol. A significant ( p < 0.0001) improvement in the binding affinity of 11 C-(Chal) 2 DEA-Me with synthetic Aβ42 aggregates over the monomer, 11 C-Chal-Me, demonstrates the utility of the bivalent approach. The PET imaging and biodistribution data displayed suitable brain pharmacokinetics of both ligands with higher brain uptake in the case of the bivalent ligand. Metabolite analysis of healthy ddY mouse brain homogenates exhibited high stability of the radiotracers in the brain with >93% intact tracer at 30 min post injection. Both chalcone derivatives were fluorescent in nature and demonstrated significant changes in the emission properties after binding with Aβ42. The preliminary analysis indicates high potential of 11 C-(Chal) 2 DEA-Me as in vivo Aβ42 imaging tracer and highlights the significance of the bivalent approach to achieve a higher biological response for detection of early stages of amyloidosis.
Real-time sono-photoacoustic imaging of gold nanoemulsions
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Lombardo, Michael; Pelivanov, Ivan M.; Pozzo, Danilo; O'Donnell, Matthew
2015-03-01
Phase transition contrast agents were first introduced in ultrasound (US) in the form of perfluorocarbon droplets. When their size is reduced to the nanoscale, surface tension dominates their stability and high pressure is required to vaporize them using long US emissions at high frequencies. Our group recently showed that nanoemulsion beads (100-300 nm) coated with gold nanopsheres could be used as non-linear contrast agents. Beads can be vaporized with light only, inducing stronger photoacoustic signals by increasing thermal expansion. A photoacoustic cavitation threshold study (US: 1.2 MHz, Laser 750 nm and 10-ns pulse) shows that the vaporization thresholds of NEB-GNS can be greatly reduced using simultaneous light and US excitations. The resulting signal is driven only by the pressure amplitude for a fluence higher than 2.4 mJ/cm2. At diagnostic exposures, it is possible to capture very high signals from the vaporized beads at concentrations reduced to 10 pM with optical absorption smaller than 0.01 cm-1. A real-time imaging mode selectively isolating vaporization signals was implemented on a Verasonics system. A linear US probe (L74, 3 MHz) launched short US bursts before light was emitted from the laser. Vaporization of NEB-GNS resulted in a persistent 30-dB signal enhancement compared to a dye with the same absorption. Specific vaporization signals were retrieved in phantom experiments with US scatterers. This technique, called sonophotoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.
Lee, Jun Young; Lee, Sang-Yeun; Kim, Gun Gyun; Hur, Min Goo; Yang, Seung Dae; Park, Jeong-Hoon; Kim, Sang Wook
2017-06-01
68 Ga-labeled capsaicin using a DOTA (1,4,7,10-tetraazocyclododecane-N,N',N″,N'″-tetraacetic acid) derivative [ 68 Ga-SCN-Benzyl(Bn)-DOTA-capsaicin] was studied for the diagnosis of breast cancers, such as MCF-7 and SK-BR-3. The standard compound, 69 Ga-SCN-Bn-DOTA-capsaicin, was also prepared and characterized by spectroscopic analysis. The binding affinity of 68 Ga-SCN-Bn-DOTA-capsaicin was evaluated by using breast cancer cell lines (MCF-7, SK-BR-3) and colon cancer cell (CT-26); the biodistribution was carried out by using MCF-7-bearing nude mice, after which the positron emission tomography (PET) images were obtained at different time intervals (15-120 minutes). 68 Ga-SCN-Bn-DOTA-capsaicin showed a cellular uptake of 0.93% Injected Dose (ID) after 30 minutes of incubation, whereas 68 Ga-SCN-Bn-DOTA showed a lower uptake of 0.25% ID. The tumor-to-blood ID/g% ratios increased and were found to be 0.49, 0.22, and 0.77 for 15, 30, and 60 minutes, respectively. The small-animal PET study showed that the uptake of 68 Ga-SCN-Bn-DOTA-capsaicin was higher in the tumor regions even at 30 minutes after injection. These results suggest that 68 Ga-SCN-Bn-DOTA-capsaicin is a potential targeting agent for PET imaging of MCF-7.
Hocaoglu, Ibrahim; Asik, Didar; Ulusoy, Gulen; Grandfils, Christian; Ojea-Jimenez, Isaac; Rossi, François; Kiraz, Alper; Doğan, Nurcan; Acar, Havva Yagci
2015-09-01
Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25μg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting. Copyright © 2015 Elsevier B.V. All rights reserved.
Phage display and molecular imaging: expanding fields of vision in living subjects.
Cochran, R; Cochran, Frank
2010-01-01
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S
2015-07-01
Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.
Chen, Shigao; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2007-07-01
Vibro-acoustography is an imaging method that uses the radiation force of two interfering ultrasound beams of slightly different frequency to probe an object. An image is made using the acoustic emission resulted from the object vibration at the difference frequency. In this paper, the feasibility of imaging objects at twice the difference frequency (harmonic acoustic emission) is studied. Several possible origins of harmonic acoustic emission are explored. As an example, it is shown that microbubbles close to resonance can produce significant harmonic acoustic emission due to its high nonlinearity. Experiments demonstrate that, compared to the fundamental acoustic emission, harmonic acoustic emission greatly improves the contrast between microbubbles and other objects in vibro-acoustography (an improvement of 17-23 dB in these experiments). Applications of this technique include imaging the nonlinearity of the object and selective detection of microbubbles for perfusion imaging. The impact of microbubble destruction during the imaging process also is discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
.../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 18, 2011, 9 a.m. to 5 p.m. e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 24, 2011, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.../Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 2. Wednesday, May 5, 2010, 9 a.m. to 5 p.m., e.d.t. (Drugs/ Biologicals/Radiopharmaceuticals/Radiologic Imaging Agents). 3. Tuesday, May 25, 2010, 9... not need the second day of Drugs/Biologicals/ Radiopharmaceuticals/Radiologic Imaging Agents Public...
Gold nanoparticles for photoacoustic imaging
Li, Wanwan; Chen, Xiaoyuan
2015-01-01
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972
A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques
NASA Astrophysics Data System (ADS)
Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.
2011-06-01
Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.
Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology
An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard
2016-01-01
OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168
Precursors to radiopharmaceutical agents for tissue imaging
Srivastava, Prem C.; Knapp, Jr., Furn F.
1988-01-01
A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.
Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit
2018-02-01
Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.
Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array
Luthman, Anna Siri; Dumitru, Sebastian; Quiros‐Gonzalez, Isabel; Joseph, James
2017-01-01
Abstract The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter‐based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide‐field reflectance‐based imaging system operating in the near‐infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition. PMID:28485130
Targeting tumor glycolysis by a mitotropic agent.
Ganapathy-Kanniappan, Shanmugasundaram
2016-01-01
Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.
Imaging-related medications: a class overview
2007-01-01
Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119
Bing, Chenchen; Hong, Yu; Hernandez, Christopher; Rich, Megan; Cheng, Bingbing; Munaweera, Imalka; Szczepanski, Debra; Xi, Yin; Bolding, Mark; Exner, Agata; Chopra, Rajiv
2018-05-22
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
NASA Astrophysics Data System (ADS)
Vallu, Rama Krishna; Velugula, Krishna; Doshi, Sejal; Chinta, Jugun Prakash
2018-01-01
Colorimetric and fluorimetric detection of toxic metal ions such as Hg2 + and Cr3 + has gained tremendous popularity over the conventional methods due to their operational simplicity, high selectivity, and speediness. Although numerous colorimetric and fluorescent receptors for Hg2 + or Cr3 + were reported in the literature, boronic acid-based receptors for these metal ions are rather scarce in the literature. Hence, in the present study dual function boronic acid conjugated rhodamine derivatives were developed, and their toxic metal ion detection abilities were studied by absorption, emission and visual detection methods. Absorption and emission spectral studies revealed that these derivatives displayed selectivity towards Hg2 +, Cr3 + and Fe3 + among the other metal ions studied by forming new absorption band. Both the derivatives exhibited colorimetric response towards Hg2 + and Cr3 + by the change in color of the solution to pink and reddish pink with Fe3 +. The detailed mechanism involved in the detection of Hg2 + was deduced by 1H NMR and ESI-MS studies. Further, these derivatives were used for fluorescence imaging of Hg2 + and Cr3 + in S. aureus bacterial cells. Thus the present manuscript demonstrated the use of boronic acid conjugated rhodamine derivatives as a dual function (colorimetric and fluorescent) probes and as imaging agents for Hg2 + and Cr3 +, which are known for their toxic influence on bacterial cells.
NASA Astrophysics Data System (ADS)
Wang, Qiaoqiao; Zhang, Shuyun; Li, Zhiwei; Zhu, Qi
2018-02-01
Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.
Hydroxypyridonate and hydroxypyrimidinone chelating agents
Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon
2005-01-25
The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... imaging devices for use with imaging contrast agents or radiopharmaceuticals. FDA intends this guidance to..., for medical imaging devices for use with imaging contrast agents or radiopharmaceuticals. Further, the...] Guidance for Industry on New Contrast Imaging Indication Considerations for Devices and Approved Drug and...
Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin
2012-01-01
Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of SPIO independently. These data provide key information for the selection of a contrast agent for a defined application and are additionally valuable for other nano areas, such as hyperthermia, drug delivery, and nanotoxicology.
Roohi, Farnoosh; Lohrke, Jessica; Ide, Andreas; Schütz, Gunnar; Dassler, Katrin
2012-01-01
Purpose: Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. Methods: Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19–86 nm) were obtained by fractionating a broadly size-distributed CDX–SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA–SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. Results: By changing the particle size without modifying any other parameters, the relaxivity r2 increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. Conclusion: In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of SPIO independently. These data provide key information for the selection of a contrast agent for a defined application and are additionally valuable for other nano areas, such as hyperthermia, drug delivery, and nanotoxicology. PMID:22927759
Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David
2014-02-19
A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.
Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology.
von Morze, Cornelius; Merritt, Matthew E
2018-06-05
Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T 1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar
2015-06-01
Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.
NASA Astrophysics Data System (ADS)
Wirth, Dennis J.
Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors has been associated with better quality of life. However, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms. Different types of benign and malignant, primary and metastatic brain tumors, stained with Methylene Blue (MB) as a contrast agent, were imaged. MB is a traditional histopathologic stain that absorbs light in the red spectral range and fluoresces in the near infrared. It is FDA-approved for in vivo staining of human skin and breast tissue. Optical images showed good correlation with histopathology, demonstrating the potential of contrast enhanced multimodal confocal imaging for intraoperative detection of brain neoplasms ex vivo. However, the safety of MB for staining human brain in vivo is questionable. Demeclocycline (DMN), an antibiotic of the tetracycline family, has shown to be effective in differentiating normal from cancerous tissue in various organs. DMN is a fluorophore, which absorbs light in the violet spectral range and has a broad emission band covering green and yellow wavelengths. It is commonly used to treat infection and inflammatory disorders, and could provide a safer alternative to MB. To test this hypothesis, fresh excess human brain tissues were bisected and stained with aqueous solutions of either MB or DMN and then imaged. Reflectance and fluorescence images acquired from tissues stained with the two dyes were compared, and correlated with processed H&E histopathology. Comparison showed similar staining patterns and contrast of diagnostic features in glioblastomas, stained using either MB or DMN. The results show potential of both MB and DMN for the intraoperative detection of microscopic nests of brain neoplasms. Further studies will establish safety and efficacy of these agents in vivo.
Dual-mode imaging with radiolabeled gold nanorods
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Shao, Xia; Rajian, Justin R.; Zhang, Huanan; Chamberland, David L.; Kotov, Nicholas A.; Wang, Xueding
2011-05-01
Many nanoparticle contrast agents have difficulties with deep tissue and near-bone imaging due to limited penetration of visible photons in the body and mineralized tissues. We are looking into the possibility of mediating this problem while retaining the capabilities of the high spatial resolution associated with optical imaging. As such, the potential combination of emerging photoacoustic imaging and nuclear imaging in monitoring of antirheumatic drug delivery by using a newly developed dual-modality contrast agent is investigated. The contrast agent is composed of gold nanorods (GNRs) conjugated to the tumor necrosis factor (TNF-α) antibody and is subsequently radiolabeled by 125I. ELISA experiments designed to test TNF-α binding are performed to prove the specificity and biological activity of the radiolabeled conjugated contrast agent. Photoacoustic and nuclear imaging are performed to visualize the distribution of GNRs in articular tissues of the rat tail joints in situ. Findings from the two imaging modalities correspond well with each other in all experiments. Our system can image GNRs down to a concentration of 10 pM in biological tissues and with a radioactive label of 5 μCi. This study demonstrates the potential of combining photoacoustic and nuclear imaging modalities through one targeted contrast agent for noninvasive monitoring of drug delivery as well as deep and mineralized tissue imaging.
Multimodal nanoparticle imaging agents: design and applications
NASA Astrophysics Data System (ADS)
Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.
2017-10-01
Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes). CONDITION AND TARGET POPULATION LEFT VENTRICULAR SYSTOLIC DYSFUNCTION AND HEART FAILURE: Heart failure is a complex syndrome characterized by the heart's inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) () is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. IN GENERAL, THERE ARE THREE OPTIONS FOR THE TREATMENT OF HEART FAILURE: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or, in some cases, through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure. Left ventricular dysfunction may be permanent, due to the formation of myocardial scar, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically: dobutamine echocardiography (echo),stress echo with contrast,SPECT using either technetium or thallium,cardiac magnetic resonance imaging (cardiac MRI), andpositron emission tomography (PET). Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 - 10 µg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability. Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium. SPECT: SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images. The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%. There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%. Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG). During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution. Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. (ABSTRACT TRUNCATED)
Speckle imaging of active galactic nuclei: NGC 1068 and NGC 4151
NASA Astrophysics Data System (ADS)
Ebstein, Steven Michael
High resolution images of NGC 1068 and NGC 4151 in the 5007 A line and the nearby continuum produced from data taken with the PAPA photon counting imaging detector using the technique of speckle imaging are presented. The images show an unresolved core of 5007 A emission in the middle of an extended emission region. The extended emission tends to lie alongside the subarcsecond radio structure. In NGC 4151, the extended emission comes from a nearly linear structure extending on both sides of the unresolved core. In NGC 1068, the extended emission is concentrated in lobes lying to the unresolved core but the emission is concentrated in lobes lying to either side of the major axis. The continuum of NGC 4151 is spatially unresolved. The continuum of NGC 1068 is extended approx. 1 in to the SW of the center of the 5007 A emission. Certain aspects of the PAPA detector are discussed, including the variable threshold discriminators that track the image intensifier pulse height and the camera artifacts. The data processing is described in detail.
Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging
2008-01-01
Targeted metallic nanoparticles have shown potential as a platform for development of molecular-specific contrast agents. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In this study, we investigated the development of aptamer-based gold nanoparticles as contrast agents, using aptamers as targeting agents and gold nanoparticles as imaging agents. We devised a novel conjugation approach using an extended aptamer design where the extension is complementary to an oligonucleotide sequence attached to the surface of the gold nanoparticles. The chemical and optical properties of the aptamer−gold conjugates were characterized using size measurements and oligonucleotide quantitation assays. We demonstrate this conjugation approach to create a contrast agent designed for detection of prostate-specific membrane antigen (PSMA), obtaining reflectance images of PSMA(+) and PSMA(−) cell lines treated with the anti-PSMA aptamer−gold conjugates. This design strategy can easily be modified to incorporate multifunctional agents as part of a multimodal platform for reflectance imaging applications. PMID:18512972
Chemopreventive Agent Development | Division of Cancer Prevention
[[{"fid":"174","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Chemoprevenentive Agent Development Research Group Homepage
van Veggel, Frank C J M; Dong, Cunhai; Johnson, Noah J J; Pichaandi, Jothirmayanantham
2012-12-07
In this feature article we will critically discuss the synthesis and characterisation aspects of Ln(3+)-doped nanoparticles (NPs) that show upconversion, upon 980 nm excitation. Upconversion is a non-linear process that converts two or more low-energy photons, often near-infrared photons, into one of higher energy, e.g. blue and 800 nm from Tm(3+) and green and red from Er(3+) or Ho(3+). Nearly all researchers use the absorption of 980 nm light by Yb(3+) as the sensitiser for the co-doped emissive Ln(3+) ions. The focus will be on LnF(3) and MLnF(4) (M = alkali metal) as the host matrix, because most progress has been made with these. In particular we will argue that a detailed understanding of how the dopant ions and the host Ln(3+) ions are distributed (in the core) and how (doped) shell growth occurs is not well understood. Moreover, their use as optical and magnetic resonance imaging contrast agents will be discussed. We will argue that deep-tissue imaging beyond 600 μm with retention of optical resolution, i.e. to see fine structure such as blood capillaries in brain tissues, has not yet been achieved. Three key parameters have been identified as impediments: (i) the low absorption efficiency of the Yb(3+) sensitiser, (ii) the low quantum yield of upconversion, and (iii) the long-lived excited states. On the other hand, there are very encouraging results that suggest that these nanoparticles could be developed into very potent magnetic resonance imaging (MRI) contrast agents.
Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo
2014-03-05
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.
NASA Astrophysics Data System (ADS)
van Veggel, Frank C. J. M.; Dong, Cunhai; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham
2012-11-01
In this feature article we will critically discuss the synthesis and characterisation aspects of Ln3+-doped nanoparticles (NPs) that show upconversion, upon 980 nm excitation. Upconversion is a non-linear process that converts two or more low-energy photons, often near-infrared photons, into one of higher energy, e.g. blue and 800 nm from Tm3+ and green and red from Er3+ or Ho3+. Nearly all researchers use the absorption of 980 nm light by Yb3+ as the sensitiser for the co-doped emissive Ln3+ ions. The focus will be on LnF3 and MLnF4 (M = alkali metal) as the host matrix, because most progress has been made with these. In particular we will argue that a detailed understanding of how the dopant ions and the host Ln3+ ions are distributed (in the core) and how (doped) shell growth occurs is not well understood. Moreover, their use as optical and magnetic resonance imaging contrast agents will be discussed. We will argue that deep-tissue imaging beyond 600 μm with retention of optical resolution, i.e. to see fine structure such as blood capillaries in brain tissues, has not yet been achieved. Three key parameters have been identified as impediments: (i) the low absorption efficiency of the Yb3+ sensitiser, (ii) the low quantum yield of upconversion, and (iii) the long-lived excited states. On the other hand, there are very encouraging results that suggest that these nanoparticles could be developed into very potent magnetic resonance imaging (MRI) contrast agents.
Geng, Junlong; Liao, Lun-De; Qin, Wei; Tang, Ben Zhong; Thakor, Nitish; Liu, Bin
2015-02-01
Exogenous contrast agents with high sensitivity are highly desirable for photoacoustic (PA) imaging. In this work, we show that fluorogens with aggregation induced emission (AIE) characteristics are born with strong PA signals. In addition, we find that the PA signal of conventional fluorophores could be significantly enhanced through conjugation with tetraphenylethene (TPE), an iconic AIE fluorogen. Taking 2,3-bis[4-(diphenylamino)phenyl]fumaronitrile (TPAFN) as an example, conjugation between TPAFN and TPE affords 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaroni-trile (TPETPAFN), a molecule with significant AIE characteristics, which shows 170% higher PA signals as compared to that of TPAFN. The higher PA signal of TPETPAFN is mainly ascribed to the enhanced molecular rotation, which is beneficial to its thermal expansion upon light absorption. Moreover, the significantly reduced PA signals for TPETPAFN in solvents with high viscosity or as nanoparticles further highlight the contribution of molecular rotation on PA signals.
Aime, Silvio; Castelli, Daniela Delli; Crich, Simonetta Geninatti; Gianolio, Eliana; Terreno, Enzo
2009-07-21
Contrast in magnetic resonance imaging (MRI) arises from changes in the intensity of the proton signal of water between voxels (essentially, the 3D counterpart of pixels). Differences in intervoxel intensity can be significantly enhanced with chemicals that alter the nuclear magnetic resonance (NMR) intensity of the imaged spins; this alteration can occur by various mechanisms. Paramagnetic lanthanide(III) complexes are used in two major classes of MRI contrast agent: the well-established class of Gd-based agents and the emerging class of chemical exchange saturation transfer (CEST) agents. A Gd-based complex increases water signal by enhancing the longitudinal relaxation rate of water protons, whereas CEST agents decrease water signal as a consequence of the transfer of saturated magnetization from the exchangeable protons of the agent. In this Account, we survey recent progress in both areas, focusing on how MRI is becoming a more competitive choice among the various molecular imaging methods. Compared with other imaging modalities, MRI is set apart by its superb anatomical resolution; however, its success in molecular imaging suffers because of its intrinsic insensitivity. A relatively high concentration of molecular agents (0.01-0.1 mM) is necessary to produce a local alteration in the water signal intensity. Unfortunately, the most desirable molecules for visualization in molecular imaging are present at much lower concentrations, in the nano- or picomolar range. Therefore, augmenting the sensitivity of MRI agents is key to the development of MR-based molecular imaging applications. In principle, this task can be tackled either by increasing the sensitivity of the reporting units, through the optimization of their structural and dynamic properties, or by setting up proper amplification strategies that allow the accumulation of a huge number of imaging reporters at the site of interest. For Gd-based agents, high sensitivities can be attained by exploiting a range of nanosized carriers (micelles, liposomes, microemulsions, and the like, as well as biological structures such as apoferritin and lipoproteins) properly loaded with Gd-based chelates. Furthermore, the sensitivity of Gd-based agents can be markedly affected either by their interactions with biological structures or by their cellular localization. For CEST agents, a huge sensitivity enhancement has been obtained by using the water molecules contained in the inner cavity of liposomes as the exchangeable source of protons for magnetization transfer. Several "tricks" (for example, the use of multimeric lanthanide(III) shift reagents, changes in the shape of the liposome container, and so forth) have been devised to improve the chemical shift separation between the intraliposomal water and the "bulk" water resonances. Overall, excellent sensitivity enhancements have been obtained for both classes of agents, enabling their use in MR molecular imaging applications.
Multi-scale fluorescence imaging of bacterial infections in animal models
NASA Astrophysics Data System (ADS)
Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.
2013-03-01
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.
68Ga-DOTA-TATE PET vs. 123I-MIBG in identifying malignant neural crest tumours.
Naji, Meeran; Zhao, Chunlei; Welsh, Sarah J; Meades, Richard; Win, Zarni; Ferrarese, Annalisa; Tan, Tricia; Rubello, Domenico; Al-Nahhas, Adil
2011-08-01
We aimed to compare imaging with (123)I-MIBG and (68)Ga-DOTA-TATE in neural crest tumours (NCT) to see if the latter could offer more advantage in detecting extra lesions and have higher sensitivity for malignant lesions. We retrospectively reviewed 12 patients (M = 10, F = 2; age range 20-71 years) with NCT (phaeochromocytomas = 7, paragangliomas = 4, medullary thyroid cancer = 1) who underwent both (68)Ga-DOTA-TATE positron emission tomography (PET) or PET/computed tomography (CT) and (123)I-MIBG single-photon emission computed tomography within 6 months. Visual assessment of all lesions and measurement of target/non-target (T/N) ratio in selected lesions were performed. Five patients (aged 50 or less) had SDHB screening results correlated with imaging results of both radiopharmaceuticals. All patients had contrast-enhanced CT and/or other cross-sectional imaging. (68)Ga-DOTA-TATE PET showed tumour lesions in ten out of 12 patients with confirmed disease, while (123)I-MIBG showed lesions in five out of 12 patients. In one patient, both (68)Ga-DOTA-TATE PET and (123)I-MIBG were negative, but CT, magnetic resonance imaging, and 2-deoxy-2-[(18)F]fluoro-D-glucose PET scans identified a lesion in the thorax. (68)Ga-DOTA-TATE and (123)I-MIBG detected a total of 30 lesions, of which 29/30 were positive with (68)Ga-DOTA-TATE and 7/30 with (123)I-MIBG. We also found higher incidence of SDHB positive results in patients with positive (68)Ga-DOTA-TATE. Our limited data suggest that (68)Ga-DOTA-TATE is a better imaging agent for NCT and detects significantly more lesions with higher T/N ratio compared to (123)I-MIBG. (68)Ga-DOTA-TATE was more likely to detect malignant lesions as indicated by correlating imaging results with SDHB screening.
X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents
Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph
2014-01-01
Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797
NASA Astrophysics Data System (ADS)
Li, Chengyue; Xu, Xiaochun; Basheer, Yusairah; He, Yusheng; Sattar, Husain A.; Brankov, Jovan G.; Tichauer, Kenneth M.
2018-02-01
Sentinel lymph node status is a critical prognostic factor in breast cancer treatment and is essential to guide future adjuvant treatment. The estimation that 20-60% of micrometastases are missed by conventional pathology has created a demand for the development of more accurate approaches. Here, a paired-agent imaging approach is presented that employs a control imaging agent to allow rapid, quantitative mapping of microscopic populations of tumor cells in lymph nodes to guide pathology sectioning. To test the feasibility of this approach to identify micrometastases, healthy pig lymph nodes were stained with targeted and control imaging agent solution to evaluate the potential for the agents to diffuse into and out of intact nodes. Aby-029, an anti-EGFR affibody was labeled with IRDye 800CW (LICOR) as targeted agent and IRDye 700DX was hydrolyzed as a control agent. Lymph nodes were stained and rinsed by directly injecting the agents into the lymph nodes after immobilization in agarose gel. Subsequently, lymph nodes were frozen-sectioned and imaged under an 80-um resolution fluorescence imaging system (Pearl, LICOR) to confirm equivalence of spatial distribution of both agents in the entire node. The binding potentials were acquired by a pixel-by-pixel calculation and was found to be 0.02 +/- 0.06 along the lymph node in the absence of binding. The results demonstrate this approach's potential to enhance the sensitivity of lymph node pathology by detecting fewer than 1000 cell in a whole human lymph node.
Marshall, F J; Radha, P B
2014-11-01
A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.
Imaging efficacy of a targeted imaging agent for fluorescence endoscopy
NASA Astrophysics Data System (ADS)
Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.
2008-02-01
Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.
Blazy, V; de Guardia, A; Benoist, J C; Daumoin, M; Lemasle, M; Wolbert, D; Barrington, S
2014-07-01
Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aerationin 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10<20 and 20<30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC-MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5-10, when the required threshold dilution factor ranged from 10(5) to 10(6), to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohajerani, Pouyan; Adibi, Ali; Kempner, Joshua; Yared, Wael
2009-05-01
We present a method for reduction of image artifacts induced by the optical heterogeneities of tissue in fluorescence molecular tomography (FMT) through identification and compensation of image regions that evidence propagation of emission light through thin or low-absorption tunnels in tissue. The light tunneled as such contributes to the emission image as spurious components that might substantially overwhelm the desirable fluorescence emanating from the targeted lesions. The proposed method makes use of the strong spatial correlation between the emission and excitation images to estimate the tunneled components and yield a residual image that mainly consists of the signal due to the desirable fluorescence. This residual image is further refined using a coincidence mask constructed for each excitation-emission image pair. The coincidence mask is essentially a map of the ``hot spots'' that occur in both excitation and emission images, as such areas are often associated with tunneled emission. In vivo studies are performed on a human colon adenocarcinoma xenograft tumor model with subcutaneous tumors and a murine breast adenocarcinoma model with aggressive tumor cell metastasis and growth in the lungs. Results demonstrate significant improvements in the reconstructions achieved by the proposed method.
Minimal entropy reconstructions of thermal images for emissivity correction
NASA Astrophysics Data System (ADS)
Allred, Lloyd G.
1999-03-01
Low emissivity with corresponding low thermal emission is a problem which has long afflicted infrared thermography. The problem is aggravated by reflected thermal energy which increases as the emissivity decreases, thus reducing the net signal-to-noise ratio, which degrades the resulting temperature reconstructions. Additional errors are introduced from the traditional emissivity-correction approaches, wherein one attempts to correct for emissivity either using thermocouples or using one or more baseline images, collected at known temperatures. These corrections are numerically equivalent to image differencing. Errors in the baseline images are therefore additive, causing the resulting measurement error to either double or triple. The practical application of thermal imagery usually entails coating the objective surface to increase the emissivity to a uniform and repeatable value. While the author recommends that the thermographer still adhere to this practice, he has devised a minimal entropy reconstructions which not only correct for emissivity variations, but also corrects for variations in sensor response, using the baseline images at known temperatures to correct for these values. The minimal energy reconstruction is actually based on a modified Hopfield neural network which finds the resulting image which best explains the observed data and baseline data, having minimal entropy change between adjacent pixels. The autocorrelation of temperatures between adjacent pixels is a feature of most close-up thermal images. A surprising result from transient heating data indicates that the resulting corrected thermal images have less measurement error and are closer to the situational truth than the original data.
Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.
2011-01-01
When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time. PMID:21731618
Huang, Shanshan; Cheng, Ziyong; Ma, Ping'an; Kang, Xiaojiao; Dai, Yunlu; Lin, Jun
2013-05-14
Luminescent GdVO4:Eu(3+) nanophosphor functionalized mesoporous silica nanoparticles (MSN) were prepared (denoted as GdVO4:Eu(3+)@MSN). The in vitro cytotoxicity tests show that the sample has good biocompatibility, which indicates that the nanocomposite could be a promising candidate for drug delivery. Flow cytometry and confocal laser scanning microscopy (CLSM) confirm that the sample can be effectively taken up by SKOV3 ovarian cancer cells and A549 lung adenocarcinoma cells. It was also shown that the GdVO4:Eu(3+)@MSN brightened the T1-weighted images and enhanced the r1 relaxivity of water protons, which suggested that they could act as T1 contrast agents for magnetic resonance (MR) imaging. It was found that the carriers present a pH-dependent drug release behavior for doxorubicin (DOX). The composites show a red emission under UV irradiation due to the GdVO4:Eu(3+) nanophosphors. Furthermore, the PL intensity of the composite shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging, MR imaging and pH-controlled release property for DOX.
Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C
2017-08-31
Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.
Kim, Dong-Yeon; Kim, Hyeon Sik; Jang, Hwa Youn; Kim, Ju Han; Bom, Hee-Seung; Min, Jung-Joon
2014-10-09
The short half-life of current positron emission tomography (PET) cardiac tracers limits their widespread clinical use. We previously developed a (18)F-labeled phosphonium cation, [(18)F]FPTP, that demonstrated sharply defined myocardial defects in a corresponding infarcted myocardium. The aim of this study was to compare the image properties of PET scans obtained using [(18)F]FPTP with those obtained using [(13)N]NH3 in rat myocardial infarction models. Perfusion abnormality was analyzed in 17 segments of polar map images. The myocardium-to-liver and myocardium-to-lung ratios of [(18)F]FPTP were 10.48 and 2.65 times higher, respectively, than those of [(13)N]NH3 in images acquired 30 min after tracer injection. The myocardial defect size measured by [(18)F]FPTP correlated more closely with the hypoperfused area measured by quantitative 2,3,5-triphenyltetrazolium chloride staining (r = 0.89, P < 0.01) than did [(13)N]NH3 (r = 0.84, P < 0.01). [(18)F]FPTP might be useful as a replacement for the myocardial agent [(13)N]NH3 in cardiac PET/CT applications.
Kimura, Hiroyuki; Sampei, Sotaro; Matsuoka, Daiko; Harada, Naoya; Watanabe, Hiroyuki; Arimitsu, Kenji; Ono, Masahiro; Saji, Hideo
2016-05-15
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting (99m)Tc-tricarbonyl complexes that are cationic or lack a charge, no anionic (99m)Tc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic (99m)Tc-tricarbonyl complex ([(99m)Tc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [(99m)Tc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [(99m)Tc]TMCE was 12-17%, with a radiochemical purity greater than 98% after HPLC purification. [(99m)Tc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [(99m)Tc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hynynen, Kullervo
2012-01-01
Purpose: To determine if focused ultrasound disruption of the blood-brain barrier (BBB) can be safely controlled by using real-time modulation of treatment pressures on the basis of acoustic emissions from the exposed microbubbles. Materials and Methods: All experiments were performed with the approval of the institutional animal care committee. Transcranial focused ultrasound (551.5 kHz, 10-msec bursts, 2-Hz pulse repetition frequency, 2 minute sonication) in conjunction with circulating microbubbles was applied in 86 locations in 27 rats to disrupt the BBB. Acoustic emissions captured during each burst by using a wideband polyvinylidene fluoride hydrophone were analyzed for spectral content and used to adjust treatment pressures. Pressures were increased incrementally after each burst until ultraharmonic emissions were detected, at which point the pressure was reduced to a percentage of the pressure required to induce the ultraharmonics and was maintained for the remainder of the sonication. Disruption was evaluated at contrast material–enhanced T1-weighted magnetic resonance (MR) imaging. Mean enhancement was calculated by averaging the signal intensity at the focus over a 3 × 3-pixel region of interest and comparing it with that in nonsonicated tissue. Histologic analysis was performed to determine the extent of damage to the tissue. Statistical analysis was performed by using Student t tests. Results: For sonications resulting in BBB disruption, the mean peak pressure was 0.28 MPa ± 0.05 (standard deviation) (range, 0.18–0.40 MPa). By using the control algorithm, a linear relationship was found between the scaling level and the mean enhancement on T1-weighted MR images after contrast agent injection. At a 50% scaling level, mean enhancement of 19.6% ± 1.7 (standard error of the mean) was achieved without inducing damage. At higher scaling levels, histologic analysis revealed gross tissue damage, while at a 50% scaling level, no damage was observed at high-field-strength MR imaging or histologic examination 8 days after treatment. Conclusion: This study demonstrates that acoustic emissions can be used to actively control focused ultrasound exposures for the safe induction of BBB disruption. © RSNA, 2012 PMID:22332065
NASA Astrophysics Data System (ADS)
Radhakrishnan, Kirthi
Cardiovascular disease is the leading cause of death and disability in the United States and worldwide. Echogenic liposomes (ELIP) are theragonistic ultrasound contrast agents (UCAs) being developed for the early detection and treatment of cardiovascular disease. Stability of the echogenicity of ELIP in physiologic conditions is crucial to their successful translation to clinical use. The stability of ELIP echogenicity was determined in vitro under physiologic conditions of total dissolved gas concentration, temperature, and hydrodynamic pressure in porcine plasma and whole blood. Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation as a function of pulse duration and pulse repetition frequency (PRF). Previous studies have also demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of ELIP as a function of pulse duration and pulse repetition frequency. Determining the relationship between cavitation thresholds and loss of echogenicity of ELIP would enable monitoring of cavitation based upon the on-screen echogenicity in clinical applications. ELIP were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations and four PRFs in a static fluid and in a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a single-element passive cavitation detection (PCD) system and a passive cavitation imaging (PCI) system. Stable and inertial cavitation thresholds were ascertained. Loss of echogenicity from ELIP was assessed within regions of interest on B-mode images. Stable cavitation thresholds were found to be lower than inertial cavitation thresholds. Stable and inertial cavitation thresholds of ELIP were found to have a weak dependence on pulse duration. However, the stable cavitation threshold of ELIP had no dependence on PRF. The inertial cavitation threshold of ELIP had a weak dependence on PRF. Cavitation thresholds ascertained using a PCI agreed with the thresholds ascertained using a single-element PCD. The azimuthal beamwidth of the cavitation emissions detected by the PCI system agreed with the calibrated beamwidth of the insonation Doppler pressure exceeding the cavitation threshold. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. ELIP lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation emissions were detected in the physiologic flow phantom. These results indicate that 80% loss of echogenicity may be used as a qualitative metric to gauge the onset of stable and inertial cavitation from ELIP.
IMAGE: A Design Integration Framework Applied to the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.
1993-01-01
Effective design of the High Speed Civil Transport requires the systematic application of design resources throughout a product's life-cycle. Information obtained from the use of these resources is used for the decision-making processes of Concurrent Engineering. Integrated computing environments facilitate the acquisition, organization, and use of required information. State-of-the-art computing technologies provide the basis for the Intelligent Multi-disciplinary Aircraft Generation Environment (IMAGE) described in this paper. IMAGE builds upon existing agent technologies by adding a new component called a model. With the addition of a model, the agent can provide accountable resource utilization in the presence of increasing design fidelity. The development of a zeroth-order agent is used to illustrate agent fundamentals. Using a CATIA(TM)-based agent from previous work, a High Speed Civil Transport visualization system linking CATIA, FLOPS, and ASTROS will be shown. These examples illustrate the important role of the agent technologies used to implement IMAGE, and together they demonstrate that IMAGE can provide an integrated computing environment for the design of the High Speed Civil Transport.
Liang, Jiajia; Sun, Ziping; Zhang, Dongjian; Jin, Qiaomei; Cai, Lingqiao; Ma, Lin; Liu, Wei; Ni, Yicheng; Zhang, Jian; Yin, Zhiqi
2018-01-02
A rapid and accurate identification of necrotic tissues is of great importance to define disease severity, predict prognosis, and monitor responses to therapies. To seek necrosis-avid agents with clinically translational potential, we first evaluated the necrosis avidity of flavonoids in rodent models of muscular, myocardial, and tumoral necrosis. In this study, the necrosis avidity of eight radioiodinated 5,7-dihydroxyflavones was tested by ex vivo gamma counting, histochemical staining, and autoradiography in mouse models of ethanol-induced muscular necrosis. The necrosis avidity of a lead tracer, 131 I-5, was further assessed in rat models of myocardial infarction and reperfusion. Therapy response was evaluated by 131 I-5 single photon emission computed tomography/computed tomography imaging 24 h after combretastatin A-4 disodium phosphate (CA4P) therapy on rats bearing W256 breast carcinomas. The necrosis avidity mechanism for the tracers was studied by in vitro DNA binding experiments of 12 5,7-dihydroxyflavones and in vivo blocking experiments of 131 I-5. In the results, all 131 I-5,7-dihydroxyflavones showed intense uptake to necrotic muscles, and 131 I-5 emerged as the most potential tracer among them. 131 I-5 obtained a necrotic-viable myocardium ratio of 5.0 ± 0.9 in post-mortem biodistribution on reperfused myocardial infarction models and achieved necrosis imaging on CA4P-treated W256 tumors 4 h after tracer injection. DNA binding studies suggested that necrosis avidity was related to DNA binding to a certain extent. The uptake of 131 I-5 in necrotic muscle was markedly blocked by excessive ethidium bromide and cold 5 with a 51.95% and 64.29% decline at 1 h after coinjection, respectively. In conclusion, flavonoids are necrosis-avid agents. Furthermore, 131 I-5 can serve as a promising necrosis-avid diagnostic tracer for the rapid imaging of necrotic tissues, supporting the further molecular design of radiotracer based on 5.
Mittra, Erik S.; Fan-Minogue, Hua; Lin, Frank I.; Karamchandani, Jason; Sriram, Venkataraman; Han, May; Gambhir, Sanjiv S.
2016-01-01
Purpose Ficlatuzumab is a novel therapeutic agent targeting the hepatocyte growth factor (HGF)/c-MET pathway. We summarize extensive preclinical work using this agent in a mouse brain orthotopic model of glioblastoma. Experimental Design Sequential experiments were done using eight- to nine-week-old nude mice injected with 3 × 105 U87 MG (glioblastoma) cells into the brain. Evaluation of ficlatuzumab dose response for this brain tumor model and comparison of its response to ficlatuzumab and to temozolamide were conducted first. Subsequently, various small-animal imaging modalities, including bioluminescence imaging (BLI), positron emission tomography (PET), and MRI, were used with a U87 MG-Luc 2 stable cell line, with and without the use of ficlatuzumab, to evaluate the ability to non-invasively assess tumor growth and response to therapy. ANOVA was conducted to evaluate for significant differences in the response. Results There was a survival benefit with ficlatuzumab alone or in combination with temozolamide. BLI was more sensitive than PET in detecting tumor cells. Fluoro-D-thymidine (FLT) PET provided a better signal-to-background ratio than 2[18F]fluoro-2-deoxy-D-glucose (FDG) PET. In addition, both BLI and FLT PET showed significant changes over time in the control group as well as with response to therapy. MRI does not disclose any time-dependent change. Also, the MRI results showed a temporal delay in comparison to the BLI and FLT PET findings, showing similar results one drug cycle later. Conclusions Targeting the HGF/c-MET pathway with the novel agent ficlatuzumab appears promising for the treatment of glioblastoma. Various clinically applicable imaging modalities including FLT, PET, and MRI provide reliable ways of assessing tumor growth and response to therapy. Given the clinical applicability of these findings, future studies on patients with glioblastoma may be appropriate. PMID:23983258
2018-01-01
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management. PMID:29531507
The Effects of Image and Animation in Enhancing Pedagogical Agent Persona
ERIC Educational Resources Information Center
Baylor, Amy L.; Ryu, Jeeheon
2003-01-01
The purpose of this experimental study was to test the role of image and animation on: a) learners' perceptions of pedagogical agent persona characteristics (i.e., extent to which agent was person-like, engaging, credible, and instructor-like); b) agent value; and c) performance. The primary analysis consisted of two contrast comparisons: 1)…
NASA Astrophysics Data System (ADS)
Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra
2018-04-01
Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.
Using spectral information in forensic imaging.
Miskelly, Gordon M; Wagner, John H
2005-12-20
Improved detection of forensic evidence by combining narrow band photographic images taken at a range of wavelengths is dependent on the substance of interest having a significantly different spectrum from the underlying substrate. While some natural substances such as blood have distinctive spectral features which are readily distinguished from common colorants, this is not true for visualization agents commonly used in forensic science. We now show that it is possible to select reagents with narrow spectral features that lead to increased visibility using digital cameras and computer image enhancement programs even if their coloration is much less intense to the unaided eye than traditional reagents. The concept is illustrated by visualising latent fingermarks on paper with the zinc complex of Ruhemann's Purple, cyanoacrylate-fumed fingerprints with Eu(tta)(3)(phen), and soil prints with 2,6-bis(benzimidazol-2-yl)-4-[4'-(dimethylamino)phenyl]pyridine [BBIDMAPP]. In each case background correction is performed at one or two wavelengths bracketing the narrow absorption or emission band of these compounds. However, compounds with sharp spectral features would also lead to improved detection using more advanced algorithms such as principal component analysis.
Scarborough, J. Hunter; Gonzalez, Paulina; Rodich, Sean; Green, Kayla N.
2015-01-01
Early detection is a key to successful treatment of most diseases, and is particularly imperative for the diagnosis and treatment of many types of cancer. The most common techniques utilized are imaging modalities such as Magnetic Resonance Imaging (MRI), Positron Emission Topography (PET), and Computed Topography (CT) and are optimal for understanding the physical structure of the disease but can only be performed once every four to six weeks due to the use of imaging agents and overall cost. With this in mind, the development of “point of care” techniques, such as biosensors, which evaluate the stage of disease and/or efficacy of treatment in the clinician’s office and do so in a timely manner, would revolutionize treatment protocols.1 As a means to exploring ferrocene based biosensors for the detection of biologically relevant molecules2, methods were developed to produce ferrocene-biotin bio-conjugates described herein. This report will focus on a biotin-ferrocene-cysteine system that can be immobilized on a gold surface. PMID:25866986
Tago, Tetsuro; Furumoto, Shozo; Okamura, Nobuyuki; Harada, Ryuichi; Adachi, Hajime; Ishikawa, Yoichi; Yanai, Kazuhiko; Iwata, Ren; Kudo, Yukitsuka
2016-04-01
Noninvasive imaging of tau and amyloid-β pathologies would facilitate diagnosis of Alzheimer's disease (AD). Recently, we have developed [(18)F]THK-5105 for selective detection of tau pathology by positron emission tomography (PET). The purpose of this study was to clarify biological properties of optically pure [(18)F]THK-5105 enantiomers. Binding for tau aggregates in AD brain section was evaluated by autoradiography (ARG). In vitro binding assays were performed to evaluate the binding properties of enantiomers for AD brain homogenates. The pharmacokinetics in the normal mouse brains was assessed by ex vivo biodistribution assay The ARG of enantiomers showed the high accumulation of radioactivity corresponding to the distribution of tau deposits. In vitro binding assays revealed that (S)-[(18)F]THK-5105 has slower dissociation from tau than (R)-[(18)F]THK-5105. Biodistribution assays indicated that (S)-[(18)F]THK-5105 eliminated faster from the mouse brains and blood compared with (R)-[(18)F]THK-5105. (S)-[(18)F]THK-5105 could be more suitable than (R)-enantiomer for a tau imaging agent.
Ilovich, Ohad; Natarajan, Arutselvan; Hori, Sharon; Sathirachinda, Ataya; Kimura, Richard; Srinivasan, Ananth; Gebauer, Mathias; Kruip, Jochen; Focken, Ingo; Lange, Christian; Carrez, Chantal; Sassoon, Ingrid; Blanc, Veronique; Sarkar, Susanta K; Gambhir, Sanjiv S
2015-07-01
To develop and compare three copper 64 ((64)Cu)-labeled antibody fragments derived from a CA6-targeting antibody (huDS6) as immuno-positron emission tomography (immuno-PET)-based companion diagnostic agents for an antibody-drug conjugate by using huDS6. Three antibody fragments derived from huDS6 were produced, purified, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and evaluated in the following ways: (a) the affinity of the fragments and the DOTA conjugates was measured via flow cytometry, (b) the stability of the labeled fragments was determined ex vivo in human serum over 24 hours, and (c) comparison of the in vivo imaging potential of the fragments was evaluated in mice bearing subcutaneous CA6-positive and CA6-negative xenografts by using serial PET imaging and biodistribution. Isotype controls with antilysozyme and anti-DM4 B-Fabs and blocking experiments with an excess of either B-Fab or huDS6 were used to determine the extent of the antibody fragment (64)Cu-DOTA-B-Fab binding specificity. Immunoreactivity and tracer kinetics were evaluated by using cellular uptake and 48-hour imaging experiments, respectively. Statistical analyses were performed by using t tests, one-way analysis of variance, and Wilcoxon and Mann-Whitney tests. The antibody fragment (64)Cu-DOTA-B-Fab was more than 95% stable after 24 hours in human serum, had an immunoreactivity of more than 70%, and allowed differentiation between CA6-positive and CA6-negative tumors in vivo as early as 6 hours after injection, with a 1.7-fold uptake ratio between tumors. Isotype and blocking studies experiments showed tracer-specific uptake in antigen-positive tumors, despite some nonspecific uptake in both tumor models. Three antibody fragments were produced and examined as potential companion diagnostic agents. (64)Cu-DOTA-B-Fab is a stable and effective immuno-PET tracer for CA6 imaging in vivo.
Ilovich, Ohad; Natarajan, Arutselvan; Hori, Sharon; Sathirachinda, Ataya; Kimura, Richard; Srinivasan, Ananth; Gebauer, Mathias; Kruip, Jochen; Focken, Ingo; Lange, Christian; Carrez, Chantal; Sassoon, Ingrid; Blanc, Veronique; Sarkar, Susanta K.
2015-01-01
Purpose To develop and compare three copper 64 (64Cu)–labeled antibody fragments derived from a CA6-targeting antibody (huDS6) as immuno-positron emission tomography (immuno-PET)–based companion diagnostic agents for an antibody-drug conjugate by using huDS6. Materials and Methods Three antibody fragments derived from huDS6 were produced, purified, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and evaluated in the following ways: (a) the affinity of the fragments and the DOTA conjugates was measured via flow cytometry, (b) the stability of the labeled fragments was determined ex vivo in human serum over 24 hours, and (c) comparison of the in vivo imaging potential of the fragments was evaluated in mice bearing subcutaneous CA6-positive and CA6-negative xenografts by using serial PET imaging and biodistribution. Isotype controls with antilysozyme and anti-DM4 B-Fabs and blocking experiments with an excess of either B-Fab or huDS6 were used to determine the extent of the antibody fragment 64Cu-DOTA-B-Fab binding specificity. Immunoreactivity and tracer kinetics were evaluated by using cellular uptake and 48-hour imaging experiments, respectively. Statistical analyses were performed by using t tests, one-way analysis of variance, and Wilcoxon and Mann-Whitney tests. Results The antibody fragment 64Cu-DOTA-B-Fab was more than 95% stable after 24 hours in human serum, had an immunoreactivity of more than 70%, and allowed differentiation between CA6-positive and CA6-negative tumors in vivo as early as 6 hours after injection, with a 1.7-fold uptake ratio between tumors. Isotype and blocking studies experiments showed tracer-specific uptake in antigen-positive tumors, despite some nonspecific uptake in both tumor models. Conclusion Three antibody fragments were produced and examined as potential companion diagnostic agents. 64Cu-DOTA-B-Fab is a stable and effective immuno-PET tracer for CA6 imaging in vivo. © RSNA, 2015 Online supplemental material is available for this article. PMID:25734548
Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J
2017-09-01
Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.
NASA Astrophysics Data System (ADS)
Roeder, Ryan K.; Curtis, Tyler E.; Nallathamby, Prakash D.; Irimata, Lisa E.; McGinnity, Tracie L.; Cole, Lisa E.; Vargo-Gogola, Tracy; Cowden Dahl, Karen D.
2017-03-01
Precision imaging is needed to realize precision medicine in cancer detection and treatment. Molecular imaging offers the ability to target and identify tumors, associated abnormalities, and specific cell populations with overexpressed receptors. Nuclear imaging and radionuclide probes provide high sensitivity but subject the patient to a high radiation dose and provide limited spatiotemporal information, requiring combined computed tomography (CT) for anatomic imaging. Therefore, nanoparticle contrast agents have been designed to enable molecular imaging and improve detection in CT alone. Core-shell nanoparticles provide a powerful platform for designing tailored imaging probes. The composition of the core is chosen for enabling strong X-ray contrast, multi-agent imaging with photon-counting spectral CT, and multimodal imaging. A silica shell is used for protective, biocompatible encapsulation of the core composition, volume-loading fluorophores or radionuclides for multimodal imaging, and facile surface functionalization with antibodies or small molecules for targeted delivery. Multi-agent (k-edge) imaging and quantitative molecular imaging with spectral CT was demonstrated using current clinical agents (iodine and BaSO4) and a proposed spectral library of contrast agents (Gd2O3, HfO2, and Au). Bisphosphonate-functionalized Au nanoparticles were demonstrated to enhance sensitivity and specificity for the detection of breast microcalcifications by conventional radiography and CT in both normal and dense mammary tissue using murine models. Moreover, photon-counting spectral CT enabled quantitative material decomposition of the Au and calcium signals. Immunoconjugated Au@SiO2 nanoparticles enabled highly-specific targeting of CD133+ ovarian cancer stem cells for contrast-enhanced detection in model tumors.
Shiraishi, Kouichi
2013-01-01
We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.
Development of radiotracers for oncology – the interface with pharmacology
Sharma, Rohini; Aboagye, Eric
2011-01-01
There is an increasing role for positron emission tomography (PET) in oncology, particularly as a component of early phase clinical trials. As a non-invasive functional imaging modality, PET can be used to assess both pharmacokinetics and pharmacodynamics of novel therapeutics by utilizing radiolabelled compounds. These studies can provide crucial information early in the drug development process that may influence the further development of novel therapeutics. PET imaging probes can also be used as early biomarkers of clinical response and to predict clinical outcome prior to the administration of therapeutic agents. We discuss the role of PET imaging particularly as applied to phase 0 studies and discuss the regulations involved in the development and synthesis of novel radioligands. The review also discusses currently available tracers and their role in the assessment of pharmacokinetics and pharmacodynamics as applied to oncology. LINKED ARTICLES This article is part of a themed section on Imaging. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.163.issue-8BJP has previously published an Imaging in Pharmacology themed section, edited by A Davenport and C Daly. To view this section visit http://dx.doi.org/10.1111/bph.2010.159.issue-4 PMID:21175573
Rosenholm, Jessica M; Gulin-Sarfraz, Tina; Mamaeva, Veronika; Niemi, Rasmus; Özliseli, Ezgi; Desai, Diti; Antfolk, Daniel; von Haartman, Eva; Lindberg, Desiré; Prabhakar, Neeraj; Näreoja, Tuomas; Sahlgren, Cecilia
2016-03-23
Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars
Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less
NASA Astrophysics Data System (ADS)
Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.
2015-03-01
We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.
Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin
2014-01-01
Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.
Smart Contrast Agents for Magnetic Resonance Imaging.
Bonnet, Célia S; Tóth, Éva
2016-01-01
By visualizing bioactive molecules or biological parameters in vivo, molecular imaging is searching for information at the molecular level in living organisms. In addition to contributing to earlier and more personalized diagnosis in medicine, it also helps understand and rationalize the molecular factors underlying physiological and pathological processes. In magnetic resonance imaging (MRI), complexes of paramagnetic metal ions, mostly lanthanides, are commonly used to enhance the intrinsic image contrast. They rely either on the relaxation effect of these metal chelates (T(1) agents), or on the phenomenon of paramagnetic chemical exchange saturation transfer (PARACEST agents). In both cases, responsive molecular magnetic resonance imaging probes can be designed to report on various biomarkers of biological interest. In this context, we review recent work in the literature and from our group on responsive T(1) and PARACEST MRI agents for the detection of biogenic metal ions (such as calcium or zinc), enzymatic activities, or neurotransmitter release. These examples illustrate the general strategies that can be applied to create molecular imaging agents with an MRI detectable response to biologically relevant parameters.
Hubble Images Reveal Jupiter's Auroras
NASA Technical Reports Server (NTRS)
1996-01-01
These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.
The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/Hyperspectral fluorescence imaging with multi wavelength LED excitation
NASA Astrophysics Data System (ADS)
Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.
2016-04-01
Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.
2009-09-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors
NASA Astrophysics Data System (ADS)
Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.
2009-05-01
Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in this paper.
2009-10-01
molecular breast imaging, with the ability to dynamically contour any sized breast, will improve detection and potentially in vivo characterization of...Having flexible 3D positioning about the breast yielded minimal RMSD differences, which is important for high resolution molecular emission imaging. This...TITLE: Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging PRINCIPAL
Cope, FO; Abbruzzese, B; Sanders, J; Metz, W; Sturms, K; Ralph, D; Blue, M; Zhang, J; Bracci, P; Bshara, W; Behr, S; Maurer, T; Beverly, A; Blay, B; Damughatla, A; Larsen, M; Mountain, C; Neylon, E; Parcel, K; Raghuraman, K; Ricks, K; Rose, L; Sivakumar, A; Streck, N; Wang, B; Wasco, C; Williams, A; McGrath, M
2016-01-01
Summary In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. 99mTc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a Kd of 3×10−11 M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), the receptor has multiple binding sites for tilmanocept (>2 sites per receptor) and that these receptors are recycled every 15 minutes to bind more tilmanocept (acting as intracellular “drug compilers” of tilmanocept into non-degraded vesicles), give serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate 99mTc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis for imaging approaches. Beyond the elements of imaging applications of these agents is their evolution to therapeutic agents as well, and even in the neo-logical realm of theranostics. Characteristics of agents such as tilmanocept that exploit the natural history of diseases with remarkably high specificity are the expectations for the future of patient- and disease-centered diagnosis and therapy. PMID:26924502
Cope, Frederick O; Abbruzzese, Bonnie; Sanders, James; Metz, Wendy; Sturms, Kristyn; Ralph, David; Blue, Michael; Zhang, Jane; Bracci, Paige; Bshara, Wiam; Behr, Spencer; Maurer, Toby; Williams, Kenneth; Walker, Joshua; Beverly, Allison; Blay, Brooke; Damughatla, Anirudh; Larsen, Mark; Mountain, Courtney; Neylon, Erin; Parcel, Kaeli; Raghuraman, Kapil; Ricks, Kevin; Rose, Lucas; Sivakumar, Akhilesh; Streck, Nicholas; Wang, Bryan; Wasco, Christopher; Williams, Amifred; McGrath, Michael
2016-03-01
In considering the challenges of approaches to clinical imaging, we are faced with choices that sometimes are impacted by rather dogmatic notions about what is a better or worse technology to achieve the most useful diagnostic image for the patient. For example, is PET or SPECT most useful in imaging any particular disease dissemination? The dictatorial approach would be to choose PET, all other matters being equal. But is such a totalitarian attitude toward imaging selection still valid? In the face of new receptor targeted SPECT agents one must consider the remarkable specificity and sensitivity of these agents. (99m)Tc-Tilmanocept is one of the newest of these agents, now approved for guiding sentinel node biopsy (SLNB) in several solid tumors. Tilmanocept has a Kd of 3×10(-11)M, and it specificity for the CD206 receptor is unlike any other agent to date. This coupled with a number of facts, that specific disease-associated macrophages express this receptor (100 to 150 thousand receptors), that the receptor has multiple binding sites for tilmanocept (>2 sites per receptor) and that these receptors are recycled every 15 min to bind more tilmanocept (acting as intracellular "drug compilers" of tilmanocept into non-degraded vesicles), gives serious pause as to how we select our approaches to diagnostic imaging. Clinically, the size of SLNs varies greatly, some, anatomically, below the machine resolution of SPECT. Yet, with tilmanocept targeting, the SLNs are highly visible with macrophages stably accruing adequate (99m)Tc-tilmanocept counting statistics, as high target-to-background ratios can compensate for spatial resolution blurring. Importantly, it may be targeted imaging agents per se, again such as tilmanocept, which may significantly shrink any perceived chasm between the imaging technologies and anchor the diagnostic considerations in the targeting and specificity of the agent rather than any lingering dogma about the hardware as the basis for imaging approaches. Beyond the elements of imaging applications of these agents is their evolution to therapeutic agents as well, and even in the neo-logical realm of theranostics. Characteristics of agents such as tilmanocept that exploit the natural history of diseases with remarkably high specificity are the expectations for the future of patient- and disease-centered diagnosis and therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W
2017-07-13
Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.
FitzGerald, Paul F.; Butts, Matthew D.; Roberts, Jeannette C.; Colborn, Robert E.; Torres, Andrew S.; Lee, Brian D.; Yeh, Benjamin M.; Bonitatibus, Peter J.
2016-01-01
Objectives To produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ) coated soluble tantalum oxide nanoparticles (CZ-TaO NPs). We chose tantalum to provide superior imaging performance compared to current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. The aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared to clinically-used iodinated agents. Materials and Methods We evaluated CT imaging performance of our CZ-TaO NPs compared to an iodinated agent in live rats, imaged centrally-located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats’ great vessels at high temporal resolution during and following contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. CZ-TaO NPs were synthesized and analyzed in detail. We used multi-dimensional nuclear magnetic resonance (NMR) to determine surface functionality of the nanoparticles. We measured nanoparticle size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including the high concentrations required for standard clinical CT imaging. Results CT imaging studies demonstrated image contrast improvement of approximately 40–50% using CZ-TaO NPs compared with an iodinated agent injected at the same mass concentration. Blood and organ analyses showed no adverse effects following injection in healthy naïve rats at 3 times the ACD. Retention of tantalum at 48 hours after injection was less than 2% of the injected dose in the whole carcass, which very closely matched the reported retention of existing commercial iodine-based contrast agents. Urine analysis of sensitive markers for acute kidney injury showed no responses at 1 week following injection at 3 times the ACD; however, a moderate response in the neutrophil gelatinase-associated lipocalin (NGAL) biomarker was measured at 24 and 48 hours. Compared to other tantalum oxide nanoparticles reported in the literature, CZ-TaO NPs had relatively low osmolality and viscosity at concentrations >200 mg Ta/mL, and were similar in these physical properties to dimeric iodine-based contrast agents. Conclusions We found that a CZ-TaO NP-based contrast agent is potentially viable for general-purpose clinical CT imaging. Our results suggest that such an agent can be formulated with clinically-viable physicochemical properties, can be biologically safe and cleared rapidly in urine, and can provide substantially improved image contrast at CT compared to current iodinated agents. PMID:27115702
FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J
2016-12-01
The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations, including the high concentrations required for standard clinical CT imaging. Computed tomography imaging studies demonstrated image contrast improvement of approximately 40% to 50% using CZ-TaO NPs compared with an iodinated agent injected at the same mass concentration. Blood and organ analyses showed no adverse effects after injection in healthy naive rats at 3 times the ACD. Retention of tantalum at 48 hours after injection was less than 2% of the injected dose in the whole carcass, which very closely matched the reported retention of existing commercial iodine-based contrast agents. Urine analysis of sensitive markers for acute kidney injury showed no responses at 1 week after injection at 3 times the ACD; however, a moderate response in the neutrophil gelatinase-associated lipocalin biomarker was measured at 24 and 48 hours. Compared with other TaO NPs reported in the literature, CZ-TaO NPs had relatively low osmolality and viscosity at concentrations greater than 200 mg Ta/mL and were similar in these physical properties to dimeric iodine-based contrast agents. We found that a CZ-TaO NP-based contrast agent is potentially viable for general-purpose clinical CT imaging. Our results suggest that such an agent can be formulated with clinically viable physicochemical properties, can be biologically safe and cleared rapidly in urine, and can provide substantially improved image contrast at CT compared with current iodinated agents.
Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.
Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui
2015-11-17
Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.
Mukherjee, Archana; Wickstrom, Eric
2009-01-01
This review briefly outlines the importance of molecular imaging, particularly imaging of endogenous gene expression for noninvasive genetic analysis of radiographic masses. The concept of antisense imaging agents and the advantages and challenges in the development of hybridization probes for in vivo imaging are described. An overview of the investigations on oncogene expression imaging is given. Finally, the need for further improvement in antisense-based imaging agents and directions to improve oncogene mRNA targeting is stated. PMID:19264436
Hudgens, Stacie; Breeze, Janis; Spalding, James
2013-01-01
The objective of this study was to compare clinician and patient measures of satisfaction with two pharmacological stress agents (PSA), regadenoson and dipyridamole, used in Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging (MPI). This observational study included patients who had undergone SPECT MPI with regadenoson or dipyridamole, as well as the clinician/clinical technologist who performed the test. Mean scores for individual item and domain scores of the main outcome measures were computed as well as the effect sizes (ES) of the mean difference in scores between treatment groups. Statistical significance of the mean item and domain score differences were assessed via Mann-Whitney tests. Two self-report questionnaires which had beeb previously developed and validated: Patient Satisfaction/Preference Questionnaire (PSPQ) and Clinician Satisfaction/Preference Questionnaire (CSPQ). A total of 87 patients (68 received regadenoson, 19 received dipyridamole) and nine clinicians/clinical technologists took part in the study. Patients had a mean age of 66.8 ± 12.2 years, and 56.3% were male. Compared to dipyridamole, use of regadenoson was associated with greater clinician satisfaction on all items and domains of the CSPQ (p < 0.001 for all comparisons). Among patients, regadenoson was associated with less bother and greater satisfaction than dipyridamole for all items on the PSPQ. These patients reported less stinging at the injection site (ES = -0.66) and less nervousness during injection (ES = -0.60). The PSPQ found that regadenoson patients were more satisfied with their PSA than dipyridamole patients in all areas. This study utilized a relatively small sample size of dipyridamole patients and lacked an adenosine group. A broader sampling of professionals would also help demonstrate generalizability. Both patients and clinicians reported higher satisfaction with regadenoson compared to dipyridamole for SPECT-MPI. Clinicians were particularly satisfied with the preparation and administration aspects of the drug, while patients rated it highly on convenience and reduced incidence of side-effects.
Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer
Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei
2014-01-01
Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156
Passive cavitation imaging with ultrasound arrays
Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas
2009-01-01
A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921
Passive cavitation imaging with ultrasound arrays.
Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas
2009-12-01
A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.
NASA Astrophysics Data System (ADS)
Reynolds, Jeffery S.; Thompson, Alan B.; Troy, Tamara L.; Mayer, Ralf H.; Waters, David J.; Sevick-Muraca, Eva M.
1999-07-01
In this paper we demonstrate the ability to detect the frequency-domain fluorescent signal from the contrast agent indocyanine green within the mammary chain of dogs with spontaneous mammary tumors. We use a gain-modulated image intensifier to rapidly capture multi-pixel images of the fluorescent modulation amplitude, modulation phase, and average intensity signals. Excitation is provided by a 100 MHz amplitude-modulated, 780 nm laser diode. Time series images of the uptake and clearance of the contrast agent in the diseased tissue are also presented.
Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.
Greis, C
2014-01-01
Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.
Yu, Bo; Goel, Shreya; Ni, Dalong; Ellison, Paul A; Siamof, Cerise M; Jiang, Dawei; Cheng, Liang; Kang, Lei; Yu, Faquan; Liu, Zhuang; Barnhart, Todd E; He, Qianjun; Zhang, Han; Cai, Weibo
2018-03-01
Nanoengineering of cell membranes holds great potential to revolutionize tumor-targeted theranostics, owing to their innate biocompatibility and ability to escape from the immune and reticuloendothelial systems. However, tailoring and integrating cell membranes with drug and imaging agents into one versatile nanoparticle are still challenging. Here, multicompartment membrane-derived liposomes (MCLs) are developed by reassembling cancer cell membranes with Tween-80, and are used to conjugate 89 Zr via deferoxamine chelator and load tetrakis(4-carboxyphenyl) porphyrin for in vivo noninvasive quantitative tracing by positron emission tomography imaging and photodynamic therapy (PDT), respectively. Radiolabeled constructs, 89 Zr-Df-MCLs, demonstrate excellent radiochemical stability in vivo, target 4T1 tumors by the enhanced permeability and retention effect, and are retained long-term for efficient and effective PDT while clearing gradually from the reticuloendothelial system via hepatobiliary excretion. Toxicity evaluation confirms that the MCLs do not impose acute or chronic toxicity in intravenously injected mice. Additionally, 89 Zr-labeled MCLs can execute rapid and highly sensitive lymph node mapping, even for deep-seated sentinel lymph nodes. The as-developed cell membrane reassembling route to MCLs could be extended to other cell types, providing a versatile platform for disease theranostics by facilely and efficiently integrating various multifunctional agents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lewis, Christina M.; Graves, Stephen A.; Hernandez, Reinier; ...
2015-01-01
There is a growing demand for long-term in vivo stem cell imaging for assessing cell therapy techniques and guiding therapeutic decisions. This work develops the production of 52Mn and establishes proof of concept for the use of divalent metal transporter 1 (DMT1) as a positron emission tomography (PET) and magnetic resonance imaging (MRI) reporter gene for stem cell tracking in the rat brain. 52Mn was produced via proton irradiation of a natural chromium target. In a comparison of two 52Mn separation methods, solvent-solvent extraction was preferred over ion exchange chromatography because of reduced chromium impurities and higher 52Mn recovery. Inmore » vitro uptake of Mn-based PET and MRI contrast agents ( 52Mn 2+ and Mn 2+, respectively) was enhanced in DMT1 over-expressing human neural progenitor cells (hNPC-DMT1) compared to wild-type control cells (hNPC-WT). After cell transplantation in the rat striatum, increased uptake of Mn-based contrast agents in grafted hNPC-DMT1 was detected in in vivo manganese-enhanced MRI (MEMRI) and ex vivo PET and autoradiography. These initial studies indicate that this approach holds promise for dual-modality PET/MR tracking of transplanted stem cells in the central nervous system and prompt further investigation into the clinical applicability of this technique.« less
Combined optical resolution photoacoustic and fluorescence micro-endoscopy
NASA Astrophysics Data System (ADS)
Shao, Peng; Shi, Wei; Hajireza, Parsin; Zemp, Roger J.
2012-02-01
We present a new micro-endoscopy system combining real-time C-scan optical-resolution photoacoustic micro-endoscopy (OR-PAME), and a high-resolution fluorescence micro-endoscopy system for visualizing fluorescently labeled cellular components and optically absorbing microvasculature simultaneously. With a diode-pumped 532-nm fiber laser, the OR-PAM sub-system is capable of imaging with a resolution of ~ 7μm. The fluorescence sub-system consists of a diode laser with 445 nm-centered emissions as the light source, an objective lens and a CCD camera. Proflavine, a FDA approved drug for human use, is used as the fluorescent contrast agent by topical application. The fluorescence system does not require any mechanical scanning. The scanning laser and the diode laser light source share the same light path within an optical fiber bundle containing 30,000 individual single mode fibers. The absorption of Proflavine at 532 nm is low, which mitigates absorption bleaching of the contrast agent by the photoacoustic excitation source. We demonstrate imaging in live murine models. The system is able to provide cellular morphology with cellular resolution co-registered with the structural and functional information given by OR-PAM. Therefore, the system has the potential to serve as a virtual biopsy technique, helping researchers and clinicians visualize angiogenesis, effects of anti-cancer drugs on both cells and the microcirculation, as well as aid in the study of other diseases.
Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.
The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo)more » for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.« less
Remote sensing of chemical warfare agent by CO2 -lidar
NASA Astrophysics Data System (ADS)
Geiko, Pavel P.; Smirnov, Sergey S.
2014-11-01
The possibilities of remote sensing of chemical warfare agent by differential absorption method were analyzed. The CO2 - laser emission lines suitable for sounding of chemical warfare agent with provision for disturbing absorptions by water vapor were choose. The detection range of chemical warfare agents was estimated for a lidar based on CO2 - laser The other factors influencing upon echolocation range were analyzed.
Sun, Xiang-ping; Lu, Peng; Jiang, Tao; Schuchardt, Frank; Li, Guo-xue
2014-01-01
Mismanagement of the composting process can result in emissions of CH4, N2O, and NH3, which have caused severe environmental problems. This study was aimed at determining whether CH4, N2O, and NH3 emissions from composting are affected by bulking agents during rapid composting of pig manure from the Chinese Ganqinfen system. Three bulking agents, corn stalks, spent mushroom compost, and sawdust, were used in composting with pig manure in 60 L reactors with forced aeration for more than a month. Gas emissions were measured continuously, and detailed gas emission patterns were obtained. Concentrations of NH3 and N2O from the composting pig manure mixed with corn stalks or sawdust were higher than those from the spent mushroom compost treatment, especially the sawdust treatment, which had the highest total nitrogen loss among the three runs. Most of the nitrogen was lost in the form of NH3, which accounts for 11.16% to 35.69% of the initial nitrogen. One-way analysis of variance for NH3 emission showed no significant differences between the corn stalk and sawdust treatments, but a significant difference was noted between the spent mushroom compost and sawdust treatments. The introduction of sawdust reduced CH4 emission more than the corn stalks and spent mushroom compost. However, there were no significant differences among the three runs for total carbon loss. All treatments were matured after 30 d. PMID:24711356
Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents
NASA Astrophysics Data System (ADS)
Bolskar, Robert D.
With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.
Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M
2009-05-01
A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Rhee, H; Thomas, P; Shepherd, B; Gustafson, S; Vela, I; Russell, P J; Nelson, C; Chung, E; Wood, G; Malone, G; Wood, S; Heathcote, P
2016-10-01
Positron emission tomography using ligands targeting prostate specific membrane antigen has recently been introduced. Positron emission tomography imaging with (68)Ga-PSMA-HBED-CC has been shown to detect metastatic prostate cancer lesions at a high rate. In this study we compare multiparametric magnetic resonance imaging and prostate specific membrane antigen positron emission tomography of the prostate with whole mount ex vivo prostate histopathology to determine the true sensitivity and specificity of these imaging modalities for detecting and locating tumor foci within the prostate. In a prospective clinical trial setting 20 patients with localized prostate cancer and a planned radical prostatectomy were recruited. All patients underwent multiparametric magnetic resonance imaging and positron emission tomography before surgery, and whole mount histopathology slides were directly compared to the images. European Society of Urogenital Radiology guidelines for reporting magnetic resonance imaging were used as a template for regional units of analysis. The uropathologist and radiologists were blinded to individual components of the study, and the final correlation was performed by visual and deformable registration analysis. A total of 50 clinically significant lesions were identified from the whole mount histopathological analysis. Based on regional analysis the sensitivity, specificity, positive predictive value and negative predictive value for multiparametric magnetic resonance imaging were 44%, 94%, 81% and 76%, respectively. With prostate specific membrane antigen positron emission tomography the sensitivity, specificity, positive predictive value and negative predictive value were 49%, 95%, 85% and 88%, respectively. Prostate specific membrane antigen positron emission tomography yielded a higher specificity and positive predictive value. A significant proportion of cancers are potentially missed and underestimated by both imaging modalities. Prostate specific membrane antigen positron emission tomography may be used in addition to multiparametric magnetic resonance imaging to help improve local staging in those patients undergoing retropubic radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadeghipour, N.; Davis, S. C.; Tichauer, K. M.
2017-01-01
New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only ‘trace’ levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptor-saturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean ± sd): GSRTM 0 ± 1 and SRTM 50 ± 1) and match the SRTM accuracy in non-saturated conditions (% error (mean ± sd): GSRTM 5 ± 5 and SRTM 0 ± 5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general ‘rule-of-thumb’ algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information about the tissue. These studies suggest that the GSRTM is necessary when receptor saturation exceeds 20% and highlight the potential for GSRTM to accurately measure receptor concentrations under saturation conditions, such as might be required during high dose drug studies, or for imaging applications where high concentrations of imaging agent are required to optimize signal-to-noise conditions. This model can also be applied to PET and SPECT imaging studies that tend to suffer from noisier data, but require one less parameter to fit if images are converted to imaging agent concentration (quantitative PET/SPECT).
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly validated, agents... converted to an electronic image. At a minimum, the agent must retain such securities for a period of thirty...
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... agent is prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly... truncated and converted to an electronic image. At a minimum, the agent must retain such securities for a...
31 CFR 321.25 - Payment and retention of definitive securities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... prohibited from accepting an image, or other copy or reproduction of the definitive security, for redemption or processing. To ensure that all transactions processed by agents are properly validated, agents... converted to an electronic image. At a minimum, the agent must retain such securities for a period of thirty...
Development of a platform for co-registered ultrasound and MR contrast imaging in vivo
NASA Astrophysics Data System (ADS)
Chandrana, Chaitanya; Bevan, Peter; Hudson, John; Pang, Ian; Burns, Peter; Plewes, Donald; Chopra, Rajiv
2011-02-01
Imaging of the microvasculature is often performed using contrast agents in combination with either ultrasound (US) or magnetic resonance (MR) imaging. Contrast agents are used to enhance medical imaging by highlighting microvascular properties and function. Dynamic signal changes arising from the passage of contrast agents through the microvasculature can be used to characterize different pathologies; however, comparisons across modalities are difficult due to differences in the interactions of contrast agents with the microvasculature. Better knowledge of the relationship of contrast enhancement patterns with both modalities could enable better characterization of tissue microvasculature. We developed a co-registration platform for multi-modal US and MR imaging using clinical imaging systems in order to study the relationship between US and MR contrast enhancement. A preliminary validation study was performed in phantoms to determine the registration accuracy of the platform. In phantoms, the in-plane registration accuracy was measured to be 0.2 ± 0.2 and 0.3 ± 0.2 mm, in the lateral and axial directions, respectively. The out-of-plane registration accuracy was estimated to be 0.5 mm ±0.1. Co-registered US and MR imaging was performed in a rabbit model to evaluate contrast kinetics in different tissue types after bolus injections of US and MR contrast agents. The arrival time of the contrast agent in the plane of imaging was relatively similar for both modalities. We studied three different tissue types: muscle, large vessels and fat. In US, the temporal kinetics of signal enhancement were not strongly dependent on tissue type. In MR, however, due to the different amounts of agent extravasation in each tissue type, tissue-specific contrast kinetics were observed. This study demonstrates the feasibility of performing in vivo co-registered contrast US and MR imaging to study the relationships of the enhancement patterns with each modality.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Soltani, Z.; Sarlak, Z.
2018-03-01
Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.
Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue
2018-07-01
In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fourmaux, Sylvain; Kieffer, Jean-Claude; Krol, Andrzej
2017-03-01
We are developing ultrahigh spatial resolution (FWHM < 2 μm) high-brilliance x-ray source for rapid in vivo tomographic microvasculature imaging micro-CT angiography (μCTA) in small animal models using optimized contrast agent. It exploits Laser Wakefield Accelerator (LWFA) betatron x-ray emission phenomenon. Ultrashort high-intensity laser pulse interacting with a supersonic gas jet produces an ion cavity ("bubble") in the plasma in the wake of the laser pulse. Electrons that are injected into this bubble gain energy, perform wiggler-like oscillations and generate burst of incoherent x-rays with characteristic duration time comparable to the laser pulse duration, continuous synchrotron-like spectral distribution that might extend to hundreds keV, very high brilliance, very small focal spot and highly directional emission in the cone-beam geometry. Such LWFA betatron x-ray source created in our lab produced 1021 -1023 photonsṡ shot-1ṡmrad-2ṡmm-2/0.1%bw with mean critical energy in the12-30 keV range. X-ray source size for a single laser shot was FWHM=1.7 μm x-ray beam divergence 20-30 mrad, and effective focal spot size for multiple shots FWHM= 2 μm. Projection images of simple phantoms and complex biological objects including insects and mice were obtained in single laser shots. We conclude that ultrahigh spatial resolution μCTA (FWHM 2 μm) requiring thousands of projection images could be accomplished using LWFA betatron x-ray radiation in approximately 40 s with our existing 220 TW laser and sub seconds with next generation of ultrafast lasers and x-ray detectors, as opposed to several hours required using conventional microfocal x-ray tubes. Thus, sub second ultrahigh resolution in vivo microtomographic microvasculature imaging (in both absorption and phase contrast mode) in small animal models of cancer and vascular diseases will be feasible with LWFA betatron x-ray source.
Vaquero, Juan José; Kinahan, Paul
2015-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Mitigating fluorescence spectral overlap in wide-field endoscopic imaging
Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.
2013-01-01
Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226
Vaquero, Juan José; Kinahan, Paul
2017-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024
Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters.
Zhang, Min; Zhang, Zhihong; Blessington, Dana; Li, Hui; Busch, Theresa M; Madrak, Vanessa; Miles, Jeremy; Chance, Britton; Glickson, Jerry D; Zheng, Gang
2003-01-01
To prepare near-infrared fluorescence imaging and photodynamic therapy agents targeted at glucose transporters, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG) was synthesized and evaluated in a 9L glioma rat model. Fluorescence imaging studies demonstrate that Pyro-2DG is selectively accumulated in the tumor. Upon its photoactivation, we demonstrate that this agent efficiently causes selective mitochondrial damage to the region of a tumor that was photoirradiated after administration of this agent, but does not affect tissues photoirradiated in the absence of the agent or tissues treated with the agent that are not photoirradiated. Preliminary confocal microscopy studies suggest that Pyro-2DG is delivered and trapped in tumor cells via the GLUT/hexokinase pathway and therefore is useful both as a tumor-targeted NIR fluorescence imaging probe and as a PDT agent for the destruction of cancer.
Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-11-01
The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.
Development of Molecular Probes for Imaging Sigma-2 Receptors In Vitro and In Vivo
Mach, Robert H.; Wheeler, Kenneth T.
2009-01-01
The sigma-2 (σ2) receptor is proving to be an important protein in the field of cancer biology. The observations that σ2 receptors have a 10-fold higher density in proliferating tumor cells than in quiescent tumor cells, and that σ2 receptor agonists are capable of killing tumor cells via apoptotic and non-apoptotic mechanisms, indicate that this receptor is an important molecular target for the development of radiotracers for imaging tumors using techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) and for the development of cancer chemotherapeutic agents. In spite of recent promising results towards achieving these goals, research in this field has been hampered by the fact that the molecular identity of the protein sequence of the σ2 receptor is currently not known. Consequently, most of what is known about this protein has been obtained using either radiolabeled or fluorescent probes for this receptor, or biochemical analysis of the effect of σ2 selective ligands on cells growing under tissue culture conditions. This article provides a review of the development and use of σ2 receptor ligands, and how these ligands have been used with a variety of in vitro and in vivo models to gain a greater understanding of the role this receptor plays in cancer. PMID:20021357
In vivo small animal micro-CT using nanoparticle contrast agents
Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.
2015-01-01
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654
Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing
2016-01-01
Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.
Rieves, Dwaine; Jacobs, Paula
2016-12-01
Pharmaceutical companies typically perform prospective, multicenter phase 3 clinical studies to support approval of a new imaging agent by the U.S. Food and Drug Administration (FDA). In uncommon situations, the FDA has approved imaging agents based solely, or in large part, on the clinical study experience described in published reports, including reports of exploratory (i.e., phase 1 or 2) studies performed at a single clinical site. We performed a survey of published reports to assess the potential of the reported information to support FDA approval of a commonly cited investigational imaging agent. Our survey revealed critical data limitations in most publications, all of which reported exploratory clinical studies. Here we summarize the precedent for FDA approval of imaging agents using effectiveness data from publications, FDA guidance, and our experience in reviewing publications. We also present a key-data checklist for investigators to consider in the design, conduct, and reporting of exploratory clinical studies for publication. We encourage editors and peer reviewers to consider requiring these key data when reviewing these reports for publication. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G
2015-08-19
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.
2015-01-01
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906
Oliveira, Bruno L.; Blasi, Francesco; Rietz, Tyson A.; Rotile, Nicholas J.; Day, Helen; Caravan, Peter
2016-01-01
We recently showed the high target specificity and favorable imaging properties of 64Cu and Al18F positron emission tomography (PET) probes for non-invasive imaging of thrombosis. Here, our aim was to evaluate new derivatives labeled with either with 68Ga, 111In, or 99mTc as thrombus imaging agents for PET and single-photon emission computed tomography (SPECT). In this study, the feasibility and potential of these probes for thrombus imaging was assessed in detail in two animal models of arterial thrombosis. The specificity of the probes was further evaluated using a triple-isotope approach with multimodal SPECT/PET/CT imaging. Methods Radiotracers were synthesized using a known fibrin-binding peptide conjugated to NODAGA, DOTA-MA, or a diethylenetriamine ligand (DETA-PA), followed by labeling with 68Ga (FBP14, 68Ga-NODAGA), 111In (FBP15, 111In-DOTA-MA) or 99mTc (FBP16, 99mTc(CO)3-DETA-PA), respectively. PET or SPECT imaging, biodistribution, pharmacokinetics and metabolic stability were evaluated in rat models of mural and occlusive carotid artery thrombosis. In vivo target specificity was evaluated by comparing the distribution of the SPECT and PET probes with preformed 125I-labeled thrombi and with a non-binding control probe using SPECT/PET/CT imaging. Results All three radiotracers showed similar affinity to soluble fibrin fragment DD(E) (Ki = 0.53–0.83 μM). After the kidneys, the highest uptake of 68Ga-FBP14 and 111In-FBP15 was in the thrombus (1.0 ± 0.2% ID/g) with low off-target accumulation. Both radiotracers underwent fast systemic elimination (t1/2 = 8-15 min) through the kidneys, which led to highly conspicuous thrombi on PET and SPECT images. 99mTc-FBP16 displayed low target uptake and distribution consistent with aggregation and/or degradation. Triple isotope imaging experiments showed that both 68Ga-FBP14 and 111In-FBP15, but not the nonbinding derivative 64Cu-D-Cys-FBP8, detected the location of the 125I-labeled thrombus, confirming high target specificity. Conclusion 68Ga-FBP14 and 111In-FBP15 have high fibrin affinity and thrombus specificity, and represent useful PET and SPECT probes for thrombus detection. PMID:26251420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Padmakar V.; Hao Guiyang; Arora, Veera
Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new classmore » of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.« less
Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
2003-07-25
This image of the active galaxy Centaurus A was taken by NASA's Galaxy Evolution Explorer on June 7, 2003. The galaxy is located 30 million light-years from Earth and is seen edge on, with a prominent dust lane across the major axis. In this image the near ultraviolet emission is represented as green, and the far ultraviolet emission as blue. The galaxy exhibits jets of high energy particles, which were traced by the X-ray emission and measured by NASA's Chandra X-ray Observatory. These X-ray emissions are seen as red in the image. Several regions of ultraviolet emission can be seen where the jets of high energy particles intersect with hydrogen clouds in the upper left corner of the image. The emission shown may be the result of recent star formation triggered by the compression of gas by the jet. http://photojournal.jpl.nasa.gov/catalog/PIA04624
Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography
NASA Astrophysics Data System (ADS)
Zhang, Q.; Iwakuma, N.; Sharma, P.; Moudgil, B. M.; Wu, C.; McNeill, J.; Jiang, H.; Grobmyer, S. R.
2009-09-01
Photoacoustic tomography (PAT) is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. The ability to quantitatively and non-invasively image nanoparticles has important implications for the development of nanoparticles as in vivo cancer diagnostic and therapeutic agents. In this study, the ability of systemically administered poly(ethylene glycol)-coated (PEGylated) gold nanoparticles as a contrast agent for in vivo tumor imaging with PAT has been evaluated. We demonstrate that gold nanoparticles (20 and 50 nm) have high photoacoustic contrast as compared to mouse tissue ex vivo. Gold nanoparticles can be visualized in mice in vivo following subcutaneous administration using PAT. Following intravenous administration of PEGylated gold nanoparticles to tumor-bearing mice, accumulation of gold nanoparticles in tumors can be effectively imaged with PAT. With gold nanoparticles as a contrast agent, PAT has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.
Wooten, A. Lake; Lewis, Benjamin C.; Lapi, Suzanne E.
2014-12-11
The production of positron-emitting isotopes of manganese is potentially important for developing contrast agents for dual-modality positron emission tomography and magnetic resonance (PET/MR) imaging, as well as for in vivo imaging of the biodistribution and toxicity of manganese. Furthermore, the decay properties of 52Mn make it an excellent candidate for these applications, and it can easily be produced by bombardment of a chromium target with protons or deuterons from a low-energy biomedical cyclotron. There are several parameters essential to this mode of production—target thickness, beam energy, beam current, and bombardment time—depend heavily on the availability of reliable, reproducible cross-section data.more » Our paper contributes to the routine production of 52gMn for biomedical research by contributing experimental cross-sections for natural chromium ( natCr) targets for the natCr(p,x) 52gMn reaction, as well as for the production of the radiocontaminants 52m, 54Mn.« less
Wiemer, Jens; Steinbach, Jörg; Pietzsch, Jens; Mamat, Constantin
2017-08-01
The visualization of Eph receptors, which are overexpressed in various tumor entities, using selective small molecule Eph inhibitors by means of positron emission tomography is a promising approach for tumor imaging. N-(Pyrimidinyl)indazolamines represent a class of compounds, which are known to have high affinity especially for the EphB4 receptor. Radiofluorination of these compounds could provide a highly specific imaging agent and was investigated using a classical nucleophilic introduction of [ 18 F]fluoride as well as a less common nucleophilic ring-opening reaction of azetidinium salts. In the past, radiofluorinations using azetidinium precursors were demonstrated to result in high radiochemical yields in short periods. For this purpose, an azetidinium precursor based on the N-(pyrimidinyl)indazolamine lead compound was developed, and radiofluorination was successfully accomplished. The respective [ 18 F]radiotracer was quickly prepared with high radiochemical purity >97% and in a radiochemical yield of 34%. Copyright © 2017 John Wiley & Sons, Ltd.
Organic-inorganic hybrid carbon dots for cell imaging
NASA Astrophysics Data System (ADS)
Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan
2018-04-01
In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.
2012-04-01
detection of bone metastasis from breast cancer. The proposed imaging agent is consist of bone targeting moiety of Asp8 and MRI imaging moiety of DOTA ...peptide onto DOTA followed by Gd complexation was performed to achieve the proposed imaging agent. Non-targeting and CTSK-insensitive controls were...synthesis (SPPS) strategy, and purified by preparative HPLC. The chemical structures of peptides were shown below. Peptides reacted with DOTA -NHS
NASA Astrophysics Data System (ADS)
Badea, C. T.; Samei, E.; Ghaghada, K.; Saunders, R.; Yuan, H.; Qi, Y.; Hedlund, L. W.; Mukundan, S.
2008-03-01
Imaging tumor angiogenesis in small animals is extremely challenging due to the size of the tumor vessels. Consequently, both dedicated small animal imaging systems and specialized intravascular contrast agents are required. The goal of this study was to investigate the use of a liposomal contrast agent for high-resolution micro-CT imaging of breast tumors in small animals. A liposomal blood pool agent encapsulating iodine with a concentration of 65.5 mg/ml was used with a Duke Center for In Vivo Microscopy (CIVM) prototype micro-computed tomography (micro-CT) system to image the R3230AC mammary carcinoma implanted in rats. The animals were injected with equivalent volume doses (0.02 ml/kg) of contrast agent. Micro-CT with the liposomal blood pool contrast agent ensured a signal difference between the blood and the muscle higher than 450 HU allowing the visualization of the tumors 3D vascular architecture in exquisite detail at 100-micron resolution. The micro-CT data correlated well with the histological examination of tumor tissue. We also studied the ability to detect vascular enhancement with limited angle based reconstruction, i.e. tomosynthesis. Tumor volumes and their regional vascular percentage were estimated. This imaging approach could be used to better understand tumor angiogenesis and be the basis for evaluating anti-angiogenic therapies.
Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V
2017-09-01
Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malinen, Eirik; Rødal, Jan; Knudtsen, Ingerid Skjei; Søvik, Åste; Skogmo, Hege Kippenes
2011-08-01
Molecular and functional imaging techniques such as dynamic positron emission tomography (DPET) and dynamic contrast enhanced computed tomography (DCECT) may provide improved characterization of tumors compared to conventional anatomic imaging. The purpose of the current work was to compare spatiotemporal uptake patterns in DPET and DCECT images. A PET/CT protocol comprising DCECT with an iodine based contrast agent and DPET with (18)F-fluorodeoxyglucose was set up. The imaging protocol was used for examination of three dogs with spontaneous tumors of the head and neck at sessions prior to and after fractionated radiotherapy. Software tools were developed for downsampling the DCECT image series to the PET image dimensions, for segmentation of tracer uptake pattern in the tumors and for spatiotemporal correlation analysis of DCECT and DPET images. DCECT images evaluated one minute post injection qualitatively resembled the DPET images at most imaging sessions. Segmentation by region growing gave similar tumor extensions in DCECT and DPET images, with a median Dice similarity coefficient of 0.81. A relatively high correlation (median 0.85) was found between temporal tumor uptake patterns from DPET and DCECT. The heterogeneity in tumor uptake was not significantly different in the DPET and DCECT images. The median of the spatial correlation was 0.72. DCECT and DPET gave similar temporal wash-in characteristics, and the images also showed a relatively high spatial correlation. Hence, if the limited spatial resolution of DPET is considered adequate, a single DPET scan only for assessing both tumor perfusion and metabolic activity may be considered. However, further work on a larger number of cases is needed to verify the correlations observed in the present study.
New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging
Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno
2013-01-01
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542
NASA Astrophysics Data System (ADS)
Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire
2015-10-01
Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.
Gaseous emissions from management of solid waste: a systematic review
Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; del Prado, Agustín
2015-01-01
The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. PMID:25393229
Gaseous emissions from management of solid waste: a systematic review.
Pardo, Guillermo; Moral, Raúl; Aguilera, Eduardo; Del Prado, Agustín
2015-03-01
The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3 ). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta-analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2 O) and methane (CH4 ) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2 O: 50% and CH4 : 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta-analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.
2017-10-01
At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.
Imaging outcomes for trials of remyelination in multiple sclerosis
Mallik, Shahrukh; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Miller, David H
2014-01-01
Trials of potential neuroreparative agents are becoming more important in the spectrum of multiple sclerosis research. Appropriate imaging outcomes are required that are feasible from a time and practicality point of view, as well as being sensitive and specific to myelin, while also being reproducible and clinically meaningful. Conventional MRI sequences have limited specificity for myelination. We evaluate the imaging modalities which are potentially more specific to myelin content in vivo, such as magnetisation transfer ratio (MTR), restricted proton fraction f (from quantitative magnetisation transfer measurements), myelin water fraction and diffusion tensor imaging (DTI) metrics, in addition to positron emission tomography (PET) imaging. Although most imaging applications to date have focused on the brain, we also consider measures with the potential to detect remyelination in the spinal cord and in the optic nerve. At present, MTR and DTI measures probably offer the most realistic and feasible outcome measures for such trials, especially in the brain. However, no one measure currently demonstrates sufficiently high sensitivity or specificity to myelin, or correlation with clinical features, and it should be useful to employ more than one outcome to maximise understanding and interpretation of findings with these sequences. PET may be less feasible for current and near-future trials, but is a promising technique because of its specificity. In the optic nerve, visual evoked potentials can indicate demyelination and should be correlated with an imaging outcome (such as optic nerve MTR), as well as clinical measures. PMID:24769473
Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method
NASA Astrophysics Data System (ADS)
Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.
2016-05-01
ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.
Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K
2010-12-01
Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.
NASA Astrophysics Data System (ADS)
Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.
2010-12-01
Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.
NASA Astrophysics Data System (ADS)
Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.
2018-03-01
Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.
Meta-Analysis of Stress Myocardial Perfusion Imaging
2017-06-06
Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography
... tissues are working. Other imaging tests, such as magnetic resonance imaging ( MRI ) and computed tomography ( CT ) scans only reveal ... M, Hellwig S, Kloppel S, Weiller C. Functional neuroimaging: functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed ...
WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.
Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X
2011-03-30
We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.
Ultrasound Molecular Imaging: Moving Towards Clinical Translation
Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.
2015-01-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932
Ultrasound molecular imaging: Moving toward clinical translation.
Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K
2015-09-01
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Using DMSP/OLS nighttime imagery to estimate carbon dioxide emission
NASA Astrophysics Data System (ADS)
Desheng, B.; Letu, H.; Bao, Y.; Naizhuo, Z.; Hara, M.; Nishio, F.
2012-12-01
This study highlighted a method for estimating CO2 emission from electric power plants using the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) stable light image product for 1999. CO2 emissions from power plants account for a high percentage of CO2 emissions from fossil fuel consumptions. Thermal power plants generate the electricity by burning fossil fuels, so they emit CO2 directly. In many Asian countries such as China, Japan, India, and South Korea, the amounts of electric power generated by thermal power accounts over 58% in the total amount of electric power in 1999. So far, figures of the CO2 emission were obtained mainly by traditional statistical methods. Moreover, the statistical data were summarized as administrative regions, so it is difficult to examine the spatial distribution of non-administrative division. In some countries the reliability of such CO2 emission data is relatively low. However, satellite remote sensing can observe the earth surface without limitation of administrative regions. Thus, it is important to estimate CO2 using satellite remote sensing. In this study, we estimated the CO2 emission by fossil fuel consumption from electric power plant using stable light image of the DMSP/OLS satellite data for 1999 after correction for saturation effect in Japan. Digital number (DN) values of the stable light images in center areas of cities are saturated due to the large nighttime light intensities and characteristics of the OLS satellite sensors. To more accurately estimate the CO2 emission using the stable light images, a saturation correction method was developed by using the DMSP radiance calibration image, which does not include any saturation pixels. A regression equation was developed by the relationship between DN values of non-saturated pixels in the stable light image and those in the radiance calibration image. And, regression equation was used to adjust the DNs of the radiance calibration image. Then, saturated DNs of the stable light image was corrected using adjusted radiance calibration image. After that, regression analysis was performed with cumulative DNs of the corrected stable light image, electric power consumption, electric power generation and CO2 emission by fossil fuel consumption from electric power plant each other. Results indicated that there are good relationships (R2>90%) between DNs of the corrected stable light image and other parameters. Based on the above results, we estimated the CO2 emission from electric power plant using corrected stable light image. Keywords: DMSP/OLS, stable light, saturation light correction method, regression analysis Acknowledgment: The research was financially supported by the Sasakawa Scientific Research Grant from the Japan Science Society.
Image reconstruction for x-ray K-edge imaging with a photon counting detector
NASA Astrophysics Data System (ADS)
Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge
2014-09-01
Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.
Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M
2016-05-05
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
2017-01-01
Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. PMID:28776023
Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.
Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego
2006-05-01
To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for evaluating cartilage fixed-charge density. (c) RSNA, 2006.
Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming
2016-01-01
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.
NASA Astrophysics Data System (ADS)
Dong, Kai; Liu, Zhen; Liu, Jianhua; Huang, Sa; Li, Zhenhua; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2014-01-01
In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents.In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents. Electronic supplementary information (ESI) available: TEM images of MnWO4 nanoparticles synthesized at pH = 7, 180 °C pH = 9, 180 °C pH = 6, 200 °C with various amino acid molecules as capped agents, survey XPS spectra, FTIR spectrum of glycine capped MnWO4 nanorods, photos of glycine capped MnWO4 nanorods in various solutions including PBS, DMEM cell medium, and FBS, in vivo coronal view CT images of a rat before and after intravenous injection of iobitridol at different timed intervals, in vivo CT imaging of the rat one month after intravenous injection of MnWO4 nanorods, CT values of the heart, liver, spleen and kidney of a rat before and after intravenous administration of MnWO4 nanorods and iobitridol at different time intervals, hematology analysis and blood biochemical assay. See DOI: 10.1039/c3nr05455a
Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents
Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.
2014-01-01
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973
Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.
Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M
2009-12-22
Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Quli; Cheng, Kai; Hu, Xiang
Developing multifunctional and easily prepared nanoplatforms with integrated different modalities is highly challenging for molecular imaging. Here, we report the successful transfer of an important molecular target, melanin, into a novel multimodality imaging nanoplatform. Melanin is abundantly expressed in melanotic melanomas and thus has been actively studied as a target for melanoma imaging. In our work, the multifunctional biopolymer nanoplatform based on ultrasmall (<10 nm) water-soluble melanin nanoparticle (MNP) was developed and showed unique photoacoustic property and natural binding ability with metal ions (for example, 64Cu 2+, Fe 3+). Therefore, MNP can serve not only as a photoacoustic contrast agent,more » but also as a nanoplatform for positron emission tomography (PET) and magnetic resonance imaging (MRI). Traditional passive nanoplatforms require complicated and time-consuming processes for prebuilding reporting moieties or chemical modifications using active groups to integrate different contrast properties into one entity. In comparison, utilizing functional biomarker melanin can greatly simplify the building process. We further conjugated α vβ 3 integrins, cyclic c(RGDfC) peptide, to MNPs to allow for U87MG tumor accumulation due to its targeting property combined with the enhanced permeability and retention (EPR) effect. As a result, the multimodal properties of MNPs demonstrate the high potential of endogenous materials with multifunctions as nanoplatforms for molecular theranostics and clinical translation.« less
Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong
2014-10-01
Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .
Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun
2017-01-01
Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164
A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-01-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280
Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid
2015-12-01
Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.
Nuclear medicine and the failed joint replacement: Past, present, and future
Palestro, Christopher J
2014-01-01
Soon after the introduction of the modern prosthetic joint, it was recognized that radionuclide imaging provides useful information about these devices. The bone scan was used extensively to identify causes of prosthetic joint failure. It became apparent, however, that although sensitive, regardless of how the images were analyzed or how it was performed, the test was not specific and could not distinguish among the causes of prosthetic failure. Advances in anatomic imaging, notably cross sectional modalities, have facilitated the diagnosis of many, if not most, causes of prosthetic failure, with the important exception of infection. This has led to a shift in the diagnostic paradigm, in which nuclear medicine investigations increasingly have focused on diagnosing infection. The recognition that bone scintigraphy could not reliably diagnose infection led to the development of combined studies, first bone/gallium and subsequently leukocyte/bone and leukocyte/marrow imaging. Labeled leukocyte imaging, combined with bone marrow imaging is the most accurate (about 90%) imaging test for diagnosing joint arthroplasty infection. Its value not withstanding, there are significant disadvantages to this test. In-vivo techniques for labeling leukocytes, using antigranulocyte antibodies have been explored, but have their own limitations and the results have been inconsistent. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) has been extensively investigated for more than a decade but its role in diagnosing the infected prosthesis has yet to be established. Antimicrobial peptides bind to bacterial cell membranes and are infection specific. Data suggest that these agents may be useful for diagnosing prosthetic joint infection, but large scale studies have yet to be undertaken. Although for many years nuclear medicine has focused on diagnosing prosthetic joint infection, the advent of hybrid imaging with single-photon emission computed tomography(SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements. PMID:25071885
Updating the carbon footprint of the Galician fishing activity (NW Spain).
Iribarren, Diego; Vázquez-Rowe, Ian; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo
2011-03-15
Recent life cycle assessment studies have revealed the relevance of cooling agent leakage when assessing the greenhouse gas (GHG) emissions generated by fishing vessel operations. The goal of this communication is to update the carbon footprinting of the Galician fishing activity (NW Spain) by including the GHG emissions from cooling agent leakage. Results proved the relevant role played by refrigerants regarding their contribution to the carbon footprint of fishing activities. Thus, an overall increase of 13% was found when comparing the final global carbon footprint for the Galician fishing activity with previous calculations that did not include these emissions. Nevertheless, further efforts should be made in order to provide robust data in this respect. Copyright © 2011 Elsevier B.V. All rights reserved.
Nonlinear spectral imaging of biological tissues
NASA Astrophysics Data System (ADS)
Palero, J. A.
2007-07-01
The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.
Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation
Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit
2017-01-01
The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928
Direct Real-Time Monitoring of Prodrug Activation by Chemiluminescence.
Gnaim, Samer; Scomparin, Anna; Das, Sayantan; Blau, Rachel; Satchi-Fainaro, Ronit; Shabat, Doron
2018-05-22
The majority of theranostic prodrugs reported so far relay information through a fluorogenic response generated upon release of the active chemotherapeutic agent. A chemiluminescence detection mode offers significant advantages over fluorescence, mainly due to the superior signal-to-noise ratio of chemiluminescence. Here we report the design and synthesis of the first theranostic prodrug monitored by a chemiluminescence diagnostic mode. As a representative model, we prepared a prodrug from the chemotherapeutic monomethyl auristatin E, which was modified for activation by β-galactosidase. The activation of the prodrug in the presence of β-galactosidase is accompanied by emission of a green photon. Light emission intensities, which increase with increasing concentration of the prodrug, were linearly correlated with a decrease in the viability of a human cell line that stably expresses β-galactosidase. We obtained sharp intravital chemiluminescent images of endogenous enzymatic activity in β-galactosidase-overexpressing tumor-bearing mice. The exceptional sensitivity achieved with the chemiluminescence diagnostic mode should allow the exploitation of theranostic prodrugs for personalized cancer treatment. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.