Science.gov

Sample records for emission sounder tes

  1. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  2. Ammonia Measurements by the NASA Tropospheric Emission Spectrometer (TES) and the NPP Suomi Cross-Track Infrared Sounder (CrIS)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Zhu, J.; Pinder, R. W.; Bash, J. O.; Walker, J. T.; Luo, M.

    2013-12-01

    Ammonia is highly reactive, with concurrent high spatial and temporal variability; it can play a key role in determining air quality through its part in the formation of PM2.5 particles. Deposition of NH3 also impacts water quality. With increased fertilizer use and rising temperatures ammonia concentrations are expected to increase significantly over India and China. Nevertheless in situ measurements are sparse, especially in areas beyond North America and Europe. The air quality community has a pressing need for global information on the diurnal and seasonal cycles as well as the distribution and strength of the ammonia sources. Measurements from satellites can provide this information. An advanced optimal estimation algorithm has been developed to retrieve NH3 from the TES instrument flying on the AURA satellite and ammonia is currently a standard TES operational product, available at http://avdc.gsfc.nasa.gov/index.php?site=635564035&id=10&go=list&path=/NH3. A similar retrieval is at the prototyping stage for the CrIS instrument. We will first provide a short summary of the characteristics of TES retrieved ammonia, discuss the distinct characteristics of point and satellite measurements and illustrate how information from the latter is related to the former. We will then present results from comparisons with in situ measurements. Specifically, we will compare TES NH3 with surface measurements in North Carolina and China, and examine the trend in NH3 over China; we will also compare TES NH3 with surface and aircraft measurements in the San Joaquin Valley in California, during both the CalNex and DISCOVER-AQ campaigns. We will present results from the application of inverse methods using TES ammonia to constrain model emissions, an area of research that has showcased the value provided by satellite data. Finally, we will demonstrate the potential of a sensor with TES characteristics on a geostationary platform to provide data with quality sufficient to evaluate

  3. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  4. (abstract) Tropospheric Emission Spectrometer (TES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    A descope of the EOS program now requires that all EOS platforms after AM1 be launched on DELTA-class vehicles, which results in much smaller platforms (and payloads) than previously envisaged. A major part of the TES hardware design effort has therefore been redirected towards meeting this challenge. The development of the TES concept continues on a schedule to permit flight on the EOS CHEM platform in 2002, where it is planned to be accompanied by HIRDLS and MLS.

  5. Methane from the Tropospheric Emission Spectrometer (TES)

    NASA Technical Reports Server (NTRS)

    Payne, Vivienne; Worden, John; Kulawik, Susan; Frankenberg, Christian; Bowman, Kevin; Wecht, Kevin

    2012-01-01

    TES V5 CH4 captures latitudinal gradients, regional variability and interannual variation in the free troposphere. V5 joint retrievals offer improved sensitivity to lower troposphere. Time series extends from 2004 to present. V5 reprocessing in progress. Upper tropospheric bias. Mitigated by N2O correction. Appears largely spatially uniform, so can be corrected. How to relate free-tropospheric values to surface emissions.

  6. NASA Tropospheric Emission Spectrometer TES Instrument Onboard Aura

    NASA Image and Video Library

    2004-04-01

    Technicians install NASA's Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft prior to launch. Launched in July 2004 and designed to fly for two years, the TES mission is currently in an extended operations phase. Mission managers at NASA's Jet Propulsion Laboratory, Pasadena, California, are evaluating an alternate way to collect and process science data from the Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft following the age-related failure of a critical instrument component. TES is an infrared sensor designed to study Earth's troposphere, the lowermost layer of Earth's atmosphere, which is where we live. The remainder of the TES instrument, and the Aura spacecraft itself, are operating as expected, and TES continues to collect science data. TES is one of four instruments on Aura, three of which are still operating. http://photojournal.jpl.nasa.gov/catalog/PIA15608

  7. Radiometric comparison of Mars Climate Sounder and Thermal Emission spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Wolff, Michael J.; Smith, Michael D.; Schofield, John T.; McCleese, Daniel J.

    2013-07-01

    Mars Climate Sounder (MCS) nadir oriented thermal infrared and solar channel measurements are compared with Thermal Emission Spectrometer (TES) measurements across multiple Mars years. Thermal infrared measurements were compared by convolving the TES data using the MCS spectral band passes. The MCS solar channel measurements were calibrated using Compact Reconnaissance Imaging Spectrometer for Mars observations to provide the proper gain factor (3.09 × 10-3 W sr-1 m-2 μm-1). The comparisons of the datasets show that day and night surface and atmospheric temperatures are within 3 K over the course of 5 martian years, after accounting for the local time differences. Any potential interannual variations in global average temperature are masked by calibration and modeling uncertainties. Previous work attributed apparent interannual global surface and atmospheric temperature variations to major dust storm activity; however, this variation has since been attributed to a calibration error in the TES dataset that has been corrected. MCS derived Lambert albedos are slightly higher than TES measurements acquired over the same season and locations. Most of this difference can be attributed to the spectral response functions of MCS and TES. Consistent with previous work, global albedo is highly variable (˜6%) and this variability must be taken into account when determining long term global trends. Vertical aerosol distributions were also derived from the calibrated MCS visible channel limb measurements, demonstrating the utility of the MCS visible channel data for monitoring of aerosols.

  8. Utilizing Tropospheric Emission Spectrometer (TES) Special Observations to Study Air Quality Over Megacities: A Case Study of Mexico City

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Cady-Pereira, K.; Fu, D.; Payne, V.; Pfister, G.

    2016-12-01

    Since the beginning of 2013, the Tropospheric Emission Spectrometer (TES) on the NASA Aura spacecraft has been making special "transect" observations over 19 large cities across the globe. In all there are over 50 transect observations of each city, allowing for studying the chemistry of the troposphere during different seasons and differing atmospheric conditions. The cities that have been observed include, Beijing, Delhi and Mexico City. In addition, the TES group at JPL has been developing new data products using combined radiances from other satellite instruments. They have produced an ozone data product using a combination of TES and Ozone Monitoring Instrument (OMI) radiances. There has also been progress in creating an ozone product from combining OMI and Atmospheric Infrared Sounder (AIRS) radiances using the TES retrieval framework. This product offers the possibility of better spatial coverage than the TES or TES/OMI products. We have selected an observation from October 13, 2013 over Mexico City for doing a case study where high values of ozone were seen in the lower troposphere in retrievals from TES and TES/OMI. Other trace gases measured by TES, carbon monoxide, methanol, and formic acid were also enhanced over the city. TES was also able to capture downwind conditions where the trace gases were no longer enhanced except for formic acid and peroxyacetyl nitrate which showed elevated values. We will utilize trajectory analysis, the TES data as well as combined TES-OMI retrievals, the new combined AIRS-OMI retrievals of ozone to examine this case in more detail to understand possible broader scale effects of Mexico City pollution. Model results will be utilized to provide further context in understanding the atmospheric conditions being studied. We feel the TES special observations of megacities will provide an opportunity to study the effects of local sources versus broader regional sources on pollutions of these large cities.

  9. Comparative Analysis of the Methane Data Products from the Tropospheric Emission Spectrometer and the Atmospheric Infrared Sounder.

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Worden, J. R.

    2016-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane products to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellations (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both satellites sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. In a previous study, total column methane was mapped and global zonal averages were compared. It was found that bias of the total column measurements between the two sounders was about constant over tropical and subtropical regions. However, because AIRS spectral resolution is lower than that of the TES, it is important to analyze the difference in vertical sensitivity. In this study, we will construct vertical profiles of methane concentration and compare them statistically through RMS difference and bias to better understand these differences. In addition, we will compare the error profile and total column errors of the TES and AIRS methane from the data to better understand error characteristics of the products.

  10. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science

    NASA Astrophysics Data System (ADS)

    Kulawik, S. S.; Jones, D. B. A.; Nassar, R.; Irion, F. W.; Worden, J. R.; Bowman, K. W.; Machida, T.; Matsueda, H.; Sawa, Y.; Biraud, S. C.; Fischer, M.; Jacobson, A. R.

    2009-12-01

    We present carbon dioxide (CO2) estimates from the Tropospheric Emission Spectrometer (TES) on the EOS-Aura satellite launched in 2004. For observations between 40° S and 45° N, we find about 1 degree of freedom with peak sensitivity at 511 hPa. The estimated error is ~10 ppm for a single target and about 1.3 ppm for monthly averages on spatial scales of 20°×30°. Monthly spatially-averaged TES results from 2005-2008 processed with a uniform initial guess and prior are compared to CONTRAIL aircraft data over the Pacific ocean, aircraft data at the Southern Great Plains (SGP) ARM site in the southern US, and the Mauna Loa and Samoa surface stations. Comparisons to Mauna Loa observatory show a correlation of 0.92, a standard deviation of 1.3 ppm, a predicted error of 1.2 ppm, and a ~2% low bias, which is subsequently corrected, and comparisons to SGP aircraft data over land show a correlation of 0.67 and a standard deviation of 2.3 ppm. TES data between 40° S and 45° N for 2006-2007 are compared to surface flask data, GLOBALVIEW, the Atmospheric Infrared Sounder (AIRS), and CarbonTracker. Comparison to GLOBALVIEW-CO2 ocean surface sites shows a correlation of 0.60 which drops when TES is offset in latitude, longitude, or time. At these same locations, TES shows a 0.62 and 0.67 correlation to CarbonTracker with TES observation operator at the surface and 5 km, respectively. We also conducted an observing system simulation experiment to assess the potential utility of the TES data for inverse modeling of CO2 fluxes. We find that if biases in the data and model are well characterized, the averaged data have the potential to provide sufficient information to significantly reduce uncertainty on annual estimates of regional CO2 sources and sinks. Averaged pseudo-data at 10°×10° reduced uncertainty in flux estimates by as much as 70% for some tropical regions.

  11. The Athena Miniature Thermal Emission Spectrometer (Mini-TES)

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Mehall, G. L.; Gorelick, N.; Silverman, S.

    2000-07-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) is a mature, high-performance infrared remote sensing instrument designed specifically for use on the martian surface. The major objectives of the Mini-TES portion of the Athena investigation are: (1) to map the mineralogy of rocks and soils from the near field to the horizon; (2) to determine the temperature profile and dust, water vapor and water ice abundance of the lower atmosphere; and (3) to determine the thermophysical properties (particle size, induration, and sub-surface layering) of the surrounding terrain. The instrument uses optical, electronic, and mechanical designs with high heritage from the Mars Global Surveyor TES instrument currently in orbit around Mars. The Mini-TES will provide infrared spectral image cubes of the full 360 deg scene around the rover from 50 deg below to 30 deg above the horizon at spatial resolutions of 8 and 20 mrad (8 and 20 cm at 10 m distance). Mini-TES covers the spectral range from 5 to 30 microns (2000 to 333/cm) with a spectral resolution of 10/cm . An elevation mirror capable of rotating more than 180 deg is mounted atop the mast between the two Pan-cam camera heads, reflecting radiation down through the mast and the azimuthal drive system, and into the Mini-TES telescope and interferometer. This system provides a full panoramic view of the surface, the atmosphere, and an internal, full-aperture calibration target. The spectrometer telescope is a 6.35-cm diameter reflecting Cassegrain that feeds a flat-plate Michelson interferometer. The instrument uses an uncooled deuterated triglycine sulfate (DTGS) pyroelectric detector that can operate from -40 to +40 C with no required cooling or heating.

  12. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science

    NASA Astrophysics Data System (ADS)

    Kulawik, S. S.; Jones, D. B. A.; Nassar, R.; Irion, F. W.; Worden, J. R.; Bowman, K. W.; Machida, T.; Matsueda, H.; Sawa, Y.; Biraud, S. C.; Fischer, M. L.; Jacobson, A. R.

    2010-06-01

    We present carbon dioxide (CO2) estimates from the Tropospheric Emission Spectrometer (TES) on the EOS-Aura satellite launched in 2004. For observations between 40° S and 45° N, we find about 1 degree of freedom with peak sensitivity at 511 hPa. The estimated error is ~10 ppm for a single target and 1.3-2.3 ppm for monthly averages on spatial scales of 20°×30°. Monthly spatially-averaged TES data from 2005-2008 processed with a uniform initial guess and prior are compared to CONTRAIL aircraft data over the Pacific ocean, aircraft data at the Southern Great Plains (SGP) ARM site in the southern US, and the Mauna Loa and Samoa surface stations. Comparisons to Mauna Loa data show a correlation of 0.92, a standard deviation of 1.3 ppm, a predicted error of 1.2 ppm, and a ~2% low bias, which is subsequently corrected. Comparisons to SGP aircraft data over land show a correlation of 0.67 and a standard deviation of 2.3 ppm. TES data between 40° S and 45° N for 2006-2007 are compared to surface flask data, GLOBALVIEW, the Atmospheric Infrared Sounder (AIRS), and CarbonTracker. Comparison to GLOBALVIEW-CO2 ocean surface sites shows a correlation of 0.60 which drops when TES is offset in latitude, longitude, or time. At these same locations, TES shows a 0.62 and 0.67 correlation to CarbonTracker at the surface and 5 km, respectively. We also conducted an observing system simulation experiment to assess the potential utility of the TES data for inverse modeling of CO2 fluxes. We find that if biases in the data and model are well characterized, the averaged data have the potential to provide sufficient information to significantly reduce uncertainty on annual estimates of regional CO2 sources and sinks. Averaged pseudo-data at 10°×10° reduced uncertainty in flux estimates by as much as 70% for some tropical regions.

  13. Pollution over Megacity Regions from the Tropospheric Emission Spectrometer (TES)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Payne, V.; Hegarty, J. D.; Luo, M.; Bowman, K. W.; Millet, D. B.

    2015-12-01

    The world's megacities, defined as urban areas with over 10 million people, are growing rapidly in population and increasing in number, as the migration from rural to urban areas continues. This rapid growth brings economic opportunities but also exacts costs, such as traffic congestion, inadequate sanitation and poor air quality. Monitoring air quality has become a priority for many regional governments, as they seek to understand the sources and distribution of the species contributing to the local pollution. Hyperspectral infrared instruments orbiting the Earth can measure many of these species simultaneously, and since they measure averages over their footprints, they are less sensitive to proximity to strong point sources than in situ measurements, and thus provide a more regional perspective. The JPL TES team has selected a number of megacities as Special Observation targets. These observations, or transects, are sets of 20 closely spaced (12 km apart) TES observations carried out every sixteen days. We will present the TES ozone (O3), peroxyacetyl nitrate (PAN), ammonia (NH3), formic acid (HCOOH) and methanol (CH3OH) data collected over Mexico City, Lagos (Nigeria) and Los Angeles from 2013 through 2015, and illustrate how the seasonality in the TES measurements is related to local emissions, biomass burning and regional circulation patterns, and we will reinforce our arguments with MODIS AOD and TES CO data. One of the transects over Mexico City in October demonstrates very nicely the synergy obtained from simultaneous measurements of multiple trace species. We will also discuss the spatial variability along the transects and how it is related to topography and land use.

  14. The Hyperspectral Thermal Emission Spectrometer (HyTES): Preliminary Results

    NASA Technical Reports Server (NTRS)

    Hook, Simon; Johnson, William R.; Eng, Bjorn T.; Gunapala, Sarah D.; Lamborn, Andrew U.; Mouroulis, Pantazis, Z.; Mouroulis, Pantazis, Z.; Paine, Christopher G.; Soibel, Alexander; Wilson, Daniel W.

    2011-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier 2 Decadal Survey Missions. HyTES will provide information on how to place the filters on the HyspIRI Thermal Infrared Instrument (TIR) as well as provide antecedent science data. The pushbroom design has 512 spatial pixels over a 50-degree field of view and 256 spectral channels between 7.5 micrometers to 12 micrometers. HyTES includes many key enabling state-of-the-art technologies including a high performance convex diffraction grating, a quantum well infrared photodetector (QWIP) focal plane array, and a compact Dyson-inspired optical design. The Dyson optical design allows for a very compact and optically fast system (F/1.6). It also minimizes cooling requirements due to the fact it has a single monolithic prism-like grating design which allows baffling for stray light suppression. The monolithic configuration eases mechanical tolerancing requirements which are a concern since the complete optical assembly is operated at cryogenic temperatures ((is) approximately 100K). The QWIP allows for optimum spatial and spectral uniformity and provides adequate responsivity or D-star to allow 200mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. Assembly of the system is nearly complete. After completion, alignment results will be presented which show low keystone and smile distortion. This is required to minimize spatial-spectral mixing between adjacent spectral channels and spatial positions. Predictions show the system will have adequate signal to noise for laboratory calibration targets.

  15. The Hyperspectral Thermal Emission Spectrometer (HyTES): Preliminary Results

    NASA Technical Reports Server (NTRS)

    Hook, Simon; Johnson, William R.; Eng, Bjorn T.; Gunapala, Sarah D.; Lamborn, Andrew U.; Mouroulis, Pantazis, Z.; Mouroulis, Pantazis, Z.; Paine, Christopher G.; Soibel, Alexander; Wilson, Daniel W.

    2011-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier 2 Decadal Survey Missions. HyTES will provide information on how to place the filters on the HyspIRI Thermal Infrared Instrument (TIR) as well as provide antecedent science data. The pushbroom design has 512 spatial pixels over a 50-degree field of view and 256 spectral channels between 7.5 micrometers to 12 micrometers. HyTES includes many key enabling state-of-the-art technologies including a high performance convex diffraction grating, a quantum well infrared photodetector (QWIP) focal plane array, and a compact Dyson-inspired optical design. The Dyson optical design allows for a very compact and optically fast system (F/1.6). It also minimizes cooling requirements due to the fact it has a single monolithic prism-like grating design which allows baffling for stray light suppression. The monolithic configuration eases mechanical tolerancing requirements which are a concern since the complete optical assembly is operated at cryogenic temperatures ((is) approximately 100K). The QWIP allows for optimum spatial and spectral uniformity and provides adequate responsivity or D-star to allow 200mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. Assembly of the system is nearly complete. After completion, alignment results will be presented which show low keystone and smile distortion. This is required to minimize spatial-spectral mixing between adjacent spectral channels and spatial positions. Predictions show the system will have adequate signal to noise for laboratory calibration targets.

  16. Middle Atmosphere Sounder and Thermal Emission Radiometer - Master

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Scott, D. K.; Esplin, R. W.; Bailey, S. M.; Randall, C. E.

    2014-12-01

    The Middle Atmosphere Sounder and Thermal Emission Radiometer (MASTER) instrument is an advanced infrared limb-scanning instrument designed to measure the thermal structure, chemical composition, and energy balance from the stratosphere to the lower thermosphere. MASTER builds on NASA's long and successful heritage of infrared limb scanners including the LIMS, HIRDLS, and SABER instruments. MASTER has exceptional radiometric sensitivity with a more efficient, compact, and lightweight design. An updated focal plane enables critical new science in the areas of the carbon budget closure, geomagnetically-driven ozone destruction, and auroral energy deposition, while virtually eliminating out of band contributions via dual filtering. MASTER will continue the SABER-TIMED and EOS-Aura records of temperature, lower stratospheric water vapor, ozone, methane, and thermospheric cooling by nitric oxide and carbon dioxide. MASTER's size and mass are specifically designed to allow flexibility in the choice of small satellite buses and low cost launch vehicles. The expanded focal plane enables a choice of channels applicable to science objectives in NASA's Earth Science and Heliophysics enterprises. Due to the long and successful heritage the MASTER instrument is at an exceptionally high technology readiness level. No new technologies are required to build the MASTER flight instrument.

  17. Spectral emissivity features of plants: Prospects for the Hyperspectral Thermal Emission Spectrometer (HyTES) sensor

    NASA Astrophysics Data System (ADS)

    Meerdink, S.; Roberts, D. A.; Hook, S. J.

    2016-12-01

    The Thermal Infrared (TIR) spectrum has not been widely adopted for vegetation studies due to the limited availability of TIR sensors, low signal to noise ratios, and subtle features of plant spectra. However, recent improvements in TIR sensor design, atmospheric correction, and temperature emissivity separation have begun to achieve the necessary data quality for discerning TIR spectral features in plants. These technical developments make it possible to re-examine the TIR emissivity characteristics of plants. The Hyperspectral Thermal Emission Spectrometer (HyTES) airborne sensor has 256 bands that measures radiance between 7.5 - 12 μm and can be used to retrieve spectral emissivity with high precision. Here we evaluate: 1) TIR spectral variation between plant species at leaf scale; 2) TIR spectral signatures of plant canopies using HyTES imagery; and 3) TIR spectra scaling capabilities from leaf to canopy. HyTES imagery was acquired over Huntington Gardens in Pasadena, California, US on 1/25/2016 with a spatial resolution of 2 m. Leaf samples were collected on 2/2/16 from a diversity of trees species that had canopies larger than 10 m in diameter. Leaf spectra were collected using a Nicolet Model 4700 Interferometer Spectrometer fitted with a Labsphere gold coated integrating sphere which measured emissivity from 2.5 - 15.4 µm. While plant features are subtler and have lower reflectance in the TIR than the visible shortwave infrared spectrum, plants showed considerable spectral diversity at the leaf and canopy level using HyTES imagery. These analyses support the first steps of using HyTES imagery for future remote sensing vegetation studies.

  18. Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) CHEM Satellite

    NASA Technical Reports Server (NTRS)

    Beer, R.; Glavich, T.; Rider, D.

    2000-01-01

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier transform spectrometer scheduled to be launched into polar sun-synchronous orbit on the Earth Observing System (EOS) CHEM satellite in December 2002.

  19. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  20. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  1. Evaluating the Information from Minor Trace Gas Measurements by the Tropospheric Emission Spectrometer (TES)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Zhu, L.; Pinder, R. W.; Bash, J. O.; Walker, J. T.; Millet, D. B.; Wells, K. C.; Jeong, G.; Luo, M.; Chaliyakunnel, S.

    2012-12-01

    The high spectral resolution and good SNR provided by the TES instrument allow for the detection and retrieval of numerous trace species. Advanced optimal estimation algorithms have been developed to retrieve three of these, ammonia, methanol and formic acid, from TES radiances. Ammonia is currently a standard TES operational product, while methanol and formic acid will be standard products in the next TES software update (V006). Given the highly reactive nature of ammonia, with its concurrent high spatial and temporal variability, the large uncertainty in global emissions of methanol, and the large biases between measured and modeled formic acid, the air quality community has a pressing need for global information on these species; there is great interest in using these new satellite derived products, but there is often no clear idea on the information they provide. Here we will provide a short summary of the characteristics of the retrieved products, then present results from comparisons with in situ measurements. We will discuss the distinct characteristics of point and satellite measurements and illustrate how information from the latter is related to the former. We will compare global TES ammonia and methanol measurements with outcome from the GEOS-CHEM model. These comparisons have led us to examine a potential sampling bias driven by TES insensitivity in regions with low concentrations (less than 1 ppbv) or with low thermal contrast or thick clouds. We will present results from the application of inverse methods using TES ammonia and methanol to constrain model emissions, an area of research that has showcased the value provided by satellite data. Finally, we will demonstrate the potential of a sensor with TES characteristics on a geostationary platform to provide high quality data sufficient to evaluate models of the ammonia bi-directional exchange at the surface.

  2. A Hyperspectral Thermal Emission Spectrometer (HyTES) for High Altitude Applications

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Eng, B. T.; Staniszewski, Z. K.; Hook, S. J.

    2015-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and originally configured on the Twin Otter aircraft. The instrument utilizes a thermal infrared Dyson imaging spectrometer and provides 256 spectral channels between 7.5 and 12 micrometers with 512 spatial pixels cross-track over a 50 degree field of view. HyTES has successfully completed multiple campaigns on the low altitude Twin Otter platform and is now capable of routinely capturing multi-species gas plumes over urban and other science-applicable environments. Current system upgrades and modifications are underway to configure HyTES on the ER-2 high altitude aircraft. The ER-2 aircraft will fly at an altitude greater than 18 km (60,000 ft) and provide a wide swath width with 35 m ground pixel size. High altitude observations from HyTES on the ER-2 platform will be used to support HyspIRI TIR measurement development. The modifications to the system maintain the capability of the HyTES instrument on the Twin Otter aircraft and a new vacuum enclosure significantly reduces both the mass and volume of the instrument scanhead. The current instrument performance, upgrades, and specifications of the high altitude system will be presented.

  3. The tropospheric emission spectrometer (TES) for the Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Beer, R.

    1992-01-01

    In recent years, increasing concern has been expressed about Global Change - the natural and anthropogenic alteration of the Earth's environment involving global greenhouse warming and the associated climate change, urban and regional atmospheric pollution, acid deposition, regional increases in tropospheric zone, and the decrease in stratospheric ozone. A common theme among these problems is that they all involve those tropospheric trace gases which are fundamental to the biosphere-troposphere interaction, the chemistry of the free troposphere itself, and troposphere-stratosphere exchange. The chemical species involved all have spectral signatures within the near and mid infrared that can now be measured by advanced techniques of remote-sensing infrared spectroradiometry. Such a system is the Tropospheric Emission Spectrometer (TES), now in Phase B definition for the Earth Observing System (EOS) polar platforms. TES addresses these objectives by obtaining radiometrically calibrated, linewidth-limited spectral resolution, infrared spectra of the lower atmosphere using both natural thermal emission and reflected sunlight (where appropriate) in three different, but fully programmable, modes: a gobal mode, a pointed mode, and a limb-viewing mode. The goals of TES, its instrumentation, operational modes, sensitivity and data handling are discussed.

  4. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO2 with HIPPO and SGP aircraft profile measurements

    SciTech Connect

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.; Biraud, S. C.; Nassar, R.; Jones, D. B. A.; Olsen, E. T.; Osterman, and the TES and HIPPO teams, G. B.

    2012-01-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases. We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.

  5. Quantifying emissions of CO and NOx using observations from MOPITT, OMI, TES, and OSIRIS

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Walker, T. W.; Jiang, Z.; Henze, D. K.; Bourassa, A. E.; Degenstein, D. A.; Rochon, Y. J.

    2016-12-01

    We use the GEOS-Chem four-dimensional variational (4D-var) data assimilation with satellite observations of multiple chemical species to estimate emissions of CO and NOx, as well as the tropospheric concentrations of O3. In doing so, we utilize CO retrievals from The Measurements of Pollution In The Troposphere (MOPITT), O3 retrievals from the Tropospheric Emission Spectrometer (TES), O3 retrievals from the Optical Spectrograph and InfraRed Imager System (OSIRIS), and NO2 columns from the Ozone Monitoring Instrument (OMI). By integrating these data in the 4D-Var scheme, we obtain a chemical state in the model that is consistent with all of the data over the assimilation period. In this context, for example, we find that combining TES and OSIRIS improves O3, particularly in the tropical upper troposphere (by 10-20%), which leads to a reduction in the uncertainty of the NOx emission estimates. However, although assimilating multiple chemical species provides a stronger constraint on the chemical, state, there are still large uncertainties on the CO and NOx emission estimates, due to the dependence of the results on the selection of the assimilation window and how the datasets are weighted in the cost function.

  6. Tropospheric Emission Spectrometer (TES) Satellite Validations of Ammonia, Methanol, Formic Acid, and Carbon Monoxide over the Canadian Oil Sands

    EPA Pesticide Factsheets

    The URLs link to the data archive of the Troposphere Emission Spectrometer (TES) retrievals. These include the transects included in the Canadian Tar Sands study. A brief description of TES is listed below. TES is a spectrometer that measures the infrared-light energy (radiance) emitted by Earth's surface and by gases and particles in Earth's atmosphere. Every substance warmer than absolute zero emits infrared radiation at certain signature wavelengths. Spectrometers measure this radiation as a means of identifying the substances.TES has very high spectral resolution, which gives it the ability to pinpoint the wavelengths at which the substances are emitting. This enables precise identification of the substances, and also provides information about their location in the atmosphere. Emission wavelengths can vary with temperature and pressure, so seeing the emissions with great precision enables scientists to infer the temperature and pressure of the chemicals from which they came. This, in turn, implies that the chemicals being observed are at a certain altitude where those temperatures and pressures apply. The ability to determine the altitude of the observed chemicals enables TES to distinguish radiation from the upper and lower atmosphere, and focus on the lower layer - the troposphere.Since it observes light in the infrared range of the electromagnetic spectrum, similar to night-vision goggles, TES can observe both day and night. Its spectral range overlaps t

  7. Near-infrared emission spectra of TeS, TeSe and Te2

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.

    2014-10-01

    Emission spectra of the radicals TeS, TeSe and Te2 in the near-infrared spectral region have been measured with a high-resolution Fourier-transform spectrometer. The molecules were generated in a fast-flow system by reacting microwave-discharged mixtures of Tex, Sx, and/or Sex vapour and Ar carrier gas and excited by energy transfer and energy pooling processes in collisions with metastable oxygen O2(a1Δg). The b1Σ+(b0+) → X3Σ-(X10+,X21) electric dipole transitions of TeS and TeSe and the b1Σ+g(b0+g) → X3Σ-g(X21g) magnetic dipole transition of Te2 were measured at medium and high spectral resolution. A very weak emission at 3356 cm-1 observed in the spectrum of TeSe was identified to be the 0-0 band of the hitherto unknown a1Δ(a2) → X3Σ-(X21) transition of the molecule. Analyses of the spectra have yielded a number of new or improved spectroscopic parameters of the molecules.

  8. Observation capability of Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from International Space Station

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko; Tanaka, Takahiro; Dupuy, Eric; Kita, Kazuyuki; Baron, Philippe; Ochiai, Satoshi; Nishibori, Toshiyuki; Kikuchi, Kenichi; Mendrok, Jana; Murtagh, Donal P.; Urban, Joachim; Smiles Mission Team

    A new generation of sub-millimeter-wave receivers employing sensitive SIS (Superconductor-Insulator-Superconductor) detector technology will provide new opportunities for precise pas-sive remote sensing observation of minor constituents in atmosphere. Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) had been launched in September 11, 2009 and installed to the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES is a collaboration project of National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA). Mission objectives of SMILES are: 1. Space demonstration of super-sensitive SIS mixer and 4-K mechanical cooler technology 2. Super-sensitive global observation of atmospheric minor constituents with sub-millimeter-wave limb emission sounder JEM/SMILES will allow to observe the atmospheric species such as O3, H35Cl, H37Cl, ClO, HO2, BrO, HOCl, HOBr, HNO3, CH3CN, Ozone isotope species, H2O, and Ice Cloud with the precisions in a few to several tens percents. The altitude region of observation is from the upper troposphere to the mesopouse. We performed the early comparison/validation of ozone with 4 satellites measurements, AURA/MLS, Odin/SMR, ACE, and Odin/OSIRIS, and ozonesonde. SMILES ozone was in good agreement with these data. For example, difference between SMILES and MLS was less than 2 percent be-tween 20-50km. These results are consistent with the observation capabilities of JEM/SMILES with error analysis. This super technology may allow us to open new issues in atmospheric science.

  9. Correcting Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) High Altitude (40 - 65 km) Temperature Retrievals for Instrumental Correlated Noise and Biases

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.

    2011-12-01

    Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) nadir-soundings have been used to derive atmospheric temperatures up to roughly 40 km [Conrath et al., JGR 105 2000, Smith et al., JGR 106, 2001], and MGS-TES limb soundings have been used to extend the atmospheric temperature data set to > 60 km in altitude [Smith et al., JGR 106, 2001]. The ~40 - ~65 km altitude range probed by the MGS-TES limb sounding is particularly important for capturing key dynamical features such as the warm winter polar mesosphere [e.g., Smith et al., JGR 106, 2001; McCleese et al., Nature Geoscience 1, 2008], and the response of thermal tides to dust opacity [e.g. Wilson and Hamilton, J. Atmos. Sci. 53, 1996]. Thus accurate and precise temperature profiles at these altitudes are particularly important for constraining global circulation models. They are also critical for interpreting observations of mesospheric condensate aerosols [e.g., Määttänen et al., Icarus 209, 2010; McConnochie et al., Icarus 210, 2010)]. We have indentified correlated noise components in the MGS-TES limb sounding radiances that propagate into very large uncertainties in the retrieved temperatures. We have also identified a slowly varying radiance bias in the limb sounding radiances. Note that the nadir-sounding-based MGS-TES atmospheric temperatures currently available from the Planetary Data System are not affected by either of these issues. These two issues affect the existing MGS-TES limb sounding temperature data set are as follows: Considering, for example, the 1.5 Pascal pressure level (which typically falls between 50 and 60 km altitude), correlated-noise induced standard errors for individual limb-sounding temperature retrievals were 3 - 5 K in Mars Year 24, rising to 5 - 15 K in Mars Year 25 and 10 - 15 K in Mars Year 26 and 27. The radiance bias, although consistent on ~10-sol time scales, is highly variable over the course of the MGS-TES mission. It results in temperatures (at the 1

  10. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations of Dust Opacity During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.

    1999-01-01

    The Mars Global Surveyor (MGS) arrived at Mars in September 1997 near Mars southern spring equinox and has now provided monitoring of conditions in the Mars atmosphere for more than half a Mars year. The large majority of the spectra taken by the Thermal Emission Spectrometer (TES) are in a nadir geometry (downward looking mode) where Mars is observed through the atmosphere. Most of these contain the distinct spectral signature of atmospheric dust. For these nadir-geometry spectra we retrieve column-integrated infrared aerosol (dust) opacities. TES observations during the aerobraking and science-phasing portions of the MGS mission cover the seasonal range L(sub s)=184 deg - 28 deg. Excellent spatial coverage was obtained in the southern hemisphere. Northern hemisphere coverage is generally limited to narrow strips taken during the periapsis pass but is still very valuable. At the beginning of the mission the 9-(micron)meter dust opacity at midsouthern latitudes was low (0.15-0.25). As the season advanced through southern spring and into summer, TES observed several regional dust storms (including the Noachis dust storm of November 1997) where peak 9-(micron)meter dust opacities approached or exceeded unity, as well as numerous smaller local storms. Both large and small dust storms exhibited significant changes in both spatial coverage and intensity over a timescale of a day. Throughout southern spring and summer the region at the edge of the retreating southern seasonal polar ice cap was observed to be consistently more dusty than other latitudes.

  11. Detection and Spatial Mapping of Anthropogenic Methane Plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn; Duren, Riley; Hook, Simon; Hopkins, Francesca

    2016-04-01

    Detection and Spatial Mapping of Anthropogenic Methane Plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES) Glynn Hulley, Simon Hook, Riley Duren, Francesca Hopkins Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Currently large uncertainties exist associated with attribution and quantification of fugitive emissions of greenhouse gases such as methane across many regions and key economic sectors. A number of observational efforts are currently underway to better quantify and reduce uncertainties associated with these emissions, including agriculture and oil and gas production operations. One such effort led by JPL is the development of the Hyperspectral Thermal Emission Spectrometer (HyTES) - a wide swath Thermal Infrared (TIR) airborne imager with high spectral (256 bands from 7.5 - 12 micron) and spatial resolution (~1.5 m at 1-km AGL altitude) that presents a major advance in airborne TIR remote sensing measurements. Using HyTES we have developed robust and reliable techniques for the detection and high resolution mapping of small scale plumes of anthropogenic (oil and gas fields, landfills, dairies) and non-anthropogenic (natural seeps) sources of methane in the state of California and Colorado. A background on the HyTES sensor, science objectives, gas detection methods, and examples of mapping fugitive methane plumes in California and Colorado will be discussed. These kind of observational efforts and studies will help address critical science questions related to methane budgets and management of future emissions in California and other regions.

  12. Interannual Variability of Dust and Ice in the Mars Atmosphere: Comparison of MRO Mars Climate Sounder Retrievals with MGS-TES Limb Sounding Retrievals

    NASA Technical Reports Server (NTRS)

    Shirley, J. H.; McConnochie, T. H.; Kleinbohl, A.; Schofield, J. T.; Kass, D.; Heavens, N. G.; Benson, J.; McCleese, D. J.

    2011-01-01

    Dust and ice play important roles in Martian atmospheric dynamics on all time scales. Dust loading in particular exerts an important control on atmospheric temperatures and thereby on the strength of the atmospheric circulation in any given year. We present the first comparisons of MGS-TES aerosol opacity profiles with MRO-MCS aerosol opacity profiles. While the differences in vertical resolution are significant (a factor of 2), we find good agreement at particular seasons between nightside zonal average dust opacity profiles from the two instruments. Derived water ice opacities are likewise similar but show greater variability.

  13. Interannual Variability of Dust and Ice in the Mars Atmosphere: Comparison of MRO Mars Climate Sounder Retrievals with MGS-TES Limb Sounding Retrievals

    NASA Technical Reports Server (NTRS)

    Shirley, J. H.; McConnochie, T. H.; Kleinbohl, A.; Schofield, J. T.; Kass, D.; Heavens, N. G.; Benson, J.; McCleese, D. J.

    2011-01-01

    Dust and ice play important roles in Martian atmospheric dynamics on all time scales. Dust loading in particular exerts an important control on atmospheric temperatures and thereby on the strength of the atmospheric circulation in any given year. We present the first comparisons of MGS-TES aerosol opacity profiles with MRO-MCS aerosol opacity profiles. While the differences in vertical resolution are significant (a factor of 2), we find good agreement at particular seasons between nightside zonal average dust opacity profiles from the two instruments. Derived water ice opacities are likewise similar but show greater variability.

  14. Martian Temperatures Measured by the Thermal Emission Spectrometer (TES). Pathfinder landing site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image shows the nighttime (2AM) temperatures measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor wrapped on to a globe. The coldest temperatures (shown in purple) are -120C and the warmest temperatures (white) are -65C. The view is centered at 15N, 45W, near the Pathfinder landing site. The large warm (red) region in the north is Acidalia Planitia, which forms a low basin into which flowed a series of large channels. The floors of these channels can be seen as a pattern of warm (red and yellow) lines, indicating that they are covered with sandy and rocky material. Valles Marineris visible south of the equator as a linear, warm feature that stretches 3500 km. At this season the north polar region is in full sunlight as is relatively warm at night. It is winter in the southern hemisphere and the temperatures are extremely low (-120C).

  15. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  16. Direct Top-down Estimates of Biomass Burning CO Emissions Using TES and MOPITT Versus Bottom-up GFED Inventory

    NASA Technical Reports Server (NTRS)

    Pechony, Olga; Shindell, Drew T.; Faluvegi, Greg

    2013-01-01

    In this study, we utilize near-simultaneous observations from two sets of multiple satellite sensors to segregate Tropospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT) CO observations over active fire sources from those made over clear background. Hence, we obtain direct estimates of biomass burning CO emissions without invoking inverse modeling as in traditional top-down methods. We find considerable differences between Global Fire Emissions Database (GFED) versions 2.1 and 3.1 and satellite-based emission estimates in many regions. Both inventories appear to greatly underestimate South and Southeast Asia emissions, for example. On global scales, however, CO emissions in both inventories and in the MOPITT-based analysis agree reasonably well, with the largest bias (30%) found in the Northern Hemisphere spring. In the Southern Hemisphere, there is a one-month shift between the GFED and MOPITT-based fire emissions peak. Afternoon tropical fire emissions retrieved from TES are about two times higher than the morning MOPITT retrievals. This appears to be both a real difference due to the diurnal fire activity variations, and a bias due to the scarcity of TES data.

  17. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric Temperatures During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Conrath, Barney J.; Pearl, John C.; Smith, Michael D.; Maguire, William C.; Christensen, Philip R.; Dason, Shymala; Kaelberer, Monte S.

    1999-01-01

    Between September 1997, when the Mars Global Surveyor spacecraft arrived at Mars, and September 1998 when the final aerobraking phase of the mission began, the Thermal Emission Spectrometer (TES) has acquired an extensive data set spanning approximately half of a Martian year. Nadir-viewing spectral measurements from this data set within the 15-micrometers CO2 absorption band are inverted to obtain atmospheric temperature profiles from the surface up to about the 0.1 mbar level. The computational procedure used to retrieve the temperatures is presented. Mean meridional cross sections of thermal structure are calculated for periods of time near northern hemisphere fall equinox, winter solstice, and spring equinox, as well as for a time interval immediately following the onset of the Noachis Terra dust storm. Gradient thermal wind cross sections are calculated from the thermal structure. Regions of possible wave activity are identified using cross sections of rms temperature deviations from the mean. Results from both near-equinox periods show some hemispheric asymmetry with peak eastward thermal winds in the north about twice the magnitude of those in the south. The results near solstice show an intense circumpolar vortex at high northern latitudes and waves associated with the vortex jet core. Warming of the atmosphere aloft at mid-northern latitudes suggests the presence of a strong cross-equatorial Hadley circulation. Although the Noachis dust storm did not become global in scale, strong perturbations to the atmospheric structure are found, including an enhanced temperature maximum aloft at high northern latitudes resulting from intensification of the Hadley circulation. TES results for the various seasonal conditions are compared with published results from Mars general circulation models, and generally good qualitative agreement is found.

  18. Detection and Spatial Mapping of Anthropogenic Methane Plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hook, S. J.; Hulley, G. C.; Duren, R. M.; Guillevic, P.; Aubrey, A. D.; Johnson, W. R.

    2014-12-01

    Currently large uncertainties exist associated with attribution and quantification of fugitive emissions of greenhouse gases such as methane across many regions and key economic sectors. A number of observational efforts are currently underway to better quantify and reduce uncertainties associated with these emissions, including agriculture and oil and gas production operations. One such effort led by JPL is the development of the Hyperspectral Thermal Emission Spectrometer (HyTES) - a wide swath Thermal Infrared (TIR) airborne imager with high spectral (256 bands from 7.5 - 12 micron) and spatial resolution (~1.5 m at 1-km AGL altitude) that presents a major advance in airborne TIR remote sensing measurements. Using HyTES we have developed robust and reliable techniques for the detection and high resolution mapping of small scale plumes of anthropogenic (oil and gas fields, landfills, dairies) and non-anthropogenic (natural seeps) sources of methane in the state of California and Colorado. A background on the HyTES sensor, science objectives, gas detection methods, and examples of mapping fugitive methane plumes in California and Colorado will be discussed. These kind of observational efforts and studies will help address critical science questions related to methane budgets and management of future emissions in California and other regions.

  19. Remote gas plume sensing and imaging with NASA's Hyperspectral Thermal Emission Spectrometer (HyTES).

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hulley, Glynn; Hook, Simon J.

    2014-05-01

    The hyperspectral thermal emission spectrometer was developed under NASA's instrument incubator program and has now completed three deployments. The scan head uses a state-of-the-art Dyson spectrometer cooled to 100K coupled to a quantum well infrared photodetector array held at 40K. The combination allows for 256 spectral channels between 7.5μm and 12μm with 512 cross track spatial pixels. Spectral features for many interesting gases fall within the instrument passband. We first review the pre-flight calibration and validation process for HyTES using a suite of instrumentation. This includes a smile measurement at two wavelengths (8.18μm and 10.6μm) as well as a concentration determination using large aperture gas cells. We then show positive gas plume detection at ranges >1000m for various cases: Ammonia gas detection from Salton Sea fumaroles, Methane detection from staged releases points in Wyoming as well as naturally occurring methane hot spots off the coast of Santa Barbara.

  20. The EOS AURA Tropospheric Emission Spectrometer (TES): Status of the Program

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    2005-01-01

    This slide presentation is a programmatic overview covering some of the highlights of the mission and serve as an introduction to the accompanying presentations at the workshop. It reviews the goals and the products of the TES experiment, a simplified chemistry of ozone in both the stratosphere and troposphere, a description of the instrument, and the TES operational modes. Included are graphs showing some of the results of TES analysis of the key constituents of the tropospheric chemistry and the inter-regional transport.

  1. The EOS AURA Tropospheric Emission Spectrometer (TES): Status of the Program

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    2005-01-01

    This slide presentation is a programmatic overview covering some of the highlights of the mission and serve as an introduction to the accompanying presentations at the workshop. It reviews the goals and the products of the TES experiment, a simplified chemistry of ozone in both the stratosphere and troposphere, a description of the instrument, and the TES operational modes. Included are graphs showing some of the results of TES analysis of the key constituents of the tropospheric chemistry and the inter-regional transport.

  2. Characterization of anthropogenic methane plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES): a retrieval method and error analysis

    NASA Astrophysics Data System (ADS)

    Kuai, Le; Worden, John R.; Li, King-Fai; Hulley, Glynn C.; Hopkins, Francesca M.; Miller, Charles E.; Hook, Simon J.; Duren, Riley M.; Aubrey, Andrew D.

    2016-07-01

    We introduce a retrieval algorithm to estimate lower tropospheric methane (CH4) concentrations from the surface to 1 km with uncertainty estimates using Hyperspectral Thermal Emission Spectrometer (HyTES) airborne radiance measurements. After resampling, retrievals have a spatial resolution of 6 × 6 m2. The total error from a single retrieval is approximately 20 %, with the uncertainties determined primarily by noise and spectral interferences from air temperature, surface emissivity, and atmospheric water vapor. We demonstrate retrievals for a HyTES flight line over storage tanks near Kern River Oil Field (KROF), Kern County, California, and find an extended plume structure in the set of observations with elevated methane concentrations (3.0 ± 0.6 to 6.0 ± 1.2 ppm), well above mean concentrations (1.8 ± 0.4 ppm) observed for this scene. With typically a 20 % estimated uncertainty, plume enhancements with more than 1 ppm are distinguishable from the background values with its uncertainty. HyTES retrievals are consistent with simultaneous airborne and ground-based in situ CH4 mole fraction measurements within the reported accuracy of approximately 0.2 ppm (or ˜ 8 %), due to retrieval interferences related to air temperature, emissivity, and H2O.

  3. A Balloon-borne Limb-Emission Sounder at 650-GHz band for Stratospheric observations

    NASA Astrophysics Data System (ADS)

    Irimajiri, Yoshihisa; Ochiai, Satoshi

    We have developed a Balloon-borne Superconducting Submillimeter-Wave Limb-Emission Sounder (BSMILES) to observe stratospheric minor constituents like ozone, HCl etc. BSMILES carries a 300mm-diameter offset parabolic antenna, a 650-GHz heterodyne superconducting (SIS) low-noise receiver, and an acousto-optical spectrometer (AOS) with the bandwidth of 1GHz and the resolution of 1MHz. Gondola size is 1.35 m x 1.35 m x 1.26 m. Total weight is about 500 kg. Limb observations are made by scanning the antenna beam of about 0.12 degrees (FWHM) in vertical direction. A calibrated hot load (CHL) and elevation angle of 50 degrees are ob-served after each scan for calibration. The DSB system noise temperature of the SIS receiver is less than 460 K at 624-639 GHz with a best value of 330 K that is 11 times as large as the quantum limit. Data acquisition and antenna control are made by on-board PCs. Observed data are recorded to PC card with 2 GB capacity to collect after the observations from the sea, and HK data are transmitted to the ground. Gondola attitude is measured by three-axis fiber-optical gyroscope with accuracy less than 0.01 degrees, three-axis accelerometer, and a two-axis geoaspect sensor. Electric power is supplied by lithium batteries. Total power con-sumption is about 150W. Almost all systems are put in pressurized vessels for waterproofing, heat dissipation, and noise shield, etc. BSMILES was launched from Sanriku Balloon Center of Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), at the east coast of Japan, in the summer of 2003, 2004, and 2006. The gondola was carried to an altitude of 35 km by a balloon of 100,000 m3 in volume and the observations were made for 1.5 hours in 2004. All systems operated normally by keeping their temperature within the limit of operation by keeping gondola warm with styrene foam. After the observations, the gondola was dropped and splashed on the Pacific Ocean by a parachute and

  4. A comparison of minor trace gas retrievals from the Tropospheric Emission Spectrometer (TES) and the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Millet, D. B.; Gombos, D.; Van Damme, M.; Clarisse, L.; Coheur, P. F.; Pommier, M.; Clerbaux, C.

    2014-12-01

    The advent of hyperspectral infrared instruments orbiting the Earth has allowed for detecting and measuring numerous trace gas species that play important roles in atmospheric chemistry and impact air quality, but for which there is a dearth of information on their distribution and temporal variability. Here we will present global and regional comparisons of measurements from the NASA TES and the European MetOp IASI instruments of three of these gases: ammonia (NH3), formic acid (HCOOH) and methanol (CH3OH). Ammonia is highly reactive and thus very variable in space and time, while the sources and sinks of methanol and formic acid are poorly quantified: thus space-based measurements have the potential of significantly increasing our knowledge of the emissions and distributions of these gases. IASI and TES have many similarities but some significant differences. TES has significantly higher spectral resolution (0.06 cm-1), and its equator crossing times are ~1:30 am and 1:30 pm, local time, while IASI has lower resolution (0.5 cm-1) and an earlier equator crossing time (9:30 am and 9:30 pm), which leads to lower thermal contrast; however IASI provides much greater temporal and spatial coverage due to its cross-track scanning. Added to the instrumental differences are the differences in retrieval algorithms. The IASI team uses simple but efficient methods to estimate total column amounts of the species above, while the TES team performs full optimal estimation retrievals. We will compare IASI and TES total column measurements averaged on a 2.5x2.5 degree global grid for each month in 2009, and we will examine the seasonal cycle in some regions of interest, such as South America, eastern China, and the Midwest and the Central Valley in the US. In regions where both datasets are in agreement this analysis will provide confidence that the results are robust and reliable. In regions where there is disagreement we will look for the causes of the discrepancies, which will

  5. Seasonal and spatial changes in trace gases over megacities from Aura TES observations: two case studies

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, Karen E.; Payne, Vivienne H.; Neu, Jessica L.; Bowman, Kevin W.; Miyazaki, Kazuyuki; Marais, Eloise A.; Kulawik, Susan; Tzompa-Sosa, Zitely A.; Hegarty, Jennifer D.

    2017-08-01

    The Aura Tropospheric Emission Spectrometer (TES) is collecting closely spaced observations over 19 megacities. The objective is to obtain measurements that will lead to better understanding of the processes affecting air quality in and around these cities, and to better estimates of the seasonal and interannual variability. We explore the TES measurements of ozone, ammonia, methanol and formic acid collected around the Mexico City metropolitan area (MCMA) and in the vicinity of Lagos (Nigeria). The TES data exhibit seasonal signals that are correlated with Atmospheric Infrared Sounder (AIRS) CO and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD), with in situ measurements in the MCMA and with Goddard Earth Observing System (GEOS)-Chem model output in the Lagos area. TES was able to detect an extreme pollution event in the MCMA on 9 April 2013, which is also evident in the in situ data. TES data also show that biomass burning has a greater impact south of the city than in the caldera where Mexico City is located. TES measured enhanced values of the four species over the Gulf of Guinea south of Lagos. Since it observes many cities from the same platform with the same instrument and applies the same retrieval algorithms, TES data provide a very useful tool for easily comparing air quality measures of two or more cities. We compare the data from the MCMA and Lagos, and show that, while the MCMA has occasional extreme pollution events, Lagos consistently has higher levels of these trace gases.

  6. TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia

    2006-01-01

    The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

  7. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  8. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2013-06-01

    This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  9. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  10. Carbon monoxide (CO) vertical profiles derived from joined TES and MLS measurements

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Read, William; Kulawik, Susan; Worden, John; Livesey, Nathaniel; Bowman, Kevin; Herman, Robert

    2013-09-01

    (Tropospheric Emission Spectrometer) nadir and MLS (Microwave Limb Sounder) limb measurements from the Aura satellite are used to jointly estimate an atmospheric carbon monoxide (CO) profile with extended vertical range compared to profiles retrieved from the individual measurement. We describe the algorithms, the processing procedures, the prototyping results, and the evaluations for this new joint product. TES and MLS "stand-alone" CO profile retrievals are largely complementary, with TES being largely sensitive to lower to middle troposphere while MLS measures CO in the upper troposphere and above. We pair TES nadir and MLS limb tangent locations within 6-8 min and within 220 km. The paired radiance measurements of the two instruments in each location are optimally combined to retrieve a single CO profile along with other trace gases whose signal interferes with that from CO. This combined CO profile has a vertical resolution and vertical range that is an improvement over the two stand-alone products, especially in the upper troposphere/lower stratosphere. For example, the degrees of freedom for signal (DOFS) between surface and 50 hPa for TES alone are < 2, and for the combined CO profiles are 2-4. This new Aura CO product will be made available to the public using TES V005 and MLS V003 processing results and will provide a unique data set for studying tropospheric transport of air pollutants and troposphere-stratospheric exchange processes.

  11. TES FAQ

    Atmospheric Science Data Center

    2013-03-14

    ... TES-Aura_L1B-Nadir_FP fp _r run id -o orbit number_version id .h5 Standard TL1BSOL ... Level 2 files contain measurements of a single molecular species or temperature. The Level 2 Ancillary Data Product contains information ...

  12. Comparison of ozone profiles between Superconducting Submillimeter-Wave Limb-Emission Sounder and worldwide ozonesonde measurements

    NASA Astrophysics Data System (ADS)

    Imai, Koji; Fujiwara, Masatomo; Inai, Yoichi; Manago, Naohiro; Suzuki, Makoto; Sano, Takuki; Mitsuda, Chihiro; Naito, Yoko; Hasebe, Fumio; Koide, Takashi; Shiotani, Masato

    2013-11-01

    compared ozone profiles measured by the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) with those taken at worldwide ozonesonde stations. To assess the quality of the SMILES version 2.3 ozone data for 16-30 km, 601 ozonesonde profiles were compared with the coincident SMILES ozone profiles. The agreement between SMILES and ozonesonde measurements was generally good within 5%-7% for 18-30 km at middle and high latitudes but degraded below 18 km. At low latitudes, however, the SMILES ozone data showed larger values (~6%-15% for 20-26 km) than those at middle and high latitudes. To explain this bias, we explored some possible issues in the ozonesonde measurement system. One possibility is due to a pressure bias in radiosonde measurements with a pressure sensor, but it would be within a few percent. We also examined an issue of the ozonesonde's response time. The response time was estimated from ozonesonde measurements with ascending and descending profiles showing clear difference, by using the time lag correction method to minimize the difference between them. Our estimation shows 28 s on average which is a similar value derived by prelaunch preparation. By applying this correction to the original profiles, we found a negative bias of the ascending ozonesonde measurement more than 7% at 20 km in the equatorial latitude where the vertical gradient of ozone is steep. The corrected ozonesonde profiles showed better agreement with the SMILES data. We suggest that the response time of ozonesondes could create a negative bias, particularly in the lower stratosphere at equatorial latitudes.

  13. Advances in the Hyperspectral Thermal Emission Spectrometer (HyTES) and Application to the Remote Sensing of Fires and Trace Gases

    NASA Astrophysics Data System (ADS)

    Mihaly, J. M.; Johnson, W. R.; Hulley, G. C.; Hook, S. J.; Eng, B. T.

    2014-12-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) is an airborne imaging spectrometer developed by JPL and currently configured on the Twin Otter aircraft. The instrument utilizes 256 spectral channels between 7.5 and 12 micrometers in the Earth observing thermal infrared range of the electromagnetic spectrum and 512 spatial pixels cross-track. Given a 50 degree full angle field of view and the relatively low flight altitude of the Twin Otter aircraft, the instrument provides a wide swath with high spatial resolution (approximately 1.5 m at 1 km AGL). The available spatial and spectral resolution of HyTES represents a significant advance in airborne TIR remote sensing capability and considerable improvements to instrument performance have been made between the 2013 and 2014 science flights. The TIR wavelength range enables a wide range of remote sensing applications, including the detection of atmospheric trace gases (such as SO2, NH3, H2S, and N2O). The current performance, overall science objectives, and recent trace gas observations of the HyTES instrument will be presented. Results from a 2014 flight over a southern Utah wildfire will be discussed. Current work involving the miniaturization of the HyTES instrument for future deployment in the ER-2 high-altitude aircraft will also be presented.

  14. Connecting Surface Emissions, Convective Uplifting, and Long-Range Transport of Carbon Monoxide in the Upper Troposphere: New Observations from the Aura Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Livesey, Nathaniel J.; Su, Hui; Neary, Lori; McConnell, John C.; Richards, Nigel A. D.

    2007-01-01

    Two years of observations of upper tropospheric (UT) carbon monoxide (CO) from the Aura Microwave Limb Sounder are analyzed; in combination with the CO surface emission climatology and data from the NCEP analyses. It is shown that spatial distribution, temporal variation and long-range transport of UT CO are closely related to the surface emissions, deep-convection and horizontal winds. Over the Asian monsoon region, surface emission of CO peaks in boreal spring due to high biomass burning in addition to anthropogenic emission. However, the UT CO peaks in summer when convection is strongest and surface emission of CO is dominated by anthropogenic source. The long-range transport of CO from Southeast Asia across the Pacific to North America, which occurs most frequently during boreal summer, is thus a clear imprint of Asian anthropogenic pollution influencing global air quality.

  15. Connecting Surface Emissions, Convective Uplifting, and Long-Range Transport of Carbon Monoxide in the Upper Troposphere: New Observations from the Aura Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Livesey, Nathaniel J.; Su, Hui; Neary, Lori; McConnell, John C.; Richards, Nigel A. D.

    2007-01-01

    Two years of observations of upper tropospheric (UT) carbon monoxide (CO) from the Aura Microwave Limb Sounder are analyzed; in combination with the CO surface emission climatology and data from the NCEP analyses. It is shown that spatial distribution, temporal variation and long-range transport of UT CO are closely related to the surface emissions, deep-convection and horizontal winds. Over the Asian monsoon region, surface emission of CO peaks in boreal spring due to high biomass burning in addition to anthropogenic emission. However, the UT CO peaks in summer when convection is strongest and surface emission of CO is dominated by anthropogenic source. The long-range transport of CO from Southeast Asia across the Pacific to North America, which occurs most frequently during boreal summer, is thus a clear imprint of Asian anthropogenic pollution influencing global air quality.

  16. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  17. Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands Using Hyperspectral Infrared Sounder Measurements as a Transfer Reference

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    This paper compares the calibration consistency of the spectrally-matched thermal emissive bands (TEB) between the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), using observations from their simultaneous nadir overpasses (SNO). Nearly-simultaneous hyperspectral measurements from the Aqua Atmospheric Infrared Sounder(AIRS) and the S-NPP Cross-track Infrared Sounder (CrIS) are used to account for existing spectral response differences between MODIS and VIIRS TEB. The comparison uses VIIRS Sensor Data Records (SDR) in MODIS five-minute granule format provided by the NASA Land Product and Evaluation and Test Element (PEATE) and Aqua MODIS Collection 6 Level 1 B (L1B) products. Each AIRS footprint of 13.5 km (or CrIS field of view of 14 km) is co-located with multiple MODIS (or VIIRS) pixels. The corresponding AIRS- and CrIS-simulated MODIS and VIIRS radiances are derived by convolutions based on sensor-dependent relative spectral response (RSR) functions. The VIIRS and MODIS TEB calibration consistency is evaluated and the two sensors agreed within 0.2 K in brightness temperature.Additional factors affecting the comparison such as geolocation and atmospheric water vapor content are also discussed in this paper.

  18. Limb Retrievals of TES solarband/IR data (and MCS solarband data)

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Pankine, A.

    2016-12-01

    Vertical variations in aerosol distributions (and their microphysicalproperties) can have a dramatic impact on the state and evolution of theMartian atmosphere. This has been clearly delineated recent work usingretrieval products produced by the Mars Climate Sounder (MCS) teamfrom limb observations by the MCS IR bolometers. However, similarproducts for Thermal EmissionSpectrometer (TES) limb observationshave not been as widely disseminated. In addition, the solar bandchannels of both datasets have been essentially unanalyzed. Ouroverarching goal has been to fill these gaps in order to addressparticle size studies, as well as to generate products that can beused by the wider community. In our presentation we will include: 1) A summary of our limb radiative transfer algorithms and retrievalscheme; 2) The limitations imposed by "Smoothing Error" and by systematicradiometric error on retrievals in lower and upper atmosphere, respectively;3) vertical profiles of opacity and particle size associated with theevolution of the 2001 TES dust storm; and 4) the use of limbretrievals to estimate integrated-column optical depths (validatedagainst Mars Exploration Rover and TES emission phase functionmeasurements); and 5) the plans for an ongoing archive to be used forthe distribution of the derived profiles and associated retrievalmetadata. This work has been supported by NASA with a Mars Data AnalysisProgram award (grant NNX10AO23G).

  19. TES/Aura L2 Ancillary Data (TL2ANC)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Ancillary Data (TL2ANC) News:  TES News Join TES News List ... and Order:  Earthdata Search   FTP  Access:   Data Pool OPeNDAP Access:  OPeNDAP Parameters:  Surface Pressure Emissivity Order Data:  Search and Order:   Earthdata Search Readme ...

  20. New TES Search and Subset Application

    Atmospheric Science Data Center

    2017-08-23

    ... The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the Tropospheric Emission ... Search and Subset Web Application URL: https://subset.larc.nasa.gov/tes/login.php   Read more ...

  1. Global O3-CO correlations in a chemistry and transport model during July-August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Deok; Liu, Hongyu; Crawford, James H.; Considine, David B.; Allen, Dale J.; Duncan, Bryan N.; Horowitz, Larry W.; Rodriguez, Jose M.; Strahan, Susan E.; Zhang, Lin; Liu, Xiong; Damon, Megan R.; Steenrod, Stephen D.

    2017-07-01

    We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone-carbon monoxide (O3-CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that the three simulations show significantly different global and regional distributions of O3 and CO concentrations, they show similar patterns of O3-CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O3-CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O3 and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various

  2. TES Validation Reports

    Atmospheric Science Data Center

    2014-06-30

    ... Reports: TES Data Versions: TES Validation Report Version 6.0 (PDF) R13 processing version; F07_10 file versions TES Validation Report Version 5.0 (PDF) R12 processing version; F06_08, F06_09 file ...

  3. SAIL-Thermique: a model for land surface spectral emissivity in the thermal infrared. Evaluation and reassesment of the temperature - emissivity separation (TES) algorithm in presence of vegetation canopies.

    NASA Astrophysics Data System (ADS)

    Olioso, A.; Jacob, F.; Lesaignoux, A.

    2014-12-01

    The SAIL-Thermique model was developed to simulate thermal infrared (TIR) radiative transfers inside vegetation canopies and land surface emissivity. It is based on the SAIL model developed by Verhoef (1984) for simulating spectral reflectances in the solar domain. Due to the difficulty to measure land surface emissivity, no emissivity model was validated against ground measurements. In this study, several datasets extracted from the literature and from recent databases were used for evaluating emissivity simulations. Model simulations were performed from the knowledge of leaf area index, leaf inclination distribution, direction of viewing, and leaf and soil optical properties. As data on leaf inclination and leaf optical properties were usually not available, stochastic simulations were performed from a priori knowledges on their distribution (extracted from the literature and recent databases). Simulated 8-14 μm emissivities were favorably compared to measurements with a root mean square difference (RMSD) around 0.006 (0.004 when considering only herbaceous species). The model was then used for simulating emissivity spectra for providing information for the interpretation of TIR multispectral data from the ASTER sensor. We used the land surface emissivity simulations for re-assessing the TES algorithm used to separate emissivity and land surface temperature. We showed that the inclusion of vegetated land surfaces significantly modified the relationship between minimum emissivity and minimum maximum difference (ɛmin- MMD) which is at the heart of the TES algorithm. This relationship was originally established on the ASTER spectral library which did not include vegetated land surface (Schmugge et al. 1998). On a synthetic database, estimations of spectral emissivities and surface temperature were significantly improved when using the new ɛmin- MMD relationship in comparison to the classical one: RMSD dropped from ~0.012 to ~0.006 for spectral emissivity and from

  4. Global O3-CO Correlations in a Global Model During July-August: Evaluation with TES Satellite Observations and Sensitivity to Emissions

    NASA Astrophysics Data System (ADS)

    Choi, H.; Liu, H.; Crawford, J. H.; Considine, D. B.; Allen, D. J.; Duncan, B. N.; Rodriguez, J. M.; Strahan, S. E.; Damon, M.; Steenrod, S. D.; Zhang, L.; Liu, X.

    2013-12-01

    We examine global mid-tropospheric (619 hPa) ozone - carbon monoxide (O3-CO) correlations and its sensitivity to emissions during July - August 2005 in the Global Modeling Initiative (GMI) chemistry and transport model driven by the Modern-Era Retrospective Analysis for Research and Application (MERRA) meteorological data set. We evaluate the simulated O3 with climatological O3 profiles from ozonesonde measurements and satellite tropospheric O3 columns. Model O3-CO correlations are 1). positive in the Northern Hemisphere continental outflow regions with large dO3/dCO enhancement ratios, and in the southern African westerly outflow region and Indonesia with small dO3/dCO enhancement ratios; 2). negative over the Asian continent (including the Tibetan Plateau), Middle East, northern and central Africa, and tropical and subtropical deep convective regions. These patterns are consistent with those derived from collocated measurements of O3 and CO from the Tropospheric Emission Spectrometer (TES) on board NASA's Aura satellite, except over the tropical Atlantic and Pacific. Model sensitivity experiments indicate that fossil fuel emissions are responsible for the positive O3-CO correlations in major continental outflow regions and Europe. Biomass burning emissions lead to the positive correlations in the Southern Hemisphere mid-high latitudes. Biogenic emissions make important contributions to the negative O3-CO correlations over the tropical eastern Pacific. Lightning NOx emissions significantly reduce both the positive O3-CO correlations at mid-high latitudes and the negative correlations in the tropics. The corresponding chemical and transport processes will be discussed.

  5. Climate variability and trends in biogenic emissions imprinted on satellite observations of formaldehyde from SCIAMACHY and OMI sounders

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-François; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel

    2017-04-01

    Biogenic hydrocarbon emissions (BVOC) respond to temperature, photosynthetically active radiation, leaf area index, as well as to factors like leaf age, soil moisture, and ambient CO2 concentrations. Isoprene is the principal contributor to BVOC emissions and accounts for about half of the estimated total emissions on the global scale, whereas monoterpenes are also significant over boreal ecosystems. Due to their large emissions, their major role in the tropospheric ozone formation and contribution to secondary organic aerosols, BVOCs are highly relevant to both air quality and climate. Their oxidation in the atmosphere leads to the formation of formaldehyde (HCHO) at high yields. Satellite observations of HCHO abundances can therefore inform us on the spatial and temporal variability of the underlying sources and on their emission trends. The main objective of this study is to investigate the interannual variability and trends of observed HCHO columns during the growing season, when BVOC emissions are dominant, and interpret them in terms of BVOC emission flux variability. To this aim, we use the MEGAN-MOHYCAN model driven by the ECMWF ERA-interim meteorology to calculate bottom-up BVOC fluxes on the global scale (Müller et al. 2008, Stavrakou et al. 2014) over 2003-2015, and satellite HCHO observations from SCIAMACHY (2003-2011) and OMI (2005-2015) instruments (De Smedt et al. 2008, 2015). We focus on mid- and high-latitude regions of the Northern Hemisphere in summertime, as well as tropical regions taking care to exclude biomass burning events which also lead to HCHO column enhancements. We find generally a very strong temporal correlation (>0.7) between the simulated BVOC emissions and the observed HCHO columns over temperate and boreal ecosystems. Positive BVOC emission trends associated to warming climate are found in almost all regions and are well corroborated by the observations. Furthermore, using OMI HCHO observations over 2005-2015 as constraints in

  6. TES Data and Information

    Atmospheric Science Data Center

    2017-08-15

    ... standard products include profile measurements of ozone, water vapor, carbon monoxide, methane, nitrogen dioxide, and nitric acid for 16 orbits every other day. TES Special Observations are research ...

  7. CH4 and CO distributions over tropical fires during October 2006 as observed by the Aura TES satellite instrument and modeled by GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Worden, J.; Wecht, K.; Frankenberg, C.; Alvarado, M.; Bowman, K.; Kort, E.; Kulawik, S.; Lee, M.; Payne, V.; Worden, H.

    2013-04-01

    Tropical fires represent a highly uncertain source of atmospheric methane (CH4) because of the variability of fire emissions and the dependency of the fire CH4 emission factors (g kg-1 dry matter burned) on fuel type and combustion phase. In this paper we use new observations of CH4 and CO in the free troposphere from the Aura Tropospheric Emission Sounder (TES) satellite instrument to place constraints on the role of tropical fire emissions versus microbial production (e.g. in wetlands and livestock) during the (October) 2006 El Niño, a time of significant fire emissions from Indonesia. We first compare the global CH4 distributions from TES using the GEOS-Chem model. We find a mean bias between the observations and model of 26.3 ppb CH4 that is independent of latitude between 50° S and 80° N, consistent with previous validation studies of TES CH4 retrievals using aircraft measurements. The slope of the distribution of CH4 versus CO as observed by TES and modeled by GEOS-Chem is consistent (within the TES observation error) for air parcels over the Indonesian peat fires, South America, and Africa. The CH4 and CO distributions are correlated between R = 0.42 and R = 0.46, with these correlations primarily limited by the TES random error. Over Indonesia, the observed slope of 0.13 (ppb ppb-1) ±0.01, as compared to a modeled slope of 0.153 (ppb ppb-1) ±0.005 and an emission ratio used within the GEOS-Chem model of approximately 0.11 (ppb ppb-1), indicates that most of the observed methane enhancement originated from the fire. Slopes of 0.47 (ppb ppb-1) ±0.04 and 0.44 (ppb ppb-1) ±0.03 over South America and Africa show that the methane in the observed air parcels primarily came from microbial-generated emissions. Sensitivity studies using GEOS-Chem show that part of the observed correlation for the Indonesian observations and most of the observed correlations over South America and Africa are a result of transport and mixing of the fire and nearby microbial

  8. CH4 and CO distributions over tropical fires as observed by the Aura TES satellite instrument and modeled by GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Worden, J.; Wecht, K.; Frankenberg, C.; Alvarado, M.; Bowman, K.; Kort, E.; Kulawik, S.; Lee, M.; Payne, V.; Worden, H.

    2012-10-01

    Tropical fires represent a highly uncertain source of atmospheric methane (CH4) because of the variability of fire emissions and the dependency of the fire CH4 emission factors (g kg-1 dry matter burned) on fuel type and combustion phase. In this paper we use new observations of CH4 and CO in the free troposphere from the Aura Tropospheric Emission Sounder (TES) satellite instrument to place constraints on the role of tropical fire emissions versus microbial production (e.g. in wetlands and livestock) during the (October) 2006 El Nino, a time of significant peat fire emissions from Indonesia We first evaluate the global CH4 distributions from TES using the GEOS-Chem model. We find a mean bias between the observations and model of 26.3 ppb CH4 that is independent of latitude between 50° S and 80° N consistent with previous validation studies of TES CH4 retrievals using aircraft measurements. The slope of the distribution of CH4 versus CO as observed by TES and modeled by GEOS-Chem is consistent (within the TES observation error) for air parcels over the Indonesian peat fires, South America, and Africa. The CH4 and CO distributions are correlated between R = 0.42 and R = 0.46, with these correlations primarily limited by the TES random error. Over Indonesia, the observed slope of 0.13 (ppb ppb-1) ± 0.01, as compared to a modeled slop of 0.153 (ppb ppb-1) ± 0.005 and an emission ratio used within the GEOS-Chem model of approximately 0.11 (ppb ppb-1) indicates that most of the observed methane enhancement originated from the fire. Slopes of 0.47 (ppb ppb-1) ± 0.04 and 0.44 (ppb ppb-1) ± 0.03 over South America and Africa show that the methane in the observed air parcels primarily came from microbial generated emissions. Sensitivity studies using GEOS-Chem show that part of the observed correlation for the Indonesian observations and most of the observed correlations over South America and Africa are a result of transport and mixing of the fire and nearby

  9. TES Level 1B

    Atmospheric Science Data Center

    2014-12-08

    TES Level 1B data files contain radiometric calibrated spectral radiances and their ... and some engineering data are also provided. A Level 1B data file contains data from a single TES orbit for one focal ... as the Aura orbit number at the time of the South Pole apex crossing. version id represents the version identification number, ...

  10. Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model

    EPA Science Inventory

    Ammonia (NH(3)has significant impacts on biodiversity, eutrophication, and acidification. Widespread uncertainty in the magnitude and seasonality of NH3 emissions hinders efforts to address these issues. In this work, we constrain U.S. NH3 sources using obse...

  11. Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model

    EPA Science Inventory

    Ammonia (NH(3)has significant impacts on biodiversity, eutrophication, and acidification. Widespread uncertainty in the magnitude and seasonality of NH3 emissions hinders efforts to address these issues. In this work, we constrain U.S. NH3 sources using obse...

  12. Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES)

    USGS Publications Warehouse

    Calvin, W.M.; Titus, T.N.

    2008-01-01

    Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season (Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270??E, 75 to 80??N; (2) the large "tail" below the Chasma Boreale and its associated plateau from 315 to 45??E, 80 to 85??N, that we call the "Boreale Tongue" and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120??E longitude (the lower right on a polar stereographic projection) we have called "Shackleton's Grooves" and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the "source" of Chasma Boreale (???15??E, 85??N) dubbed "McMurdo", and the "Cool and Bright Anomaly (CABA)" noted by Kieffer and Titus 2001. TES Mapping of Mars' north seasonal cap. Icarus 154, 162-180] at ???330??E, 87??N called here "Vostok". Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached (Ls???110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics

  13. Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES)

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Titus, T. N.

    2008-02-01

    Previous observations have noted the change in albedo in a number of North Pole bright outliers and in the distribution of bright ice deposits between Mariner 9, Viking, and Mars Global Surveyor (MGS) data sets. Changes over the summer season as well as between regions at the same season ( Ls) in different years have been observed. We used the bolometric albedo and brightness temperature channels of the Thermal Emission Spectrometer (TES) on the MGS spacecraft to monitor north polar residual ice cap variations between Mars years and within the summer season for three northern Martian summers between July 1999 and April 2003. Large-scale brightness variations are observed in four general areas: (1) the patchy outlying frost deposits from 90 to 270°E, 75 to 80°N; (2) the large "tail" below the Chasma Boreale and its associated plateau from 315 to 45°E, 80 to 85°N, that we call the "Boreale Tongue" and in Hyperboreae Undae; (3) the troughed terrain in the region from 0 to 120°E longitude (the lower right on a polar stereographic projection) we have called "Shackleton's Grooves" and (4) the unit mapped as residual ice in Olympia Planitia. We also note two areas which seem to persist as cool and bright throughout the summer and between Mars years. One is at the "source" of Chasma Boreale (˜15°E, 85°N) dubbed "McMurdo", and the "Cool and Bright Anomaly (CABA)" noted by Kieffer and Titus 2001. TES Mapping of Mars' north seasonal cap. Icarus 154, 162-180] at ˜330°E, 87°N called here "Vostok". Overall defrosting occurs early in the summer as the temperatures rise and then after the peak temperatures are reached ( Ls˜110) higher elevations and outlier bright deposits cold trap and re-accumulate new frost. Persistent bright areas are associated with either higher elevations or higher background albedos suggesting complex feedback mechanisms including cold-trapping of frost due to albedo and elevation effects, as well as influence of mesoscale atmospheric dynamics.

  14. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  15. Boötes-HiZELS: an optical to near-infrared survey of emission-line galaxies at z = 0.4-4.7

    NASA Astrophysics Data System (ADS)

    Matthee, Jorryt; Sobral, David; Best, Philip; Smail, Ian; Bian, Fuyan; Darvish, Behnam; Röttgering, Huub; Fan, Xiaohui

    2017-10-01

    We present a sample of ∼1000 emission-line galaxies at z = 0.4-4.7 from the ∼0.7deg2 High-z Emission-Line Survey in the Boötes field identified with a suite of six narrow-band filters at ≈0.4-2.1 μm. These galaxies have been selected on their Ly α (73), [O II] (285), H β/[O III] (387) or H α (362) emission line, and have been classified with optical to near-infrared colours. A subsample of 98 sources have reliable redshifts from multiple narrow-band (e.g. [O II]-H α) detections and/or spectroscopy. In this survey paper, we present the observations, selection and catalogues of emitters. We measure number densities of Ly α, [O II], H β/[O III] and H α and confirm strong luminosity evolution in star-forming galaxies from z ∼ 0.4 to ∼5, in agreement with previous results. To demonstrate the usefulness of dual-line emitters, we use the sample of dual [O II]-H α emitters to measure the observed [O II]/H α ratio at z = 1.47. The observed [O II]/H α ratio increases significantly from 0.40 ± 0.01 at z = 0.1 to 0.52 ± 0.05 at z = 1.47, which we attribute to either decreasing dust attenuation with redshift, or due to a bias in the (typically) fibre measurements in the local Universe that only measure the central kpc regions. At the bright end, we find that both the H α and Ly α number densities at z ≈ 2.2 deviate significantly from a Schechter form, following a power law. We show that this is driven entirely by an increasing X-ray/active galactic nucleus fraction with line luminosity, which reaches ≈100 per cent at line luminosities L ≳ 3 × 1044 erg s-1.

  16. TES Instrument Operational Status

    Atmospheric Science Data Center

    2017-02-26

    ... UPDATE: (1/24/2017)  The TES instrument metrology laser end of life testing that resumed on January 11, 2017 provided a gradual increase in the laser diode current. This increase has resulted in the restoration of the ...

  17. Sensitivity of Temperature Profiles Retrieved from Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) Observations to the GSFC Synthetic Mars Model Atmosphere

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.

    1999-01-01

    Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.

  18. Sensitivity of Temperature Profiles Retrieved from Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) Observations to the GSFC Synthetic Mars Model Atmosphere

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.

    1999-01-01

    Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.

  19. Initial results from Ensemble Data Assimilation of radiances and retrieved temperatures from TES and MCS in an Martian GCM

    NASA Astrophysics Data System (ADS)

    Lee, C.; Richardson, M. I.

    2010-12-01

    Direct observations of the Martian atmosphere are used to constrain the evolution of a Martian General Circulation Model (MarsWRF) using an ensemble Kalman filter data assimilation framework (DART). We use radiance observations from the Thermal Emission Spectrometer (TES) and temperature profiles from TES and the Mars Climate Sounder (MCS) to constrain the evolution of the simulated Martian atmosphere during similar seasons of each mission. We describe the observations being ingested into the model and the preprocessing necessary to ingest these observations efficiently and accurately into the assimilation system. We test the sensitivity of the assimilation system by including surface visual albedo and infra-red emissivity, and atmospheric total dust loading, in the state vector. We allow DART to modify these unobserved state vector components using only the temperature or radiance observations and information gained from the ensemble of simulated circulations. Finally, we identify and discuss the biases and model limitations revealed by the assimilation, and describe the modifications made to the GCM to improve its ensemble mean skill (accuracy) and ensemble variance to better assimilate the available observations.

  20. SVD analysis of Aura TES spectral residuals

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  1. SVD analysis of Aura TES spectral residuals

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Kulawik, Susan S.; Rodgers, Clive D.; Bowman, Kevin W.

    2005-01-01

    Singular Value Decomposition (SVD) analysis is both a powerful diagnostic tool and an effective method of noise filtering. We present the results of an SVD analysis of an ensemble of spectral residuals acquired in September 2004 from a 16-orbit Aura Tropospheric Emission Spectrometer (TES) Global Survey and compare them to alternative methods such as zonal averages. In particular, the technique highlights issues such as the orbital variation of instrument response and incompletely modeled effects of surface emissivity and atmospheric composition.

  2. Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.

    2015-05-01

    We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities

  3. TES Level 3

    Atmospheric Science Data Center

    2014-12-08

    ... Name Convention daily TES-Aura_L3-__.he5 8-day ... : day of year format placeholder ddd : 3-digit number representing day of year mmm m : month format placeholder mm : 2-digit number representing month rnnnnnnnnnn ...

  4. TES Limb-Geometry Observations of Aerosols

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.

    2003-01-01

    The Thermal Emission Spectrometer (TES) on-board Mars Global Surveyor (MGS) has a pointing mirror that allows observations in the plane of the orbit anywhere from directly nadir to far above either the forward or aft limbs for details about the TES instrument). Nadir-geometry observations are defined as those where the field-of-view contains the surface of Mars (even if the actual observation is at a high emission angle far from true nadir). Limb-geometry observations are defined as those where the line-of-sight of the observations does not intersect the surface. At a number of points along the MGS orbit (typically every 10 deg. or 20 deg. of latitude) a limb sequence is taken, which includes a stack of overlapping TES spectra from just below the limb to more than 120 km above the limb. A typical limb sequence has approx. 20 individual spectra, and the projected size of a TES pixel at the limb is 13 km.

  5. Limb Retrievals of the martian atmosphere: Mapping with optical observations from MGS/TES and MRO/MCS.

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Smith, M. J.; Bandfield, J.; Pankine, A.

    2015-12-01

    Limb observations in the optical regime represent a vastly underutilized resource for studies of the Martian atmosphere. In an effort to rectify this situation, our presentation will attempt to provide the framework for an interested individual to identify a data set of potential interest, access said data and associated metadata products, and obtain a radiative transfer tool that would enable the appropriate analyses. More specifically, we will highlight the coverage and capabilities of the optical limb observations from the Thermal Emission Spectrometer (TES) and the Mars Climate Sounder (MCS). We will also present several radiative transfer algorithms that may be employed to interpret the various data sets. Finally, we will highlight several applications of the limb observations including mapping of dust vertical profile characteristics, detached layers, and particle size retrievals. This last example employs the simultaneous use of infrared limb observations from both the TES and MCS data. This work is (and has been) supported by NASA with a Mars Data Analysis Program award (grant NNX10AO23G).

  6. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  7. Spaceborne Infrared Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas; Macenka, Steven; Kampe, Thomas

    2004-01-01

    A report describes the development of the spaceborne infrared atmospheric sounder (SIRAS) - a spectral imaging instrument, suitable for observing the atmosphere of the Earth from a spacecraft, that utilizes four spectrometers to cover the wavelength range of 12 to 15.4 m with a spectral resolution that ranges between 1 part per 900 and 1 part per 1,200 in wavelength. The spectrometers are operated in low orders to minimize filtering requirements. Focal planes receive the dispersed energy and provide a spectrum of the scene. The design of the SIRAS combines advanced, wide-field refractive optics with high-dispersion gratings in a solid-state (no moving parts), diffraction-limited optical system that is the smallest such system that can be constructed for the specified wavelength range and resolution. The primary structure of the SIRAS has dimensions of 10 by 10 by 14 cm and has a mass of only 2.03 kg

  8. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  9. Space view issues for hyperspectral sounders

    NASA Astrophysics Data System (ADS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-09-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The spaceview signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between spaceviews and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the spaceview assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  10. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  11. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  12. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  13. Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations

    NASA Astrophysics Data System (ADS)

    Wecht, K. J.; Jacob, D. J.; Sulprizio, M. P.; Santoni, G. W.; Wofsy, S. C.; Parker, R.; Bösch, H.; Worden, J.

    2014-02-01

    We apply a continental-scale inverse modeling system for North America based on the GEOS-Chem model to optimize California methane emissions at 1/2° × 2/3° horizontal resolution using atmospheric observations from the CalNex aircraft campaign (May-June 2010) and from satellites. Inversion of the CalNex data yields a best estimate for total California methane emissions of 2.86 ± 0.21 Tg yr-1, compared with 1.92 Tg yr-1 in the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg yr-1 in the California Air Resources Board (CARB) inventory used for state regulations of greenhouse gas emissions. These results are consistent with a previous Lagrangian inversion of the CalNex data. Our inversion provides 12 independent pieces of information to constrain the geographical distribution of emissions within California. Attribution to individual source types indicates dominant contributions to emissions from landfills/wastewater (1.1 Tg yr-1), livestock (0.87 Tg yr-1), and gas/oil (0.64 Tg yr-1). EDGAR v4.2 underestimates emissions from livestock while CARB underestimates emissions from landfills/wastewater and gas/oil. Current satellite observations from GOSAT can constrain methane emissions in the Los Angeles Basin but are too sparse to constrain emissions quantitatively elsewhere in California (they can still be qualitatively useful to diagnose inventory biases). Los Angeles Basin emissions derived from CalNex and GOSAT inversions are 0.42 ± 0.08 and 0.31 ± 0.08, respectively. An observation system simulation experiment (OSSE) shows that the future TROPOMI satellite instrument (2015 launch) will be able to constrain California methane emissions at a detail comparable to the CalNex aircraft campaign. Geostationary satellite observations offer even greater potential for constraining methane emissions in the future.

  14. Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations

    NASA Astrophysics Data System (ADS)

    Wecht, K. J.; Jacob, D. J.; Sulprizio, M. P.; Santoni, G. W.; Wofsy, S. C.; Parker, R.; Bösch, H.; Worden, J.

    2014-08-01

    We apply a continental-scale inverse modeling system for North America based on the GEOS-Chem model to optimize California methane emissions at 1/2° × 2/3° horizontal resolution using atmospheric observations from the CalNex aircraft campaign (May-June 2010) and from satellites. Inversion of the CalNex data yields a best estimate for total California methane emissions of 2.86 ± 0.21 Tg a-1, compared with 1.92 Tg a-1 in the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg a-1 in the California Air Resources Board (CARB) inventory used for state regulations of greenhouse gas emissions. These results are consistent with a previous Lagrangian inversion of the CalNex data. Our inversion provides 12 independent pieces of information to constrain the geographical distribution of emissions within California. Attribution to individual source types indicates dominant contributions to emissions from landfills/wastewater (1.1 Tg a-1), livestock (0.87 Tg a-1), and gas/oil (0.64 Tg a-1). EDGAR v4.2 underestimates emissions from livestock, while CARB underestimates emissions from landfills/wastewater and gas/oil. Current satellite observations from GOSAT can constrain methane emissions in the Los Angeles Basin but are too sparse to constrain emissions quantitatively elsewhere in California (they can still be qualitatively useful to diagnose inventory biases). Los Angeles Basin emissions derived from CalNex and GOSAT inversions are 0.42 ± 0.08 and 0.31 ± 0.08 Tg a-1 that the future TROPOMI satellite instrument (2015 launch) will be able to constrain California methane emissions at a detail comparable to the CalNex aircraft campaign. Geostationary satellite observations offer even greater potential for constraining methane emissions in the future.

  15. Effects of Palagonitic Dust Coatings on Thermal Emission Spectra of Rocks and Minerals: Implications for Mineralogical Characterization of the Martian Surface by MGS-TES

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R.; Christensen, P.

    2001-01-01

    Thermal emission measurements on dust-coated rocks and minerals show that a 300 5m thick layer is required to mask emission from the substrate and that non-linear effects are present. Additional information is contained in the original extended abstract.

  16. Effects of Palagonitic Dust Coatings on Thermal Emission Spectra of Rocks and Minerals: Implications for Mineralogical Characterization of the Martian Surface by MGS-TES

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R.; Christensen, P.

    2001-01-01

    Thermal emission measurements on dust-coated rocks and minerals show that a 300 5m thick layer is required to mask emission from the substrate and that non-linear effects are present. Additional information is contained in the original extended abstract.

  17. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.

    PubMed

    Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W

    2004-12-03

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  18. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter; Whitney, Barbara; Christensen, Philip R.; Squyres, Steven W.

    2004-01-01

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  19. In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose I.; Na-Nakornpanom, Arthur

    2012-01-01

    The Tropospheric Emission Spectrometer (TES) is an infrared, high spectral resolution Fourier transform spectrometer with a 3.3 to 15.4 micron wavelength coverage. TES is a scanning instrument intended for determining the chemical state of the Earth's lower atmosphere (troposphere) from the surface to 30+ km. TES produces vertical profiles of important pollutant and greenhouse gases such as carbon monoxide, ozone, methane, and water vapor on a global scale every other day. TES was launched into orbit onboard NASA's earth Observing System Aura spacecraft on July 15, 2004 from Vandenberg Air Force Base, California.

  20. Mapping TES Aerobreaking Data of The Martian Polar Caps

    NASA Astrophysics Data System (ADS)

    Altunaiji, E. S.; Edwards, C. S.; Smith, M. D.; AlShamsi, M. R.; AlJanaahi, A. A.

    2016-12-01

    The purpose of this paper is to create maps of the north and south Mars polar caps using Thermal Emission Spectrometer (TES) aerobreaking surface temperature data in south and north as well as Lambert albedo data in the south. TES is an instrument on board the Mars Global Surveyor (MGS) spacecraft. It has six detectors arranged in a 2x3 array with a nominal spot size of 3 × 6 km; however, given the elliptical nature of the orbit during aerobreaking the footprint can be significantly larger (10s of km), especially over the southern hemisphere. TES is a Fourier transform infrared spectrometer designed to study the Martian surface and atmosphere using thermal infrared emission spectroscopy. It is composed of 2 separate channels, a broadband visible/near-infrared bolometer and hyperspectral thermal infrared spectrometer with a broadband thermal infrared bolometer. TES aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. To determine the footprint location on the surface, geometry is calculated using the Spacecraft Planet Instrument Camera Matrix and Event (SPICE) Toolkit. These data were then binned and mapped to surface in polar stereographic projection. While some early studies focused on these data, we have expanded upon the ranges, generated time-/seasonally-binned data, and re-examined this largely underutilized set of data from TES ultimately extending the record of polar science on Mars.

  1. Laser atmospheric wind sounder (LAWS)

    NASA Technical Reports Server (NTRS)

    Beranek, R. G.; Bilbro, J. W.; Fitzjarrald, D. E.; Jones, W. D.; Keller, V. W.

    1989-01-01

    The principle of operation of a space based Doppler lidar wind measuring system is discussed along with laser wavelength selection considerations. Differences in accommodating the Laser Atmospheric Wind Sounder (LAWS) on the Earth Observing System (EOS) polar platform and the Manned Space Station are presented. The impact of the LAWS instrument support subsystems are specifically discussed.

  2. Laser atmospheric wind sounder (LAWS)

    NASA Technical Reports Server (NTRS)

    Beranek, R. G.; Bilbro, J. W.; Fitzjarrald, D. E.; Jones, W. D.; Keller, V. W.

    1989-01-01

    The principle of operation of a space based Doppler lidar wind measuring system is discussed along with laser wavelength selection considerations. Differences in accommodating the Laser Atmospheric Wind Sounder (LAWS) on the Earth Observing System (EOS) polar platform and the Manned Space Station are presented. The impact of the LAWS instrument support subsystems are specifically discussed.

  3. Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia

    NASA Astrophysics Data System (ADS)

    Shephard, M. W.; Cady-Pereira, K. E.

    2015-03-01

    Observations of atmospheric ammonia are important in understanding and modelling the impact of ammonia on both human health and the natural environment. We present a detailed description of a robust retrieval algorithm that demonstrates the capabilities of utilizing Cross-track Infrared Sounder (CrIS) satellite observations to globally retrieval ammonia concentrations. Initial ammonia retrieval results using both simulated and real observations show that (i) CrIS is sensitive to ammonia in the boundary layer with peak vertical sensitivity typically around ~ 850-750 hPa (~ 1.5 to 2.5 km), which can dip down close to the surface (~ 900 hPa) under ideal conditions, (ii) it has a minimum detection limit of ~ 1 ppbv (peak profile value typically at the surface), and (iii) the information content can vary significantly with maximum values of ~ 1 degree-of-freedom for signal. Comparisons of the retrieval with simulated "true" profiles show a small positive retrieval bias of 6% with a standard deviation of ~ ± 20% (ranging from ± 12 to ± 30% over the vertical profile). Note that these uncertainty estimates are considered as lower bound values as no potential systematic errors are included in the simulations. The CrIS NH3 retrieval applied over the Central Valley in CA, USA, demonstrates that CrIS correlates well with the spatial variability of the boundary layer ammonia concentrations seen by the nearby Quantum Cascade-Laser (QCL) in situ surface and the Tropospheric Emission Spectrometer (TES) satellite observations as part of the DISCOVER-AQ campaign. The CrIS and TES ammonia observations show quantitatively similar retrieved boundary layer values that are often within the uncertainty of the two observations. Also demonstrated is CrIS's ability to capture the expected spatial distribution in the ammonia concentrations, from elevated values in the Central Valley from anthropogenic agriculture emissions, to much lower values in the unpolluted or clean surrounding

  4. Results from the Mars Climate Sounder and Intercomparison of Data with Radio Science

    NASA Astrophysics Data System (ADS)

    McCleese, D. J.; Schofield, J. T.; Hinson, D. P.; Abdou, W. A.; Kleinboehl, A.; Kass, D. M.

    2012-12-01

    The Mars Climate Sounder (MCS) on MRO has obtained a record of the vertical structure of Martian atmospheric temperature, dust, and water ice clouds extending more than 3 Mars years (MY 28-MY 31). When added to the data set acquired by the highly successful Thermal Emission Spectrometer (TES) on MGS, a nearly continuous climate record now exists of sufficient duration (>7 Mars years) to study dominant modes of the atmospheric circulation and interannual variability. New insight into the vertical structure of dust and condensates has changed our perception of the role of aerosols and their variability in driving the global circulation. Recent work by Kleinböhl, et al (this conference) utilizes MCS coverage of local time of day to observe and model semi-diurnal tides. In this paper we discuss the robustness of inferences drawn from MCS data, our efforts to validate the observations, and explore the continuity of the data with previous and concurrent measurements. Comparison of profiles of temperature from MCS and MRO Radio Science (RS) are particularly useful because the two measurement techniques are based on different physical principles. Radio occultations sound the limb of Mars with an X-band radio signal (~4 cm wavelength), using measurements of refractive bending to derive profiles of density, temperature, and pressure versus radius. This is a physically independent mechanism from the thermal emission measurements of MCS and, unlike MCS, RS is insensitive to dust and aerosol. Also, RS investigations were conducted on both MGS and MRO providing a means of comparing the non-overlapping TES and MCS observations. On MRO, RS profiles are obtained roughly once per day on ingress occultations only. RS temperature measurements extend from 0-40 km with a vertical resolution of about 1 km, and are particularly accurate in the lower half of this range. MCS obtains temperatures from 0-80 km, and is able to use its two-axis articulation to make simultaneous and coincident

  5. HyTES: Thermal Imaging Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  6. Processing TES Level-2 Data

    NASA Technical Reports Server (NTRS)

    Poosti, Sassaneh; Akopyan, Sirvard; Sakurai, Regina; Yun, Hyejung; Saha, Pranjit; Strickland, Irina; Croft, Kevin; Smith, Weldon; Hoffman, Rodney; Koffend, John; Benenyan, Gerard; Nair, Hari; Sarkissian, Edwin; McDuffie, James; Monarrez, Ruth; Ho,David; Chan, Benny; Lampel, Michael

    2006-01-01

    TES Level 2 Subsystem is a set of computer programs that performs functions complementary to those of the program summarized in the immediately preceding article. TES Level-2 data pertain to retrieved species (or temperature) profiles, and errors thereof. Geolocation, quality, and other data (e.g., surface characteristics for nadir observations) are also included. The subsystem processes gridded meteorological information and extracts parameters that can be interpolated to the appropriate latitude, longitude, and pressure level based on the date and time. Radiances are simulated using the aforementioned meteorological information for initial guesses, and spectroscopic-parameter tables are generated. At each step of the retrieval, a nonlinear-least-squares- solving routine is run over multiple iterations, retrieving a subset of atmospheric constituents, and error analysis is performed. Scientific TES Level-2 data products are written in a format known as Hierarchical Data Format Earth Observing System 5 (HDF-EOS 5) for public distribution.

  7. Global Summary MGS TES Data and Mars-Gram Validation

    NASA Technical Reports Server (NTRS)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topograph$ from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). TES data were binned in 10-by-10 degree latitude-longitude bins (i.e. 36 longitude bins by 19 latitude bins), 12 seasonal bins (based on 30 degree increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of day bins were used: local time near 2 or 14 hours local time). Two dust optical depth bins wereused: infrared optical depth either less than or greater than 0.25 (which corresponds to visible optical depth either less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45 deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg

  8. When did TES begin taking measurements?

    Atmospheric Science Data Center

    2014-12-08

    TES began making measurements on August 22, 2004. The routine TES observation mode is to produce global survey standard products spanning 16 orbits on a 50% duty cycle, or approximately every other day. The "off" days can be used for...

  9. Wave-Modulated CO2 Condensation in Mars' Polar Atmosphere From MGS/TES & MOLA and MRO/MCS.

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2016-12-01

    In Mars' polar night, atmospheric temperatures fall low enough to cause CO2 condensation. This has been empirically demonstrated by Mars Global Surveyor's (MGS) Mars Orbiter Laser Altimeter (MOLA), which identified reflections from above the surface, and MGS Radio Science (RS) and Thermal Emission Spectrometer (TES) and Mars Reconnaissance Orbiter's (MRO) Mars Climate Sounder (MCS), all of which showed polar night temperature profiles that were super-saturated. Detailed analysis of TES temperature profiles as well as numerical modeling both suggest that the stationary and traveling waves on the polar vortices are strong enough to significantly modulate the CO2 cloud condensation. However the extent to which this is actually occurring has not been quantified. The polar night CO2 condensation represents a significant amount of energy deposition, even if it were uniformly distributed. If instead it is concentrated in the cold sectors of the various waves, this can be a tremendous perturbation not only to the wave amplitudes (clipping them from going much below the CO2 condensation temperature), but also impacting their ability to transport heat and momentum poleward and upward, and thus it may also impact the maintenance and shape of the polar vortex itself. Mars' polar vortices remain barotropically unstable throughout the winter in spite of large amplitude waves in their vicinity. We have identified when and where the various waves (with their specific amplitudes and phases) in the vicinity of the polar vortex should modulate the CO2 condensation (see Figure of a meridional cross-section showing where no clouds are expected (blue), clouds should be ubiquitous (green) and waves should be required to form clouds (red)). We have also correlated this with the distribution of the actual observed cloud identifications from MGS MOLA and MRO MCS. We find only poor correlations between the MGS/TES identified wave modulated condensation predictions and actual simultaneous

  10. Mars Climate Sounder (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's concept of NASA's Mars Reconnaissance Orbiter at Mars features one of its instruments -- the Mars Climate Sounder -- in action. Using nine channels across the visible and thermal infrared ranges of the spectrum, the Mars Climate Sounder looks first at space through the atmosphere above the horizon of Mars to get a vertical profile with temperature, pressure, dust and water vapor concentration measurements every 5 kilometers (3 miles) vertically from the ground to about 80 kilometers (about 50 miles) high. It also looks down onto the planet to get surface temperature and column abundances of dust and water vapor between the spacecraft and the surface.

    These 'profiles' and surface measurements are combined into daily, three-dimensional global weather maps for both daytime and nighttime. Observations will be made through the martian year to characterize the large seasonal variations in atmospheric dust loading, humidity and thermal structure, providing scientists with the same type of information meteorologists use to understand and predict weather and climate here on Earth.

  11. AIRS - the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigsten, Bjorn H.; Fetzer, Eric; Fishbein, Evan; Lee, Sung-Yung; Paganao, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in 2002, along with two companion microwave sounders. This AIRS sounding suite is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those of current weather satellites. From its sun synchronous polar orbit, the AIRS system provides more than 90% of the globe every 24 hours. Much of the post-launch period has been devoted to optimizing the 'retrieval' system used to derive atmospheric and other parameters from the observations and to validate those parameters. The geophysical parameters have been produced since the beginning of 2003 - the first data were released to the public in mid-2003, and future improved versions will be released periodically. The ongoing calibration/validation effort has confirmed that the system is very accurate and stable. There are a number of applications for the AIRS products, ranging from numerical weather prediction - where positive impact on forecast accuracy has already been demonstrated, to atmospheric research - where the AIRS water vapor products near the surface and in the mid and upper troposphere as well as in the stratosphere promise to make it possible to characterize and model phenomena that are key for short-term atmospheric processes, from weather patterns to long-term processes, such as interannual variability and climate change.

  12. First Data from Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    ' atmosphere, hides the surface emission, and the thermal-infrared radiation comes only from the atmosphere.

    The visible-and-near-infrared image (left) is bright where surface ice and atmospheric hazes reflect sunlight back to space. The view is of the northern half of Mars, with the north polar cap visible as the bright semicircle at upper left. The night half of the planet (lower left) is dark. The 'terminator' boundary between the day side and night side of the planet cuts from lower left to upper right, through the polar area. During the science phase of the mission, after the spacecraft has shrunk its orbit to a nearly circular loop approximately 300 kilometers (186 miles) above the surface, these visible-and-near-infrared readings by the Mars Climate Sounder will track how the amount of solar energy reflected from Mars varies from place-to-place and season-to-season, particularly in the polar regions where absorbed sunlight vaporizes the seasonal carbon-dioxide ice.

    The 12-micron image (center) indicates that heat is being emitted from both the day side and the night side of the planet. The polar cap is dark in this image because it is cold (minus 190 degrees Fahrenheit) and emits less heat than surrounding areas. During the science phase of the mission, the thermal-infrared readings at this wavelength by Mars Climate Sounder will be used to track dust and clouds in the atmosphere. In the current season on Mars, the atmosphere is relatively clear except for an equatorial belt of thin water-ice clouds present in the visible-and-near-infrared image, and so the 12-micron image is dominated by the infrared radiation from the surface on the relatively hot dayside (upper right).

    The 15-micron image (right) indicates the temperatures of the atmosphere at an altitude of about 25 kilometers (15 miles), where there is not much temperature difference even between the night side and the day side of the planet. The polar atmosphere is colder, so it appears darker.

  13. First Data from Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    ' atmosphere, hides the surface emission, and the thermal-infrared radiation comes only from the atmosphere.

    The visible-and-near-infrared image (left) is bright where surface ice and atmospheric hazes reflect sunlight back to space. The view is of the northern half of Mars, with the north polar cap visible as the bright semicircle at upper left. The night half of the planet (lower left) is dark. The 'terminator' boundary between the day side and night side of the planet cuts from lower left to upper right, through the polar area. During the science phase of the mission, after the spacecraft has shrunk its orbit to a nearly circular loop approximately 300 kilometers (186 miles) above the surface, these visible-and-near-infrared readings by the Mars Climate Sounder will track how the amount of solar energy reflected from Mars varies from place-to-place and season-to-season, particularly in the polar regions where absorbed sunlight vaporizes the seasonal carbon-dioxide ice.

    The 12-micron image (center) indicates that heat is being emitted from both the day side and the night side of the planet. The polar cap is dark in this image because it is cold (minus 190 degrees Fahrenheit) and emits less heat than surrounding areas. During the science phase of the mission, the thermal-infrared readings at this wavelength by Mars Climate Sounder will be used to track dust and clouds in the atmosphere. In the current season on Mars, the atmosphere is relatively clear except for an equatorial belt of thin water-ice clouds present in the visible-and-near-infrared image, and so the 12-micron image is dominated by the infrared radiation from the surface on the relatively hot dayside (upper right).

    The 15-micron image (right) indicates the temperatures of the atmosphere at an altitude of about 25 kilometers (15 miles), where there is not much temperature difference even between the night side and the day side of the planet. The polar atmosphere is colder, so it appears darker.

  14. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  15. GOES-R microwave sounder status

    NASA Astrophysics Data System (ADS)

    Madden, Michael; Bajpai, Shyam; Chu, Donald

    2005-08-01

    The National Oceanographic and Atmospheric Administration (NOAA) is now considering a microwave radiometer for the new series of Geostationary Operational Environmental Satellites (GOES) to be launched starting in 2012. GOES-R is expected to begin operations around 2014 and will provide significant advances in Earth coverage, environmental data, and prediction capabilities. GOES' unique vantage point in fixed geostationary orbit provides continuous, near-real-time updates (observations) of weather and environmental conditions for the Americas and large portions of the Atlantic and Pacific Oceans. In general, GOES-R sensor improvements arise from more frequent updates, finer spatial/spectral resolution, and an expanded field of view. Infrared (IR) atmospheric sounders are designed to provide excellent observations in clear conditions. Critical information within clouds and under cloud cover, however, is not available in the IR spectrum. Microwave sounders can provide synergistic coverage by their ability to observe energy through clouds. NASA's Earth Observing System (EOS) AQUA with the Advanced Microwave Sounder Unit (AMSU) and Atmospheric IR Sounder (AIRS) has illustrated the benefits of combining infrared and microwave sounder data. The benefits provided by polar microwave sounders can be extended to geostationary satellites. The combination of the Hyperspectral Environmental Suite (HES) IR sounder and Geostationary Microwave Sounder (GMS) can likewise provide complete geostationary sounder coverage and precipitation measurements.through our hemisphere. Three different sounders designs have been proposed for the GOES-R Geostationary Microwave Sounder (GMS); these designs would all use similar frequency bands to those of the AMSU A and B and therefore benefit from existing retrieval algorithms. Two designs use mechanically steered solid dish antennae, while a third design utilizes a sparse aperture antenna technology. All three GMS designs take advantage of the

  16. Radiometric error and re-calibration of the MGS TES spectra

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.

    2016-12-01

    Several sources of systematic error were identified in the spectra of the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) spacecraft during its mission. Some of these errors were corrected, some still remain and contaminate spectra. One of the most significant remaining errors is a time-variable systematic radiometric error. This error significantly affects nighttime and polar spectra, and spectra of the Mars' limb. The existence of this error hampered analysis of roughly half of the data collected by TES spectrometer. The error arises due to a periodic sampling error of TES interferograms, which is a common problem in Fourier-transform interferometers. The error negatively affects calibrated TES spectra in two ways: it introduces an error into estimates of the Instrument Response Functions (IRF) and instrument's radiances that are used to calibrate TES spectra, and it introduces an error into TES spectra themselves. This paper presents a new approach to calibrating TES spectra that enables removing the error from the calibration functions. The new approach utilizes long-term averages of uncalibrated TES spectra of deep space to estimate the true shape of the TES IRF and its dependence on instrument temperature. This, and parameterization of the radiometric error spectral shape, enables removing the error from calibration. Examples of re-calibrated spectra are presented. The largest improvement in the quality of the spectra is observed for nighttime and polar spectra, and spectra of the Mars' limb. Re-calibration would significantly improve retrievals of aerosol abundances and surface temperatures from these spectra.

  17. Optical Recorder of the Lunar Sounder Experiment

    NASA Image and Video Library

    1972-11-22

    S72-49482 (November 1972) --- The Optical Recorder of the Lunar Sounder Experiment (S-209) which will be mounted in the SIM bay of the Apollo 17 Service Module. The three functional parts of the Lunar Sounder are the optical recorder, the coherent synthetic aperture radar, and the antennas, a retractable dipole for HF and a yagi for VHF. The Lunar Sounder will probe three-quarters of a mile below the moon's surface from the orbiting Apollo 17 spacecraft. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.

  18. TES Observations of the Martian Surface and Atmosphere

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Kieffer, H. H.; Pearl, J. C.; Conrath, B.; Malin, M. C.; Clark, R. C.; Morris, R. V.; Bandfield, J. L.; Smith, M. D.; Lane, M. D.

    2000-01-01

    The Thermal Emission Spectrometer (TES) instrument is a Fourier transform Michelson interferometer operating with 10 or 5 cm(exp -1) sampling in the thermal infrared spectral region from 1700 to 200 cm(exp -1) (-6 to 50 micrometers) where virtually all minerals have characteristic fundamental vibrational absorption bands. The TES data used in this paper are among the 6 x 10(exp 7) spectra collected during the early mapping phase of the Mars Global Surveyor (MGS) mission from southern hemisphere winter to early summer (aerocentric longitude, L(sub s), 107 deg to 297 deg. The methodology for separating the surface and atmospheric components of the radiance from Mars, which allows detailed analysis and interpretation of surface mineralogy, is described in previous paper. Additional information is contained in original extended abstract.

  19. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  20. Using TES retrievals of HCN to determine fire influence of Aura-TES footprints

    NASA Astrophysics Data System (ADS)

    Kulawik, S.; Payne, V.; Fischer, E. V.

    2016-12-01

    Hydrogen cyanide (HCN) has successfully been used as a tracer of biomass burning in the context of aircraft campaigns. We show HCN observations from Aura-TES for a major fire in Indonesia in 2006, and globally over different seasons. We develop a fire-influence flag for TES observations and show how this relates to enhancements of other TES products, such as PAN, carbon monoxide, and ozone.

  1. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  2. TES (Thermal Energy Storage) Video News Release

    NASA Technical Reports Server (NTRS)

    1994-01-01

    TES is an in-space technology experiment that flew on STS-62. Its intent is to investigate the behavior of two different thermal energy storage materials as they undergo repeated melting and freezing in the microgravity environment.

  3. Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Sun, Kang; Cady-Pereira, Karen; Miller, David J.; Tao, Lei; Zondlo, Mark A.; Nowak, John B.; Neuman, J. A.; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Scarino, Amy J.; Hostetler, Chris A.

    2015-05-01

    Ammonia measurements from a vehicle-based, mobile open-path sensor and those from aircraft were compared with Tropospheric Emission Spectrometer (TES) NH3 columns at the pixel scale during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality field experiment. Spatial and temporal mismatches were reduced by having the mobile laboratory sample in the same areas as the TES footprints. To examine how large heterogeneities in the NH3 surface mixing ratios may affect validation, a detailed spatial survey was performed within a single TES footprint around the overpass time. The TES total NH3 column above a single footprint showed excellent agreement with the in situ total column constructed from surface measurements with a difference of 2% (within the combined measurement uncertainties). The comparison was then extended to a TES transect of nine footprints where aircraft data (5-80 ppbv) were available in a narrow spatiotemporal window (<10 km, <1 h). The TES total NH3 columns above the nine footprints agreed to within 6% of the in situ total columns derived from the aircraft-based measurements. Finally, to examine how TES captures surface spatial gradients at the interpixel scale, ground-based, mobile measurements were performed directly underneath a TES transect, covering nine footprints within ±1.5 h of the overpass. The TES total columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at the surface. These results provide the first in situ validation of the TES total NH3 column product, and the methodology is applicable to other satellite observations of short-lived species at the pixel scale.

  4. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  5. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  6. Extending the Satellite Data Record of Tropospheric Ozone Profiles from Aura-TES to MetOp-IASI

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Payne, V.; Kulawik, S. S.; Neu, J. L.; Eldering, A.; Worden, J.; Edwards, D. P.; Francis, G. L.; Worden, H. M.

    2014-12-01

    Ozone is the third most important anthropogenic greenhouse gas and a significant pollutant at the surface affecting human and plant health. Rapidly increasing Asian emissions of ozone precursors, land-surface changes from burning, and decreasing surface emissions in Europe and North America have resulted in unknown changes to the distribution of tropospheric ozone. Satellite-borne instruments provide the means for global and continuous monitoring of this important trace gas. High spectral resolution infrared radiance measurements, such as those from the Tropospheric Emission Spectrometer (TES) on the NASA Aura satellite (launched in 2004), and the Infrared Atmospheric Sounding Instruments (IASI), on the MetOp-A and MetOp-B satellites (launched in 2006 and 2012 respectively) can be used to derive vertical information of tropospheric ozone. As part of efforts to assess consistency between the TES and IASI data records, a retrieval for ozone from IASI radiances, building on the data processor for TES, has been developed as a collaboration between NASA JPL and NCAR. Using a priori information consistent with TES retrievals, the optimal estimation approach is applied to IASI radiances in order to obtain vertical distributions of ozone. This presentation shows the characterization of these IASI ozone retrievals with respect to the vertical distribution of the uncertainties and sensitivities as well as comparisons with TES. Further, trends in ozone over Asia, North America, and Europe as seen by TES and IASI are presented.

  7. Surface Composition of Mars: Results from a New Atmospheric Compensation Technique Applied to TES

    NASA Technical Reports Server (NTRS)

    Kirkland, L. E.; Herr, K. C.; Ward, J.; Keim, E. R.; Hackwell, J. H.; McAfee, J. M.

    2002-01-01

    Before TES (Thermal Emission Spectrometry) spectra can be used to model surface compositions, they must have a strong atmospheric compensation applied. We explore a very different atmospheric retrieval process, and compare results and implications for the derived surface composition. Additional information is contained in the original extended abstract.

  8. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  9. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  10. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2014-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying on-board MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izana, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because of similar sensitivities. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES one, which are bias corrected, but an important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observations comparisons could be optimized with IASI thanks to its high spatial and temporal sampling.

  11. A Moderate-resolution Geosynchronous Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Shiue, James

    2004-01-01

    The introduction of microwave radiometers for remote sensing of atmospheric temperature and humidity began in early 1970s, when NASA's Nimbus series experimental satellites tested a number of microwave payloads which are the precursors of today's operational microwave temperature and humidity sounders such as the Advanced Microwave Sounding Unit (AMSU-A and AMSU-B), now flying on several Lower Earth Orbiting (LEO) satellites, notably the National Oceanic and Atmospheric (NOAA)-series weather satellites. The Advanced Technology Microwave Sounder (ATMS) will be the next generation microwave sounder, now being developed by NASA for the future U.S. National Polar-orbiting Operational Environmental Satellites System (NPOESS), slated for operation late this decade. The unique feature of a microwave sensor is its cloud-penetrating capability. And the visible and IR sensors are usually greatly degraded by cloud covers. But under the cloud cover is where the weather can be most "active," and atmospheric measurements are most urgently needed. This unique capability has been well proven by AMSU-A, and AMSU-B on LEO satellites. The same capability is also true for a microwave sounder on a GEO satellite. The key advantage of a sensor on a GEO-platform is its "high temporal resolution." A sensor on a GEO-platform can almost "continuous" monitor a given scene on Earth. On the other hand, the major drawback the GEO-platform is its poor spatial resolution. This is probably the main reason why a geosynchronous microwave sounder has yet to be realized. Take the ATMS as an example. It has a 20 cm diameter antenna (temperature channels), producing a 2.2 degree beam, resulting in a footprint of 32 km (from the NPOESS 833 km orbit). From a GEO-orbit the same 32 km footprint would need an antenna 43 times larger, or 860 cm diameter. We will discuss the needs and advantages of such a GEO-microwave sounder with a straw-man design, and show the expected performance characteristics, such as

  12. Mars Global Surveyor TES Results: Observations of Atmospheric Dust During Mapping

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, J. C.; Conrath, B. J.; Christensen, P. R.

    1999-01-01

    The Mars Global Surveyor entered mapping orbit around Mars in March 1999. Infrared spectra returned by the Thermal Emission Spectrometer (TES) are very well suited for monitoring column-integrated infrared dust opacity. A global view of dust opacity is possible on a daily basis allowing the detailed study of the evolution of dust storms and the seasonal trend of the background dust opacity. Information about the vertical distribution of dust in the atmosphere can be obtained by examination of TES spectra taken in a limb-viewing geometry. We report here on 1) the observed horizontal distribution of dust aerosols and their evolution with time during the mapping phase of the Mars Global Surveyor mission so far (roughly covering northern hemisphere summer and early fall), and 2) the vertical distribution of dust aerosols as determined from TES spectra taken in the limb-viewing geometry.

  13. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  14. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  15. A Search for Shergottite-like Outliers in Orbital TES Data Using the Mini-TES Spectrum of Bounce Rock

    NASA Astrophysics Data System (ADS)

    Wright, S. P.; Wyatt, M. B.; Christensen, P. R.

    2006-12-01

    Bounce Rock was found by the MER Opportunity rover and is interpreted as an anomalous distal impact ejecta deposited on the windblown sands of the Meridiani plains [Squyres et al., Science, 2004]. X-Ray, Moessbauer, and thermal infrared (TIR) spectra of Bounce Rock are distinct from any measured at either Rover landing site and are best matched by various basaltic shergottites such as Shergotty and Zagami. Recent work on the TIR spectra of experimentally shocked plagioclases and basalts [Johnson et al., JGR, 2002; 2006] and shocked terrestrial basalt [Wright et al., LPSC, 2006] suggest that the Mini-TES spectrum of Bounce Rock appears to be an unshocked version of Zagami or perhaps Shergotty. Spectral observations of unshocked martian lithologies similar in composition to martian meteorites are important for constraining the extent of SNC-like lithologies in orbital data as all meteorite samples display some degree of shock effect and may not be representative of the bulk of martian surface compositions. The Mini-TES spectrum of Bounce Rock thus represents a rare unshocked pigeonite-augite-plagioclase basalt spectrum that would never be available in meteorite collections or spectral libraries. This fact and the difficulties of both producing an artificial pigeonite spectrum and finding pigeonite-rich regions on Mars make the Bounce Rock spectrum an excellent end-member in the search for potential shergottite source regions with global TIR data. Previous work locating Thermal Emission Spectrometer (TES) pixels high in olivine, orthopyroxene [Hamilton et al., MaPS, 2003], and quartzofeldspathic minerals [Bandfield et al., JGR, 2004] have shown the utility of using lithologic end-members rather than large mineral spectral libraries. However, minerals with higher polymerization than feldspar such as olivines and pyroxenes do not show changes in TIR spectra at the shock level all shergottites have been subjected to [Johnson et al., JGR, 2002]. In this work, global TES

  16. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  17. Tropospheric Vertical Distribution of Tropical Atlantic Ozone Observed by TES during the Northern African Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Jourdain, L.; Worden, H. M.; Worden, J. R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S. S.; Osterman, G.; Boersma, K. F.; Fisher, B.; hide

    2007-01-01

    We present vertical distributions of ozone from the Tropospheric Emission Spectrometer (TES) over the tropical Atlantic Ocean during January 2005. Between 10N and 20S, TES ozone retrievals have Degrees of Freedom for signal (DOF) around 0.7 - 0.8 each for tropospheric altitudes above and below 500 hPa. As a result, TES is able to capture for the first time from space a distribution characterized by two maxima: one in the lower troposphere north of the ITCZ and one in the middle and upper troposphere south of the ITCZ. We focus our analysis on the north tropical Atlantic Ocean, where most of previous satellite observations showed discrepancies with in-situ ozone observations and models. Trajectory analyses and a sensitivity study using the GEOS-Chem model confirm the influence of northern Africa biomass burning on the elevated ozone mixing ratios observed by TES over this region.

  18. Tropospheric Vertical Distribution of Tropical Atlantic Ozone Observed by TES during the Northern African Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Jourdain, L.; Worden, H. M.; Worden, J. R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S. S.; Osterman, G.; Boersma, K. F.; Fisher, B.; Rinsland, C. P.; Beer, R.; Gunson, M.

    2007-01-01

    We present vertical distributions of ozone from the Tropospheric Emission Spectrometer (TES) over the tropical Atlantic Ocean during January 2005. Between 10N and 20S, TES ozone retrievals have Degrees of Freedom for signal (DOF) around 0.7 - 0.8 each for tropospheric altitudes above and below 500 hPa. As a result, TES is able to capture for the first time from space a distribution characterized by two maxima: one in the lower troposphere north of the ITCZ and one in the middle and upper troposphere south of the ITCZ. We focus our analysis on the north tropical Atlantic Ocean, where most of previous satellite observations showed discrepancies with in-situ ozone observations and models. Trajectory analyses and a sensitivity study using the GEOS-Chem model confirm the influence of northern Africa biomass burning on the elevated ozone mixing ratios observed by TES over this region.

  19. High Resolution, Narrow Beam Echo Sounder

    DTIC Science & Technology

    1976-06-01

    results from operations at sea will be presented. Recent bottom bounce data collected from the stable buoy R/P FLIP 1/ have required I. ECHO SOUNDER...SYSTEM detailed bathymetric data in the bottom reflection area in order to measure bottom 1. SOURCE slopes in the vicinity of bottom bounce points. In...this way measured vertical and horizontal angles of arrival of signals via The source and receiving system block the bottom bounce path can be related

  20. Rocket/Nimbus Sounder Comparison (RNSC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental results for radiance and temperature differences in the Wallops Island comparisons indicate that the differences between satellite and rocket systems are of the same order of magnitude as the differences among the various satellite and rocket sounders. The Arcasondes produced usable data to about 50 km, while the Datasondes require design modification. The SIRS and IRIS soundings provided usable data to 30 mb; extension of these soundings was also investigated.

  1. VAS demonstration: (VISSR Atmospheric Sounder) description

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Uccellini, L. W.

    1985-01-01

    The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.

  2. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  3. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  4. Topside Ionospheric Sounder for CubeSats

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Pratt, J.; Fish, C. S.; Winkler, C.; Pilinski, M.; Azeem, I.; Crowley, G.; Jeppesen, M.; Martineau, R.

    2014-12-01

    This presentation will outline the design of a Topside Ionospheric Sounder (TIS) for CubeSats. In the same way that an ionosonde measures the ionospheric profile from the ground, a Topside Sounder measures the ionospheric profile from a location above the F-region peak. The TIS will address the need for increased space situational awareness and environmental monitoring by estimating electron density profiles in the topside of the ionosphere. The TIS will measure topside electron density profiles for plasma frequencies ranging from 0.89 MHz to 28.4 MHz below the satellite altitude. The precision of the measurement will be 5% or 10,000 p/cm^3. The TIS average power consumption will be below 10 W and a mass of less than 10 kg, so it is appropriate for a 6U Cubesat (or multiple of that size). The sounder will operate via a transmitted frequency sweep across the desired plasma frequencies which, upon reception, can be differenced to determine range and density information of the topside ionosphere. The velocity of the spacecraft necessitates careful balancing of range resolution and frequency knowledge requirements as well as novel processing techniques to correctly associate the return signal with the correct plasma frequency. TIS is being designed to provide a low cost, low mass spacecraft that can provide accurate topside profiles of the ionospheric electron density in order to further understanding of ionospheric structure and dynamic processes in the ionosphere.

  5. Successful Mars remote sensors, MO THEMIS and MER Mini-TES

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Christensen, Phil

    2003-11-01

    This paper describes results of the calibration of the Miniature Thermal Emission Spectrometer (Mini-TES) and the Thermal Emission Imaging System (THEMIS) built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman, et al., 2003) for mission description and instrument designs (Schueler, et al., 2003). A major goal of the Mars Exploration Program is to help determine whether life ever existed on Mars via detailed in situ studies and surface sample return. It is essential to identify landing sites with the highest probability of containing samples indicative of early pre-biotic or biotic environments. Of particular interest are aqueous and/or hydrothermal environments in which life could have existed, or regions of current near-surface water or heat sources. The search requires detailed geologic mapping and accurate interpretations of site composition and history in a global context. THEMIS and Mini-TES were designed to do this and builds upon a wealth of data from previous experiments. Previous experiments include the Mariner 6/7 Mars Infrared Radiometer (MIR) and Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM), the Phobos Termoscan, and the continuing Mars Global Surveyor (MGS) mission using the Mars Orbiter Camera (MOC) and MGS Thermal Emission Spectrometer (TES). TES has collected hyperspectral images (up to 286 spectral bands from 6-50 μm) of the entire martian surface, providing an initial global reconnaissance of mineralogy and thermophysical properties. By covering the key 6.3 to 15.0 μm region in both TES and THEMIS, it is possible to combine TES fine spectral resolution with THEMIS fine spatial resolution to achieve a global mineralogic inventory at the spatial scales necessary for detailed geologic studies within the Odyssey data resources. Mini-TES is a single detector

  6. View to the south with the Two Sounder Antennas on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  7. Advanced microwave sounding unit study for atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip W.; Staelin, David H.

    1992-01-01

    The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), and the Microwave Humidity Sounder (MHS, formerly AMSU-B) together constitute the advanced sounding system facility for the Earth Observing System (EOS). A summary of the EOS phase B activities are presented.

  8. Radar sounder performances for ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Berquin, Y. P.; Kofman, W. W.; Heggy, E.; Hérique, A.

    2012-12-01

    The Jupiter Icy moons Explorer (JUICE) is the first Large-class mission chosen as part of ESA's Cosmic Vision 2015-2025 program. The mission will study Jovian icy moons Ganymede and Europa as potential habitats for life, addressing two key themes of Cosmic Vision namely the conditions for planet formation and the emergence of life, and the Solar System interactions. The radar sounder instrument on this mission will have great potential to address specific science questions such as the presence of subsurface liquid water and ice shell geophysical structures. One major constraint for radar sounding is the roughness of the planetary surface. The work presented will focus on the characterization of Ganymede's surface topography to better understand its surface properties from a radar point of view. These results should help to put constraints on the design of JUICE's radar sounder. We use topographic data derived from the Voyager and Galileo missions images to try to characterize the surface structure and to quantify its geometry (in terms of slopes and RMS heights mainly). This study will help us evaluating the radar budget in a statistical approach. In addition, deterministic simulations of surface radar echoes conducted on synthetic surfaces -extrapolated from Digital Elevation Models- will be presented to better assess radar sounding performances.

  9. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  10. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  11. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  12. Mini-TES Observations of Comanche Carbonate and its Distribution

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Morris, R. V.

    2010-12-01

    The discovery by the Spirit rover of outcrops rich in Mg-Fe carbonate [Morris et al., 2010] represents another manifestation of a diverse aqueous history in Gusev crater. In 2005, observations by the Mössbauer spectrometer (MB) on outcrops dubbed Comanche provided initial indication of Fe-Mg carbonate that was subsequently supported by analysis of elemental data from the Alpha Particle X-ray Spectrometer (APXS). The recognition of a carbonate component in thermal infrared spectra measured by the Miniature Thermal Emission Spectrometer (Mini-TES) was significantly delayed due to dust contamination of the instrument’s optics. With the implementation of a viable dust correction, the Comanche spectra were revisited and presented clear and compelling evidence for a Mg-Fe carbonate component that could be as much as a third of the total mineral abundance. The data from all three instruments in combination are best matched by Mg-Fe carbonate with an abundance of 16-34 wt%. Mini-TES spectra were acquired for 12 targets at various locations on the Comanche (4-5 m long) and Comanche Spur (1-2 m long) outcrops, the latter being the location of the MB and APXS measurements. The two outcrops are spectrally comparable and share similar morphology and texture based on color images from the Panoramic Camera (Pancam). The highest quality Mini-TES spectrum comes from the larger Comanche outcrop on a target named Saupitty. Linear least squares modeling of the Saupitty spectrum employed a library of laboratory spectra tailored for consistency with the APXS and MB data and included spectra representing Martian dust, a “slope” spectrum to account for any temperature determination errors, and a blackbody spectrum to account for differences in spectral contrast between the laboratory and Mini-TES spectra. Successful modeling of the Comanche Saupitty spectrum required one or more carbonate phases to obtain a good fit. Excluding all carbonates from the full starting library more than

  13. Mini-TES Observations of Comanche Carbonate and Its Distribution

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.; Morris, Richard V.

    2010-01-01

    The discovery by the Spirit rover of outcrops rich in Mg-Fe carbonate [Morris et al., 2010] represents another manifestation of a diverse aqueous history in Gusev crater. In 2005, observations by the Moessbauer spectrometer (MB) on outcrops dubbed Comanche provided initial indication of Fe-Mg carbonate that was subsequently supported by analysis of elemental data from the Alpha Particle X-ray Spectrometer (APXS). The recognition of a carbonate component in thermal infrared spectra measured by the Miniature Thermal Emission Spectrometer (Mini-TES) was significantly delayed due to dust contamination of the instrument's optics. With the implementation of a viable dust correction, the Comanche spectra were revisited and presented clear and compelling evidence for a Mg-Fe carbonate component that could be as much as a third of the total mineral abundance. The data from all three instruments in combination are best matched by Mg-Fe carbonate with an abundance of 16-34 wt%. Mini-TES spectra were acquired for 12 targets at various locations on the Comanche (4-5 m long) and Comanche Spur (1-2 m long) outcrops, the latter being the location of the MB and APXS measurements. The two outcrops are spectrally comparable and share similar morphology and texture based on color images from the Panoramic Camera (Pancam). The highest quality Mini-TES spectrum comes from the larger Comanche outcrop on a target named Saupitty. Linear least squares modeling of the Saupitty spectrum employed a library of laboratory spectra tailored for consistency with the APXS and MB data and included spectra representing Martian dust, a slope spectrum to account for any temperature determination errors, and a blackbody spectrum to account for differences in spectral contrast between the laboratory and Mini-TES spectrum. Successful modeling of the Comanche Saupitty spectrum required one or more carbonate phases to obtain a good fit. Excluding all carbonates from the full starting library more than

  14. A Joint data record of tropospheric ozone from Aura-TES and MetOp-IASI

    NASA Astrophysics Data System (ADS)

    Oetjen, H.; Payne, V. H.; Neu, J. L.; Kulawik, S. S.; Edwards, D. P.; Eldering, A.; Worden, H. M.; Worden, J. R.

    2015-11-01

    The Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of ten years of free-tropospheric ozone with an overlap of three years. We characterise the differences between TES and IASI ozone measurements and find that IASI's coarser vertical sensitivity leads to a small (< 5 ppb) low bias relative to TES for the free troposphere. The TES-IASI differences are not dependent on season or any other factor and hence the measurements from the two instruments can be merged, after correcting for the offset, in order to study decadal-scale changes in tropospheric ozone. We calculate time series of regional monthly mean ozone in the free troposphere over Eastern Asia, the Western United States (US), and Europe, carefully accounting for differences in spatial sampling between the instruments. We show that free-tropospheric ozone over Europe and the Western US has remained relatively constant over the past decade, but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004-2010.

  15. A joint data record of tropospheric ozone from Aura-TES and MetOp-IASI

    NASA Astrophysics Data System (ADS)

    Oetjen, Hilke; Payne, Vivienne H.; Neu, Jessica L.; Kulawik, Susan S.; Edwards, David P.; Eldering, Annmarie; Worden, Helen M.; Worden, John R.

    2016-08-01

    The Tropospheric Emission Spectrometer (TES) on Aura and Infrared Atmospheric Sounding Interferometer (IASI) on MetOp-A together provide a time series of 10 years of free-tropospheric ozone with an overlap of 3 years. We characterise the differences between TES and IASI ozone measurements and find that IASI's coarser vertical sensitivity leads to a small (< 5 ppb) low bias relative to TES for the free troposphere. The TES-IASI differences are not dependent on season or any other factor and hence the measurements from the two instruments can be merged, after correcting for the offset, in order to study decadal-scale changes in tropospheric ozone. We calculate time series of regional monthly mean ozone in the free troposphere over eastern Asia, the western United States (US), and Europe, carefully accounting for differences in spatial sampling between the instruments. We show that free-tropospheric ozone over Europe and the western US has remained relatively constant over the past decade but that, contrary to expectations, ozone over Asia in recent years does not continue the rapid rate of increase observed from 2004 to 2010.

  16. Mineralogy at Meridiani Planum from the Mini-TES experiment on the opportunity rover

    USGS Publications Warehouse

    Christensen, P.R.; Wyatt, M.B.; Glotch, T.D.; Rogers, A.D.; Anwar, S.; Arvidson, R. E.; Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M.; Fallacaro, A.; Fergason, R.L.; Gorelick, N.; Graff, T.G.; Hamilton, V.E.; Hayes, A.G.; Johnson, J. R.; Knudson, A.T.; McSween, H.Y.; Mehall, G.L.; Mehall, L.K.; Moersch, J.E.; Morris, R.V.; Smith, M.D.; Squyres, S. W.; Ruff, S.W.; Wolff, M.J.

    2004-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (???20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.

  17. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  18. Development of absorber coupled TES polarimeter at millimeter wavelengths.

    SciTech Connect

    Wang, G.; Yefremenko, V.; Novosad, V.; Bleem, L.; Chang, C.; McMahon, J.; Datesman, A.; Pearson, J.; Divan, R.; Downes, T.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

    2009-06-01

    We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.

  19. On the remote sensing of cloud properties from satellite infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. M.

    1984-01-01

    A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.

  20. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this final report, the set of tasks that evolved from the Laser Atmosphere Wind Sounder (LAWS) Science Team are reviewed, the major accomplishments are summarized, and a complete set of resulting references provided. The tasks included preparation of a plan for the LAWS Algorithm Development and Evolution Laboratory (LADEL); participation in the preparation of a joint CNES/NASA proposal to build a space-based DWL; involvement in the Global Backscatter Experiments (GLOBE); evaluation of several DWL concepts including 'Quick-LAWS', SPNDL and several direct detection technologies; and an extensive series of system trade studies and Observing System Simulation Experiments (OSSE's). In this report, some of the key accomplishments are briefly summarized with reference to interim reports, special reports, conference/workshop presentations, and publications.

  1. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  2. Advanced Meteorological Temperature Sounder (AMTS) study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a system definition study (theoretical) for an Advanced Meteorological Temperature Sounder (AMTS) is described. From the data the atmospheric temperature and humidity profiles can be determined over the entire earth's surface with a spatial resolution of 45 km. x 45 km; amounts and type of cloud cover as well as surface temperatures of the earth are also determined. The major purpose of the study was to determine the feasibility of cooling twenty-eight detectors to the 80-90 Kelvin region by means of a radiative cooler. Other related considerations were achieving high signal-to-noise ratios, maximizing optical throughput through the grating spectrometer, and reducing preamplifier noise. A detailed optical design of an f/5 Ebert-Fastie spectrometer was carried out to verify that image quality is adequate; field lenses near the spectrometer focal plane were designed to image the grating onto the smallest size detectors for each channel.

  3. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  4. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  5. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  6. Reflectance and Thermal Infrared Spectroscopy of Mars: Relationship Between ISM and TES for Compositional Determinations

    NASA Technical Reports Server (NTRS)

    Boyce, Joseph (Technical Monitor); Mustard, John

    2004-01-01

    Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations

  7. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; hide

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  8. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; deZafra, R. L.; Shindell, D. T.

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  9. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  10. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  11. Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Worden, J. R.; Jones, D. B. A.; Lin, J.-T.; Verstraeten, W. W.; Henze, D. K.

    2015-01-01

    Rapid industrialization in Asia in the last two decades has resulted in a significant increase in Asian ozone (O3) precursor emissions with likely a corresponding increase in the export of O3 and its precursors. However, the relationship between this increasing O3, the chemical environment, O3 production efficiency, and the partitioning between anthropogenic and natural precursors is unclear. In this work, we use satellite measurements of O3, CO and NO2 from TES (Tropospheric Emission Spectrometer), MOPITT (Measurement of Pollution In The Troposphere) and OMI (Ozone Monitoring Instrument) to quantify O3 precursor emissions for 2006 and their impact on free tropospheric O3 over northeastern Asia, where pollution is typically exported globally due to strong westerlies. Using the GEOS-Chem (Goddard Earth Observing System Chemistry) global chemical transport model, we test the modeled seasonal and interannual variation of O3 based on prior and updated O3 precursor emissions where the updated emissions of CO and NOx are based on satellite measurements of CO and NO2. We show that the observed TES O3 variability and amount are consistent with the model for these updated emissions. However, there is little difference in the modeled ozone between the updated and prior emissions. For example, for the 2006 June time period, the prior and posterior NOx emissions were 14% different over China but the modeled ozone in the free troposphere was only 2.5% different. Using the adjoint of GEOS-Chem we partition the relative contributions of natural and anthropogenic sources to free troposphere O3 in this region. We find that the influence of lightning NOx in the summer is comparable to the contribution from surface emissions but smaller for other seasons. China is the primary contributor of anthropogenic CO, emissions and their export during the summer. While the posterior CO emissions improved the comparison between model and TES by 32%, on average, this change also had only a small

  12. TES observations of the interannual variability of PAN over Northern Eurasia and the relationship to springtime fires

    NASA Astrophysics Data System (ADS)

    Zhu, Liye; Fischer, Emily V.; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe

    2015-09-01

    Peroxyacetyl nitrate (PAN) plays an important role in atmospheric chemistry through its impact on remote oxidant and nitrogen budgets. PAN is formed rapidly in boreal fire plumes through the oxidation of short-lived volatile organic compounds in the presence of nitrogen oxide radicals. Here we present new satellite observations of PAN from the Tropospheric Emission Spectrometer (TES) over northern Eurasia for April 2006-2010. We observe large interannual variability in TES PAN observations, and we show that fires are one source of this variability using (1) Moderate Resolution Imaging Spectroradiometer Mean Fire Radiative Power observations and (2) Hybrid Single-Particle Lagrangian Integrated Trajectory backward trajectories. We also show that cold springtime temperatures and enhanced vertical mixing in the lower free troposphere over northeastern Eurasia likely played a role in the detection of PAN from TES in April 2006 in this region.

  13. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazuyuki; Eskes, Henk; Sudo, Kengo; Folkert Boersma, K.; Bowman, Kevin; Kanaya, Yugo

    2017-01-01

    Global surface emissions of nitrogen oxides (NOx) over a 10-year period (2005-2014) are estimated from an assimilation of multiple satellite data sets: tropospheric NO2 columns from Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment-2 (GOME-2), and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), O3 profiles from Tropospheric Emission Spectrometer (TES), CO profiles from Measurement of Pollution in the Troposphere (MOPITT), and O3 and HNO3 profiles from Microwave Limb Sounder (MLS) using an ensemble Kalman filter technique. Chemical concentrations of various species and emission sources of several precursors are simultaneously optimized. This is expected to improve the emission inversion because the emission estimates are influenced by biases in the modelled tropospheric chemistry, which can be partly corrected by also optimizing the concentrations. We present detailed distributions of the estimated emission distributions for all major regions, the diurnal and seasonal variability, and the evolution of these emissions over the 10-year period. The estimated regional total emissions show a strong positive trend over India (+29 % decade-1), China (+26 % decade-1), and the Middle East (+20 % decade-1), and a negative trend over the USA (-38 % decade-1), southern Africa (-8.2 % decade-1), and western Europe (-8.8 % decade-1). The negative trends in the USA and western Europe are larger during 2005-2010 relative to 2011-2014, whereas the trend in China becomes negative after 2011. The data assimilation also suggests a large uncertainty in anthropogenic and fire-related emission factors and an important underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr-1) and 2014 (47.5 Tg N yr-1).

  14. A Submillimeter Sounder for Measuring Martian Winds and Water

    NASA Astrophysics Data System (ADS)

    Tamppari, L. K.; Livesey, N. J.; Read, W. G.

    2016-10-01

    We review the scientific need for global vertically resolved observations of martian atmospheric winds, and show that a submillimeter limb sounder can provide such measurements, along with measurements of water vapor and other trace gases.

  15. Development of Laboratory Experimental System to Clarify Solar Wind Charge Exchange Mechanism with TES Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Enoki, T.; Ishisaki, Y.; Akamatsu, H.; Ezoe, Y.; Ohashi, T.; Kanda, T.; Ishida, T.; Tanuma, H.; Ohashi, H.; Shinozaki, K.; Mitsuda, K.

    2012-06-01

    Significant fraction of the cosmic diffuse soft X-ray emission (0.1-1 keV) is caused by the Solar Wind Charge eXchange (SWCX) process between the solar wind ion (C q+, N q+, O q+ etc.) and the interplanetary neutral matter. It is difficult to identify spectral features of SWCX with the spectral resolution of existing X-ray astronomy satellites. We are developing a laboratory experimental system with transition edge sensor (TES) X-ray microcalorimeters, in order to clarify the SWCX mechanism. This experiment is designed to measure Charge eXchange (CX) X-rays using Electron Cyclotron Resonance Ion Source (ECRIS) that generates multi-charged ions. Emission lines (OVIII: 2p→1s; 654 eV) by CX between O8+ and neutral He atom is aimed to be measured with energy resolution better than 10 eV. The TES microcalorimeter is cooled by a double-stage adiabatic demagnetization refrigerator (DADR), however, our TES microcalorimeter are not working potentially due to magnetic field contamination. This paper reports our experimental system, present results, and future prospects.

  16. TES/Aura L2 Ancillary Data (TL2ANCS)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Ancillary Data (TL2ANCS) Project Title:  TES Discipline:  ... and Order:  Earthdata Search   FTP  Access:   Data Pool OPeNDAP Access:  OPeNDAP Parameters:  ... Solar Azimuth Angle Spacecraft Position Order Data:  Earthdata Search:   Order Data SCAR-B Block:  ...

  17. Determination of Net Martian Polar Dust Flux from MGS-TES Observations

    NASA Technical Reports Server (NTRS)

    Blackmon, M. A.; Murphy, J. R.

    2003-01-01

    Using atmospheric dust abundance and atmospheric temperature observation data from the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS), the net flux of dust into and out of the Martian polar regions will be examined. Mars polar regions possess layered terrain , believed to be comprised of a mixture of ice and dust, with the different layers possibly representing different past climate regimes. These changes in climate may reflect changes in the deposition of dust and volatiles through impacts, volcanism, changes in resources of ice and dust, and response to Milankovitch type cycles (changes in eccentricity of orbit, obliquity and precession of axis). Understanding how rapidly such layers can be generated is an important element to understanding Mars climate history. This study uses the observed vertical temperature data and dust content measurements from TES to analyze the sign (gain or loss) of dust at high latitudes.

  18. Measurements of stratospheric NO2 by the improved stratospheric and mesospheric sounder

    NASA Astrophysics Data System (ADS)

    Reburn, W. J.; Remedios, J. J.; Ballard, J.; Lawrence, B. N.; Taylor, F. W.

    1993-06-01

    Limb sounding measurements of infra-red emission at 6.2 μm from the Earth's atmosphere have been made by the Improved Stratospheric and Mesospheric Sounder (ISAMS). This provides a pressure modulated gas-correlation signal and a wideband signal from which NO2 and aerosol extinction at 6.2 μm are jointly retrieved between 100 mb and 0.3 mb. The retrieval scheme is discussed with reference to NO2 and a qualitative comparison made with LIMS data. The ISAMS Northern hemisphere NO2 data for January 9th 1992 are then examined and the importance of dynamical factors highlighted.

  19. Cross-track infrared sounder FPAA performance

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy A.; D'Souza, Arvind I.; Dawson, Larry C.; Dolan, Peter N.; Jefferson, Genae; Stapelbroek, Maryn G.; Willis, Richard W.; Wijewarnasuriya, Priyalal S.; Boehmer, Ellen; Ehlert, John C.; Andrews, James E.

    2005-01-01

    The Cross-track Infrared Sounder (CrIS), an interferometric sounder, is one of the instruments within the National Polar-orbiting Operational Environmental Satellite System (NPOESS) suite. CrIS measures earth radiances at high spectral resolution providing accurate and high-resolution pressure, temperature and moisture profiles of the atmosphere. These profiles are used in weather prediction models to track storms, predict levels of precipitation etc. Each CrIS instrument contains three Focal Plane Array Assemblies (FPAAs): SWIR [λc(98 K) ~ 5 mm], MWIR [λc(98 K) ~ 9 mm], and LWIR [λc(81 K) ~ 16 mm]. Each FPAA consists of nine large (850-mm-diameter) photovoltaic detectors arranged in a 3 x 3 pattern, with each detector having an accompanying cold preamplifier. This paper describes the selection methodology of the detectors that constitute the FPAAs and the performance of the CrIS SWIR, MWIR and LWIR proto-flight FPAAs. The appropriate bandgap n-type Hg1-xCdxTe was grown on lattice-matched CdZnTe. 850-mm-diameter photodiodes were manufactured using a Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers were designed and built to interface with these large photodiodes. The LWIR, MWIR and SWIR detectors are operated at 81 K, 98 K and 98 K respectively. These relatively high operating temperatures permit the use of passive radiators on the instrument to cool the detectors. Performance goals are D* = 5.0 x 1010 cm-Hz1/2/W at 14.0 mm, 9.3 x 1010 cm-Hz1/2/W at 8.0 mm and 3.0 x 1011 cm-Hz1/2/W at 4.64 mm. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 mm, 1.0 x 1011 cm-Hz1/2/W at 8.0 mm and 3.1 x 1011 cm-Hz1/2/W at 4.64 mm. These compare favorably with the following BLIP D* values calculated at the nominal flux condition: D* = 8.36 x 1010 cm Hz1/2/W at 14.0 mm, 1.4 x 1011 cm-Hz1/2/W at 8.0 mm and 4.1 x 1011 cm-Hz1/2/W at 4.64 mm.

  20. HCOOH measurements from space: TES retrieval algorithm and observed global distribution

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Chaliyakunnel, S.; Shephard, M. W.; Millet, D. B.; Luo, M.; Wells, K. C.

    2014-07-01

    Presented is a detailed description of the TES (Tropospheric Emission Spectrometer)-Aura satellite formic acid (HCOOH) retrieval algorithm and initial results quantifying the global distribution of tropospheric HCOOH. The retrieval strategy, including the optimal estimation methodology, spectral microwindows, a priori constraints, and initial guess information, are provided. A comprehensive error and sensitivity analysis is performed in order to characterize the retrieval performance, degrees of freedom for signal, vertical resolution, and limits of detection. These results show that the TES HCOOH retrievals (i) typically provide at best 1.0 pieces of information; (ii) have the most vertical sensitivity in the range from 900 to 600 hPa with ~ 2 km vertical resolution; (iii) require at least 0.5 ppbv (parts per billion by volume) of HCOOH for detection if thermal contrast is greater than 5 K, and higher concentrations as thermal contrast decreases; and (iv) based on an ensemble of simulated retrievals, are unbiased with a standard deviation of ±0.4 ppbv. The relative spatial distribution of tropospheric HCOOH derived from TES and its associated seasonality are broadly correlated with predictions from a state-of-the-science chemical transport model (GEOS-Chem CTM). However, TES HCOOH is generally higher than is predicted by GEOS-Chem, and this is in agreement with recent work pointing to a large missing source of atmospheric HCOOH. The model bias is especially pronounced in summertime and over biomass burning regions, implicating biogenic emissions and fires as key sources of the missing atmospheric HCOOH in the model.

  1. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  2. Planetary protection for Europa radar sounder antenna

    NASA Astrophysics Data System (ADS)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  3. Coherent launch-site atmospheric wind sounder

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Otto, Robert G.; Kavaya, Michael J.

    1991-07-01

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds aloft at space launch facilities to an altitude of 20 km. Candidate lidar systems analyzed for use in CLAWS include Nd:YAG, Ho:YAG, and CO2. Detailed simulations were carried out by Coherent Technologies, Inc. The results of our development studies include: (1) definition of lidar sensor requirements, (2) definition of a system to meet those requirements, and (3) a concept evaluation with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for a missile or spacecraft launch. A field test program will begin in August 1991, in which the ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility at Kennedy Space Center (KSC) will be evaluated with regard to maximum detection range, refractive turbulence, and aerosol backscattering efficiency at the three lidar wavelengths. It is found that the shorter wavelength solid-state lasers will afford better performance (longer detection range), are more energy efficient, and are more compact for operation in the humid, postvolcanic aerosol environment found at KSC. Finally, the Ho:YAG (2.1 micrometers ) lidar gives the best performance at an eyesafe wavelength and would be applicable for detecting winds aloft during descent as well as during ascent.

  4. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  5. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Schoeberl, M. R.; Gordley, L. L.; McHugh, M. J.; Thompson, A. M.; Burrows, J. P.; Zeng, N.; Marshall, B. T.; Fish, C. S.; Spackman, J. R.; Kim, J.; Park, R.; Warner, J. X.; Bhartia, P. K.; Kollonige, D. E.

    2012-12-01

    Climate change and air quality are the most pressing environmental issues of the 21st century - for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  6. Cloud Clearing of Infrared Sounder Radiances.

    NASA Astrophysics Data System (ADS)

    Rizzi, R.; Serio, C.; Kelly, G.; Tramutoli, V.; McNally, A.

    1994-02-01

    R. RizziEuropean Centre for Medium-Range Weather Forecasts, Reading, England European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany C. SerioDipartimento di Scienze Fisiche, Napoli, Italy G. KellyEuropean Centre for Medium-Range Weather Forecasts, Reading, England V. TramutoliDipartimento di Ingegneria e Fisica deil' Ambiente, Potenza, Italy A. McNallyEuropean Centre for Medium-Range Weather Forecasts, Reading, EnglandThe paper compares the performance of three different schemes for computing clear-sky brightness temperature from cloud-affected measurements. Both the ability to detect clouds and to estimate the equivalent clear-sky brightness temperature are examined. Simulated brightness temperatures computed from the ECMWF operational analysis are used as a reference, together with Advanced Very High Resolution Radiometer (AVHRR)-derived sea surface temperature and cloud content within High-Resolution Infrared Radiation Sounder (HIRS) fields of view. Cloud masks obtained from the cloud-detection schemes are compared with cloud masks obtained from AVHRR data; clear-column brightness temperatures for HIRS/2 channels 4, 7, and 13 are compared with the simulated ones; simulated clear-column brightness temperatures in the HIRS/2 window channel 8 are validated with equivalent products from AVHRR data. The comparison highlights some problems in the operational implementation of the NESDIS cloud-clearing scheme and with the operational filtering scheme of the United Kingdom Meteorological Office.

  7. Hyperspectral Thermal Emission Spectrometer: Engineering Flight Campaign

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Shoen, Steven S.; Eng, Bjorn T.

    2013-01-01

    The Hyperspectral Thermal Emission Spectrometer (HyTES) successfully completed its first set of engineering test flights. HyTES was developed in support of the Hyperspectral Infrared Imager (HyspIRI). HyspIRI is one of the Tier II Decadal Survey missions. HyTES currently provides both high spectral resolution (17 nm) and high spatial resolution (2-5m) data in the thermal infrared (7.5-12 micron) part of the electromagnetic spectrum. HyTES data will be used to help determine the optimum band positions for the HyspIRI Thermal Infrared (TIR) sensor and provide antecedent data for HyspIRI related studies.

  8. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    NASA Astrophysics Data System (ADS)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  9. Tropospheric Emission Spectrometer Product File Readers

    NASA Technical Reports Server (NTRS)

    Fisher, Brendan M.

    2010-01-01

    TES Product File Reader software extracts data from publicly available Tropospheric Emission Spectrometer (TES) HDF (Hierarchical Data Format) product data files using publicly available format specifications for scientific analysis in IDL (interactive data language). In this innovation, the software returns data fields as simple arrays for a given file. A file name is provided, and the contents are returned as simple IDL variables.

  10. Successful Mars remote sensors, MO THEMIS and MER Mini-TES

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Christensen, Phil

    2006-10-01

    This paper describes results of the calibration of the miniature thermal emission spectrometer (Mini-TES) and the thermal emission imaging system (THEMIS) built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman et al., 2003) for mission description and instrument designs (Schueler et al., 2003). A major goal of the Mars exploration program is to help determine whether life ever existed on Mars via detailed in situ studies and surface sample return. It is essential to identify landing sites with the highest probability of containing samples indicative of early pre-biotic or biotic environments. Of particular interest are aqueous and/or hydrothermal environments in which life could have existed, or regions of current near-surface water or heat sources [Exobiology_Working_Group, 1995, An Exobiological Strategy for Mars Exploration, NASA Headquarters]. The search requires detailed geologic mapping and accurate interpretations of site composition and history in a global context. THEMIS and Mini-TES were designed to do this and builds upon a wealth of data from previous experiments. Previous experiments include the Mariner 6/7 Mars infrared radiometer (MIR) and infrared spectrometer [G.C. Pimentel, P.B. Forney, K.C. Herr, Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer, Journal of Geophysical Research 79(11) (1974) 1623 1634], the Mariner 9 infrared interferometer spectrometer (IRIS) [B. Conrath, R. Curran, R. Hanel, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, J. Walker, Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, Journal of Geophysical Research 78 (1973) 4267 4278], the Viking infrared thermal mapper (IRTM) [H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking

  11. Thermophysical Analysis of Gale Crater Using Observations from TES, THEMIS and the Mars Science Laboratory Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Barratt, Edward M.

    2013-12-01

    I created a web-based interface to the MARSTHERM one-dimensional numerical thermal model, which calculates surface and atmospheric temperatures of Mars for a set of user-specified conditions. The website also provides access to tools which I adapted to allow users to automatically derive thermal inertia from images taken by the Mars Odyssey Thermal Emission Imaging System (THEMIS), and access to existing maps of thermal inertia derived from Mars Global Surveyor Thermal Emission Spectrometer (TES) observations. To demonstrate the capabilities of the tools provided on the website, I conducted a case study investigating the thermal inertia within Gale Crater, using observations from TES, THEMIS, and the Mars Science Laboratory (MSL) Ground Temperature Sensor (GTS). Seasonal variations in TES-derived thermal inertia in the vicinity of the MSL landing site are consistent with a layer of sand or dust over rock, an interpretation supported by diurnal temperature variations recorded by GTS on MSL sol 30. However, diurnal temperature variations from elsewhere along the MSL traverse route could not be modeled by simple two-component structures. Seasonal variations in TES-derived thermal inertia support the hypothesis that the thickness of a surface layer of dust likely increases with elevation on Mount Sharp.

  12. Demonstration of EnergyNest thermal energy storage (TES) technology

    NASA Astrophysics Data System (ADS)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  13. Improved Tropospheric Carbon Monoxide Profiles Using AIRS and TES Measurements

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Sun, Z.; Tangborn, A.; Barnet, C.; Luo, M.; Diskin, G.

    2007-12-01

    Atmospheric CO concentrations are simultaneously measured by EOS A-train satellite sensors, which include AIRS on Aqua, TES and MLS on Aura. Based on the heritage of the A-train system, the combined datasets from these sensors will provide the best available three-dimensional trace gas information that incorporates the uniqueness of AIRS large spatial coverage, TES high vertical resolutions, and MLS measurements at the upper troposphere and stratosphere. This presentation introduces a new technique that combines TES CO profile measurements with AIRS retrievals by using them as a priori profiles, which reflect near real-time observations taken within only 15 minutes. The combined datasets in this fashion will extend AIRS CO observational sensitivity to the lower atmosphere, which is especially important for air quality studies. The portion of this study for non- coincident profiles will provide the opportunity to propagate TES CO vertical measurement sensitivity horizontally. For AIRS pixels that are located away from nadir objective analysis techniques will be used to populate the observations. Weightings for TES and MLS L2 products will be based on AIRS observed variances and the averaging kernels of TES and MLS. The collocated AIRS and TES datasets are combined and overlapped with DACOM in situ CO measurements from INTEX-B field campaign for validation.

  14. On-Orbit performance of the TES pulse tube cryocooler system and the instrument - Six years in space

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose Israel; Na-Nakornpanom, Arthur

    2012-06-01

    The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating nearconstant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data. KEYWORDS: TES, EOS, Aura, cryocooler

  15. TES premapping data: Slab ice and snow flurries in the Martian north polar night

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Mullins, K.F.; Christensen, P.R.

    2001-01-01

    In the 1970s, Mariner and Viking spacecraft observations of the north polar region of Mars revealed polar brightness temperatures that were significantly below the expected kinetic temperatures for CO2 sublimation. For the past few decades, the scientific community has speculated as to the nature of these Martian polar cold spots. Thermal Emission Spectrometer (TES) thermal spectral data have shown these cold spots to result largely from fine-grained, CO2 and have constrained most of these cold spots to the surface (or near-surface). Cold spot formation is strongly dependent on topography, forming preferentially near craters and on polar slopes. TES data, combined with Mars Orbiter Laser Altimeter (MOLA) cloud data, suggest atmospheric condensates form a small fraction of the observed cold spots. TES observations of spectra close to a blackbody indicate that another major component of the polar cap is slab CO2 ice; these spectrally bland regions commonly have a low albedo. The cause is uncertain but may result from most of the light being reflected toward the specular direction, from the slab ice being intrinsically dark, or from it being transparent. Regions of the cap where the difference between the brightness temperatures at 18 ??m (T18) and 25 ??m (T25) is less than 5?? are taken to indicate deposits of slab ice. Slab ice is the dominant component of the polar cap at latitudes outside of the polar night. Copyright 2001 by the American Geophysical Union.

  16. Cross-track infrared sounder FPAA performance

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy A.; D'Souza, Arvind I.; Dawson, Larry C.; Dolan, Peter N.; Wijewarnasuriya, Priyalal S.; Ehlert, John C.

    2003-01-01

    ABSTRACT The Cross-track Infrared Sounder (CrIS) is one of many instruments that comprise the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The CrIS instrument is a Michelson interferometer-based sensor that is sensitive to wavelengths between 3.5 and 16 microns. Three separate Focal Plane Array Assemblies (FPAAs) referred to as the Short Wave Infrared Assembly, the Mid Wave Infrared assembly, and the Long Wave Infrared assembly are used to span the spectral range. The CrIS instrument measures the earth radiance at high spectral resolution using the data to provide pressure, temperature and moisture profiles of the atmosphere. The CrIS instrument will help improve both global and regional predictions of weather patterns, storm tracks, and precipitation. The CrIS program selected photovoltaic (PV) detectors for use in all three spectral bands. PV technology outperforms photoconductive detectors in terms of high sensitivity and linearity. Each FPAA consists of a 3×3 detector-matrix that are used to form 9 fields of view (FOV). Each detector has a 1,000 mm active area diameter and has its own cold preamplifier, warm post amplifier and independent high pass filter. This paper describes the performance for all three assemblies that together form the basis of the CrIS Engineering Development Unit 2 (EDU2) Detector Preamp Module (DPM). Molecular Beam Epitaxy (MBE) is used to grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. SWIR, MWIR and LWIR 1000 mm diameter detectors have been manufactured using the Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers have been designed to interface with the large SWIR, MWIR and LWIR detectors. The operating temperature is above 78 K, permitting the use of passive radiators in spacecraft to cool the detectors. Recently, all three FPAAs were completed and tested. The tests performed on each assembly are listed.

  17. Validation of UARS Microwave Limb Sounder Temperature and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-01-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent- point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44 deg N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  18. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; hide

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  19. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  20. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  1. MER Atmospheric Results: Pancam and Mini-TES

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.

    2004-12-01

    Although at first glance, the Mars Exploration Rover (MER) payload may be perceived as primarily suited to geological investigation, it is in fact quite well-suited to carry out a robust and dynamic program of atmospheric monitoring and characterization with a particular emphasis on the planetary boundary layer. More to the point, it has been doing so at both the Gusev and Meridiani locations for more than 200 days. Ongoing atmospheric observations include (1) periodic thermal infrared spectra of the Martian sky by the Miniature Thermal Emission Spectrometer (Mini-TES). The actual sequences consist of both standard 200-second integrations and long ``stares'' of up to (almost) an hour. These data are highly diagnostic of vertical thermal structure (from 10 meters to 3-5 kilometers), aerosol optical depth along with particle size, and under the right conditions, the water column. (2) direct solar imaging using the Panoramic Camera (Pancam) and 440/880 nm + neutral density (ND5) filters, providing accurate measurement visible optical depths. (3) near-sun and ``sky-arc'' sequences using the full suite of geological filters, intended to capture the forward-diffraction peak and the phase function characteristics of the aerosol particles. (4) carbon dioxide (15 micrometer band) profiling of the Mini-TES surface observations, providing an average near-surface (1 m) air temperature. The above activities have been (and will continue to be) used to characterize diurnal and secular temporal trends and to examine the spatial variability of such trends. In addition, serendipity has provided the unique opportunities of watching the decay of a moderate dust storm from two widely-separated sites as well as of multiple simultaneous orbiter-rover observing ``campaigns.'' The latter includes thus far the Mars Express and Mars Global Surveyor over-flights. During our presentation, we will summarize the atmospheric results obtained and analyzed through the end of the first 200 days of

  2. Terahertz Limb Sounder for Lower Thermosphere Wind, Temperature, and Atomic Oxygen Density Measurements

    NASA Astrophysics Data System (ADS)

    Yee, J. H.; Boldt, J.; Wu, D. L.; Mehdi, I.; Schlecht, E.

    2015-12-01

    In this paper, we present the concept of a high-sensitivity heterodyne spectrometer operating at Terahertz (THz) frequency for global lower thermospheric neutral wind, temperature and atomic oxygen density measurements from a low earth orbit. The instrument, THz Limb Sounder (TLS) is aimed to provide, for the first time, global neutral wind/temperature/density profile measurements globally during day and night, with focus at altitudes of 100-150 km where most of the ion-neutral energy/momentum couplings take place. It is an ambient-temperature Schottky diode based all solid-state heterodyne spectrometer designed to extend the limb sounding technique employed by Microwave Limb Sounder for density/temperature/wind measurements by measuring the Doppler line shape of atomic oxygen (OI) fine structure emission at 2.06THz. This atomic oxygen line emission is very bright and distributed nearly uniformly globally (at all latitudes including high latitude aurora particle precipitation regions) and temporally (at all local times during both day and night), thus ideal for thermospheric remote sensing. TLS is an ambient-temperature Schottky diode based heterodyne receiver system The TLS instrument concept, measurement methodology, receiver performance, and the expected measurement capability will be presented and discussed in this paper.

  3. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  4. Evaluation of ACCMIP Outgoing Longwave Radiation from Tropospheric Ozone Using TES Satellite Observations.

    NASA Technical Reports Server (NTRS)

    Bowman, Kevin W.; Shindell, Drew Todd; Worden, H. M.; Lamarque, J. F.; Young, P. J.; Stevenson, D. S.; Qu, Z.; delaTorre, M.; Bergmann, D.; Cameron-Smith, P. J.; hide

    2013-01-01

    We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005-2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120mW/ sq. m OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39+/- 41mW/ sq. m relative to TES data. We show that there is a correlation (Sq. R = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750-2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100mW/ sq. m. Removing these models leads to a mean ozone radiative forcing of 394+/- 42mW/ sq. m. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 +/- 60mW/ sq. m derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

  5. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  6. Mineralogical characterization of Mars Science Laboratory candidate landing sites from THEMIS and TES data

    NASA Astrophysics Data System (ADS)

    Rogers, A. Deanne; Bandfield, Joshua L.

    2009-10-01

    Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS) instruments are used to assess the mineralogic and dust cover characteristics of landing regions proposed for the Mars Science Laboratory (MSL) mission. Candidate regions examined in this study are Eberswalde crater, Gale crater, Holden crater, Mawrth Vallis, Miyamoto crater, Nili Fossae Trough, and south Meridiani Planum. Compositional units identified in each region from TES and THEMIS data are distinguished by variations in hematite, olivine, pyroxene and high-silica phase abundance, whereas no units are distinguished by elevated phyllosilicate or sulfate abundance. Though phyllosilicate minerals have been identified in all sites using near-infrared observations, these minerals are not unambiguously detected using either TES spectral index or deconvolution analysis methods. For some of the sites, small phyllosilicate outcrop sizes relative to the TES field of view likely hinder phyllosilicate mineral detection. Porous texture and/or small particle size (<˜60 μm) associated with the phyllosilicate-bearing surfaces may also contribute to non-detections in the thermal infrared data sets, in some areas. However, in Mawrth Vallis and Nili Fossae, low phyllosilicate abundance (<10-20 areal %, depending on the phyllosilicate composition) is the most likely explanation for non-detection. TES data over Mawrth Vallis indicate that phyllosilicate-bearing surfaces also contain significant concentrations (>15%, possibly up to ˜40%) of a high-silica phase such as amorphous silica or zeolite. High-silica phase abundance over phyllosilicate-bearing surfaces in Mawrth Vallis is higher than that of surrounding surfaces by 10-15%. With the exception of these high-silica surfaces in Mawrth Vallis, regions examined in this study exhibit similar bulk mineralogical compositions to that of most low-albedo regions on Mars; the MSL scientific payload

  7. TES/Aura L2 Ammonia (NH3) Nadir V6 (TL2NH3N)

    Atmospheric Science Data Center

    2017-07-14

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3N) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Ammonia Legacy:  Retired data product , click here for ...

  8. TES/Aura L2 Ammonia (NH3) Nadir V6 (TL2NH3NS)

    Atmospheric Science Data Center

    2017-07-14

    TES/Aura L2 Ammonia (NH3) Nadir (TL2NH3NS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Ammonia Legacy:  Retired data product , click here for ...

  9. TES technology transfer in the pulp and paper industry

    NASA Astrophysics Data System (ADS)

    Edde, H.; Handley, J.

    1982-02-01

    Thermal energy storage (TES) is a technique whereby energy is temporarily stored in order to more uniformly balance steam generation with steam demands. The pulp and paper industry accomplishes this in an accumulator using hot water or steam as the transfer medium. An international study was conducted which showed that TES is presently more universally practiced in Scandinavian mills than in U.S. mills. However, TES offers significant benefits in energy conservation, provides an instant steam reserve to stabilize mill steam demand, prolongs power boiler life, and permits displacement of oil with potentially less expensive and more abundant alternative fuels. The capital pay back time (PBT) is two to three years with return on investment (ROI) of 30 to 50 percent. Projections indicate that installed TES system will become increasingly common in U.S. mills in the near future.

  10. TES Detector Noise Limited Readout Using SQUID Multiplexers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.

    2004-01-01

    The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.

  11. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  12. TES Carbon Monoxide Validation during the Two AVE Campaigns using the Argus and ALIAS Instruments on NASA's WB-57F

    NASA Technical Reports Server (NTRS)

    Lopez, Jinena P.; Luo, Ming; Christensen, Lance E.; Loewenstein, Max; Jost, Hansjurg; Webster, Christopher R.; Osterman, Greg

    2008-01-01

    The Aura Validation Experiment (AVE) focuses on validating Aura satellite measurements of important atmospheric trace gases using ground-based, aircraft, and balloon-borne instruments. Global satellite observations of CO from the Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite have been ongoing since September 2004. This paper discusses CO validation experiments during the Oct-AVE (2004 Houston, Texas) and CR-AVE (2006 San Jose, Costa Rica) campaigns. The coincidences in location and time between the satellite observations and the available in situ profiles for some cases are not ideal. However, the CO distribution patterns in the two validation flight areas are shown to have very little variability in the aircraft and satellite . observations, thereby making them suitable for validation comparisons. TES CO profiles, which typically have a retrieval uncertainty of 10-20%, are compared with in situ CO measurements from NASA Ames Research Center's Argus instrument taken on board the WB-57F aircraft during Oct-AVE. TES CO retrievals during CR-AVE are compared with in situ measurements from Jet Propulsion Laboratory's Aircraft Laser Infrared Absorption Spectrometer (ALIAS) instrument as well as with the Argus instrument, both taken on board the WB-57F aircraft. During CR-AVE, the average overall difference between ALIAS and Argus CO was 4%, with the ALIAS measurement higher. During individual flights, 2-min time-averaged differences between the two in situ instruments had standard deviation of 14%. The TES averaging kernels and a priori constraint profiles for CO are applied to the in situ data for proper comparisons to account for the reduced vertical resolution and the influence of the a priori in the satellite-derived profile. In the TES sensitive pressure range, approx.700-200 hPa, the in situ profiles and TES profiles agree within 5-10%, less than the variability in CO distributions obtained by both TES and the aircraft instruments in the two

  13. TES Carbon Monoxide Validation during the Two AVE Campaigns using the Argus and ALIAS Instruments on NASA's WB-57F

    NASA Technical Reports Server (NTRS)

    Lopez, Jinena P.; Luo, Ming; Christensen, Lance E.; Loewenstein, Max; Jost, Hansjurg; Webster, Christopher R.; Osterman, Greg

    2008-01-01

    The Aura Validation Experiment (AVE) focuses on validating Aura satellite measurements of important atmospheric trace gases using ground-based, aircraft, and balloon-borne instruments. Global satellite observations of CO from the Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite have been ongoing since September 2004. This paper discusses CO validation experiments during the Oct-AVE (2004 Houston, Texas) and CR-AVE (2006 San Jose, Costa Rica) campaigns. The coincidences in location and time between the satellite observations and the available in situ profiles for some cases are not ideal. However, the CO distribution patterns in the two validation flight areas are shown to have very little variability in the aircraft and satellite . observations, thereby making them suitable for validation comparisons. TES CO profiles, which typically have a retrieval uncertainty of 10-20%, are compared with in situ CO measurements from NASA Ames Research Center's Argus instrument taken on board the WB-57F aircraft during Oct-AVE. TES CO retrievals during CR-AVE are compared with in situ measurements from Jet Propulsion Laboratory's Aircraft Laser Infrared Absorption Spectrometer (ALIAS) instrument as well as with the Argus instrument, both taken on board the WB-57F aircraft. During CR-AVE, the average overall difference between ALIAS and Argus CO was 4%, with the ALIAS measurement higher. During individual flights, 2-min time-averaged differences between the two in situ instruments had standard deviation of 14%. The TES averaging kernels and a priori constraint profiles for CO are applied to the in situ data for proper comparisons to account for the reduced vertical resolution and the influence of the a priori in the satellite-derived profile. In the TES sensitive pressure range, approx.700-200 hPa, the in situ profiles and TES profiles agree within 5-10%, less than the variability in CO distributions obtained by both TES and the aircraft instruments in the two

  14. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP) based on TES ozone and GOES water vapor: derivation

    NASA Astrophysics Data System (ADS)

    Felker, S. R.; Moody, J. L.; Wimmers, A. J.; Osterman, G.; Bowman, K.

    2010-12-01

    The Tropospheric Emission Spectrometer (TES), a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with information about synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT) ozone through the integration of TES ozone measurements with two synoptic dynamical tracers of stratospheric influence: specific humidity derived from the GOES Imager, and potential vorticity from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT) exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in-situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone) is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP). Our approach results in the temporal and spatial coverage of a geostationary platform, a major improvement over individual polar overpasses, while retaining TES's ability to characterize UT ozone. Results suggest that over 70% of TES-observed UT ozone variability can be explained by correlation with the two dynamical tracers. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE) of 19.2 ppbv. There are several advantages to this multi-sensor derived product approach: (1) it is calculated from 2 operational fields (GOES specific humidity and GFS PV), so the layer-average ozone can be created and used in near real-time; (2) the product provides the spatial resolution and coverage of a geostationary platform as it depicts

  15. View to the northeast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  16. View to the eastnortheast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  17. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  18. Atmospheric Infrared Sounder on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1995-01-01

    The Atmospheric Infrared Sounder (AIRS) is a high spectral resolution IR spectrometer. AIRS, together with the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), is designed to meet the operational weather prediction requirements of the National Oceanic and Atmospheric Administration (NOAA) and the global change research objectives of the National Aeronautics and Space Administration (NASA). The three instruments will be launched in the year 2000 on the EOS-PM spacecraft. Testing of the AIRS engineering model will start in 1996.

  19. Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins.

    PubMed

    Sperotto, Rita Leal; Kremer, Frederico Schmitt; Aires Berne, Maria Elisabeth; Costa de Avila, Luciana F; da Silva Pinto, Luciano; Monteiro, Karina Mariante; Caumo, Karin Silva; Ferreira, Henrique Bunselmeyer; Berne, Natália; Borsuk, Sibele

    2017-01-01

    Toxocariasis is a neglected disease, and its main etiological agent is the nematode Toxocara canis. Serological diagnosis is performed by an enzyme-linked immunosorbent assay using T. canis excretory and secretory (TES) antigens produced by in vitro cultivation of larvae. Identification of TES proteins can be useful for the development of new diagnostic strategies since few TES components have been described so far. Herein, we report the results obtained by proteomic analysis of TES proteins using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. TES fractions were separated by one-dimensional SDS-PAGE and analyzed by LC-MS/MS. The MS/MS spectra were compared with a database of protein sequences deduced from the genome sequence of T. canis, and a total of 19 proteins were identified. Classification according to the signal peptide prediction using the SignalP server showed that seven of the identified proteins were extracellular, 10 had cytoplasmic or nuclear localization, while the subcellular localization of two proteins was unknown. Analysis of molecular functions by BLAST2GO showed that the majority of the gene ontology (GO) terms associated with the proteins present in the TES sample were associated with binding functions, including but not limited to protein binding (GO:0005515), inorganic ion binding (GO:0043167), and organic cyclic compound binding (GO:0097159). This study provides additional information about the exoproteome of T. canis, which can lead to the development of new strategies for diagnostics or vaccination.

  20. Inversion of emissivity spectrum and temperature in the TIR waveband based on the Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Liu, Junchi; Li, Hongwen; Wang, Jianli; Li, Hongzhuang; Yin, Limei; Zhang, Zhenduo

    2015-09-01

    In the TIR (Thermal Infrared) waveband, solving the target emissivity spectrum and temperature leads to an ill-posed problem that the number of unknown parameters is more than the number of available measurements. Generally, the approaches developed for solving this kind of problems are called by a joint name, the TES (Temperature and Emissivity Separation) algorithm. Regarded as a promotion of the MaxEnTES (Maximum Entropy TES) algorithm proposed by A. Barducci, a novel method called the New MaxEnTES algorithm is presented in this paper. The Maximum Entropy estimation is utilized to be the basic framework of each preceding algorithm. What makes the two algorithms different is that the Alpha Spectrum derived by ADE (Alpha Derived Emissivity method) or the Beta Spectrum derived by NEM (Normalized Emissivity Method) is considered as a priori information to be added in the New MaxEnTES algorithm. As a result, the New MaxEnTES algorithm keeps a simpler mathematical formalism. Without any doubt, the New MaxEnTES algorithm provides a faster computation for large volumes of data (i.e. hyperspectral images of the Earth). Some numerical simulations have been conducted to assess the performance of the New MaxEnTES algorithm. The results show that, the New MaxEnTES algorithm carefully reconstructs the target emissivity spectrum and temperature, and keeps the same orders of magnitude on accuracy with the MaxEnTES algorithm. What's more, it also keeps good robust stabilization towards noise.

  1. Combining TES Ozone with GOES Water Vapor to Discern Dynamically Driven Stratospheric Enhancements in the Upper Troposphere

    NASA Astrophysics Data System (ADS)

    Felker, S. R.; Moody, J. L.; Wimmers, A. J.; Bowman, K. W.; Osterman, G. B.

    2007-12-01

    As part of NASA INTEX-B we report on a satellite based empirical method for estimating the amount of stratospheric ozone present in the upper-troposphere (UT). To understand the role of anthropogenic emissions on ozone mixing ratios in the non-urban troposphere, it is vital to describe the dynamically variable background, which is influenced by the natural exchange of stratospheric ozone. Our derived product is based on the relationship between three quantities, 1) satellite measurements of UT ozone from the Tropospheric Emission Spectrometer (TES), 2) estimates of GOES Layer Average Specific Humidity (GLASH) based on the GOES water vapor channel, and 3) the dynamical tracer Potential Vorticity (PV) from the Global Forecast System model. The TES instrument, on the Aura satellite, produced nadir curtains of ozone mixing ratio. TES profiles were used to create a series of layer-averaged ozone values employing the weighting function for the atmospheric layer observed in the GLASH product, with a maximum contribution from 300-400hPa. Model PV was similarly weighted such that all three products describe the same layer. Atmospheric dynamics are a major control on ozone in this layer where stratospheric enhancements are associated with dry intrusions of PV rich air. Preliminary analyses using 22 TES overpasses (2570 TES retrievals from April and May, 2006) exhibit a strong correlation to the dynamical tracers. A Reduced Major Axis (RMA) linear regression of ozone and GLASH brightness temperatures (inversely related to specific humidity) results in an r2 of 0.67; the RMA analysis of ozone and PV results in an r2 of 0.76. A multiple regression using both GLASH and PV values in a least-squares fit of TES ozone results in an r2 of 0.82. Given that over 80% of the TES variability in the UT is explained by variations in dynamical tracers, we have used this relationship, and the coverage of the GOES product to derive a satellite based image of dynamically variable ozone in the

  2. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  3. Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam

    USGS Publications Warehouse

    Calvin, W.M.; Shoffner, J.D.; Johnson, J. R.; Knoll, A.H.; Pocock, J.M.; Squyres, S. W.; Weitz, C.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; de Souza, P. A.; Farrand, W. H.; Glotch, T.D.; Herkenhoff, K. E.; Jolliff, B.L.; Knudson, A.T.; McLennan, S.M.; Rogers, A.D.; Thompson, S.D.

    2008-01-01

    We report on observations of hematite-bearing spherules at Meridiani Planum made using the Microscopic Imager (MI), Mini-Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) instruments on the Mars Exploration Rover Opportunity. Spherules were observed on soil surfaces and in outcrop rocks, both on undisturbed surfaces and in abraded surfaces ground using the Rock Abrasion Tool (RAT). Spherule size and shape change little along the 850 m eastward traverse from Eagle Crater to Endurance Crater, but spherules decrease and then slightly increase in size along the 6 km traverse from Endurance south to Victoria Crater. Local populations range from submillimeters to several millimeters in diameter. An additional small diameter (100 μm) size population is possible. An increase in irregular shapes is found near Victoria Crater. This, combined with the size decrease south of Endurance, suggests either a changing depositional environment, or variation in the duration and timing of diagenetic events. The dominant smaller size population observed early in the mission in aeolian areas and ripple crests is observed as the primary size population in abraded outcrop farther south. This suggests that successively younger beds are exposed at the surface along the southward traverse. Stratigraphically higher units removed by erosion could be recorded by the present surface lag deposit. Coordinated systematic observations are used to determine optical and infrared hematite indices of the surface soils in Pancam and Mini-TES. In spite of the systematic variation seen in MI, both Pancam and Mini-TES indices are highly variable based on the local surface, and neither show systematic trends south of Endurance. The lack of a 390 cm?1 feature in Mini-TES spectra suggests concentric or radial interior structure within the spherules at scales too fine for MI to observe. Mini-TES does not detect any silicate component in the spherules. A bound water component in soils or in

  4. Mineralogy of the North Polar Sands of Mars from MGS/TES Observations

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Horgan, B. N. H.; Noe Dobrea, E. Z.

    2009-09-01

    The north polar region of Mars has had a complex geologic history, part of which has involved aqueous processes. A major surface unit in this region is a large (4.7 million km2), low albedo area of sand dunes/sheets (the north polar erg) spanning the circumpolar plains. We are investigating the mineralogy and geologic history of the erg using a variety of data sets, including mid-IR spectra from MGS/TES and near-IR spectra from MEx/OMEGA. The southernmost extent of this deposit extends into Acidalia Planitia, where it is the type locality for the TES "ST2" global compositional endmember. We are using TES and OMEGA data to identify the primary (mafic) mineralogy of these sand deposits, and to explore the processes and relationships between these primary minerals and previously-identified secondary alteration products in the region like polyhydrated sulfates. Our TES data subset, chosen from generally warm (> 250K), high-quality spectra taken through relatively clear atmospheric conditions, consists of several thousand emissivity spectra at latitudes above 70N. We are performing atmospheric corrections and deriving estimated mineral abundances for these spectra using a previously-developed iterative linear matrix inversion spectral unmixing method (Noe Dobrea et al., 2006: doi:10.1029/2005JE002431) and laboratory-derived mineral endmembers from the TES library. Using 68 spectrally-unique endmembers, we compute best-fit abundances for all possible endmember combinations and estimate average abundances for each mineral. Minerals not detected above a minimum detection threshold are discarded, which then allows us to converge on the most statistically accurate representation of the likely mineral assemblage. Initial results of modeling average polar erg spectra reveals an "expected" mafic assemblage (olivine, pyroxene, feldspar) plus a silica-bearing amorphous phase. "Unexpected" phases identified include Mg-, Al-, and Fe-bearing sulfates and iron oxides. Our results

  5. Optimal Estimation of the Carbonyl Sulfide Surface Flux Through Inverse Modeling of TES Observations

    NASA Astrophysics Data System (ADS)

    Kuai, L.; Worden, J.; Lee, M.; Campbell, J. E.; Kulawik, S. S.; Weidner, R. J.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the troposphere with a global averaging mixing ratio of about 500 part per trillion (ppt). The ocean is the primary source of OCS, emitting OCS directly or its precursors, carbon disulfide and dimethyl sulfide. The most important atmospheric sink of OCS is uptake by terrestrial plants via photosynthesis. Although the global budget of atmospheric OCS has been studied, the global integrated OCS fluxes have large uncertainties, e.g. the uncertainties of the ocean fluxes are as large as 100% or more and a large missing ocean sources required to balance the global budgets. A first tropical ocean map of the free tropospheric OCS has been developed using retrieval data from radiance measurements from the AURA Tropospheric Emission Spectrometer (TES). The monthly mean ocean data has been evaluated to estimate the biases and uncertainties in the TES OCS against aircraft profiles from the HIPPO campaign and ground data from the NOAA Mauna Loa site. We found the TES OCS data to be consistent (within the calculated uncertainties) with NOAA ground observations and HIPPO aircraft measurements and it captured the seasonal and latitudinal variations observed by these in situ data within the estimated uncertainties. In this study, we first update bottom-up estimate of global source and sinks of atmospheric OCS. The global forward simulations of atmospheric OCS using updated bottom-up fluxes with GEOS-Chem show improvement of the seasonal variation over multiple NOAA ground stations in both north and south hemispheres. Inverse analysis of surface fluxes from TES OCS data will provide further constraints to estimate the missing ocean source and understand the enhanced OCS over eastern Asia and west Pacific, which could be driven by wind, Asian outflow, a mystery process, or a combination of all of the above. The investigation will provide the fundamental measurements and analysis needed to estimate the missing source in the

  6. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2015-03-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  7. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2014-09-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new dataset provides two daily zonal averages, one during daytime and one during nighttime, with a varying vertical resolution from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as, photochemical simulations demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new dataset is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  8. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  9. Film handling procedures for Apollo 17 lunar sounder

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.

  10. Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Worden, J. R.; Jones, D. B. A.; Lin, J. T.; Verstraeten, W. W.; Henze, D. K.

    2014-07-01

    Rapid industrialization in Asia in the last two decades has resulted in a significant increase in Asian ozone (O3) pre-cursor emissions with likely a corresponding increase in the export of O3 and its pre-cursors. However, the relationship between this increasing O3, the chemical environment, O3 production efficiency, and the partitioning between anthropogenic and natural precursors is unclear. In this work, we use satellite measurements of O3, CO and NO2 from TES (Tropospheric Emission Spectrometer), MOPITT (Measurement of Pollution In The Troposphere) and OMI (Ozone Monitoring Instrument) to quantify O3 pre-cursor emissions for 2006 and their impact on free-tropospheric O3 over North-East Asia, where pollution is typically exported globally due to strong westerlies. Using the GEOS-Chem global chemical transport model, we show that the modeled seasonal variation of O3 based on these updated O3 pre-cursor emissions is consistent with the observed O3 variability and amount, after accounting for known biases in the TES O3 data. Using the adjoint of GEOS-Chem we then partition the relative contributions of natural and anthropogenic sources to free troposphere O3 in this region. We find that the influence of lightning NOx is important in summer. The contribution from anthropogenic NOx is dominant in other seasons. China is the major contributor of anthropogenic VOCs (Volatile Organic Compounds), whereas the influence of biogenic VOCs is mainly from Southeast Asia. Our result shows that the influence of India and Southeast Asia emissions on O3 pollution export is significant, comparable with Chinese emisisons in winter and about 50% of Chinese emissions in other seasons.

  11. Simulated hyperspectral infrared sounder radiances for regional OSSE

    NASA Astrophysics Data System (ADS)

    Li, J.; Schmit, T. J.; Otkin, J.; Li, Z.; Schaack, T.; Pierce, B.

    2012-12-01

    High spectral resolution infrared (IR) sensors have a much greater vertical resolving power for atmospheric temperature and moisture structures than the broad band sensors such as the current Geostationary Operational Environmental Satellite (GOES) Imagers or Sounders. Placing a high spectral resolution infrared (IR) sounder with high temporal resolution in the geostationary orbit can provide nearly time continuous three-dimensional moisture and wind profiles, which will allow substantial improvements in monitoring the mesoscale environment for severe weather forecasting and other applications. These measurements would be an unprecedented source of information on the dynamic and thermodynamic atmospheric fields, an important benefit for nowcasting and Numerical Weather Prediction (NWP). For impact evaluation within the regional Observing System Simulation Experiment (R-OSSE) frame work, it is very important to simulate both the geostationary (GEO) and polar (LEO) satellite based hyperspectral IR sounder radiances for both clear and cloudy sky conditions with the atmospheric state from a suitable natural run. GEO hyperspectral IR radiances are used for assimilation in the R-OSSE, while the LEO hyperspectral IR sounder radiances are used for comparison with the real hyperspectral IR measurements to assure a realistic simulation. The Atmospheric Infrared Sounder (AIRS) is chosen for validating the simulated radiances. A fast radiative transfer model (RTM) has been developed based coupled Stand-alone AIRS Radiative Transfer Algorithm (SARTA) for molecular absorption and a cloud model accounting for scattering and absorption. The simulated LEO based AIRS radiances from nature run are compared with the collocated AIRS radiance measurements. The uncertainties of simulated AIRS radiances in both clear and cloudy skies are analyzed for the R-OSSE.

  12. On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. I.; Na-Nakornpanom, A.

    2011-01-01

    The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.

  13. On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. I.; Na-Nakornpanom, A.

    2011-01-01

    The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.

  14. Constraints on water vapor vertical distribution at the Phoenix landing site during summer from MGS TES day and night observations

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.; Tamppari, Leslie K.

    2015-05-01

    We present a new method to retrieve column abundances and vertical extent of the water vapor from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectra. The new method enables retrievals from the nighttime TES spectra. The retrieval algorithm employs a new model of the vertical distribution of water vapor in the martian atmosphere. In this model water vapor is confined to a layer of finite height in the lower atmosphere. The atmosphere is dry above this 'wet' layer. Within the 'wet' layer the water vapor has a constant mixing ratio below the water ice cloud condensation height and is saturated above that height. The new retrieval method simultaneously fits the daytime and nighttime TES spectra for a given location using a single mixing ratio profile. We apply this new method to the TES spectra collected over the site of the Phoenix spacecraft landing during late northern spring and summer. Retrieved daytime column abundances are ∼1-5 pr-μm higher than in the previous TES retrieval. Nighttime column abundances are lower than the daytime abundances by ∼5-10 pr-μm due to assumed exchange with soil and predicted water ice cloud formation. The height of the 'wet' layer varies with season, reaching ∼18 km around Ls = 80-100° and decreasing to 7-10 km by Ls = 140°. Changes in the vertical extent of vapor are consistent with seasonal changes in the intensity of the turbulent mixing in the lower atmosphere and in the water ice cloud condensation height. Water vapor extends by several kilometers above the top of the boundary layer at ∼4 km, suggesting that vertical transport of vapor is not limited to the boundary layer.

  15. A Multi-sensor Upper Tropospheric Ozone Product (MUTOP) based on TES ozone and GOES water vapor: validation with ozonesondes

    NASA Astrophysics Data System (ADS)

    Moody, J. L.; Felker, S. R.; Wimmers, A. J.; Osterman, G.; Bowman, K.; Thompson, A. M.; Tarasick, D. W.

    2011-11-01

    Accurate representation of ozone in the extratropical upper troposphere (UT) remains a challenge. However, the implementation of hyper-spectral remote sensing using satellite instruments such as the Tropospheric Emission Spectrometer (TES) provides an avenue for mapping ozone in this region, from 500 to 300 hPa. As a polar orbiting satellite TES observations are limited, but in this paper they are combined with geostationary satellite observations of water vapor. This paper describes a validation of the Multi-sensor UT Ozone Product (MUTOP). MUTOP is statistical retrieval method, a derived product image based on the correlation of two remotely sensed quantities, TES ozone, against geostationary (GOES) specific humidity and modeled potential vorticity, a dynamical tracer in the UT. These TES-derived UT ozone mixing ratios are compared to coincident ozonesonde measurements of layer-average UT ozone mixing ratios made during the NASA INTEX/B field campaign in the spring of 2006; the region for this study is effectively the GOES west domain covering the Eastern North Pacific Ocean and the Western United States. This intercomparison evaluates MUTOP skill at representing ozone magnitude and variability in this region of complex dynamics. In total, 11 ozonesonde launch sites were available for this study, providing 127 individual sondes for comparison; the overall mean ozone of the 500-300 hPa layer for these sondes was 78.0 ppbv. MUTOP reproduces in-situ measurements reasonably well, producing an UT mean of 82.3 ppbv, with a mean absolute error of 12.2 ppbv and a root mean square error of 16.4 ppbv relative to ozonesondes across all sites. An overall UT mean bias of 4.3 ppbv relative to sondes was determined for MUTOP. Considered in the context of past TES validation studies, these results illustrate that MUTOP is able to maintain accuracy similar to TES while expanding coverage to the entire GOES-West satellite domain. In addition MUTOP provides six-hour temporal

  16. A multi-sensor upper tropospheric ozone product (MUTOP) based on TES ozone and GOES water vapor: validation with ozonesondes

    NASA Astrophysics Data System (ADS)

    Moody, J. L.; Felker, S. R.; Wimmers, A. J.; Osterman, G.; Bowman, K.; Thompson, A. M.; Tarasick, D. W.

    2012-06-01

    Accurate representation of ozone in the extratropical upper troposphere (UT) remains a challenge. However, the implementation of hyper-spectral remote sensing using satellite instruments such as the Tropospheric Emission Spectrometer (TES) provides an avenue for mapping ozone in this region, from 500 to 300 hPa. As a polar orbiting satellite TES observations are limited, but in this paper they are combined with geostationary satellite observations of water vapor. This paper describes a validation of the Multi-sensor UT Ozone Product (MUTOP). MUTOP, based on a statistical retrieval method, is an image product derived from the multiple regression of remotely sensed TES ozone, against geostationary (GOES) specific humidity (remotely sensed) and potential vorticity (a modeled dynamical tracer in the UT). These TES-derived UT ozone mixing ratios are compared to coincident ozonesonde measurements of layer-average UT ozone mixing ratios made during the NASA INTEX/B field campaign in the spring of 2006; the region for this study is effectively the GOES west domain covering the eastern North Pacific Ocean and the western United States. This intercomparison evaluates MUTOP skill at representing ozone magnitude and variability in this region of complex dynamics. In total, 11 ozonesonde launch sites were available for this study, providing 127 individual sondes for comparison; the overall mean ozone of the 500-300 hPa layer for these sondes was 78.0 ppbv. MUTOP reproduces in~situ measurements reasonably well, producing an UT mean of 82.3 ppbv, with a mean absolute error of 12.2 ppbv and a root mean square error of 16.4 ppbv relative to ozonesondes across all sites. An overall UT mean bias of 4.3 ppbv relative to sondes was determined for MUTOP. Considered in the context of past TES validation studies, these results illustrate that MUTOP is able to maintain accuracy similar to TES while expanding coverage to the entire GOES-West satellite domain. In addition MUTOP provides six

  17. A multi-sensor upper tropospheric ozone product (MUTOP) based on TES Ozone and GOES water vapor: derivation

    NASA Astrophysics Data System (ADS)

    Felker, S. R.; Moody, J. L.; Wimmers, A. J.; Osterman, G.; Bowman, K.

    2011-07-01

    The Tropospheric Emission Spectrometer (TES), a hyperspectral infrared instrument on the Aura satellite, retrieves a vertical profile of tropospheric ozone. However, polar-orbiting instruments like TES provide limited nadir-view coverage. This work illustrates the value of these observations when taken in context with geostationary imagery describing synoptic-scale weather patterns. The goal of this study is to create map-view products of upper troposphere (UT) ozone through the integration of TES ozone measurements with two synoptic dynamic tracers of stratospheric influence: specific humidity derived from the GOES Imager water vapor absorption channel, and potential vorticity (PV) from an operational forecast model. As a mixing zone between tropospheric and stratospheric reservoirs, the upper troposphere (UT) exhibits a complex chemical makeup. Determination of ozone mixing ratios in this layer is especially difficult without direct in situ measurement. However, it is well understood that UT ozone is correlated with dynamical tracers like low specific humidity and high potential vorticity. Blending the advantages of two remotely sensed quantities (GOES water vapor and TES ozone) is at the core of the Multi-sensor Upper Tropospheric Ozone Product (MUTOP). Our results suggest that 72 % of TES-observed UT ozone variability can be explained by its correlation with dry air and high PV. MUTOP reproduces TES retrievals across the GOES-West domain with a root mean square error (RMSE) of 18 ppbv (part per billion by volume). There are several advantages to this multi-sensor derived product approach: (1) it is calculated from two operational fields (GOES specific humidity and GFS PV), so maps of layer-average ozone can be created and used in near real-time; (2) the product provides the spatial resolution and coverage of a geostationary image as it depicts the variable distribution of ozone in the UT; and (3) the 6 h temporal resolution of the derived product imagery allows

  18. Observations of the north polar water ice annulus on Mars using THEMIS and TES

    USGS Publications Warehouse

    Wagstaff, K.L.; Titus, T.N.; Ivanov, A.B.; Castano, R.; Bandfield, J.L.

    2008-01-01

    The Martian seasonal CO2 ice caps advance and retreat each year. In the spring, as the CO2 cap gradually retreats, it leaves behind an extensive defrosting zone from the solid CO2 cap to the location where all CO2 frost has sublimated. We have been studying this phenomenon in the north polar region using data from the THermal EMission Imaging System (THEMIS), a visible and infra-red (IR) camera on the Mars Odyssey spacecraft, and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor. Recently, we discovered that some THEMIS images of the CO2 defrosting zone contain evidence for a distinct defrosting phenomenon: some areas just south of the CO2 cap edge are too bright in visible wavelengths to be defrosted terrain, but too warm in the IR to be CO2 ice. We hypothesize that we are seeing evidence for a seasonal annulus of water ice (frost) that recedes with the seasonal CO2 cap, as predicted by previous workers. In this paper, we describe our observations with THEMIS and compare them to simultaneous observations by TES and OMEGA. All three instruments find that this phenomenon is distinct from the CO2 cap and most likely composed of water ice. We also find strong evidence that the annulus widens as it recedes. Finally, we show that this annulus can be detected in the raw THEMIS data as it is collected, enabling future long-term onboard monitoring. ?? 2007.

  19. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  20. Characterisation of chicken TES and its role in cell spreading and motility.

    PubMed

    Griffith, Elen; Coutts, Amanda S; Black, Donald M

    2004-03-01

    Previously we identified TES as a candidate tumour suppressor gene that is located at human chromosome 7q31.1. More recently, we and others have shown TES to encode a novel LIM domain protein that localises to focal adhesions. Here, we present the cloning and functional analysis of the chicken orthologue of TES, cTES. The TES proteins are highly conserved between chicken and human, showing 89% identity at the amino acid level. We show that the cTES protein localised at focal adhesions, actin stress fibres, and sites of cell-cell contact, and GST-cTES can pull-down zyxin and actin. To investigate a functional role for cTES, we looked at the effect of its overexpression on cell spreading and cell motility. Cells overexpressing cTES showed increased cell spreading on fibronectin, and decreased cell motility, compared to RCAS vector transfected control cells. The data from our studies with cTES support our previous findings with human TES and further implicate TES as a member of a complex of proteins that function together to regulate cell adhesion and additionally demonstrate a role for TES in cell motility. Copyright 2004 Wiley-Liss, Inc.

  1. Composition and Mineralogy of Low Albedo Northern Circumpolar Deposits on Mars Using MGS/TES Data

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Horgan, B.; Noe Dobrea, E. Z.

    2009-12-01

    The northern high latitude non-ice geology of Mars is dominated by large, low-albedo sand dunes and sand sheet deposits. These materials have experienced a complex geologic history, including evidence preserved in the morphology for aeolian deposition, transport, and erosion (e.g., Tanaka et al., Icarus, 196, 318, 2008), and evidence preserved in the mineralogy for aqueous alteration processes (e.g., Langevin et al., Science, 307, 1584, 2005). These low-albedo materials span the circumpolar plains of Vastitas Borealis north of about 75 deg. latitude, and extend down to about 30 deg. north in the Acidalia Planitia region (from about 15 to 45 deg. west) where they are the type locality for the Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) "Surface Type 2" global compositional endmember. We are assessing both the morphology and primary (mafic) and secondary mineralogy of north polar sand deposits using high spatial and spectral resolution data sets, working to test hypotheses for the formation and evolution of these materials throughout Martian history. Here we report on our initial mineralogic analyses of TES mid-IR spectra of these low albedo materials. Because of the relatively low surface temperatures at high northern latitudes on Mars, assembling a high-quality TES data set that covers a significant fraction of representative terrains is a challenge. Ultimately we were able to identify and assemble a data subset of more than 5000 TES emissivity spectra having temperatures above 250K and covering surface regions with bolometric albedo below 0.15 during times of relatively clear atmospheric conditions. These spectra cover only a few percent of the north polar low albedo deposits, but they provide representative sampling of many terrains. We are performing atmospheric corrections and deriving estimated mineral abundances for these spectra using an iterative linear matrix inversion spectral unmixing method (Noe Dobrea et al., JGR, 111, 2006) and

  2. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  3. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  4. Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira crater, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, Timothy A.; Mustard, John F.; Head, James W.; Salvatore, Mark R.; Wiseman, Sandra M.

    2015-04-01

    We present morphologic observations and spectral modeling results of a large, kaolin-group mineral-bearing deposit within Kashira crater in the southern highlands of Mars. We employ both non-linear unmixing of Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) visible to near-infrared (VNIR) reflectance data and linear unmixing of Thermal Emission Spectrometer (TES) thermal infrared (TIR) emissivity data to quantitatively analyze the kaolin-group mineral within this deposit. We use a novel approach for quantitative analysis of CRISM data through non-linear unmixing with in-scene, orbitally-derived endmembers combined with laboratory measured endmembers. Results from this approach indicate that the deposit within Kashira crater is best modeled as a combination of surrounding spectral units (i.e., in-scene derived endmembers) with the addition of the kaolin-group mineral halloysite. Linear unmixing of TES data suggest that the deposit contains ∼30% halloysite, a result that is supported by a sensitivity analysis. Potential formation mechanisms for this deposit include hydrothermal alteration, arid-environment pedogenic weathering of a basaltic mound deposit, or pedogenic weathering of a volcanic ash deposit. Our modeling results offer a quantitative reconciliation of the CRISM and TES datasets, and provide a consistent mineralogy from spectral unmixing for an aqueous alteration mineral-bearing deposit on Mars using a combined analysis of both VNIR and TIR hyperspectral data.

  5. Integrated Microcalorimeters Using Ir TES And Sn Mushroom Absorbers

    SciTech Connect

    Chen, C.; Bogorin, D.; Galeazzi, M.

    2006-09-07

    Cryogenic microcalorimeters have the potential to meet the requirements of future x-ray missions. The University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays. We deposit high purity iridium thin film as Transition Edge Sensors (TES). We chose iridium because it has a bulk transition temperature of 112 mK and we expect single layer TES to have good reproducibility and long term stability. Also we use integrated tin film in a mushroom geometry as the absorbers to get high filling factor, low heat capacity and easy array manufacturing process. We present here our preliminary results in both areas.

  6. Seasonal Transpacific Transport of Asian Ozone and PAN Using Aura TES PAN Retrievals

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Worden, J.; Payne, V.; Fischer, E. V.; Walker, T. W.; Jones, D. B. A.; Henze, D. K.

    2014-12-01

    Long range transport of Asian ozone pollution depends on the conversion of surface NOx emissions into Peroxyacyl Nitrate (PAN) and subsequent transpacific transport of PAN in the free-troposphere where it is stable because of cold temperatures. Once PAN subsides into the warmer lower troposphere it is converted back into NOx, which can in turn form ozone. In this presentation we use new PAN retrievals from the Aura TES instrument to characterize the seasonal cycle of free-tropospheric PAN from Asian emissions and its subsequent transport to North America. The GEOS-Chem chemical transport model and its adjoint are used to quantify the intercontinental source attribution of ozone pollution at western United States.

  7. Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    NASA Technical Reports Server (NTRS)

    Shephard, Mark W.; McLinden, Chris; Fioletov, Vitali; Cady-Pereira, Karen E.; Krotkov, Nick A.; Boersma, Folkert; Li, Can; Luo, Ming; Bhartia, P. K.; Joiner, Joanna

    2014-01-01

    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations.

  8. Observations of Tropospheric Ozone Profiles Using Simultaneously Measured UV and IR Radiances from OMI and TES

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Kulawik, S.; Bowman, K. W.; Sander, S. P.; Liu, X.

    2011-12-01

    Ozone is a radiativelly and chemically important trace gas in the atmosphere. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission, an Earth Science Decadal Survey mission that has been recommended for launch in the 2013-2016 time frame by National Research Council, will measure tropospheric ozone and its precursors relating to air quality over the Americas. To improve current capability of tropospheric ozone sounding in terms of spatial and temporal resolution, GEO-CAPE mission calls for an instrument(s) that is sensitive over multiple spectral regions. Prior to the launch of GEO-CAPE satellite, using simultaneous measurements of multiple sensors of an ongoing satellite mission provide an alternative way to improve tropospheric ozone sounding and help in the evaluations of suitable spectral regions for the GEO-CAPE mission. The Ozone Monitoring Instrument (OMI) and the Tropospheric Emission Spectrometer (TES) are both on the Earth Observing System Aura satellite in orbit. They are providing ozone concentration profiles measurements respectively. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. TES is a Fourier transform spectrometer that measures the thermal infrared (TIR) light radiances emitted by Earth's surface and by gases and particles in spectral range 650 - 3050 cm-1. We present an approach to combine simultaneously measured OMI UV and TES TIR radiances to improve the tropospheric ozone sounding. The results from combination of these measurements are presented and discussed. The improvements on tropospheric ozone profiles from the UV+TIR joint retrievals, as compared with either spectral region alone, are charterized using the ozonesonde measurements.

  9. Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA and CRISM data

    NASA Astrophysics Data System (ADS)

    Rogers, A. Deanne; Hamilton, Victoria E.

    2015-01-01

    identified 10 distinct classes of mineral assemblage on Mars through statistical analyses of mineral abundances derived from Mars Global Surveyor Thermal Emission Spectrometer (TES) data at a spatial resolution of 8 pixels per degree. Two classes are new regions in Sinus Meridiani and northern Hellas basin. Except for crystalline hematite abundance, Sinus Meridiani exhibits compositional characteristics similar to Meridiani Planum; these two regions may share part of a common history. The northern margin of Hellas basin lacks olivine and high-Ca pyroxene compared to terrains just outside the Hellas outer ring; this may reflect a difference in crustal compositions and/or aqueous alteration. Hesperian highland volcanic terrains are largely mapped into one class. These terrains exhibit low-to-intermediate potassium and thorium concentrations (from Gamma Ray Spectrometer (GRS) data) compared to older highland terrains, indicating differences in the complexity of processes affecting mantle melts between these different-aged terrains. A previously reported, locally observed trend toward decreasing proportions of low-calcium pyroxene relative to total pyroxene with time is also apparent over the larger scales of our study. Spatial trends in olivine and pyroxene abundance are consistent with those observed in near-infrared data sets. Generally, regions that are distinct in TES data also exhibit distinct elemental characteristics in GRS data, suggesting that surficial coatings are not the primary control on TES mineralogical variations, but rather reflect regional differences in igneous and large-scale sedimentary/glacial processes. Distinct compositions measured over large, low-dust regions from multiple data sets indicate that global homogenization of unconsolidated surface materials has not occurred.

  10. Human "Footprints" in the Atmosphere: Anthropogenic Evidence in MOPITT and TES Atmospheric Chemistry Data

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.

    2005-05-01

    The Measurements Of Pollution In The Troposphere (MOPITT) experiment was launched on board the NASA Earth Observing System (EOS) Terra Satellite in December 1999 and has accumulated more than five years of global carbon monoxide measurements. Available MOPITT data products include Level 1 radiances and Level 2 derived CO total column and mixing ratio profiles at a horizontal resolution of about 22 km at nadir and a vertical resolution of about 4 km. The primary sources of CO are biomass burning and industrial pollution, making CO an indicator of the anthropogenic influence on the atmosphere. MOPITT is the first instrument to make long-term global measurements of this species and is providing a better understanding of its transport, sources and sinks. A number of visual results will be included in this presentation. The Tropospheric Emission Spectrometer (TES) instrument is a high-resolution imaging infrared Fourier-transform spectrometer that operates in both nadir and limb-sounding modes. TES is flying aboard Aura, the third of NASA's EOS satellites, which was launched in July 2004. Tropospheric ozone is a pollutant and a greenhouse gas. It has both natural and anthropogenic sources. TES makes global 3-D measurements of ozone and other chemical species involved in its formation and destruction, including water vapor, methane, carbon monoxide, nitrogen dioxide, and nitric acid. The spatial resolution is 0.5 x 5 km in the nadir and 2.3 x 23 km in the limb. Level 1B spectral radiance data are currently available, and the Level 2 species data products will be publicly available in Summer 2005. Preliminary visual results will be shown. These data are available free of charge from the NASA Langley Atmospheric Sciences Data Center. Additional information can be found at http://eosweb.larc.nasa.gov.

  11. The topside sounder database - Data screening and systematic biases

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias; Stankov, Stanimir M.

    2013-06-01

    The ionospheric topside sounder measurement database developed at the US National Space Science Data Center (NSSDC) is a valuable source of information when investigating the composition and complex dynamics of the upper ionosphere. The database is increasingly used by many scientists around the world for both research and development of empirical models. However, there is always a danger of indiscriminately using the data without properly assessing the data quality and applicability for a given purpose. This paper is concerned with the issue of data screening and pre-processing of the Alouette/ISIS topside sounder database. An overview of the original database availability and formatting is given and the use of solar and geomagnetic indices is discussed. Data screening procedures, concerning detection and handling of erroneous profiles, are also presented. Special attention is drawn to the systematic biases observed in the database and the possibilities for their removal.

  12. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  13. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  14. TES/Aura L2 Carbonyl Sulfide Nadir (TL2OCSN)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Carbonyl Sulfide Nadir (TL2OCSN) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Sulfur Compounds Order Data:  Earthdata Search:   ...

  15. TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANN)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANN) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Nitrogen Compounds Order Data:  Earthdata Search:   ...

  16. TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANNS)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANNS) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Nitrogen Compounds Order Data:  Earthdata Search:   ...

  17. TES/Aura L2 Carbonyl Sulfide Nadir (TL2OCSNS)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Carbonyl Sulfide Nadir (TL2OCSNS) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Sulfur Compounds Order Data:  Earthdata Search:   ...

  18. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  19. Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia

    USGS Publications Warehouse

    Fergason, R.L.; Christensen, P.R.; Bell, J.F.; Golombek, M.P.; Herkenhoff, K. E.; Kieffer, H.H.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the two Mars Exploration Rovers provides the first opportunity to observe thermal properties from the Martian surface, relate these properties to orbital data, and perform soil conductivity experiments under Martian conditions. The thermal inertias of soils, bedforms, and rock at each landing site were derived to quantify the physical properties of these features and understand geologic processes occurring at these localities. The thermal inertia for the. Gusev plains rock target Bonneville Beacon (???1200 J m-2 K-1 s-1/2) is consistent with a dense, basaltic rock, but the rocks at the Columbia Hills have a lower thermal inertia (???620 J m-2 K-1 s-1/2), suggesting that they have a volcaniclasic origin. Bedforms on the floors of craters at both landing sites have thermal inertias of 200 J m-2 K-1 s-1/2, consistent with a particle diameter of ???160 ??m. This diameter is comparable to the most easily moved grain size in the current atmosphere on Mars, suggesting that these bedforms may have formed under current atmospheric conditions. Along the Meridiani plains, the thermal inertia is lower than that derived from TES and Thermal Emission Imaging System (THEMIS) orbital data. This discrepancy is not well understood. Mini-TES-derived thermal inertias at Gusev along a ???2.5 km traverse follow trends in thermal inertia measured from orbit with TES and THEMIS. However, along the traverse, there are variability and mixing of particle sizes that are not resolved in the orbital thermal inertia data due to meter-scale processes that are not identifiable at larger scales. Copyright 2006 by the American Geophysical Union.

  20. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    SciTech Connect

    Nassar, Ray; Jones, DBA; Kulawik, SS; Worden, JR; Bowman, K; Andres, Robert Joseph; Suntharalingam, P; Chen, j.; Brenninkmeijer, CAM; Schuck, TJ; Conway, T.J.; Worthy, DE

    2011-01-01

    We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES) and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40 S 40 N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields 1.13 0.21 PgC for the global ocean, 2.77 0.20 PgC for the global land biosphere and 3.90 0.29 PgC for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion). These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.

  1. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  2. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  3. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  4. Influence of geophysical factors on oblique-sounder ionospheric characteristics

    SciTech Connect

    Baranets, A.N.; Blagoveshchenskaya, N.F.; Borisova, T.D.; Bubnov, V.A.

    1988-10-01

    The purpose of this paper is to study the influence of geophysical factors, including magnetoionospheric disturbances, on decameter wave propagation over extended paths using oblique sounding (OS) data, and also to compare experimental and calculated OS ionograms for various conditions of radio waver propagation (season, time of day). Variations of oblique-sounder ionospheric characteristics along a 9000 km long subauroral path for various geophysical conditions are considered. A comparison is made of experimental and calculated ionograms of oblique sounding.

  5. The Mars Climate Sounder on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    McCleese, D.; Taylor, F.; Schofield, J.; Calcutt, S.

    2003-04-01

    There remains a need for an intensive effort to obtain a climatology of the martian atmosphere. This objective was to have been accomplished with the Mars Observer and with the Mars Climatology Orbiter, both of which failed at Mars. In 2005, the Mars Reconnaissance Orbiter will carry the Mars Climate Sounder (MCS) to aquire the necessary measurements of the vertical profiles of atmospheric temperature, water vapor, dust and condensates. This paper describes the climate objectives and measurement approach of MCS.

  6. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  7. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  8. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Search and Order:   Earthdata ...

  9. TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Data: TES Order Tool Parameters:  Carbon Dioxide Order Data:  Search and Order:   Earthdata ...

  10. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  11. A laser sounder for U.S. Navy helicopters

    NASA Technical Reports Server (NTRS)

    Harris, Michael M.; Mesick, Hillary C.; Byrnes, H. Jerry; Curran, Thomas P.; Contarino, V. Michael

    1987-01-01

    The design and operating principles of the laser sounder developed for use in airborne coastal-zone bathymetric surveys with a U.S. Navy P-3 aircraft are described and illustrated with diagrams. The sounder components are listed and characterized, including the Nd:YAG transmitter (operating at 532 nm for bottom ranging and 1.064 microns for surface ranging), the scanning transceiver, the 10 x 6-inch-aperture controlled-FOV receiver/digitizer, the constant-fraction discriminator, the time-to-digital converter, the navigation and data-recording subsystems, and the parallel distributed processing computer (comprising a data collection and control system and a real-time processing system). Consideration is also given to the phase-I and phase-II data-reduction software being developed to process the approximately 228 million soundings to be obtained annually. The sounder can be used day or night to sound clear ocean water up to 20 m deep.

  12. Lossless data compression for infrared hyperspectral sounders: an update

    NASA Astrophysics Data System (ADS)

    Huang, Bormin; Huang, Hung-Lung A.; Ahuja, Alok; Schmit, Timothy J.; Heymann, Roger W.

    2004-10-01

    The compression of hyperspectral sounder data is beneficial for more efficient archive and transfer given its large 3-D volume. Moreover, since physical retrieval of geophysical parameters from hyperspectral sounder data is a mathematically ill-posed problem that is sensitive to the error of the data, lossless or near-lossless compression is desired. This paper provides an update into applications of state-of-the-art 2D and 3D lossless compression algorithms such as 3D EZW, 3D SPIHT, 2D JPEG2000, 2D JPEG-LS and 2D CALIC for hyperspectral sounder data. In addition, in order to better explore the correlations between the remote spectral regions affected by the same type of atmospheric absorbing constituents or clouds, the Bias-Adjusted Reordering (BAR) scheme is presented which reorders the data such that the bias-adjusted distance between any two neighboring vectors is minimized. This scheme coupled with any of the state-of-the-art compression algorithms produces significant compression gains.

  13. Geophysical Information from Advanced Sounder Infrared Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2012-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Satisfying this type of improvement for inferred geophysical information from these observations requires optimal usage of data from current systems as well as enhancements to future sensors. This presentation addresses the information content present in infrared spectral radiance from advanced atmospheric sounders with an emphasis on knowledge of thermodynamic state and trace species. Results of trade-off studies conducted to evaluate the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content will be discussed. A focus is placed on information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument aboard the NPP and JPSS series of satellites which began 28 October 2011.

  14. A laser sounder for U.S. Navy helicopters

    NASA Technical Reports Server (NTRS)

    Harris, Michael M.; Mesick, Hillary C.; Byrnes, H. Jerry; Curran, Thomas P.; Contarino, V. Michael

    1987-01-01

    The design and operating principles of the laser sounder developed for use in airborne coastal-zone bathymetric surveys with a U.S. Navy P-3 aircraft are described and illustrated with diagrams. The sounder components are listed and characterized, including the Nd:YAG transmitter (operating at 532 nm for bottom ranging and 1.064 microns for surface ranging), the scanning transceiver, the 10 x 6-inch-aperture controlled-FOV receiver/digitizer, the constant-fraction discriminator, the time-to-digital converter, the navigation and data-recording subsystems, and the parallel distributed processing computer (comprising a data collection and control system and a real-time processing system). Consideration is also given to the phase-I and phase-II data-reduction software being developed to process the approximately 228 million soundings to be obtained annually. The sounder can be used day or night to sound clear ocean water up to 20 m deep.

  15. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  16. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  17. High-resolution Interferometer Sounder (HIS), phase 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The High-resolution Interferometer Sounder (HIS) was successfully built, tested, and flight proven on the NASA U-2/ER-2 high altitude aircraft. The HIS demonstration has shown that, by using the technology of Fourier Transform Spectroscopy (FTS), it is possible to measure the spectrum of upwelling infrared radiance needed for temperature and humidity sounding with high spectral resolution and high radiometric precision. By resolving individual carbon dioxide lines, the retrieved temperature profiles have vertical resolutions of 1 to 2 km and RMS errors less than 1 C, about 2 to 4 times better than possible with current sounders. Implementing this capability on satellite sounders will greatly enhance the dynamical information content of temperature measurements from space. The aircraft model HIS is now a resource which should be used to support field experiments in mesoscale meteorology, to monitor trace gas concentrations and to better understand their effects on climate, to monitor the surface radiation budget and the radiative effects of clouds, and to collect data for research into retrieval techniques, especially under partially cloudy conditions.

  18. TES mapping of Mars' north seasonal cap

    USGS Publications Warehouse

    Kieffer, H.H.; Titus, T.N.

    2001-01-01

    The Mars Global Surveyor thermal emission spectrometer has made observations of Mars' north polar region for nearly a full martian year. Measurements of bolometric emission and reflectance, as well as brightness temperatures in specific bands synthesized from thermal radiance spectra, are used to track the behavior of surface and atmospheric temperatures, the distribution of condensed CO2 and H2O, and the occurrence of dust storms. CO2 grain size in the polar night is variable in space and time, and is influenced by atmospheric conditions. Some specific locations display concentration of H2O frost and indicate the presence of long-term water-ice near the surface. Annual budgets of solid CO2 range up to 1500 kg m-2; preliminary analysis suggests significant transport of energy into latitudes near 70?? N during the polar night. ?? 2001 Elsevier Science.

  19. TES development for a frequency selective bolometer camera.

    SciTech Connect

    Datesman, A. M.; Downes, T. P.; Perera, T. A.; Wang, G.; Yefremenko, V. G.; Pearson, J. E.; Novosad, V.; Divan, R.; Chang, C. L.; Logan, D. W.; Meyer, S. S.; Wilson , G. W.; Bleem, L. E.; Crites, A. T.; McMahon, J. J.; Carlstrom, J. E.; Materials Science Division; Kavli Inst. Cosmological Phys.; Univ. of Massachusetts

    2009-06-01

    We discuss the development, at Argonne National Laboratory (ANL), of a four-pixel camera with four spectral channels centered at 150, 220, 270, and 360 GHz. The scientific motivation involves photometry of distant dusty galaxies located by Spitzer and SCUBA, as well as the study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich effect in clusters, and galactic dust. The camera incorporates Frequency Selective Bolometer (FSB) and superconducting Transition-Edge Sensor (TES) technology. The current generation of TES devices we examine utilizes proximity effect superconducting bilayers of Mo/Au, Ti, or Ti/Au as TESs, located along with frequency selective absorbing structures on silicon nitride membranes. The detector incorporates lithographically patterned structures designed to address both TES device stability and detector thermal transport concerns. The membrane is not perforated, resulting in a detector which is comparatively robust mechanically. In this paper, we report on the development of the superconducting bilayer TES technology, the design and testing of the detector thermal transport and device stability control structures, optical and thermal test results, and the use of new materials.

  20. Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback

    SciTech Connect

    Takei, Y.; Yamasaki, N.Y; Mitsuda, K.; Kimura, S.; Hirakoso, W.; Masui, K.; Korte, P. A. J. de; Kuur, J. van der; Gottardi, L.

    2009-12-16

    A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz with standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.

  1. TES/Aura L2 Formic Acid (FOR) Nadir V6 (TL2FORN)

    Atmospheric Science Data Center

    2017-07-14

    TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORN) News:  TES News Join ... L2 Platform:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 x 8.5 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Precision Vertical Resolution Legacy:  ...

  2. TES/Aura L2 Formic Acid (FOR) Lite Nadir V6 (TL2FORLN)

    Atmospheric Science Data Center

    2017-07-20

    TES/Aura L2 Formic Acid (FOR) Lite Nadir (TL2FORLN) News:  TES News ... L2 Instrument:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Vertical Resolution Precision Order ...

  3. TES/MLS Aura L2 Carbon Monoxide (CO) Nadir (TML2COS)

    Atmospheric Science Data Center

    2017-07-20

    TES/MLS Aura L2 Carbon Monoxide (CO) Nadir (TML2COS) Atmospheric ... profile estimates and associated errors derived using TES & MLS spectral radiance measurements taken at nearest time and locations. Also ... V1 Level:  L2 Platform:  TES/MLS Aura L2 CO Spatial Coverage:  5.3 x 8.5 km nadir ...

  4. TES/Aura L2 Methanol (MTL) Lite Nadir (TL2MTLLN)

    Atmospheric Science Data Center

    2015-06-24

    TES/Aura L2 Methanol (MTL) Lite Nadir (TL2MTLLN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Methanol Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Methanol Order Data:  Search and Order:   Earthdata Search ...

  5. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  6. TES/Aura L2 Ancillary Data V6 (TL2ANCS)

    Atmospheric Science Data Center

    2017-09-20

    TES/Aura L2 Ancillary Data (TL2ANCS) News:  TES News Join TES News List ... Solar Azimuth Angle Legacy:  Retired data product , click here for a newer version. For more information or ... please contact ASDC User Services Order Data:  Earthdata Search: Current Version Guide ...

  7. The rocks of Gusev Crater as viewed by the Mini-TES instrument

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Blaney, D.L.; Farrand, W. H.; Johnson, J. R.; Michalski, J.R.; Moersch, J.E.; Wright, S.P.; Squyres, S. W.

    2006-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rover Spirit is part of a payload designed to investigate whether a lake once existed in Gusev Crater. Mini-TES has observed hundreds of rocks along the rover's traverse into the Columbia Hills, yielding information on their distribution, bulk mineralogy, and the potential role of water at the site. Although dust in various forms produces contributions to the spectra, we have established techniques for dealing with it. All of the rocks encountered on the plains traverse from the lander to the base of the Columbia Hills share common spectral features consistent with an olivine-rich basaltic rock known as Adirondack Class. Beginning at the base of the West Spur of the Columbia Hills and across its length, the rocks are spectrally distinct from the plains but can be grouped into a common type called Clovis Class. These rocks, some of which appear as in-place outcrop, are dominated by a component whose spectral character is consistent with unaltered basaltic glass despite evidence from other rover instruments for significant alteration. The northwest flank of Husband Hill is covered in float rocks known as Wishstone Class with spectral features that can be attributed uniquely to plagioclase feldspar, a phase that represents more than half of the bulk mineralogy. Rare exceptions are three classes of basaltic "exotics" found scattered across Husband Hill that may represent impact ejecta and/or float derived from local intrusions within the hills. The rare outcrops observed on Husband Hill display distinctive spectral characteristics. The outcrop called Peace shows a feature attributable to molecular bound water, and the outcrop that hosts the rock called Watchtower displays a dominant basaltic glass component. Despite evidence from the rover's payload for significant alteration of some of the rocks, no unambiguous detection of crystalline phyllosilicates or other secondary silicates has

  8. Martian Dust Characteristics From Tes Data: A Confirmation of Albite Presence

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Formisano, V.; Grassi, D.

    +39-6-49934382) TES data are used here to characterise the spectral aspect of Martian dust, providing important indications on its composition. TES is an infrared Fourier spectrometer on board of Mars Global Surveyor mission. Its spectra cover the range [200;1650] cm- 1; in this region, an important dust band centered at 1100 cm-1 exists. Following the guidelines of our previous work on IRIS Mariner 9 data, departure from ideal planckian behavior inside this band is measured quantitatively by a parameter D. This parameter allows us to classify a huge number of spectra on the basis of apparent dust band intensity, once measurements with high emission angle, low surface temperature or evident water ice features are rejected. Spectra are grouped in different classes on the basis of D value and averaged together, in order to achieve a very high signal to noise ratio (each class containing about 50000 spectra) and enhance the features of suspended material. A subsequent filtering on the average spectra shows a number of minor features, diagnostic on dust composition. Previous results about presence of feldspars (albite in particular) are confirmed through extensive comparison with mineral transmittances libraries.

  9. Analysis of TES Satellite Ozone Observations from 2005 to 2013 to Understand Global Air Pollution Transport

    NASA Astrophysics Data System (ADS)

    Kladar, R. M.; Cooper, O. R.

    2015-12-01

    To better understand the causes of ozone formation and transport, we create and analyze global satellite ozone retrieval products for ground level to upper tropospheric ozone concentrations over the years 2005 to 2013 using the Tropospheric Emission Spectrometer (TES) that rides aboard the NASA Aura satellite. Many global and regional tropospheric ozone trends are not fully understood. Observing many different pressure levels between 1000 hPa to 215 hPa, we focus on the areas where model and other observation strategies disagree, namely the Arabian Peninsula, the Australian outback, and the southern Sahara. We observe (and these areas may be experiencing) unusually high ozone concentrations. We also comment on the historically high ozone areas such as China, Northern India, western Europe, and the western and southern United States and how known phenomena compare to our observations. Many observations confirm known mechanisms of ozone formation and transport, such as the effect of the yearly monsoon cycle in South, Southeast, and East Asia. Others, such as the surprisingly high monthly average concentrations on the Arabian Peninsula and Southern Sahara, deserve more thorough investigation. Several hypotheses for these disagreement areas are put forward here. Lastly, we comment on the usefulness of the TES instrument for trends analysis and future global observations.

  10. A New View of the Surface of Mars: High-Resolution Rock Abundance from MGS TES

    NASA Astrophysics Data System (ADS)

    Nowicki, S.; Christensen, P.

    2001-12-01

    Mars Global Surveyor Thermal Emission Spectrometer data from the most dust-free seasons on Mars were used to calculate the areal percentage of rocks and finer materials such as dust and sand. Rock is defined as a surface material that has a thermal inertia of 1250 J/m2-s1/2-K (30 cal/cm2-s1/2-K) or greater. A surface with a high rock abundance value could be exposed bedrock, blocky debris, well-cemented materials or a combination. Globally, the TES and IRTM data agree well, with no rocks exposed in the large dusty regions such as Tharsis and Arabia, and exposure of rocks in small (a few km) areas where likely eolian or mass-wasting processes actively remove dust from the ancient rocky surface. Analysis of high-resolution TES rock abundance suggests that there are extremely varied surfaces within relatively small regions, and places an upper limit of ~45 % rocks in the rockiest regions. Thermal inertia and rock abundance are correlate to some degree over much of the planet, but the highest thermal inertia surfaces often do not have the highest rock abundances. A global perspective will be presented here, with detailed look at a few high-resolution ares including Ares Vallis/Pathfinder, Valles Marineris, and the proposed landing sites for the 2003 MER landers.

  11. First application of a TES microcalorimeter to a thermonuclear fusion plasma experiment

    NASA Astrophysics Data System (ADS)

    Shinozaki, K.; Hoshino, A.; Ishisaki, Y.; Morita, U.; Ohashi, T.; Mihara, T.; Mitsuda, K.; Tanaka, K.; Yagi, Y.; Koguchi, H.; Hirano, Y.; Sakakita, H.

    2006-04-01

    We report the first application of a superconductive transition edge sensor (TES) microcalorimeter to a thermonuclear fusion plasma experiment in the toroidal pinch experiment RX (TPE-RX). The TES microcalorimeter was installed in a portable adiabatic demagnetization refrigerator (ADR), which is originally designed for a rocket experiment. The ADR was directly connected to TPE-RX with a vacuum duct, and thin Toray-Lumirror or parylene films were used for entrance windows to allow soft X-rays coming into the detector with good efficiency. The detector box was designed to shield the strong magnetic field produced by ADR and TPE-RX. A total of 3472 counts of X-ray signals were detected in 0.2-3.0 keV for 210 plasma shots during the flat-top phase (35-70 ms) after discarding pile-up events. Combining the data with that measured in the energy range of 1.3-8 keV using a SiLi detector, we examined a wide band X-ray spectrum of the plasma. The obtained spectrum is dominated by thermal plasma emission, although at least four different temperature components are required to account for the whole band spectral shape. Impurities in the deuterium plasma are also investigated.

  12. Analysis of TES FFSM Eddies and MOC Dust Storms, MY 24 - 26

    NASA Astrophysics Data System (ADS)

    Noble, J.; Wilson, R.; Haberle, R. M.; Bridger, A. F.; Hollingsworth, J. L.; Kahre, M. A.; Barnes, J.; Cantor, B. A.

    2013-12-01

    Mars Global Surveyor (MGS) orbiter observed a planet-encircling dust storm (PDS) in Mars year (MY) 25 from Ls=176.2-263.4°. We present an examination of Mars Orbiter Camera (MOC) dust storms and transient baroclinic eddies identified from Fast Fourier Synoptic Mapping (FFSM) of Thermal Emission Spectrometer (TES) temperatures for the first two phases of the storm: precursor, Ls=176.2- 184.7°, and expansion, Ls=184.7-193°. FFSM analysis of TES 3.7 hPa thermal data shows the presence of eastward traveling waves at 60° S with a period of about three sols. We hypothesize that these waves are transient baroclinic eddies that contributed to the initiation of precursor storms near Hellas. Integration of FFSM and MOC MY 24 and 25 data shows interesting temporal and spatial associations between the evolution of eddies and storms, including: 1) comparable periodicities of travelling waves and pulses of storm activity; 2) concurrent eastward propagation of both eddies and storms; and 3) structured spatial relationship where high-latitude storms tend to occur on the eastern side of the eddy, while lower (and some middle) latitude storms occur on the western. These results suggest a causal relationship between baroclinic eddies and local storm initiation. New MY 26 results will be presented.

  13. Analysis of TES FFSM Eddies and MOC Dust Storms, MY 24 - 26

    NASA Astrophysics Data System (ADS)

    Noble, J.; Haberle, R. M.; Bridger, A. F.; Wilson, R.; Barnes, J.; Hollingsworth, J.; Kahre, M. A.; Cantor, B. A.

    2012-12-01

    Mars Global Surveyor (MGS) orbiter observed a planet-encircling dust storm (PDS) in Mars year (MY) 25 from Ls=176.2-263.4°. We present an examination of Mars Orbiter Camera (MOC) dust storms and transient baroclinic eddies identified from Fast Fourier Synoptic Mapping (FFSM) of Thermal Emission Spectrometer (TES) temperatures for the first two phases of the storm: precursor, Ls=176.2- 184.7°, and expansion, Ls=184.7-193°. FFSM analysis of TES 3.7 hPa thermal data shows the presence of eastward-traveling waves at 60° S with a period of about three sols. We hypothesize that these waves are transient baroclinic eddies that contributed to the initiation of precursor storms near Hellas. Integration of FFSM and MOC MY 24 and 25 data shows interesting temporal and spatial associations between the evolution of eddies and storms, including: 1) comparable periodicities of travelling waves and pulses of storm activity; 2) concurrent eastward propagation of both eddies and storms; and 3) structured spatial relationship where high-latitude storms tend to occur on the eastern side of the eddy, while lower (and some middle) latitude storms occur on the western. These results suggest a causal relationship between baroclinic eddies and local storm initiation. New MY 26 results will be presented.lt;img border=0 src="images/P22A-03_B.jpg">

  14. Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    NASA Astrophysics Data System (ADS)

    Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Benton, Steven J.; Bergman, A. Stevie; Bond, J. Richard; Bryan, Sean; Duff, Shannon M.; Duivenvoorden, Adri J.; Eriksen, H. K.; Filippini, Jeffrey P.; Fraisse, A.; Galloway, Mathew; Gambrel, Anne E.; Ganga, K.; Grigorian, Arpi L.; Gualtieri, Riccardo; Gudmundsson, Jon E.; Hartley, John W.; Halpern, M.; Hilton, Gene C.; Jones, William C.; McMahon, Jeffrey J.; Moncelsi, Lorenzo; Nagy, Johanna M.; Netterfield, C. B.; Osherson, Benjamin; Padilla, Ivan; Rahlin, Alexandra S.; Racine, B.; Ruhl, John; Rudd, T. M.; Shariff, J. A.; Soler, J. D.; Song, Xue; Ullom, Joel N.; Van Lanen, Jeff; Vissers, Michael R.; Wehus, I. K.; Wen, Shyang; Wiebe, D. V.; Young, Edward

    2016-07-01

    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.

  15. The Effects of Normal Metal Stripes on TES Performance

    NASA Technical Reports Server (NTRS)

    Wakeham, Nick; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; hide

    2017-01-01

    Exploring the effects of size and geometry of normal metal features on the transition shapes and performance of transition-edge sensor microcalorimeters. The spectral resolution of transition-edge sensor (TES) microcalorimeters is very sensitive to the specific dependencies of the resistance R in the superconducting transition on the current I, magnetic field B, and temperature T. In particular, it has been shown that transitions that are very steep in (R,T) space lead to a significant noise term, in excess of conventional expectations. This so-called unexplained noise is known to be reduced by the addition of normal metal stripes across the TES perpendicular to the direction of current flow. These normal metal stripes have been shown to drastically alter the oscillatory patterns seen in measurements of the critical current as a function of magnetic field. However, there are many remaining questions about the exact impact of the stripes on current distributions within the TES, the Fraunhofer pattern and, therefore, the shape of the R(I, B, T) surface. Through measurements of the resistance under DC bias of TES devices of various sizes, with different stripe patterns and dimensions, we will discuss how these stripes can affect the R(I, B, T) surface. In addition, using measurements and analysis of the noise spectra of various devices we will present how these changes to the stripe pattern may affect the performance of the TES. In particular, we will discuss strategies to reduce the presence of localized discontinuities in the derivative of R, associated with increased noise, while maintaining the globally low levels of unexplained noise currently achieved with conventional metal stripe patterns. Implementing these strategies is a path towards producing large arrays with highly uniform transitions and high spectral resolution. These large uniform arrays will be required for future x-ray astronomy applications, such as the X-IFU on ATHENA.

  16. New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare

    DTIC Science & Technology

    2012-09-01

    ROUGHNESS CALCULATION FROM MULTIBEAM ECHO SOUNDERS FOR MINE WARFARE by Patrick J. Earls September 2012 Thesis Advisor: Peter Chu Second Reader...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare 5. FUNDING...around these objects to make detection more difficult. High resolution (1 m × 1 m) seafloor data collected by the Navy using multibeam echo sounder (EM710

  17. Synergistic use of high spectral sounder and high spatial imager radiance measurements for atmospheric profiling

    NASA Astrophysics Data System (ADS)

    Liu, Chian-Yi; Li, Jun; Weisz, Elisabeth; Schmit, Timothy J.; Huang, Allen

    2008-08-01

    Hyperspectral infrared (IR) sounder from low earth orbit (LEO) provides temperature and moisture soundings with high accuracy and high vertical resolution, however, due to its low temporal coverage rate (twice every day for one sounder instrument), data are usually missing during short range convective storm development. The Advanced Baseline Imager (ABI) onboard the next generation of geostationary (GEO) satellite, on the other hand, provides very fast coverage rate but lower vertical resolution and less accurate profiles. Combination of GEO ABI measurements and LEO hyperspectral IR sounder data may provide atmospheric evolution with high temporal resolution and fairly vertical structure. An algorithm is developed for monitoring the sounding evolution from combined GEO imager and LEO IR sounder data. The collocated geolocation of GEO imager and LEO sounder systems can (1) provide LEO sounder sub-pixel cloud characterization (mask, amount, phase, layer information, etc.) within the large sounder footprint; (2) be used for LEO sounder cloud-clearing for partly cloudy footprints; (3) provide background information in variational retrieval of cloud properties with sounder cloudy radiances; (4) provide real-time background information for GEO imager instantly without Numerical Weather Prediction (NWP) data. The Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of synergistic use of ABI products and LEO sounder radiances for better retrieving atmospheric soundings and cloud properties.

  18. Millimeter Wave Moisture Sounder Feasibility Study: The Effect of Cloud and Precipitation on Moisture Retrievals.

    DTIC Science & Technology

    1985-03-08

    D-A162 231 MILLIMETER WAVE MOISTURE SOUNDER FEASIBILITY STUDY- THE i/1 EFFECT OF CLOUD A (U) ATMOSPHERIC AND ENVIRONMENTAL RESEARCH INC CAMBRIDGE MA...34 ,,; - -., ,..-.,- -, ,.. . : .,,- ,.. ,- - - , . .. .-. ,=, .-,o.. .- .-,o ,-N . ,.-,."...,- ,,, .. .,..; .. ,., .:°B,.. ’ AFGL-TR-85-0040 MILLIMETER WAVE MOISTURE SOUNDER FEASIBILITY STUDY: THE EFFECT OF...REPORT A PERIOD COVERED Millimeter Wave Moisture Sounder Feasibility Final Report Study: The Effect of Cloud and Precipitation 8 Aug 1984-7 Feb 1985 on

  19. The TES Hematite-Rich Region in Sinus Meridiani: A Proposed Landing Site for the 2003 Rover

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Bandfield, Joshua; Hamilton, Victoria; Ruff, Steven; Morris, Richard; Lane, Melissa; Malin, Michael

    2001-01-01

    The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has identified an accumulation of crystalline hematite (alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 750 km in size centered near 2 S latitude between 0 and 8 W longitude (Sinus Meridiani). The depth and shape of the hematite fundamental bands in the TES spectra show that the hematite is relatively coarse grained (greater than 5-10 micrometers). The spectrally-derived areal abundance of hematite varies with particle size from approximately 10% for particles greater than 30 micrometers in diameter to 40-60% for unpacked 10 micrometer powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter less than 5-10 micrometers), red, crystalline hematite considered, on the basis of visible and near-IR data, to be a minor spectral component in Martian bright regions. A global map of the hematite abundance has been constructed using TES data from the MGS mapping mission.

  20. Low Cost Upper Atmosphere Sounder (LOCUS)

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel; Swinyard, Bruce M.; Ellison, Brian N.; Aylward, Alan D.; Aruliah, Anasuya; Plane, John M. C.; Feng, Wuhu; Saunders, Christopher; Friend, Jonathan; Bird, Rachel; Linfield, Edmund H.; Davies, A. Giles; Parkes, Steve

    2014-05-01

    The Mesosphere - Lower Thermosphere region (MLT) is often quoted as being the least well known region of the atmosphere, meaning that measurements of this altitude range are sparser than for the neighbouring layers. The reason for this apparent lack of observations can be traced back to a combination of two facts - A) the MLT is ill suited for in-situ sampling on a global scale because the residual air drag is prohibitive for suborbital vehicles (rockets are traditionally used to sample the MLT region, but they only provide snapshot measurements both geographically, as well as temporally), and B) Some of the most important trace gases in the MLT have spectral emission lines in the THz range, a frequency band which has only just become accessible to conventional remote sensing technologies (i.e. passive heterodyne detection) thanks to ongoing technology development, but which still poses massive - often prohibitive - demands on the complexity, weight and power consumption of satellite borne remote sensing detectors. To mitigate the substantial power requirements of a Local Oscillator (LO) able to pump a heterodyne receiver at THZ frequencies, we are suggesting the use of Quantum Cascade Laser diodes (QCL). Combining a QCL LO with a sub-harmonic Schottky mixer in an integrated receiver system would allow us to build a THz passive heterodyne detector for atmospheric remote sensing that is both very compact and power efficient, and could therefore be built and launched much more cheaply than competitive systems. Many of the technologies required for such an instrument already exist at technology readiness levels (TRL) of 3-5. A consortium of RAL Space, University College London (UCL), University of Leeds, Surrey Satellite Technology Ltd (SSTL) and STAR-Dundee have been awarded a grant through the ESA In Orbit Demonstration Programme (IOD) to start developing an integrated, sub-harmonic heterodyne receiver with a QCL LO up to a TRL that would allow IOD hopefully in the

  1. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  2. Observations and trends of clouds based on GOES sounder data

    NASA Astrophysics Data System (ADS)

    Schreiner, Anthony J.; Schmit, Timothy J.; Menzel, W. Paul

    2001-01-01

    A 26 month (November 1997 through December 1999) data set of Geostationary Operational Environmental Satellite (GOES) sounder-derived cloud parameters has been analyzed to discern annual and monthly trends. An important outcome of this study is the identification of diurnal trends made possible by the geostationary satellite frequent observations over specific locations. The area of coverage is 20°N to 50°N and 60°W to 160°W, which corresponds to the continental United States and the surrounding waters. The satellite cloud observations were compared to manually observed Pilot Reports (PIREPs) and were found to be, on average, 35 hPa lower. Comparing the frequency of GOES sounder observations of high cloudiness with observations from the National Oceanic and Atmospheric Administration (NOAA) series of polar orbiting weather satellites reveals a correlation coefficient of 0.79 and a bias of 3.4% for the frequency of occurrence (GOES with a mean higher height). The frequency of occurrence and distribution of clouds, cloud top pressure (CTOP), and effective cloud amount are based on a spatial resolution of ˜40 km (3×3 field of view box) and are shown for eight regions. High clouds (CTOP ≤300 hPa) are found to be more prevalent during the Northern Hemisphere summer than winter for all regions. High clouds for 1998 comprise 8.5% of all observations. Also, in 1998 clear conditions are observed ˜34% of the time. Focusing on the strength of the hourly GOES sounder data, it is found that thin high clouds are most prevalent during the summer and fall seasons, occurring most frequently in the late morning and early afternoon.

  3. Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover

    USGS Publications Warehouse

    Christensen, P.R.; Ruff, S.W.; Fergason, R.L.; Knudson, A.T.; Anwar, S.; Arvidson, R. E.; Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M.; Glotch, T.D.; Golombek, M.P.; Gorelick, N.; Graff, T.G.; Hamilton, V.E.; Hayes, A.; Johnson, J. R.; McSween, H.Y.; Mehall, G.L.; Mehall, L.K.; Moersch, J.E.; Morris, R.V.; Rogers, A.D.; Smith, M.D.; Squyres, S. W.; Wolff, M.J.; Wyatt, M.B.

    2004-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil spectra show evidence for minor carbonates and bound water. Rocks are olivine-rich basalts with varying degrees of dust and other coatings. Dark-toned soils observed on disturbed surfaces may be derived from rocks and have derived mineralogy (??5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite 45% ??5 to 10). Two spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. Diurnal temperature data indicate particle sizes from 40 to 80 ??m in hollows to ???0.5 to 3 mm in soils.

  4. Survey of TES high albedo events in Mars' northern polar craters

    USGS Publications Warehouse

    Armstrong, J.C.; Nielson, S.K.; Titus, T.N.

    2007-01-01

    Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.

  5. The microwave limb sounder for the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  6. GEOSTAR - a microwave sounder for GOES-R

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan

    2005-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. Similar systems are also operated by other nations. The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which together make it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions.

  7. Remote sensing of the troposphere by infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Glavich, Thomas A.

    1989-01-01

    This paper describes the concept of a cryogenic IR imaging Fourier transform spectrometer, called the Tropospheric Emission Spectrometer (TES), designed for observations of the troposphere and lower stratosphere from a near-earth orbit, using natural thermal emission and reflected sunlight. The principal molecular species to be measured by TES are O3, CO, CO2, N2O, H2O, H2O2, NO, NO2, HNO3, NH3, CH4, C2H6, C2H2, SO2, COS, CFCl3, and CF2Cl2. The TES is scheduled for a launch on the second polar platform of the Earth Observing System in 1998.

  8. TES observations of the martian surface and atmosphere

    USGS Publications Warehouse

    Christensen, P.R.; Kieffer, H.H.; Pearl, J.C.; Conrath, B.; Malin, M.C.; Clark, R.C.; Morris, R.V.; Banfield, J.L.; Lane, M.D.; Smith, M.D.; Hamilton, V.E.; Kuzmin, R.O.

    2000-01-01

    The TES instrument is a Fourier transform Michelson interferometer operating with 10 or 5 cm-1 sampling int he thermal infared spectral region from 1700 to 200 cm-1 (~6 to 50 μm) where virtually all minerals have characteristic fundamental vibrational absorption bands (1, 2, 3, 4, 5, 6, 7, 8). The TES data used in this paper are among the 6x107 spectra collected during the early mapping phase of the MGS mission from southern hemisphere winter to early summer (aerocentric longitude, Ls, 107° to 297°. The methodology for separating the surface and atmospheric components of the radiance from Mars, which allows detailed analysis and interpretation of surface mineralogy (9, 10), is described in previous papers (10, 11).

  9. Using THEMIS and TES to conduct a mineral analysis on Olympus Mons

    NASA Astrophysics Data System (ADS)

    Chase, Nicole Danielle

    2016-10-01

    Olympus Mons is the largest shield volcano in our known solar system. In previous studies, the composition of the basaltic lava flows on Olympus Mons was shown to be similar to the composition of those lava flows of Earth's shield volcanoes. It has been suggested that basalt located near volcanoes contained bacteria living below the surface of the Earth. In this pilot study, the effect of Olympus Mons' aspect (i.e. north- vs. south-facing slope) on its mineral composition was examined. Imagery from Thermal Emission Imaging System (THEMIS), onboard the Mars Odyssey spacecraft, were used because Olympus Mons' size and surface roughness hinder rover exploration. After removing transmission errors and performing an atmospheric correction, the THEMIS images were ready to be analyzed via a mineral spectral library. Using Arizona State University's Thermal Emission Spectrometer (TES) derived mineral spectral library, the images were classified in ENVI. These classifications were verified using ASU's GIS tool, Java Mission-planning and Analysis for Remote Sensing (JMARS) and TES. Results show differences in the mineral composition and in the geological features on Olympus Mons' surface. The mineral vanadinite was shown to be prevalent on the sampled southern portions of Olympus Mons, but was sparse on the sampled northern portions. Previous studies suggested that the mineral ilmenite, which this study found in high concentrations on the sampled northern portions of Olympus Mons, might serve as a food source for iron-oxidizing and iron-scavenging bacteria. Future research should focus on better understanding the concentrations of vanadinite and ilmenite on Olympus Mons to see if these minerals have a role in the potential presence of bacteria on Olympus Mons.

  10. Overview of the Waveform Capture in the Lunar Radar Sounder on board KAGUYA

    NASA Astrophysics Data System (ADS)

    Kasahara, Y.; Goto, Y.; Hashimoto, K.; Imachi, T.; Kumamoto, A.; Ono, T.; Matsumoto, H.

    2007-12-01

    The Lunar explorer "gKAGUYA"h (SELENE) spacecraft will be launched on September 13, 2007. The Lunar Radar Sounder (LRS) is one of the scientific instruments on board KAGUYA. It consists of three subsystems: the sounder observation (SDR), the natural plasma wave receiver (NPW), and the waveform capture (WFC). The WFC is a high-performance and multifunctional software receiver in which most functions are realized by the onboard software implemented in a digital signal processor (DSP). The WFC consists of a fast-sweep frequency analyzer (WFC-H) covering the frequency range from 1 kHz to 1 MHz and a waveform receiver (WFC-L) in the frequency range from 10 Hz to 100 kHz. The amount of raw data from the plasma wave instrument is huge because the scientific objectives require the covering of a wide frequency range with high time and frequency resolution; furthermore, a variety of operation modes are needed to meet these scientific objectives. In addition, new techniques such as digital filtering, automatic filter selection, and data compression are implemented for data processing of the WFC-L to extract the important data adequately under the severe restriction of total amount of telemetry data. Because of the flexibility of the instruments, various kinds of observation modes can be achieved, and we expect the WFC to generate many interesting data. By taking advantage of a moon orbiter, the WFC is expected to measure plasma waves and radio emissions that are generated around the moon and/or that originated from the sun and from the earth and other planets. One of the phenomena of most interest to be obtained from the WFC data is the dynamics of lunar wake as a result of solar wind-moon interaction. Another scientific topic in the field of lunar plasma physics concerns the minimagnetosphere caused by the magnetic anomaly of the moon. There are various kinds of other plasma waves to be observed from the moon such as Auroral Kilometric Radiation, electrostatic solitary wave

  11. Parametric Characterization of TES Detectors Under DC Bias

    NASA Technical Reports Server (NTRS)

    Chiao, Meng P.; Smith, Stephen James; Kilbourne, Caroline A.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; hide

    2016-01-01

    The X-ray integrated field unit (X-IFU) in European Space Agency's (ESA's) Athena mission will be the first high-resolution X-ray spectrometer in space using a large-format transition-edge sensor microcalorimeter array. Motivated by optimization of detector performance for X-IFU, we have conducted an extensive campaign of parametric characterization on transition-edge sensor (TES) detectors with nominal geometries and physical properties in order to establish sensitivity trends relative to magnetic field, dc bias on detectors, operating temperature, and to improve our understanding of detector behavior relative to its fundamental properties such as thermal conductivity, heat capacity, and transition temperature. These results were used for validation of a simple linear detector model in which a small perturbation can be introduced to one or multiple parameters to estimate the error budget for X-IFU. We will show here results of our parametric characterization of TES detectors and briefly discuss the comparison with the TES model.

  12. The Behm Acoustic Sounder for Airplanes with Reference to Its Accuracy

    NASA Technical Reports Server (NTRS)

    Schreiber, Ernest

    1930-01-01

    Relative altimetry is of great importance for increasing the safety in aerial transportation, because it makes possible safe flying at night, by poor visibility, and when landing. Among the instruments of this type is the Behm sounder, which operates on an acoustic principle. Acoustic altimetry in general and the Behn sounder, in particular, are covered in this report.

  13. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  14. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  15. GeoSTAR - A Microwave Sounder for Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Gaier, Todd; Ruf, Chris; Piepmeier, Jeff

    2004-01-01

    GeoSTAR represents a new approach to microwave atmospheric sounding that is now under development. It has capabilities similar to sensors currently operating on low earth orbiting weather satellites but is intended for deployment in geostationary orbit - where it will complement future infrared sounders and enable all-weather temperature and humidity soundings and rain mapping. The required spatial resolution of 50 km or better dictates an aperture of 4 meters or more at a sounding frequency of 50 GHz, which is difficult to achieve with a real aperture system - this is the reason why it has until now not been possible to put a microwave sounder on a geostationary platform. GeoSTAR is instead based on a synthetic aperture imaging approach. Among the advantages of such a system are that there are no moving parts, and the size of the aperture is easily expandable to meet future needs. A ground based prototype of GeoSTAR is currently under development in an effort led by the Jet Propulsion Laboratory.

  16. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    NASA Astrophysics Data System (ADS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  17. THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-01-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  18. THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-01-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  19. Photometric metallicities in Boötes I

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Wallerstein, G.; Dotter, A.; Geisler, D.

    2014-03-01

    We present new Strömgren and Washington data sets for the Boötes I dwarf galaxy, and combine them with the available Sloan Digital Sky Survey photometry. The goal of this project is to refine a ground-based, practical, accurate method to determine age and metallicity for individual stars in Boötes I that can be selected in an unbiased imaging survey, without having to take spectra. With few bright upper red giant branch stars and distances of about 35-250 kpc, the ultra-faint dwarf galaxies (UDFs) present observational challenges in characterizing their stellar population. Other recent studies have produced spectra and proper motions, making Boötes I an ideal test case for our photometric methods. We produce photometric metallicities from Strömgren and Washington photometry, for stellar systems with a range of -1.0 > [Fe/H] > -3.5. Needing to avoid the collapse of the metallicity sensitivity of the Strömgren m1-index on the lower red giant branch, we replace the Strömgren v filter with the broader Washington C filter to minimize observing time. We construct two indices: m* = (C - T1)0 - (T1 - T2)0 and m** = (C - b)0 - (b - y)0. We find that CT1by is the most successful filter combination, for individual stars with [Fe/H] < -2.0, to maintain ˜0.2 dex [Fe/H]-resolution over the whole red giant branch. The m**-index would be the best choice for space-based observations because the (C - y) colour is not sufficient to fix metallicity alone in an understudied system. Our photometric metallicites of stars in the central regions of Boötes I confirm that there is a metallicity spread of at least -1.9 > [Fe/H] > -3.7. The best-fitting Dartmouth isochrones give a mean age, for all the Boötes I stars in our data set, of 11.5 ± 0.4 Gyr. From ground-based telescopes, we show that the optimal filter combination is CT1by, avoiding the v filter entirely. We demonstrate that we can break the isochrones' age-metallicity degeneracy with the CT1by filters, using stars with

  20. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  1. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  2. TES is a novel focal adhesion protein with a role in cell spreading.

    PubMed

    Coutts, Amanda S; MacKenzie, Elaine; Griffith, Elen; Black, Donald M

    2003-03-01

    Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.

  3. Simultaneous physical retrieval of atmospheric and surface state from Martian spectra: the phi MARS algorithm and application to TES

    NASA Astrophysics Data System (ADS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Mancarella, F.; Fonti, S.; Roush, T.

    The problem of fully simultaneous retrieval of surface and atmosphere has been satisfactorily addressed as far as Earth is concerned in many works \\citep{masACP09,carENSO05}, especially for high-resolution instruments. However, such retrieval know-how has been not completely implemented in other planetary contexts. In this perspective, we present a new methodology for the simultaneous retrieval of surface and atmospheric parameters of Mars. The methodology, fully explained in \\cite{liuzzi2015} is based on a non-linear, iterative optimal estimation scheme, supported by a statistical retrieval procedure used to initialize the physical retrieval algorithm with a reliable first guess of the atmospheric parameters. The forward module \\cite{liuzzi2014} is fully integrated with the inverse one, and it is a monochromatic radiative transfer model with the capability to calculate genuine analytical Jacobians of any desired geophysical parameter. We describe both the mathematical framework of the methodology and, as a proof of concept, its application to a large sample of data acquired by the Thermal Emission Spectrometer (TES). Results are drawn for the case of surface temperature and emissivity, atmospheric temperature profile, water vapour, dust and ice mixing ratios. Some work has also been done for revisiting the claims of methane detection with TES data \\citep{fon10,fonti2015}. Comparison with climate models and other TES data analyses show a very good agreement and consistency. Moreover, we will show how the methodology can be applied to other instruments looking at Mars, simply customizing part of the forward and reverse modules.

  4. Understanding patterns of variability in tropospheric ozone over Europe and eastern Asia in 2005-2009 using TES observations and the TM5 chemistry transport model

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; van Geel, M. H. A.; Boersma, K. F.

    2012-04-01

    Tropospheric ozone is an important greenhouse gas and a global air pollutant. Because of its oxidizing power, it is harmful to the tissues of many living organisms. Ozone in the troposphere is produced by photo-chemical oxidation of precursors including volatile organic compounds (VOC's) and CO in the presence of NOx. These precursors may originate from anthropogenic emissions, but may also be naturally produced by vegetation, animals, bacteria and fungi. Intrusions of stratospheric ozone into the higher troposphere also contribute to the ozone abundance in the troposphere. The interpretation of tropospheric ozone observations remains a challenging task due to complex varying spatio-temporal emissions of ozone precursors with different lifetimes (from minutes to hours, days and weeks), stratospheric intrusion, and the effect of long-range transport of precursors and ozone driven by meteorological variables. In some areas the combination of favourable photochemical regimes and specific meteorological conditions may enhance the local tropospheric ozone productions. Thanks to their extensive spatial coverage and frequent overpasses, spaceborne sensors are excellent tools to map spatio-temporal patterns of tropospheric ozone. However, evaluating trends in tropospheric ozone concentrations over Europe (e.g. Mediterranean maxima) and China requires the use of advanced chemical transport models (CTM) for understanding and attributing the different sources to the observations. The objective of this study was to evaluate time series of tropospheric ozone observed from space by TES (Tropospheric Emission Spectrometer onboard NASA's EOS-Aura satellite) with the TM5 CTM using five years (2005-2009) of observations and simulations. From dedicated TM5 model runs, the spatio-temporal TES trends of tropospheric ozone are analysed aiming at understanding the different sources and mechanisms involved. First comparison of tropospheric ozone concentration from TES v4 observations and

  5. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities

    SciTech Connect

    Chvala, William D.

    2001-07-31

    This document presents the findings of a technology market assessment for thermal energy storage (TES) in space cooling applications. The potential impact of TES in Federal facilities is modeled using the Federal building inventory with the appropriate climatic and energy cost data. In addition, this assessment identified acceptance issues and major obstacles through interviews with energy services companies (ESCOs), TES manufacturers, and Federal facility staff.

  6. TES/Aura L2 Formic Acid (FOR) Nadir V6 (TL2FORNS)

    Atmospheric Science Data Center

    2017-07-14

    TES/Aura L2 Formic Acid (FOR) Nadir (TL2FORNS) News:  TES News Join ... L2 Platform:  TES/Aura L2 Formic Acid Spatial Coverage:  5.3 x 8.5 km nadir Spatial ... Access:  OPeNDAP Parameters:  Formic Acid Volume Mixing Ratio Precision Vertical Resolution Legacy:  ...

  7. TES/MLS Aura L2 Carbon Monoxide (CO) Nadir (TML2CO)

    Atmospheric Science Data Center

    2017-07-20

    TES/MLS Aura L2 Carbon Monoxide (CO) Nadir (TML2CO) Atmospheric ... profile estimates and associated errors derived using TES & MLS spectral radiance measurements taken at nearest time and locations. Also ... V1 Level:  L2 Platform:  TES/MLS Aura L2 CO Spatial Coverage:  5.3 x 8.5 km nadir ...

  8. TES/Aura L2 Methanol (MTL) Nadir (TL2MTLN)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Methanol (MTL) Nadir (TL2MTLN) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Methanol Spatial Coverage:  5.3 x 8.5 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Methanol Volume Mixing Ratio Precision Vertical Resolution Order ...

  9. TES/Aura L2 Methanol (MTL) Nadir (TL2MTLNS)

    Atmospheric Science Data Center

    2017-02-27

    TES/Aura L2 Methanol (MTL) Nadir (TL2MTLNS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Methanol Spatial Coverage:  5.3 x 8.5 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Methanol Volume Mixing Ratio Precision Vertical Resolution Order ...

  10. TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN)

    Atmospheric Science Data Center

    2015-08-26

    TES/Aura L2 Ozone (O3) Lite Nadir (TL2O3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ozone Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ozone Order Data:  Search and Order:   Earthdata Search ...

  11. TES/Aura L2 Carbon Monoxide (CO) Lite Nadir V6 (TL2COLN)

    Atmospheric Science Data Center

    2017-07-20

    TES/Aura L2 Carbon Monoxide (CO) Lite Nadir (TL2COLN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Carbon Monoxide Spatial Coverage:  5.3 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Carbon Monoxide Order Data:  Earthdata Search:   Order Data ...

  12. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2016-10-25

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  13. GeoSTAR: a geostationary microwave sounder for the future

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a "Decadal Survey" of NASA Earth Science activities. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  14. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  15. Hemispheric asymmetry in martian seasonal surface water ice from MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Bandfield, Joshua L.; Wood, Stephen E.

    2015-11-01

    The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured planetary broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. We examine TES daytime albedo, temperature, and atmospheric opacity data to map the latitudinal and temporal occurrence of seasonal surface water frost on Mars. We expand on previous work by looking at the behavior of water frost over the entire martian year, made possible with comprehensive, multi-year data. Interpretations of frost are based on albedo changes and the corresponding daytime temperature range. Data is considered consistent with water frost when there are significant albedo increases (>0.05 relative to frost-free seasons) and the observed temperatures are ∼170-200 K. We argue the presence of extensive water frost in the northern hemisphere, extending from the pole to ∼40°N, following seasonal temperature trends. In the north, water frost first appears near the pole at Ls = ∼160° and is last observed at Ls = ∼90°. Extensive water frost is less evident in southern hemisphere data, though both hemispheres show data that are consistent with the presence of a water ice annulus during seasonal cap retreat. Hemispherical asymmetry in the occurrence of seasonal water frost is due in part to the lower (∼40%) atmospheric water vapor abundances observed in the southern hemisphere. Our results are consistent with net transport of water vapor to the northern hemisphere. The deposition and sublimation of seasonal water frost may significantly increase the near-surface water vapor density that could

  16. In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose I.; Na-Nakornpanom, Arthur

    2012-01-01

    The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.

  17. Comparison Of TES FFSM Eddies And MOC Storms MY 24-26

    NASA Astrophysics Data System (ADS)

    Noble, John; Haberle, R. M.; Bridger, A. F. C.; Wilson, R. J.; Barnes, J. R.; Hollingsworth, J. L.; Cantor, B. A.

    2012-10-01

    Mars Global Surveyor (MGS) orbiter observed a planet-encircling dust storm (PDS) in Mars year (MY) 25 from Ls=176.2-263.4°. Although PDSs occur on an irregular basis, all well-documented storms have begun within ± 75° of Ls from perihelion (Ls=251°) when insolation is greatest near the SH summer solstice (Ls=270°) and the south polar cap is receding. PDS seasonal occurrence suggests the presence of climatic/environmental precursors and components, yet interannual variability suggests that initiation and expansion mechanisms are not solely seasonal in character. We have integrated and examined all available MGS data in order to better understand and characterize the dynamical processes responsible for MY 25 PDS initiation and expansion. Here we present an examination of Mars Orbiter Camera (MOC) dust storms and transient baroclinic eddies identified from Fast Fourier Synoptic Mapping (FFSM) of Thermal Emission Spectrometer (TES) temperatures for the first two phases of the storm: precursor, Ls=176.2- 184.7°, and expansion, Ls=184.7-193°. FFSM analysis of TES 3.7 hPa thermal data shows the presence of eastward-traveling waves at 60° S with a period of about three sols. We hypothesize that these waves are transient baroclinic eddies that contributed to the initiation of precursor storms near Hellas. An examination of the spatial and temporal relationship of FFSM eddies and MOC storms suggests an interesting association between eastward eddy propagation and eastward storm evolution. Determining the factors responsible for PDS genesis in MY 25 and not 24 and 26 is difficult. The most notable difference is the amplitude of E1-E7 eddies in Hellas, with all seven MY 25 eddies colder than -3.5 K, compared with three in MY 24 and two in MY 26. It is possible that the sustained series of high-amplitude eddies in MY 25 was a factor in PDS interannual variability.

  18. In vitro production of Toxocara canis excretory-secretory (TES) antigen.

    PubMed

    Thomas, Divyamol; Jeyathilakan, N; Abdul Basith, S; Senthilkumar, T M A

    2016-09-01

    Toxocara canis is a widespread gastrointestinal nematode parasite of dogs and cause Toxocara larva migrans, an important zoonotic disease in humans on ingestion of infective eggs. Toxocarosis is one of the few human parasitic diseases whose serodiagnosis uses a standardized antigen, T. canis excretory secretory antigen (TES). The present study describes collection of T. canis adult worm, collection and embryonation of T. canis eggs, hatching and separation of T. canis larvae, in vitro maintenance of T. canis second stage larvae for production of TES, concentration of culture fluid TES and yield of TES in correlation with various methods cited in literature.

  19. Characterization of Polycapillary Optics in a TES Microcalorimeter EDS System Installed on an SEM

    NASA Astrophysics Data System (ADS)

    Takano, A.; Maehata, K.; Iyomoto, N.; Yasuda, K.; Maeno, H.; Shiiyama, K.; Tanaka, K.

    2016-08-01

    Energy-dispersive spectroscopic measurements are performed using a superconducting transition-edge sensor (TES) microcalorimeter mounted on a scanning electron microscope (SEM) for advanced research at Kyushu University. Because the sensitive area of the TES microcalorimeter is about 0.02~mm2, polycapillary optics is used to collect the X-rays emitted by the SEM specimen on the TES microcalorimeter. The X-ray transmission efficiency of the polycapillary optics is obtained by analyzing the X-ray energy spectra measured by the TES microcalorimeter. The obtained transmission efficiency of the polycapillary optics is reproduced by the calculated results of the simulation.

  20. Characterizing and Modeling the Noise and Complex Impedance of Feedhorn-Coupled TES Polarimeters

    SciTech Connect

    Appel, J. W.; Beall, J. A.; Essinger-Hileman, T.; Parker, L. P.; Staggs, S. T.; Visnjic, C.; Zhao, Y.; Austermann, J. E.; Halverson, N. W.; Henning, J. W.; Simon, S. M.; Becker, D.; Britton, J.; Cho, H. M.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Yoon, K. W.; Benson, B. A.; Bleem, L. E.

    2009-12-16

    We present results from modeling the electrothermal performance of feedhorn-coupled transition edge sensor (TES) polarimeters under development for use in cosmic microwave background (CMB) polarization experiments. Each polarimeter couples radiation from a corrugated feedhorn through a planar orthomode transducer, which transmits power from orthogonal polarization modes to two TES bolometers. We model our TES with two- and three-block thermal architectures. We fit the complex impedance data at multiple points in the TES transition. From the fits, we predict the noise spectra. We present comparisons of these predictions to the data for two TESes on a prototype polarimeter.

  1. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  2. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  3. The Multiplexed SQUID TES array at Ninety Gigahertz (MUSTANG)

    NASA Astrophysics Data System (ADS)

    Korngut, Phillip M.

    The Multiplexed SQUID/TES Array at Ninety Gigahertz (MUSTANG) is a bolometric continuum imaging camera designed to operate at the Gregorian focus of the 100 m Green Bank Telescope (GBT) in Pocahontas county, West Virginia. The combination of the GBT's large collecting area and the 8 x 8 array of transition edge sensors at the heart of MUSTANG allows for deep imaging at 10'' resolution at 90 GHz. The MUSTANG receiver is now a facility instrument of the National Radio Astronomy Observatory available to the general astronomical community. The 3.3 mm continuum passband is useful to access a large range of Galactic and extra-Galactic astrophysics. Sources with synchrotron, free-free and thermal blackbody emission can be detected at 3.3 mm. Of particular interest is the Sunyaev Zel'dovich effect in clusters of galaxies, which arises from the inverse Compton scattering of CMB photons off hot electrons in the intra-cluster medium. In the MUSTANG band, the effect is observationally manifested as an artificial decrement in power on the sky in the direction of the cluster. There have been many experiments in the past two decades dedicated to measurements of the SZE, however, nearly all of them were accomplished with angular resolution larger than ˜ 1'. The massive primary of the GBT enables measurements of the SZE on 10'' scales. This provides a new technique to map pressure substructure in the plasma atmospheres of merging clusters of galaxies. By analyzing MUSTANG data along side X-ray data, spatially resolved measurements of the temperature, density and pressure of the ICM can be performed which can be used to infer the physics governing major mergers. This thesis details the design, commissioning and operation of the various components which comprise the MUSTANG receiver. This includes the sub-kelvin cryogenic cooling, the time domain multiplexed readout electronics and the array of transition edge sensor bolometers. Laboratory characterization of the detector array is

  4. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  5. Atmospheric Waves in MGS TES Limb-Scan Temperatures

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.; Conrath, B. J.; Kaelberer, M. S.; Smith, M. D.

    2014-12-01

    We have quantified the expression of the lowest zonal wavenumber forced and traveling waves evident in the MGS TES Limb-scan temperature retrievals. The results were found to be broadly consistent with the vertically limited and vertically smoothed (although better spatially and temporally resolved) results from the more numerous MGS TES nadir temperature retrievals (e.g., Wilson et al., 2002, Banfield et al., 2003, Banfield et al. 2004). The MGS TES Limb-scan retrievals were used to compute a measure of the Diurnal Kelvin Waves (DK1 And DK2). The structures revealed are consistent with theory, and indicative of the importance of these wave modes at aerobraking altitudes (e.g., Wilson 2000, Forbes & Hagan, 2000, Wilson, 2002). The stationary wave structures revealed in the limb retrievals show the winter polar waves in both hemispheres continue to have their maximum amplitude aligned along the polar vortices, even for altitudes above 4 scale heights. The phase structures in and above the stationary waves revealed by the limb retrievals are consistent with the nadir results and the heat fluxes computed in those analyses (Banfield et al., 2003). The winter polar vortex zonal wavenumber 1 traveling waves continue along the edge of the polar vortex, reaching to 6 or more scale heights altitude in the northern winter and extending between 60N and the north pole. The peak amplitudes for these zonal wavenumber 1 traveling waves were found to lie at about 4 scale heights altitude. The limb retrievals revealed more clear evidence of a northern fall equinoctial global traveling wave mode having expression not only in the mid-latitudes in both hemispheres, but also out of phase above the tropics at altitudes above 4 scale heights. Zonal wavenumber 2 & 3 traveling waves could not be reliably retrieved from the limb retrievals.

  6. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Hook, Simon J.

    2012-10-01

    Land Surface Temperature (LST) has been identified by NASA and other international organizations as an important Earth System Data Record (ESDR). An ESDR is defined as a long-term, well calibrated and validated data set. Identifying uncertainties in LST products with coarse spatial resolutions (>10 km) such as those from hyperspectral infrared sounders is notoriously difficult due to the challenges of making reliable in situ measurements representative of the spatial scales of the output products. In this study we utilize a Radiance-based (R-based) LST method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) v5 LST product. The R-based method provides estimates of the true LST using a radiative closure simulation without the need for in situ measurements, and requires input air temperature, relative humidity profiles and emissivity data. The R-based method was employed at three validation sites over the Namib Desert, Gran Desierto, and Redwood National Park for all AIRS observations from 2002 to 2010. Results showed daytime LST root-mean square errors (RMSE) of 2-3 K at the Namib and Desierto sites, and 1.5 K at the Redwood site. Nighttime LST RMSEs at the two desert sites were a factor of two less when compared to daytime results. Positive daytime LST biases were found at each site due to an underestimation of the daytime AIRS v5 longwave spectral emissivity, while the reverse occurred at nighttime. In the AIRS v6 product (release 2012), LST biases and RMSEs will be reduced significantly due to improved methodologies for the surface retrieval and emissivity first guess.

  7. Microwave atmospheric sounder for earth limb observations from space

    NASA Astrophysics Data System (ADS)

    The Microwave Atmospheric Sounder (MAS) experiment which will be performed from a Spacelab pallet on board the Shuttle to study the dynamic structure of the mesosphere and stratosphere is described. The MAS package is the 4th mode of the microwave remote sensing experiment and comprises a SAR, a frequency scatterometer, and a passive radiometer. An elevation scan mode will involve observing through the elevation angle range of 10-16 deg at a constant velocity of 1.25 deg/sec. In a pointing mode, the pallet will operate at a fixed angle which can be changed by telemetered command to within 0.04 deg accuracy. A parabolic antenna receives the earth limb radiation at 62, 184, and 204 GHz. Radiometers down-convert the signal to around 10 GHz for spectral analysis based on chirp compressive receivers with 138 channels, each having 10 bit resolution.

  8. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  9. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  10. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  11. Stratospheric CH3CN from the UARS Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Livesey, Nathaniel J.; Waters, Joe W.; Khosravi, Rashid; Brasseur, Guy P.; Tyndall, Geoffrey S.; Read, William G.

    CH3CN in the stratosphere has been measured by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), providing the first global CH3CN dataset. The MLS observations are in broad agreement with past high and midlatitude observations of CH3CN, although concentrations are a little larger than previously observed. In the tropics, where CH3CN has not up to now been measured, a persistent ‘peak’ in the profiles is seen around 22 hPa, which may be evidence of a tropical stratospheric CH3CN source. Comparisons are made with the NCAR SOCRATES model, including runs having an artificial tropical stratospheric CH3CN source.

  12. Design of a flexible and low-power ionospheric sounder

    NASA Astrophysics Data System (ADS)

    Morris, Alex

    Characterizing the structure of the ionosphere has practical applications for telecommunications and scientific applications for studies of the near-Earth space environment. Among several methods for measuring parameters of the ionosphere is ionospheric sounding, a radar technique that determines the electron content of the ionosphere as a function of height. Various research, military, and commercial institutions operate hundreds of ground-based ionosondes throughout the globe, and new ionosondes continue to be deployed in increasingly remote and distant locations. This thesis presents the design of an ionospheric sounder that reduces the power, size, and cost compared to existing systems. Key improvements include the use of an open-source software-defined radio platform and channel-aware dynamic sounding scheduling.

  13. Oblique-incidence sounder measurements with absolute propagation delay timing

    SciTech Connect

    Daehler, M.

    1990-05-03

    Timing from the Global Position Satellite (GPS) system has been applied to HF oblique incidence sounder measurements to produce ionograms whose propagation delay time scale is absolutely calibrated. Such a calibration is useful for interpreting ionograms in terms of the electron density true-height profile for the ionosphere responsible for the propagation. Use of the time variations in the shape of the electron density profile, in conjunction with an HF propagation model, is expected to provide better near-term (1-24 hour) HF propagation forecasts than are available from current updating systems, which use only the MUF. Such a capability may provide the basis for HF frequency management techniques which are more efficient than current methods. Absolute timing and other techniques applicable to automatic extraction of the electron-density profile from an ionogram will be discussed.

  14. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  15. Thermal modeling of absorber-coupled TES polarimeter.

    SciTech Connect

    Wang, G.; Yefremenko, V.; Datesman, A.; Novosad, V.; Pearson, J.; Shustakova, G.; Divan, R.; Lee, J.; Chang, C. L.; McMahon, J.; Bleem, L.; Crites, A. T,; Downes, T.; Mehl, J.; Everett, W.; Meyer, S. S.; Carlstrom, J. E.; Sayer, J.; Ruhl, J.; Univ. of Chicago; Case Western Reserve Univ.; B. Verkin Inst. Low Tempemperature and Physcial Engineering

    2009-01-01

    Using experimental thermal conductivity and volume heat capacity of narrow silicon nitride beams obtained from thermal test structures and a boundary limited phonon scattering model, as well as the heat conduction equation, we analyze the thermal performance of an absorber-coupled TES polarimeter with finite element method. The polarimeter's temperature distribution, thermal power readout efficiency, and time constant are calculated. The thermal power readout efficiency of the polarimeter is up to 87% at a low signal modulation frequency, and has a 0.5 dB attenuation at 120 Hz. We also compare a preliminary optical testing result with theoretical expectation.

  16. Complex-compound low-temperature TES system

    SciTech Connect

    Rockenfeller, U.

    1989-03-01

    Development of a complex-compound low-temperature TES system is described herein from basic chemical principles through current bench scale system development. Important application engineering issues and an economic outlook are addressed as well. The system described uses adsorption reactions between solid metal inorganic salts and ammonia refrigerant. It is the coordinative nature of these reactions that allows for storage of ammonia refrigerant within the solid salt crystals that function as a chemical compressor during on peak periods (substituting the mechanical compressor) and release ammonia during off peak periods while a mechanical vapor compression system provides the necessary reactor pressure and heat.

  17. Searching for an Improved Spectral Match to TES and IRIS Sinus Meridiani Spectra: Coatings and Cemented Materials

    NASA Astrophysics Data System (ADS)

    Kirkland, L. E.; Herr, K. C.; Adams, P. M.

    2001-05-01

    A region on Mars within Sinus Meridiani has been interpreted as a surface partially covered by coarse-grained (gray) hematite, using spectra measured by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) [Lane et al., 1999; Christensen et al., 2000]. The band strengths recorded by TES of this region are consistent with either coarse-grained hematite, or cemented poorly crystalline or cemented fine-grained hematite. The band strengths are inconsistent with unconsolidated, poorly crystalline or fine-grained hematite, including nanophase hematite dust [Christensen et al., 2000]. Currently the gray hematite interpretation is based on bands centered near 22 and 33 microns. TES also records a band centered near 18 microns that was used in early hematite interpretations [Lane et al., 1999]. However, it was noted [Kirkland et al., 1999a] that the 18 micron band is too narrow in both TES and the 1971 Mariner Mars IRIS spectra to be a good match to typical spectra of well-crystalline hematite [e.g. Salisbury et al., 1991]. The 18 micron band is near the very strong 15 micron atmospheric CO2 band, but if anything the nearby CO2 band should cause the 18 micron band to appear wider, not narrower. In addition, the higher spectral resolution of IRIS allows improved separation of the bands [Kirkland et al., 1999b]. More recent publications no longer show the TES 18 micron band [e.g. Lane et al., 2000; Christensen et al., 2000], which temporarily resolved the issue. However, we feel it is important to understand why TES and IRIS spectra exhibit an 18 micron band that is too narrow to match typical spectra of coarse-grained hematite. Smooth-surfaced cemented (e.g. ferricrete) or coated materials (e.g. desert varnish) have spectral contrast that is consistent with the observed IRIS and TES band contrast. On Mars, one possible source for cemented material or coatings would be the nanophase hematite dust. Cemented materials may occur in bulk (e.g. duricrust or ferricrete), or

  18. Delineating the Tes Interaction Site in Zyxin and Studying Cellular Effects of Its Disruption

    PubMed Central

    Hadzic, Ermin; Catillon, Marie; Halavatyi, Aliaksandr; Medves, Sandrine; Van Troys, Marleen; Moes, Michèle; Baird, Michelle A.; Davidson, Michael W.; Schaffner-Reckinger, Elisabeth; Ampe, Christophe; Friederich, Evelyne

    2015-01-01

    Focal adhesions are integrin-based structures that link the actin cytoskeleton and the extracellular matrix. They play an important role in various cellular functions such as cell signaling, cell motility and cell shape. To ensure and fine tune these different cellular functions, adhesions are regulated by a large number of proteins. The LIM domain protein zyxin localizes to focal adhesions where it participates in the regulation of the actin cytoskeleton. Because of its interactions with a variety of binding partners, zyxin has been proposed to act as a molecular scaffold. Here, we studied the interaction of zyxin with such a partner: Tes. Similar to zyxin, Tes harbors three highly conserved LIM domains of which the LIM1 domain directly interacts with zyxin. Using different zyxin variants in pull-down assays and ectopic recruitment experiments, we identified the Tes binding site in zyxin and showed that four highly conserved amino acids are crucial for its interaction with Tes. Based upon these findings, we used a zyxin mutant defective in Tes-binding to assess the functional consequences of abrogating the zyxin-Tes interaction in focal adhesions. Performing fluorescence recovery after photobleaching, we showed that zyxin recruits Tes to focal adhesions and modulates its turnover in these structures. However, we also provide evidence for zyxin-independent localization of Tes to focal adhesions. Zyxin increases focal adhesion numbers and reduces focal adhesion lifetimes, but does so independent of Tes. Quantitative analysis showed that the loss of interaction between zyxin and Tes affects the process of cell spreading. We conclude that zyxin influences focal adhesion dynamics, that it recruits Tes and that this interaction is functional in regulating cell spreading. PMID:26509500

  19. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Kasl, Eldon P.

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.

  20. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite

    NASA Technical Reports Server (NTRS)

    Waters, Joe W.; Froidevaux, Lucien; Harwood, Robert S.; Jarnot, Robert F.; Pickett, Herbert M.; Read, William G.; Siegel, Peter H.; Cofield, Richard E.; Filipiak, Mark J.; Flower, Dennis A.; Holden, James R.; Lau, Gary K.; Livesey, Nathaniel J.; Manney, Gloria L; Pumphrey, Hugh C.; Santee, Michelle L.; Wu, Dong L.; Cuddy, David T.; Lay, Richard R.; Loo, Mario S.; Perun, Vincent S.; Schwartz, Michael J.; Stek, Paul C.; Thurstans, Robert P.; Boyles, Mark A.

    2006-01-01

    The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO2, H2O, O3, HCl, ClO, HOCl, BrO, HNO3, N2O, CO, HCN, CH3CN, volcanic SO2), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administration's Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82 S to 82 N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.

  1. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite

    NASA Technical Reports Server (NTRS)

    Waters, Joe W.; Froidevaux, Lucien; Harwood, Robert S.; Jarnot, Robert F.; Pickett, Herbert M.; Read, William G.; Siegel, Peter H.; Cofield, Richard E.; Filipiak, Mark J.; Flower, Dennis A.; hide

    2006-01-01

    The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO2, H2O, O3, HCl, ClO, HOCl, BrO, HNO3, N2O, CO, HCN, CH3CN, volcanic SO2), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administration's Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82 S to 82 N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.

  2. Near Real Time Data Products from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Read, W. G.; Lambert, A.; Livesey, N. J.; Froidevaux, L.; Schwartz, M. J.; Manney, G. L.; Wagner, P. A.

    2014-12-01

    Near real time (NRT) data products from the Microwave Limb Sounder (MLS) onthe Aura satellite are described. MLS-Aura is in a 98 degree sun synchonousorbit making just shy of 3500 measurements per day with a latitude coveragefrom 82 degrees south to 82 degrees north. The measurements are provided with alatency of less than 3 hours. The MLS NRT products are: Temperature, O3, H2O,CO, HNO3, SO2, and N2O. The vertical coverage includes the stratosphere anduppermost troposphere with the lowest altitude pressure level being261 hPa for O3, 215 hPa for Temperature, CO, and SO2, 147 hPa for H2O and100 hPa for HNO3 and N2O. The quality of the data set will be described.Some applications are assimilation into atmospheric models such as the GoddardEarth Observing System (GEOS) version 5 and supporting field campaigns such asStudies of Emissions and Atmospheric Composition, Clouds and Climate Couplingby Regional Surveys (SEAC4RS).

  3. Plasma wave observation using waveform capture in the Lunar Radar Sounder on board the SELENE spacecraft

    NASA Astrophysics Data System (ADS)

    Kasahara, Yoshiya; Goto, Yoshitaka; Hashimoto, Kozo; Imachi, Tomohiko; Kumamoto, Atsushi; Ono, Takayuki; Matsumoto, Hiroshi

    2008-04-01

    The waveform capture (WFC) instrument is one of the subsystems of the Lunar Radar Sounder (LRS) on board the SELENE spacecraft. By taking advantage of a moon orbiter, the WFC is expected to measure plasma waves and radio emissions that are generated around the moon and/or that originated from the sun and from the earth and other planets. It is a high-performance and multifunctional software receiver in which most functions are realized by the onboard software implemented in a digital signal processor (DSP). The WFC consists of a fast-sweep frequency analyzer (WFC-H) covering the frequency range from 1 kHz to 1 MHz and a waveform receiver (WFC-L) in the frequency range from 10 Hz to 100 kHz. By introducing the hybrid IC called PDC in the WFC-H, we created a spectral analyzer with a very high time and frequency resolution. In addition, new techniques such as digital filtering, automatic filter selection, and data compression are implemented for data processing of the WFC-L to extract the important data adequately under the severe restriction of total amount of telemetry data. Because of the flexibility of the instruments, various kinds of observation modes can be achieved, and we expect the WFC to generate many interesting data.

  4. Development and initial assessment of a new land index for microwave humidity sounder cloud detection

    NASA Astrophysics Data System (ADS)

    Qin, Zhengkun; Zou, Xiaolei

    2016-02-01

    This paper describes a new quality control (QC) scheme for microwave humidity sounder (MHS) data assimilation. It consists of a cloud detection step and an O-B (i.e., differences of brightness temperatures between observations and model simulations) check. Over ocean, cloud detection can be carried out based on two MHS window channels and two Advanced Microwave Sounding Unit-A (AMSU-A) window channels, which can be used for obtaining cloud ice water path (IWP) and liquid water path (LWP), respectively. Over land, cloud detection of microwave data becomes much more challenging due to a much larger emission contribution from land surface than that from cloud. The current MHS cloud detection over land employs an O-B based method, which could fail to identify cloudy radiances when there is mismatch between actual clouds and model clouds. In this study, a new MHS observation based index is developed for identifying MHS cloudy radiances over land. The new land index for cloud detection exploits the large variability of brightness temperature observations among MHS channels over different clouds. It is shown that those MHS cloudy radiances that were otherwise missed by the current O-B based QC method can be successfully identified by the new land index. An O-B check can then be employed to the remaining data after cloud detection to remove additional outliers with model simulations deviated greatly from observations. It is shown that MHS channel correlations are significantly reduced by the newly proposed QC scheme.

  5. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  6. The Geostationary Remote Infrared Pollution Sounder (GRIPS): measurement of the carbon gases from space

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dickerson, R.; Marshall, B. T.; McHugh, M.; Fish, C.; Bloom, H.

    2013-09-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC1] making quantitative predictions of atmospheric composition and their impacts. The Geostationary Remote Infrared Pollution Sounder (GRIPS) is a multi-purpose instrument designed to reduce uncertainty associated with atmospheric radiative forcing. GRIPS will measure will measure greenhouse gases and aerosols - two of the most important elements in the earth's radiation budget. GRIPS will observe carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), - the carbon gases, nitrous oxide (N2O), water vapor and aerosols with unprecedented precision through the atmosphere. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation to detect the gases and the reflected solar radiation in the visible and short-wave infrared bands for aerosols. GRIPS is designed to have sensitivity down to the Earth's surface at ~2-8km nadir resolution. GRIPS can resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and longrange transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, the geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Advanced Baseline Imager (ABI) and other existing and planned missions.

  7. Thermal Tides and Stationary Waves Revealed by MGS TES

    NASA Technical Reports Server (NTRS)

    Banfield, D.; Conrath, B. J.; Pearl, J. C.; Smith, M. D.; Gierasch, P. J.; P. R. Christensen

    1999-01-01

    Atmospheric temperature retrievals from TES observed radiances make possible the most complete separation of the constituent wave modes evident in Mars atmosphere to date. We use all of the data from the pre-mapping mission phase, which affords good sampling of the diurnal tides and stationary waves. TES retrievals of atmospheric temperature on a grid of pressure levels are the fundamental data set in this study. We then fit this data to selected fourier modes in longitude and time for latitude and L(sub s) bins. From this we have identified the amplitudes and phases of the diurnal and semi-diurnal tides, the first few (gravest) stationary waves and standing waves, as well as an estimate of the zonal and time mean temperature meridional cross sections. These results will be compared with existing models and theory. A possible critical layer for the sun-synchronous diurnal tide may indicate 40 m/s surface zonal wind near 50S for L(sub s) =255-285. Additional information is contained in the original extended abstract.

  8. Thermal Conductance Engineering for High-Speed TES Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Hays-Wehle, J. P.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-07-01

    Many current and future applications for superconducting transition-edge sensor (TES) microcalorimeters require significantly faster pulse response than is currently available. X-ray spectroscopy experiments at next-generation synchrotron light sources need to successfully capture very large fluxes of photons, while detectors at free-electron laser facilities need pulse response fast enough to match repetition rates of the source. Additionally, neutrino endpoint experiments such as HOLMES need enormous statistics, yet are extremely sensitive to pile-up effects that can distort spectra. These issues can be mitigated only by fast rising and falling edges. To address these needs, we have designed high-speed TES detectors with novel geometric enhancements to increase the thermal conductance of pixels suspended on silicon nitride membranes. This paper shows that the thermal conductivity can be precisely engineered to values spanning over an order of magnitude to achieve fast thermal relaxation times tailored to the relevant applications. Using these pixel prototypes, we demonstrate decay time constants faster than 100 μ s, while still maintaining spectral resolution of 3 eV FWHM at 1.5 keV. This paper also discusses the trade-offs inherent in reducing the pixel time constant, such as increased bias current leading to degradation in energy resolution, and potential modifications to improve performance.

  9. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  10. Characterization System of Multi-pixel Array TES Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Shota; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamanaka, Yoshihiro; Sakai, Kazuhiro; Nagayoshi, Kenichiro; Yamamoto, Ryo; Hayashi, Tasuku; Muramatsu, Haruka

    We have constructed characterization system for 64-pixel array transition-edge sensor (TES) microcalorimeter using a 3He-4He dilution refrigerator (DR) with the cooling power of 60 µW at a temperature of 100 mK. A stick equipped with 384 of Manganin wires was inserted into the refrigerator to perform characteristic measurements of 64-pixel array TES microcalorimeter and superconducting quantum interference device (SQUID) array amplifiers. The stick and Manganin wires were thermally anchored at temperatures of 4 and 1 K with sufficient thermal contact. The cold end of the Manganin wires were thermally anchored and connected to CuNi clad NbTi wires at 0.7 K anchor. Then CuNi clad NbTi wires were wired to connectors placed on the holder mounted on the cold stage attached to the base plate of the mixing chamber. The heat flow to the cold stage through the installed wires was estimated to be 0.15 µW. In the operation test the characterization system maintained temperature below 100 mK.

  11. A Deployable 4 Meter 180 to 680 GHz Antenna for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Cohen, Eri J.; Agnes, Gregory S.; Stek, Paul C.; Livesey, Nathaniel J.; Read, William G.; Thomson, Mark W.; Kasl, Eldon

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 680 GHz. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. These provide better horizontal and temporal resolution and coverage than were possible with elevation-only scanning at typical Low-Earth orbit spacing in the two previous MLS satellite instruments. Development of the SMLS antenna was the focus of a 2006 Small Business Innovative Research (SBIR) program whose phase II culminated in the fabrication and thermal stability testing of a composite demonstration model of the SMLS primary reflector. This reflector has the full 4m height and 1/3 the width planned for flight. An Instrument Incubator Program (IIP) titled "A deployable 4 Meter 180 to 680 GHz antenna for the Scanning Microwave Limb Sounder" continues development of the SMLS antenna with the study of 5 topics: 1) detailed mathematical modeling of the antenna patterns from which we simulate geophysical parameter retrievals in order to establish FOV performance requirements; 2) thorough correlation of finite element model predictions with measurements made on the SBIR reflector. We will again measure deformations of this reflector, under more flight-like thermal gradients, using higher precision metrology techniques available in a new large-aperture facility at JPL; 3) fabrication of a full-width primary reflector whose asbuilt surface figure will better meet the figure requirements of SMLS than did the SBIR reflector; 4) integration of the primary with other reflectors, and with residual front ends built in a 2007 IIP, in a breadboard antenna; and finally 5) RF testing of the breadboard on a Near Field Range at JPL. We report on significant progress in 3 areas of the current IIP: development of

  12. A Deployable 4 Meter 180 to 680 GHz Antenna for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard E.; Cohen, Eri J.; Agnes, Gregory S.; Stek, Paul C.; Livesey, Nathaniel J.; Read, William G.; Thomson, Mark W.; Kasl, Eldon

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 680 GHz. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. These provide better horizontal and temporal resolution and coverage than were possible with elevation-only scanning at typical Low-Earth orbit spacing in the two previous MLS satellite instruments. Development of the SMLS antenna was the focus of a 2006 Small Business Innovative Research (SBIR) program whose phase II culminated in the fabrication and thermal stability testing of a composite demonstration model of the SMLS primary reflector. This reflector has the full 4m height and 1/3 the width planned for flight. An Instrument Incubator Program (IIP) titled "A deployable 4 Meter 180 to 680 GHz antenna for the Scanning Microwave Limb Sounder" continues development of the SMLS antenna with the study of 5 topics: 1) detailed mathematical modeling of the antenna patterns from which we simulate geophysical parameter retrievals in order to establish FOV performance requirements; 2) thorough correlation of finite element model predictions with measurements made on the SBIR reflector. We will again measure deformations of this reflector, under more flight-like thermal gradients, using higher precision metrology techniques available in a new large-aperture facility at JPL; 3) fabrication of a full-width primary reflector whose asbuilt surface figure will better meet the figure requirements of SMLS than did the SBIR reflector; 4) integration of the primary with other reflectors, and with residual front ends built in a 2007 IIP, in a breadboard antenna; and finally 5) RF testing of the breadboard on a Near Field Range at JPL. We report on significant progress in 3 areas of the current IIP: development of

  13. Evaluation of Precipitation Detection over Various Surfaces from Passive Microwave Imagers and Sounders

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Skofronick-Jackson, Gail

    2012-01-01

    During the middle part of this decade a wide variety of passive microwave imagers and sounders will be unified in the Global Precipitation Measurement (GPM) mission to provide a common basis for frequent (3 hr), global precipitation monitoring. The ability of these sensors to detect precipitation by discerning it from non-precipitating background depends upon the channels available and characteristics of the surface and atmosphere. This study quantifies the minimum detectable precipitation rate and fraction of precipitation detected for four representative instruments (TMI, GMI, AMSU-A, and AMSU-B) that will be part of the GPM constellation. Observations for these instruments were constructed from equivalent channels on the SSMIS instrument on DMSP satellites F16 and F17 and matched to precipitation data from NOAA's National Mosaic and QPE (NMQ) during 2009 over the continuous United States. A variational optimal estimation retrieval of non-precipitation surface and atmosphere parameters was used to determine the consistency between the observed brightness temperatures and these parameters, with high cost function values shown to be related to precipitation. The minimum detectable precipitation rate, defined as the lowest rate for which probability of detection exceeds 50%, and the detected fraction of precipitation, are reported for each sensor, surface type (ocean, coast, bare land, snow cover) and precipitation type (rain, mix, snow). The best sensors over ocean and bare land were GMI (0.22 mm/hr minimum threshold and 90% of precipitation detected) and AMSU (0.26 mm/hr minimum threshold and 81% of precipitation detected), respectively. Over coasts (0.74 mm/hr threshold and 12% detected) and snow-covered surfaces (0.44 mm/hr threshold and 23% detected), AMSU again performed best but with much lower detection skill, whereas TMI had no skill over these surfaces. The sounders (particularly over water) benefited from the use of re-analysis data (vs. climatology) to

  14. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  15. Mars Climate Sounder (MCS) Observations of Martian Dust — A Decade-Long Record

    NASA Astrophysics Data System (ADS)

    Kass, D. M.; McCleese, D. J.; Kleinböhl, A.; Schofield, J. T.; Heavens, N. G.

    2017-06-01

    We describe the Mars Climate Sounder (MCS) observations of atmospheric dust. The instrument acquires infrared observations to produce a 5.75 Mars Year (>10 earth year) climatology global of dust, including its vertical distribution.

  16. Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997

    NASA Image and Video Library

    1997-10-30

    This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.

  17. Progress in developing GeoSTAR - Microwave Sounder for GOES-R

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Kangaslahti, P. P.; Tanner, A. B.; Wilson, W. J.

    2005-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)is a new concept for a microwave sounder, intended to be deployed at the Jet Propulsion Laboratory under NASA Instrument Incubator Program sponsorship, and is currently undergoing tests and performance characterization.

  18. Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size

    USGS Publications Warehouse

    Kieffer, Hugh H.; Titus, Timothy N.; Mullins, Kevin F.; Christensen, Philip R.

    2000-01-01

    Thermal Emission Spectrometer (TES) observations of the recession phase of Mars' south polar cap are used to quantitatively map this recession in both thermal and visual appearance. Geographically nonuniform behavior interior to the cap is characterized by defining several small regions which exemplify the range of behavior. For most of the cap, while temperatures remain near the CO2 frost point, albedos slowly increase with the seasonal rise of the Sun, then drop rapidly as frost patches disappear over a period of ∼20 days. A “Cryptic” region remains dark and mottled throughout its cold period. TES observations are compared with first-order theoretical spectra of solid CO2 frost with admixtures of dust and H2O. The TES spectra indicate that the Cryptic region has much larger grained solid CO2 than the rest of the cap and that the solid CO2 here may be in the form of a slab. The Mountains of Mitchel remain cold and bright well after other areas at comparable latitude, apparently as a result of unusually small size of the CO2 frost grains; we found little evidence for a significant presence of H2O. Although CO2 grain size may be the major difference between these regions, incorporated dust is also required to match the observations; a self-cleaning process carries away the smaller dust grains. Comparisons with Viking observations indicate little difference in the seasonal cycle 12 Martian years later. The observed radiation balance indicates CO2 sublimation budgets of up to 1250 kg m−2. Regional atmospheric dust is common; localized dust clouds are seen near the edge of the cap prior to the onset of a regional dust storm and interior to the cap during the storm.

  19. Observation of summertime enhanced ozone over the middle troposphere in the vicinity of the Middle East by spaceborne TES instrument

    NASA Astrophysics Data System (ADS)

    Liu, Jane; Jones, Dylan; Worden, John; Parrington, Mark; Kar, Jayanta

    We used a global chemical transport model, namely GEOS-Chem, to interpret recent observations of tropospheric ozone from the Tropospheric Emissions Spectrometer (TES) onboard of on the NASA EOS Aura satellite. TES observations reveal elevated ozone in the middle troposphere ( 500-400 hPa, 5-7 km) over a large area of the eastern Mediterranean, the Middle East, and Central Asia in summer 2005 and 2006. This enhancement has some similarities to and differences from the "Middle East ozone maximum" that was previously suggested in a model study, revealing complexity of the feature. We found, based on the TES data, that although there is general enhancement of ozone at 400-500 hPa over the Middle East and surrounding areas, no one single maximum is centralized in the Middle East as described in the previous modelling work. Instead, localized maxima are seen within the ozone-enhanced area. The location and intensity of these maxima vary from year to year. We found that the region of elevated ozone is closely associated with the location of the subtropical westerly jet and anticyclones over North Africa and the Persian Gulf. The ozone distribution in the region is greatly influenced by the seasonal evolution of these systems. We examined the influence of photochemical production and transport on the ozone budget in the region. A tagged ozone simulation was conducted to track ozone in the region from its origins in Asia, Africa, North America, and European. The outcome shows that long-range transport and in situ chemical production both contribute to the formation of the ozone enhancement. Our results suggests that accurately simulating the magnitude and spatial distribution of the ozone enhancement requires properly reproducing ozone production rate in the upper troposphere and the atmospheric response to Asian monsoon heating that is reflected in the strengths of the anticyclones over North Africa and the Persian Gulf.

  20. 75 FR 5314 - T.E.S. Filer City Station Limited Partnership; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission T.E.S. Filer City Station Limited Partnership; Notice of Filing January 26, 2010. Take notice that on January 20, 2010, T.E.S. City Station Limited Partnership,...

  1. Tropospheric Emission Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas A.; Beer, Reinhard

    1991-01-01

    A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.

  2. Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model

    USDA-ARS?s Scientific Manuscript database

    We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use o...

  3. Recent microwave sounder observations from aircraft during the HS3 field campaign

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. E.

    2014-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) is a microwave sounder similar to but more capable and accurate than current satellite microwave sounders. Since 2010 it has operated on NASA's Global Hawk UAVs and has been participating in the multiyear Hurricane and Severe Storm Sentinel (HS3) hurricane campaign. We present recent results from HS3, including analysis of the thermodynamic and precipitation structure in and around tropical storm systems sampled during HS3. Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

  4. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with conventional'' HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  5. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    SciTech Connect

    Akbari, H.; Sezgen, O.

    1992-01-01

    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  6. Independent Verification of Mars-GRAM 2010 with Mars Climate Sounder Data

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Burns, Kerry L.

    2014-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission and engineering applications. Applications of Mars-GRAM include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Atmospheric influences on landing site selection and long-term mission conceptualization and development can also be addressed utilizing Mars-GRAM. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte Carlo mode, to perform high-fidelity engineering end-to-end simulations for entry, descent, and landing. Mars-GRAM is an evolving software package resulting in improved accuracy and additional features. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES). From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). The most recent release of Mars-GRAM 2010 includes an update to Fortran 90/95 and the addition of adjustment factors. These adjustment factors are applied to the input data from the MGCM and the MTGCM for the mapping year 0 user-controlled dust case. The adjustment factors are expressed as a function of height (z), latitude and areocentric solar longitude (Ls).

  7. TES/Aura L2 Carbon Dioxide (CO2) Nadir V7 (TL2CO2N)

    Atmospheric Science Data Center

    2017-06-16

    ... TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News Join TES News List Project ... Access:  OPeNDAP Parameters:  Earth Science Atmosphere Atmospheric Chemistry/Carbon and Hydrocarbon Compounds ...

  8. Martian Surface Composition From Multiple Datasets, Part II: Chemical Analysis of Global Mineral Distributions from MGS-TES

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Rogers, D.

    2010-12-01

    Koeppen and Hamilton [2008, JGR-Planets] produced global mineral maps of Mars from Thermal Emission Spectrometer (TES) data using a library of mineral and amorphous phase spectra and a linear least squares fitting algorithm. Here we will use known or estimated bulk chemistries of the phases in the Koeppen and Hamilton [2008] spectral library, along with each phase's modeled abundance in the TES data from that work, to calculate effective bulk chemistry for Martian dark regions at a spatial resolution of ~3x6 km. By doing this, we are able to analyze global bulk chemical variation as well as enable direct comparisons between TES data and chemical/elemental abundance maps (e.g., wt.% SiO2) produced using data collected by the Gamma Ray Spectrometer. A second chemical analysis also makes use of the Koeppen and Hamilton [2008] global mineral maps and focuses on the spatial variations in solid solution chemistry among feldspars, pyroxenes, high silica phases (e.g., silica, phyllosilicates, zeolites), and sulfates. Koeppen and Hamilton [2008] demonstrated that there is a range of Mg-Fe olivine compositions on Mars and that there are distinct geographic distributions of those phases, pointing to spatial variations in geologic processes. We use the same methodology to search for correlations between geography (e.g., geologic unit, latitude), elevation, and chemical (solid solution) composition. Preliminary analyses of pyroxene chemical variation reveal that globally, low-Ca pyroxenes are dominated by the clinopyroxene pigeonite and that among orthopyroxenes, Mg-rich phases (enstatite) are virtually never identified and phases with greater proportions of Fe (bronzite and hypersthene) are identified in distinct geographic and/or geologic terrains. Only the distribution of hypersthene (the composition of pyroxene in the Martian meteorite ALH 84001) correlates with the OMEGA-mapped distribution of low-Ca pyroxene suggesting that OMEGA-based maps of high-Ca pyroxene may include

  9. Antenna-coupled TES bolometer arrays for CMB polarimetry

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Bock, J. J.; Bonetti, J. A.; Brevik, J.; Chattopadhyay, G.; Day, P. K.; Golwala, S.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Nguyen, H.; Ogburn, R. W.; Orlando, A.; Transgrud, A.; Turner, A.; Wang, G.; Zmuidzinas, J.

    2008-07-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL.

  10. Optimization of X-ray Absorbers for TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  11. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  12. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    SciTech Connect

    Flynn, Connor J.

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  13. Application of VISSR Atmospheric Sounder (VAS) data in weather analysis

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.

    1984-01-01

    A technique which analyzes irregularly spaced satellite data is described. An experiment with rawinsonde and VISSR Atmospheric Sounder (VAS) radiance measurements collected on March 6-7, 1982 is conducted to reveal the applicability of the technique. The rawinsonde data are analyzed on a 16 x 12 grid using the two pass analysis scheme of Barnes (1973). A scheme similar to the Barnes (1973) procedure is employed to produce gridded analysis of VAS data over a 200 x 15000 km region in central part of the U.S. The use of a correction pass on the initial gridded field is described; the technique is extremely effective on uniformly spaced observations. The incorporation of the limited fine mesh model to the scheme to analyze data in sparse and cloudy regions is examined. A comparison of rawinsonde data with VAS data is provided. The technique proves effective for studying cloudy and sparse areas with VAS data and produces a four-dimensional data set with significant mesoscale structure.

  14. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  15. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    NASA Astrophysics Data System (ADS)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  16. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  17. Wavelet-based coding of ultraspectral sounder data

    NASA Astrophysics Data System (ADS)

    Garcia-Vilchez, Fernando; Serra-Sagrista, Joan; Auli-Llinas, Francesc

    2005-08-01

    In this paper we provide a study concerning the suitability of well-known image coding techniques originally devised for lossy compression of still natural images when applied to lossless compression of ultraspectral sounder data. We present here the experimental results of six wavelet-based widespread coding techniques, namely EZW, IC, SPIHT, JPEG2000, SPECK and CCSDS-IDC. Since the considered techniques are 2-dimensional (2D) in nature but the ultraspectral data are 3D, a pre-processing stage is applied to convert the two spatial dimensions into a single spatial dimension. All the wavelet-based techniques are competitive when compared either to the benchmark prediction-based methods for lossless compression, CALIC and JPEG-LS, or to two common compression utilities, GZIP and BZIP2. EZW, SPIHT, SPECK and CCSDS-IDC provide a very similar performance, while IC and JPEG2000 improve the compression factor when compared to the other wavelet-based methods. Nevertheless, they are not competitive when compared to a fast precomputed vector quantizer. The benefits of applying a pre-processing stage, the Bias Adjusted Reordering, prior to the coding process in order to further exploit the spectral and/or spatial correlation when 2D techniques are employed, are also presented.

  18. The Mars Climate Sounder In-Flight Positioning Anomaly

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  19. Coherent launch-site atmospheric wind sounder - Theory and experiment

    NASA Astrophysics Data System (ADS)

    Hawley, James G.; Targ, Russell; Henderson, Sammy W.; Hale, Charley P.; Kavaya, Michael J.; Moerder, Daniel

    1993-08-01

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 micron with 1-J energy per pulse is able to make real-time measurements of the 3D wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  20. Coherent launch-site atmospheric wind sounder: theory and experiment.

    PubMed

    Hawley, J G; Targ, R; Henderson, S W; Hale, C P; Kavaya, M J; Moerder, D

    1993-08-20

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 µm with 1-J energy per pulse is able to make real-time measurements of the three-dimensional wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  1. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  2. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; hide

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  3. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  4. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  5. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  6. Microwave Limb Sounder/El Nino Watch - December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows differences in atmospheric water vapor relative to a normal (average) year in the Earth's upper troposphere about 10 kilometers (6 miles) above the surface. The measurements were taken by the Microwave Limb Sounder (MLS) instrument aboard NASA's Upper Atmosphere Research Satellite (UARS). These data, collected in late December 1997, show higher than normal levels of water vapor (red) over the central and eastern Pacific which indicates the presence of an El Nino condition. At the same time, the western Pacific (blue) is much drier than normal. The unusually moist air above the central and eastern Pacific is a consequence of the much warmer-than-normal ocean waters which occur during El Nino. Warmer water evaporates at a higher rate and the resulting warm moist air rises and forms tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. These data show significant increases in the amount of atmospheric moisture off the coast of Peru and Ecuador since measurements were made in November 1997. The maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal and these high ocean temperatures are likely responsible for an increase in evaporation and the subsequent rise in humidity.

  7. Assessment of intercalibration methods for satellite microwave humidity sounders

    NASA Astrophysics Data System (ADS)

    John, Viju O.; Allan, Richard P.; Bell, William; Buehler, Stefan A.; Kottayil, Ajil

    2013-05-01

    Three methods for intercalibrating humidity sounding channels are compared to assess their merits and demerits. The methods use the following: (1) natural targets (Antarctica and tropical oceans), (2) zonal average brightness temperatures, and (3) simultaneous nadir overpasses (SNOs). Advanced Microwave Sounding Unit-B instruments onboard the polar-orbiting NOAA 15 and NOAA 16 satellites are used as examples. Antarctica is shown to be useful for identifying some of the instrument problems but less promising for intercalibrating humidity sounders due to the large diurnal variations there. Owing to smaller diurnal cycles over tropical oceans, these are found to be a good target for estimating intersatellite biases. Estimated biases are more resistant to diurnal differences when data from ascending and descending passes are combined. Biases estimated from zonal-averaged brightness temperatures show large seasonal and latitude dependence which could have resulted from diurnal cycle aliasing and scene-radiance dependence of the biases. This method may not be the best for channels with significant surface contributions. We have also tested the impact of clouds on the estimated biases and found that it is not significant, at least for tropical ocean estimates. Biases estimated from SNOs are the least influenced by diurnal cycle aliasing and cloud impacts. However, SNOs cover only relatively small part of the dynamic range of observed brightness temperatures.

  8. Reconciling the MOLA, TES, and Neutron Observations of the North Polar CO2 Mass Budget on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Mattingly, B.; Titus, T. N.

    2003-01-01

    There are now three independent observations of the CO2 polar cap mass budget of Mars' north polar cap. The first is based elevation changes detected by the Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS). The second is based on MGS Thermal Emission Spectrometer (TES) broadband observations of the solar and infrared radiation fields at the top of the atmosphere. The third is based on neutron counts measured by the neutron spectrometer (NS) on Odyssey. The TES data are based on an energy balance. The net radiative loss (gain) in a column is balanced by latent heating due condensation (sublimation) of CO2. In calculating the mass budget, the other main energy sources, atmospheric heat transport and subsurface conduction, were neglected. At the pole, atmospheric heat transport is indeed a small term. However, subsurface heat conduction can be significant because at the North Pole water ice, which has a high thermal conductivity compared to bare soil, is a dominant component of the subsurface. Thus, heat conducted down into the ice during summer will slowly bleed back out during fall and winter reducing the amount of CO2 that condenses on the pole. We have taken a first cut at quantifying this effect by fitting a curve to Paige's estimates of the conducted energy flux in his analysis of Viking IRTM data.

  9. Performance test of Ti/Au bilayer TES microcalorimeter in combination with continuous ADR

    SciTech Connect

    Ishisaki, Y.; Akamatsu, H.; Hoshino, A.; Numazawa, T.; Kamiya, K.; Fujimoto, R.; Kojima, Y.; Shinozaki, K.; Mitsuda, K.; Shirron, P.

    2009-12-16

    Performance test of a Ti/Au bilayer TES microcalorimeter has been made in combination with a continuous adiabatic demagnetization refrigerator (CADR). The CADR has four stages of ADR to produce continuous cooling by recycling them in dedicated order, and is cryogen-free utilizing a 4K-GM refrigerator. We installed a Ti/Au bilayer TES microcalorimeter and 420-series SQUID array to readout the X-ray signal on the 1st (coldest) stage of the CADR. We successfully operated the CADR at temperature of 120 mK in continuous mode more than 27 hr, however, FWHM energy resolution of the TES microcalorimeter was degraded to 45 eV at 6 keV, as compared to 10 eV when measured in a dilution refrigerator. This is mainly because the temperature stability was not good enough (about 0.6 mK) and the operation temperature was not sufficiently lower than the transition temperature T{sub c} = 135mK of the TES. We operated the TES microcalorimeter at the operation temperature of 105 mK in one-shot mode and the resolution was improved to 30 eV. We also found that the operating point of the TES was affected by the magnetic field of the 3rd and 4th ADR recycle. More complete shielding of the magnetic field is essential for further improvement of the performance of the TES microcalorimeter.

  10. Design and fabrication of TES microcalorimeters for x-ray astrophysics in Japan

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Yoshino, Tomotaka; Mukai, Kazuma; Yoshitake, Hiroshi; Akamatsu, Hiroki; Ishikawa, Kumi; Takano, Takayuki; Maeda, Ryutaro; Ishisaki, Yoshitaka; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Ohashi, Takaya

    2008-07-01

    Our recent development of transition-edge sensor (TES) microcalorimeters for future X-ray astronomical missions such as DIOS is reported. In-house micromaching processes has been established aiming at prompt fabrication of TES devices. With a single-pixel TES microcalorimeter and an Au absorber, the energy resolution of 4.8 eV at 5.9 keV is achieved. 16×16 pixel arrays of TES microcalorimeters are successfully fabricated by using deep dry etching technique. The energy resolution is 11 eV and 26 eV with and without an Au absorber, respectively. The worse energy resolution than a single-pixel TES is due to large decrease of TES sensitivity and increase of transition temperature after etching. The reason for these phenomena is under investigation. In parallel, mushroom-type Au absorber structures are being tested. Furthermore, to precisely measure TES sensitivities and heat capacity, an experimental setup for impedance measurements is established.

  11. Noise performance of the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) sounder: flight and model results

    NASA Astrophysics Data System (ADS)

    Kelly, Michael W.; Gazarik, Michael J.; Marino, Richard M.

    1999-09-01

    NAST-1 is a Fourier transform interferometric sounder that provides very high spectral and spatial resolution measurements of the Earth's atmosphere. The interferometer provides two dimensional, low noise data from the NASA ER-2 aircraft suitable for synthesizing data products of future satellite-borne sounding instrument candidates. It is the first such high altitude aircraft or satellite borne instrument. The instrument provides a 2.6 km nadir footprint and a cross-track field of regard of +/- 48.2 degrees. The instrument has a continuous spectral range of 3.6-16.1 micrometers , spectral resolution of 0.25 cm-1, and radiometric noise on the order of 0.25 K. NAST-1 has proven to be an extremely reliable instrument generating over 100 hours of high-quality flight data, and was delivered to the sponsor on a very tight schedule. Using a first principles model, the noise performance of the instrument was modeled and found to be in close agreement with noise measured in- flight. Alignment jitter has been identified as the major contributor to the system NEdN. This paper describes the mode used to predict the instrument noise performance and discusses the comparison to actual flight data.

  12. Future Japanese X-ray TES Calorimeter Satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Miyazaki, N.; Kuwabara, K.; Kuromaru, G.; Suzuki, S.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Hayashi, T.; Muramatsu, H.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Nakamichi, R.; Bandai, A.; Yuasa, T.; Ota, N.

    2016-08-01

    We present the latest update and progress on the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS). DIOS is proposed to JAXA as a small satellite mission, and would be launched with an Epsilon rocket. DIOS would carry on the legacy of ASTRO-H, which carries semiconductor-based microcalorimeters and is scheduled to be launched in 2016, in high-resolution X-ray spectroscopy. A 400-pixel array of transition-edge sensors (TESs) would be employed, so DIOS would also provide valuable lessons for the next ESA X-ray mission ATHENA on TES operation and cryogen-free cooling in space. We have been sophisticating the entire design of the satellite to meet the requirement for the Epsilon payload for the next call. The primary goal of the mission is to search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy by detecting redshifted emission lines from OVII and OVIII ions. The results would have significant impacts on our understanding of the nature of "dark baryons," their total amount and spatial distribution, as well as their evolution over cosmological timescales.

  13. Design and Fabrication of TES Detector Modules for the TIME-Pilot [CII] Intensity Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Hunacek, J.; Bock, J.; Bradford, C. M.; Bumble, B.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Hailey-Dunsheath, S.; Gong, Y.; Kenyon, M.; Koch, P.; Li, C.-T.; O'Brient, R.; Shirokoff, E.; Shiu, C.; Staniszewski, Z.; Uzgil, B.; Zemcov, M.

    2016-08-01

    We are developing a series of close-packed modular detector arrays for TIME-Pilot, a new mm-wavelength grating spectrometer array that will map the intensity fluctuations of the redshifted 157.7 \\upmu m emission line of singly ionized carbon ([CII]) from redshift z ˜ 5 to 9. TIME-Pilot's two banks of 16 parallel-plate waveguide spectrometers (one bank per polarization) will have a spectral range of 183-326 GHz and a resolving power of R ˜ 100. The spectrometers use a curved diffraction grating to disperse and focus the light on a series of output arcs, each sampled by 60 transition edge sensor (TES) bolometers with gold micro-mesh absorbers. These low-noise detectors will be operated from a 250 mK base temperature and are designed to have a background-limited NEP of {˜ }10^{-17} mathrm {W}/mathrm {Hz}^{1/2}. This proceeding presents an overview of the detector design in the context of the TIME-Pilot instrument. Additionally, a prototype detector module produced at the Microdevices Laboratory at JPL is shown.

  14. Atmospheric measurements of volcanic eruptions with the infrared sounder IASI (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Clarisse, L.

    2012-04-01

    Due to their spatial coverage, satellite sounders are ideal for measuring volcanic emissions. They are able to monitor (dormant) volcanoes in remote parts of the world and measure large plumes from explosive eruptions. Currently over a dozen instruments (operating in the IR and UV spectral ranges) are capable of detecting volcanic ash and/or sulphur dioxide. Satellite measurements are highly relevant for hazard mitigation, locally but also on large scales for air traffic avoidance of volcanic clouds. Their coverage enables to establish an accurate time-record of global volcanic emissions. This is useful from a volcanology perspective, but also for assessing the global climate impact of volcanic emissions. In this talk we give an overview of four years of measurements of large eruptive plumes from the high resolution infrared atmospheric sounding interferometer (IASI). The focus is on the detection and measurement of volcanic aerosol (volcanic ash, ice and sulphuric acid). In the second part of this talk, we discuss sulphur dioxide measurements and the recent first observations of hydrogen sulphide. We conclude with a discussion of open problems and challenges which lie ahead for the remote sensing of volcanic products.

  15. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  16. Experimental Results from the Thermal Energy Storage-2 (TES-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol

    2000-01-01

    Thermal Energy Storage-2 (TES-2) is a flight experiment that flew on the Space Shuttle Endeavour (STS-72), in January 1996. TES-2 originally flew with TES-1 as part of the OAST-2 Hitchhiker payload on the Space Shuttle Columbia (STS-62) in early 1994. The two experiments, TES-1 and TES-2 were identical except for the fluoride salts to be characterized. TES-1 provided data on lithium fluoride (LiF), TES-2 provided data on a fluoride eutectic (LiF/CaF2). Each experiment was a complex autonomous payload in a Get-Away-Special payload canister. TES-1 operated flawlessly for 22 hr. Results were reported in a paper entitled, Effect of Microgravity on Materials Undergoing Melting and Freezing-The TES Experiment, by David Namkoong et al. A software failure in TES-2 caused its shutdown after 4 sec of operation. TES-1 and 2 were the first experiments in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store energy in a thermal energy salt such as lithium fluoride or a eutectic of lithium fluoride/calcium difluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes were developed for predicting performance of a space-based solar dynamic power system. Experimental verification of the analytical predictions were needed prior to using the analytical results for future space power design applications. The four TES flight experiments were to be used to obtain the needed experimental data. This paper will address the flight results from the first and second experiments, TES-1 and 2, in comparison to the predicted results from the Thermal

  17. Global formic acid measurements from space: The importance of biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Chaliyakunnel, S.; Millet, D. B.; Wells, K. C.; Cady-Pereira, K. E.; Shephard, M. W.

    2013-12-01

    Formic acid is one of the most abundant carboxylic acids in the atmosphere, and a dominant source of acidity in the global troposphere. In this work, we present the first global retrievals of formic acid from the Tropospheric Emission Spectrometer (TES) satellite instrument. We apply the GEOS-Chem Chemical Transport Model (CTM) and an ensemble of airborne and ground observations to evaluate the TES data, and find that the formic acid distributions derived from TES are consistent with in situ measurements. The space-based formic acid data reveal a severe model underestimate that manifests globally; however, the simulated and observed concentrations are spatially well-correlated. The discrepancy between GEOS-Chem and TES is most prominent over tropical biomass burning regions, indicating a major missing source of organic acids from fires. We use the TES data to derive new top-down constraints on the pyrogenic source of formic acid to the atmosphere.

  18. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; hide

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  19. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  20. Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data

    NASA Astrophysics Data System (ADS)

    Oshigami, Shoko; Watanabe, Shiho; Yamaguchi, Yasushi; Yamaji, Atsushi; Kobayashi, Takao; Kumamoto, Atsushi; Ishiyama, Ken; Ono, Takayuki

    2014-05-01

    The Lunar Radar Sounder (LRS) onboard Kaguya (SELENE) detected widespread horizontal reflectors under some nearside maria. Previous studies estimated that the depths of the subsurface reflectors were up to several hundreds of meters and suggested that the reflectors were interfaces between mare basalt units. The comparison between the reflectors detected in the LRS data and surface age maps indicating the formation age of each basalt unit allows us to discuss the lower limit volume of each basalt unit and its space and time variation. We estimated volumes of basalt units in the ages of 2.7 Ga to 3.8 Ga in the nearside maria including Mare Crisium, Mare Humorum, Mare Imbrium, Mare Nectaris, Mare Serenitatis, Mare Smythii, and Oceanus Procellarum. The lower limit volumes of the geologic units estimated in this study were on the order of 103 to 104 km3. This volume range is consistent with the total amount of erupted lava flows derived from numerical simulations of thermal erosion models of lunar sinuous rille formation and is also comparable to the average flow volumes of continental flood basalt units formed after the Paleozoic and calculated flow volumes of Archean komatiite flows on the Earth. The lower limits of average eruption rates estimated from the unit volumes were on the order of 10-5 to 10-3 km3/yr. The estimated volumes of the geologic mare units and average eruption rate showed clear positive correlations with their ages within the same mare basin, while they vary among different maria compared within the same age range.

  1. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Jucks, K. W.; Stachnik, R. A.; Toon, G. C.; Christensen, L. E.; Webster, C. R.; Bernath, P. F.; Boone, C. D.; Walker, K. A.; Pumphrey, H. C.; Harwood, R. S.; Manney, G. L.; Schwartz, M. J.; Daffer, W. H.; Drouin, B. J.

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  2. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding

    NASA Astrophysics Data System (ADS)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok

    2005-08-01

    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  3. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard; Kasl, Eldon P.

    2010-01-01

    We describe the fabrication and thermal-stability analysis and test of a composite demonstration model of the Scanning Microwave Limb Sounder (SMLS) primary reflector, having full 4m height and 1/3 the width planned for flight. SMLS is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 660 GHz. Current MLS instruments in low Earth orbit scan pencil-beam antennas (sized to resolve about one scale height) vertically over the atmospheric limb. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, adds azimuthal scanning for better horizontal and temporal resolution and coverage than typical orbit spacing provides. SMLS combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but highly astigmatic in the horizontal, having a beam aspect ratio [tilde operator]1:20. Symmetry about the nadir axis ensures that beam shape is nearly invariant over +/-65(white bullet) azimuth. The a feeds a low-noise SIS receiver whose FOV is swept over the reflector system by a small scanning mirror. Using finiteelement models of antenna reflectors and structure, we evaluate thermal deformations and the resulting optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during wide-range (ambient+[-97,+75](white bullet) C) thermal soak tests of the primary in a chamber. This range exceeds predicted orbital soak ranges by large factors, implying in-orbit thermal stability of 0.21(mu)m rms/(white bullet)C, which meets SMLS requirements.

  4. Measurement approach and design of the CubeSat Infrared Atmospheric Sounder (CIRAS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Rider, David; Rud, Mayer; Ting, David; Yee, Karl

    2016-09-01

    The CubeSat Infrared Atmospheric Sounder (CIRAS) will measure upwelling infrared radiation of the Earth in the MWIR region of the spectrum from space on a CubeSat. The observed radiances have information of potential value to weather forecasting agencies and can be used to retrieve lower tropospheric temperature and water vapor globally for weather and climate science investigations. Multiple units can be flown to improve temporal coverage or in formation to provide new data products including 3D atmospheric motion vector winds. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The detectors are hybridized to a commercial ROIC and commercial camera electronics. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS has no moving parts and includes an immersion grating to reduce the volume and reduce distortion. The third key technology is an infrared blackbody fabricated with black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a commercially available CubeSat. The integrated system will be a complete 6U CubeSat capable of measuring temperature and water vapor profiles with good lower tropospheric sensitivity. The CIRAS is the first step towards the development of an Earth Observation Nanosatellite Infrared (EON-IR) capable of operational readiness to mitigate a potential loss of CrIS on JPSS or complement the current observing system with different orbit crossing times.

  5. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Cofield, Richard; Kasl, Eldon P.

    2010-01-01

    We describe the fabrication and thermal-stability analysis and test of a composite demonstration model of the Scanning Microwave Limb Sounder (SMLS) primary reflector, having full 4m height and 1/3 the width planned for flight. SMLS is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 660 GHz. Current MLS instruments in low Earth orbit scan pencil-beam antennas (sized to resolve about one scale height) vertically over the atmospheric limb. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, adds azimuthal scanning for better horizontal and temporal resolution and coverage than typical orbit spacing provides. SMLS combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but highly astigmatic in the horizontal, having a beam aspect ratio [tilde operator]1:20. Symmetry about the nadir axis ensures that beam shape is nearly invariant over +/-65(white bullet) azimuth. The a feeds a low-noise SIS receiver whose FOV is swept over the reflector system by a small scanning mirror. Using finiteelement models of antenna reflectors and structure, we evaluate thermal deformations and the resulting optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during wide-range (ambient+[-97,+75](white bullet) C) thermal soak tests of the primary in a chamber. This range exceeds predicted orbital soak ranges by large factors, implying in-orbit thermal stability of 0.21(mu)m rms/(white bullet)C, which meets SMLS requirements.

  6. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  7. From Aircraft to GEO: Using Microwave Sounders to Observe the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S.; Gaier, T.; Tanner, A.; Kangaslahti, P.; Lim, B.; Tanabe, J.

    2010-12-01

    Although hyperspectral infrared sounders, such as AIRS and IASI, have become important weather and climate sensors for both operational and research use, microwave sounders, in spite of their coarser spatial resolution and poorer sounding accuracy, still play a crucial role. That is because infrared sounders do not sample certain weather and climate regimes well, particularly those associated with full cloud cover and storms. In part one this paper we review recent results obtained with the High Altitude MMIC Sounding Radiometer (HAMSR), an aircraft-based microwave sounder developed at the Jet Propulsion Laboratory and recently deployed on the NASA Global Hawk unmanned aircraft as part of the NASA Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign. Here the emphasis is on the benefits of the high spatial resolution that is possible with suborbital sensors. In part two we will review plans to deploy a microwave sounder on a geostationary satellite in the relatively near future, where the emphasis is on the high temporal resolution that is possible from GEO. We focus on the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) now being developed at JPL for the Precipitation and All-weather Temperature and Humidity (PATH) mission - one of the 15 missions recommended by the National Research Council in its recent “decadal survey” of Earth satellite missions.

  8. Development of the new shape PZT ceramics sounder suitable for a sound source of artificial larynx

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Kanetake, Ryota; Sugio, Yuuichi; Tanaka, Akimitsu

    2007-12-01

    Various speech production substitutes, which aim to reconstruct speech functions, have been developed and used practically by speech impaired individuals. However, conventional speech production substitutes have various drawbacks; therefore, perfect speech production substitutes are expected to be developed. We focused on the PZT ceramics sounder as a sound source in an electric drive artificial larynx. We first developed the artificial larynx that uses a PZT ceramic sounder and then evaluated its performance. The vocalized sound of the artificial larynx user shows good characteristics at the formant frequency, which is important for vowel discrimination. The characteristic feature of our artificial larynx is its individual structure, and this typical structure implies that the sound source and the implant are separated. This structure facilitates a high biocompatibility in our artificial larynx. In our previous work, the improvement in the acoustic characteristics of the sound source was described. The improvement is achieved by the optimization of the electric control and its structure. In this paper, we present the results of shape optimization and new shape PZT ceramics sounder evaluation. The optimized shape is decided on FEM analysis, and prototype PZT ceramics sounder based on above analysis is manufactured by way of trial. Additionally, the performance of prototype sounder is evaluated by acoustic analysis. Until now, we have researched about the immobilization of biomolecules onto the metal surface. It is believed that biomolecular immobilization on the sound source surface improves its biocompatibility. In the future, we aim to realize implantable sound sources that employ biomolecular immobilization technology.

  9. Leveraging Direct-Broadcast Hyperspectral Sounder Retrieval Data for Regional Weather Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Smith, W.; Weisz, E.; Schultz, R.; Strabala, K.; Huang, A.; Smith, N.

    2016-12-01

    The operational infrared sounders AIRS (Atmospheric Infrared Sounder), IASI (Infrared Atmospheric Sounding Interferometer) and CrIS (Cross-track Infrared Sounder) provide high spectral resolution measurements and therefore detailed information about the atmospheric vertical structure and composition. Retrievals of atmospheric temperature and water vapor and other geophysical parameters like cloud properties are available in real-time to be used in a variety of applications including environmental monitoring and weather forecasting. This paper focuses on the evaluation of retrieval products for a variety of atmospheric conditions including severe weather events. The results of this study will help global direct-broadcast users, who rely on locally processed satellite data, better understand the suite of available retrieval algorithms and their products for supporting their research and applications. It is shown that hyperspectral retrieval products have the potential to improve weather monitoring and forecasting capabilities by providing independent and detailed information about the atmospheric state to complement traditional data sources (like radiosondes, data from broadband imagers and sounders, model data). We therefore want to encourage users who so far have relied on traditional data alone to explore hyperspectral sounder data for their specific real-time application.

  10. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    SciTech Connect

    Benson, R.F.

    1985-06-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated. 15 references.

  11. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Jinlong; Li, Zhenglong; Schmit, Timothy J.; Bai, Wenguang

    2014-03-01

    Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three-Dimensional Variational Assimilation (3DVAR)-based Gridpoint Statistical Interpolation (GSI) as the analysis system. Results indicate that forecasts of both hurricane track and intensity are substantially improved when the collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer (AVHRR) onboard the Metop series for improved radiance assimilation in NWP.

  12. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Astrophysics Data System (ADS)

    Benson, R. F.

    1985-06-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  13. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  14. Assessment of the Sources, Distribution and Interanual Variability of PAN over North America using New Observations from TES.

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Fischer, E. V.; Payne, V.; Worden, J.; Jiang, Z.; Kulawik, S. S.

    2015-12-01

    Peroxyacetyl nitrate (PAN) is an important trace gas that serves to transport nitrogen oxide radicals (NOx = NO + NO2) throughout the troposphere. PAN is observed to form rapidly in fire plumes from the oxidation of short-lived volatile organic compounds (VOCs) in the presence of NOx. It is thought that efficient PAN production in smoke plumes may lead to relatively efficient downwind ozone (O3) production if PAN decomposition serves as an important source of NOx. North America has a relatively long biomass burning season; fires are observed in many different locations over North America during late spring and summer. Here, we present the first measurements of elevated PAN from Tropospheric Emission Spectrometer (TES) over western North America during biomass burning season (late spring through summer). We investigate the relationships between the observed interannual variability of elevated PAN and fires, temperature, meteorology and long-range transport.

  15. Extended stellar substructure surrounding the Boötes I dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Roderick, T. A.; Mackey, A. D.; Jerjen, H.; Da Costa, G. S.

    2016-10-01

    We present deep stellar photometry of the Boötes I dwarf spheroidal galaxy in g- and i-band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct overdensity encroaching on its tidal radius. A radial profile of the Boötes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Boötes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Boötes I dwarf spheroidal galaxy.

  16. A Template-Matching Method For Measuring Energy Depositions In TES Films

    NASA Astrophysics Data System (ADS)

    Shank, Benjamin; Yen, Jeffrey; Cabrera, Blas; Kreikebaum, John Mark; Moffatt, Robert; Redl, Peter; Young, Betty; Brink, Paul; Cherry, Matthew; Tomada, Astrid

    2014-03-01

    Transition edge sensors (TES) have a wide variety of applications in particle ∖astrophysics for detecting incoming particles with high energy resolution. In TES design, the need for sufficient heat capacity to avoid saturation limits the ultimate energy resolution. Building on the TES model developed for SuperCDMS by Yen et al. for tungsten TESs deposited next to aluminum collection fins, we outline a time-domain non-linear optimal filter method for reconstructing energy depositions in TES films. This allows us to operate devices into their saturation region while taking into account changing noise performance and loss of energy collection. We show how this method has improved our understanding of quasiparticle diffusion and energy collection in our superconducting sensors.

  17. Rescue Simulation - NASA White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp

    NASA Image and Video Library

    The White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp prepares students to deal with normal propellant operations, emergency events, and pre-operation planning by engaging studen...

  18. Radiation Tolerance Evaluation of the Ti/Au Bilayer TES Microcalorimeter

    NASA Astrophysics Data System (ADS)

    Ishisaki, Y.; Enokijima, Y.; Ezoe, Y.; Ohashi, T.; Akamatsu, H.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Yamada, S.

    2014-08-01

    We have developed Ti/Au bilayer transition-edge sensor (TES) microcalorimeters for future X-ray astrophysical satellite missions such as DIOS. One possible concern on the space use of TES microcalorimeters is its radiation tolerance. We have evaluated the performance of a Ti/Au bilayer (30/40 nm thick) TES microcalorimeter with 1.5 m thick Au absorber, before and after irradiation of 150 MeV proton beam with a total dose of 10 krad, corresponding to 10 years in the low Earth orbit. No significant changes on transition temperature, sensitivity, normal resistance, and critical current were observed. The energy resolution for 5.9 keV X-rays was 5.6 0.3 eV (FWHM) after the irradiation, which was slightly worse than 5.1 0.3 eV before the irradiation. We consider that our TES has sufficient radiation tolerance in orbit.

  19. NASA White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp

    NASA Image and Video Library

    The White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp prepares students to deal with normal propellant operations, emergency events, and pre-operation planning by engaging studen...

  20. NASA White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp

    NASA Image and Video Library

    The NASA White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp prepares students to deal with normal propellant operations, emergency events, and pre-operation planning by engaging s...

  1. Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; Rezac, L.; Smith, M. D.

    2015-01-01

    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibrations

  2. TES: A modular systems approach to expert system development for real time space applications

    NASA Technical Reports Server (NTRS)

    England, Brenda; Cacace, Ralph

    1987-01-01

    A major goal of the space station era is to reduce reliance on support from ground based experts. The TIMES Expert System (TES) is an application that monitors and evaluates real time data to perform fault detection and fault isolation as it would otherwise be carried out by a knowledgeable designer. The development process and primary features of the TES, the modular system and the lessons learned are discussed.

  3. Collection and dissemination of TES system information for the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Edde, H.

    1980-01-01

    A survey of U.S. and international paper and pulp mills using thermal energy storage (TES) systems as a part of their production processes was conducted to obtain sufficient operating data to conduct a benefits analysis encompassing: (1) an energy conservation assessment, (2) an economic benefits analysis, and (3) an environmental impact assessment. An information dissemination plan was then proposed to effectively present the benefits of TES to the U.S. paper and pulp industry.

  4. Comparing the net cost of CSP-TES to PV deployed with battery storage

    NASA Astrophysics Data System (ADS)

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-01

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  5. Comparing the Net Cost of CSP-TES to PV Deployed with Battery Storage

    SciTech Connect

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-31

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  6. Recent patents on nano-enhanced materials for use in thermal energy storage (TES).

    PubMed

    Cabeza, Luisa F; Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique

    2016-10-27

    Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years.

  7. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  8. Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics

    NASA Astrophysics Data System (ADS)

    Protopapadaki, Sofia E.; Stubenrauch, Claudia J.; Feofilov, Artem G.

    2017-03-01

    Representing about 30 % of the Earth's total cloud cover, upper tropospheric clouds play a crucial role in the climate system by modulating the Earth's energy budget and heat transport. When originating from convection, they often form organized systems. The high spectral resolution of the Atmospheric Infrared Sounder (AIRS) allows reliable cirrus identification, both from day and nighttime observations. Tropical upper tropospheric cloud systems have been analyzed by using a spatial composite technique on the retrieved cloud pressure of AIRS data. Cloud emissivity is used to distinguish convective core, cirrus and thin cirrus anvil within these systems. A comparison with simultaneous precipitation data from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) shows that, for tropical upper tropospheric clouds, a cloud emissivity close to 1 is strongly linked to a high rain rate, leading to a proxy to identify convective cores. Combining AIRS cloud data with this cloud system approach, using physical variables, provides a new opportunity to relate the properties of the anvils, including also the thinner cirrus, to the convective cores. It also distinguishes convective cloud systems from isolated cirrus systems. Deep convective cloud systems, covering 15 % of the tropics, are further distinguished into single-core and multi-core systems. Though AIRS samples the tropics only twice per day, the evolution of longer-living convective systems can be still statistically captured, and we were able to select relatively mature single-core convective systems by using the fraction of convective core area within the cloud systems as a proxy for maturity. For these systems, we have demonstrated that the physical properties of the anvils are related to convective depth, indicated by the minimum retrieved cloud temperature within the convective core. Our analyses show that the size of the systems does in general increase with convective depth, though for

  9. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  10. Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; Desouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-04-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 μm infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 μm window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of the

  11. Low Thermal Conductance Transition Edge Sensor (TES) for SPICA

    SciTech Connect

    Khosropanah, P.; Dirks, B.; Kuur, J. van der; Ridder, M.; Bruijn, M.; Popescu, M.; Hoevers, H.; Gao, J. R.; Morozov, D.; Mauskopf, P.

    2009-12-16

    We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320 fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10{sup -19} W/{radical}(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10{sup -18} W/{radical}(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.

  12. Development and practice of a Telehealthcare Expert System (TES).

    PubMed

    Lin, Hanjun; Hsu, Yeh-Liang; Hsu, Ming-Shinn; Cheng, Chih-Ming

    2013-07-01

    Expert systems have been widely used in medical and healthcare practice for various purposes. In addition to vital sign data, important concerns in telehealthcare include the compliance with the measurement prescription, the accuracy of vital sign measurements, and the functioning of vital sign meters and home gateways. However, few expert system applications are found in the telehealthcare domain to address these issues. This article presents an expert system application for one of the largest commercialized telehealthcare practices in Taiwan by Min-Sheng General Hospital. The main function of the Telehealthcare Expert System (TES) developed in this research is to detect and classify events based on the measurement data transmitted to the database at the call center, including abnormality of vital signs, violation of vital sign measurement prescriptions, and malfunction of hardware devices (home gateway and vital sign meter). When the expert system detects an abnormal event, it assigns an "urgent degree" and alerts the nursing team in the call center to take action, such as phoning the patient for counseling or to urge the patient to return to the hospital for further tests. During 2 years of clinical practice, from 2009 to 2011, 19,182 patients were served by the expert system. The expert system detected 41,755 events, of which 22.9% indicated abnormality of vital signs, 75.2% indicated violation of measurement prescription, and 1.9% indicated malfunction of devices. On average, the expert system reduced by 76.5% the time that the nursing team in the call center spent in handling the events. The expert system helped to reduce cost and improve quality of the telehealthcare service.

  13. Allophane on Mars: Evidence from IR Spectroscopy and TES Spectral Models

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Rampe, E. B.; Kraft, M. D.; Sharp. T. G.; Golden, D. C.; Christensen, P. C.

    2010-01-01

    Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080

  14. TES/Aura L2 Ammonia (NH3) Lite Nadir V6 (TL2NH3LN)

    Atmospheric Science Data Center

    2017-07-20

    TES/Aura L2 Ammonia (NH3) Lite Nadir (TL2NH3LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Ammonia Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Ammonia Order Data:  Earthdata Search:   Order Data ...

  15. TES/Aura L2 Methane (CH4) Lite Nadir V6 (TL2CH4LN)

    Atmospheric Science Data Center

    2017-07-20

    TES/Aura L2 Methane (CH4) Lite Nadir (TL2CH4LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Methane Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Methane Order Data:  Earthdata Search:   Order Data ...

  16. TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir V6 (TL2CO2LN)

    Atmospheric Science Data Center

    2017-07-19

    TES/Aura L2 Carbon Dioxide (CO2) Lite Nadir (TL2CO2LN) News:  TES ... Level:  L2 Instrument:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 km nadir ... OPeNDAP Access:  OPeNDAP Parameters:  Carbon Dioxide Order Data:  Earthdata Search:   Order Data ...

  17. Aircraft validation of Aura Tropospheric Emission Spectrometer retrievals of HDO / H2O

    NASA Astrophysics Data System (ADS)

    Herman, R. L.; Cherry, J. E.; Young, J.; Welker, J. M.; Noone, D.; Kulawik, S. S.; Worden, J.

    2014-09-01

    The EOS (Earth Observing System) Aura Tropospheric Emission Spectrometer (TES) retrieves the atmospheric HDO / H2O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES products. The field measurements were made with a commercially available Picarro L1115-i isotopic water analyzer on aircraft over the Alaskan interior boreal forest during the three summers of 2011 to 2013. TES special observations were utilized in these comparisons. The TES averaging kernels and a priori constraints have been applied to the in situ data, using version 5 (V005) of the TES data. TES calculated errors are compared with the standard deviation (1σ) of scan-to-scan variability to check consistency with the TES observation error. Spatial and temporal variations are assessed from the in situ aircraft measurements. It is found that the standard deviation of scan-to-scan variability of TES δD is ±34.1‰ in the boundary layer and ± 26.5‰ in the free troposphere. This scan-to-scan variability is consistent with the TES estimated error (observation error) of 10-18‰ after accounting for the atmospheric variations along the TES track of ±16‰ in the boundary layer, increasing to ±30‰ in the free troposphere observed by the aircraft in situ measurements. We estimate that TES V005 δD is biased high by an amount that decreases with pressure: approximately +123‰ at 1000 hPa, +98‰ in the boundary layer and +37‰ in the free troposphere. The uncertainty in this bias estimate is ±20‰. A correction for this bias has been applied to the TES HDO Lite Product data set. After bias correction, we show that TES has accurate sensitivity to water vapor isotopologues in the boundary layer.

  18. The 4-Day Wave as Obvserved from the Upper Atmosphere Research Satellite Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.

    1996-01-01

    The 4-day wave is an eastward moving quasi-nondispersive feature with period near 4 days occurring near the winter polar stratopause. This paper presents evidence of the 4-day feature in Microwave Limb Sounder (MLS) temperature, geopotential height and ozone data from the late Southern winters of 1992 and 1993.

  19. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert R.; Waters, Joe W.

    1994-01-01

    This paper describes pre-launch radiometric and spectral calibrations of the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS). Use of in-flight data for validation or refinement of calibration is described. The estimated uncertaint in calibrated radiance from pre-launch radiometric and spectral calibration data is better than 2% in most bands.

  20. The validation of ozone measurements from the improved stratospheric and mesospheric sounder

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Scheuer, Christopher J.; Chu, D. A.; Remedios, John J.; Marks, C. J.; Rodgers, Clive D.; Taylor, Fredric W.

    1994-01-01

    We present preliminary results of the validation of ozone measurements from the Improved Stratospheric and Mesospheric Sounder (ISAMS). The indications are that the ISAMS provides ozone data which generally agrees with other experiments and climatological values, except in regions of large thermal gradients or high aerosol loading. Corrections for these effects will be included in future reprocessing of the data.

  1. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  2. Aura Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    These data maps from the Microwave Limb Sounder on NASA Aura spacecraft depict levels of hydrogen chloride, chlorine monoxide, and ozone at an altitude of approximately 19 km 490,000 ft on selected days during the 2004-05 Arctic winter.

  3. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    NASA Astrophysics Data System (ADS)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  4. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  5. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  6. Acoustic sounder system design for measurement of optical turbulence and wind profiles

    NASA Astrophysics Data System (ADS)

    Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.

    2000-07-01

    An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.

  7. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  8. Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.

  9. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean.

  10. MGS-TES thermal inertia study of the Arsia Mons Caldera

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.

    2008-01-01

    Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.

  11. Investigating the unification of LOFAR-detected powerful AGN in the Boötes field

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Williams, W. L.; Duncan, Kenneth J.; Röttgering, H. J. A.; Miley, George; Saxena, Aayush; Barthel, Peter; Best, P. N.; Bruggen, M.; Brunetti, G.; Chyży, K. T.; Engels, D.; Hardcastle, M. J.; Harwood, J. J.; Jarvis, Matt J.; Mahony, E. K.; Prandoni, I.; Shimwell, T. W.; Shulevski, A.; Tasse, C.

    2017-08-01

    Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Boötes field at 150 MHz made with the Low-Frequency Array (LOFAR) to select a sample of radio sources. We identify 60 radio sources with powers P > 1025.5 W Hz-1 at 150 MHz using cross-matched multiwavelength information from the AGN and Galaxy Evolution Survey, which provides spectroscopic redshifts and photometric identification of 16 quasars and 44 radio galaxies. When considering the radio spectral slope only, we find that radio sources with steep spectra have projected linear sizes that are on average 4.4 ± 1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1 ± 1.0 larger than those of quasars (2.0 ± 0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data are consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.

  12. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  13. Modern applications of terahertz emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrel, Shayne Matthew

    Terahertz (THz) emission spectroscopy (TES) is newly developed experimental technique capable of measuring ultrafast dynamics in a variety of systems. Unlike pump-probe spectroscopies where the signals are obtained indirectly, the THz waveform emitted by the dynamical process serves as the signal field. Information about processes involving a time-dependent magnetization, polarization or current is obtained using TES. The detection scheme is polarization sensitive and allows the direction of the dynamical event to be recovered. The role of solvation on intramolecular charge transfer in DMANS (4-(dimethylamino)-4'-nitrostilbene) is studied using TES in three solvents: benzene, toluene, and 1,3-dichlorobenzene. These solvents have similar molecular structures but different polarities and dielectric constants. The charge transfer dynamics are found to depend on the solvent. A secondary feature in the THz emission appearing 4-6 Ps after the main pulse provides evidence that DMANS may undergo a twisted intramolecular charge transfer state (TICT) upon photoexcitation. The ultrafast magnetization dynamics of polycrystalline Ni and single Fe films ranging in thickness from 5 nm to 60 nm are reported using TES. For samples thicker than the visible optical skin depth, (˜10 nm for Ni and ˜27 nm for Fe), the emission is easily interpreted using Lenz's law. For films thinner than visible optical skin depth, the emission patterns are qualitatively different. These results suggest that there are two generation mechanisms at work: one that arises purely from bulk demagnetization in the thick sample limit and another that is the result of difference frequency generation enhanced by the magnetized surface. A comparative study of the magnetization dynamics of a 40 nm Ni and 40 Fe film shows that the magnetization recovers faster in Fe than in Ni. The dependence of optical rectification and shift currents in unbiased GaAs (111) is reported using TES. It is found that the dependence

  14. Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Blandler, S. R.; Porter, F. S.; Sadleir, J. E.; Kilbourne, C. A.; Bailey, C. N.; Finkbeiner, F. M.; Chervenak, J. A.; Adams, J. S.; Eckart, M. E.; hide

    2012-01-01

    In this paper we present the progress made at SRON in the read-out of GSFC x-ray transition-edge sensor (TES) micro-calorimeters in the frequency domain. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop (FLL) SQUID read-out scheme. The TES read-out suffered from the use of sub-optimal circuit components, large parasitic inductances, low quality factor resonators and poor magnetic field shielding. We have developed a novel experimental set-up, which allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We study the single pixel performance as a function of TES bias frequency, voltage and perpendicular magnetic field.

  15. Steady-state performance characteristics of latent heat TES/heat pump systems

    NASA Astrophysics Data System (ADS)

    Sigmon, T. W.

    1982-03-01

    Two projects are currently being completed that wholly or in part address various technical issues involved in the implementation of heat pump systems combined with thermal energy storage (TES). The first of these involves the determination of steady state performance characteristics for six generic TES/heat pump configurations and the comparison of the operational performance of these systems with other space heating and cooling TES technologies. Of these latter systems four are commercial or near commerical air conditioner or heat pump coupled TES systems. Steady state performance has been established for all systems. Operational performance and system life cycle cost has been determined for the six generic designs for a limited set of application conditions. The intent of the second project is to establish a reliable method of estimating seasonal energy use by TES/heat pump systems, to utilize this methodology to evaluate a large number of possible system designs, identify a small number of systems that merit more detailed analysis, and, to the extent possible, conduct these detailed studies.

  16. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    NASA Astrophysics Data System (ADS)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  17. TES/Aura L2 Supplemental Product (TL2SUPS)

    Atmospheric Science Data Center

    2017-05-30

    ... OPeNDAP Access:  OPeNDAP Parameters:  Nitrogen Dioxide Nitric Acid Tropospheric Ozone Air Temperature Emissivity Methane Carbon Monoxide Nitrogen Oxides Water Vapor Ozone Surface Air Temperature Order ...

  18. Observation capability of Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from International Space Station

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko; Baron, Philippe; Mendrok, Jana; Tanaka, Takahiro; Urban, Joachim; Kita, Kazuyuki; Sato, Ryota; Murtah, Donal; Suzuki, Makoto; Shiotani, Masato

    2010-05-01

    A new generation of super-sensitive submillimeter-wave receivers, employing SIS (Superconductor-Insulator- Superconductor) technology, will provide new opportunities for precise remote sensing observation of minor constituents in the atmosphere. SMILES had been launched at 11/09/2009, and installed on the Japanese Experiment Module (JEM) in the International Space Station (ISS). SMILES is a collaboration project between NICT and JAXA. Mission objectives of SMILES are: i) Space demonstration of super-sensitive SIS mixer and 4-K mechanical cooler technology ii) Super-sensitive global observation of atmospheric minor constituents JEM/SMILES observes the atmospheric species such as O3, H35Cl, H37Cl, ClO, HO2, BrO, HOCl, HOBr, HNO3, CH3CN, Ozone isotope species, H2O, and Ice Cloud with the precisions in a few to several tens percents. Theoretical observation capability was studied with error analysis. The altitude region of observation is from the upper troposphere to the mesopouse. SMILES early results will be shown with global distributions (L3 data). The early comparison/validation of ozone performed with several satellite data, such as MLS, ACE, OSIRIS and Odin.SMR. The statistical analysis showed the differences were less of 5 percent between SMILES and other satellites data validated. This value was consistent with theoretical capability. This super technology may allow us to open new issues in atmospheric science.

  19. Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations

    NASA Astrophysics Data System (ADS)

    Huang, Min; Bowman, Kevin W.; Carmichael, Gregory R.; Lee, Meemong; Chai, Tianfeng; Spak, Scott N.; Henze, Daven K.; Darmenov, Anton S.; da Silva, Arlindo M.

    2015-04-01

    Western U.S. near-surface ozone (O3) concentrations are sensitive to transported background O3 from the eastern Pacific free troposphere, as well as U.S. anthropogenic and natural emissions. The current 75 ppbv U.S. O3 primary standard may be lowered soon, hence accurately estimating O3 source contributions, especially background O3 in this region has growing policy-relevant significance. In this study, we improve the modeled total and background O3, via repartitioning and redistributing the contributions from nonlocal and local anthropogenic/wildfires sources in a multi-scale satellite data assimilation system containing global Goddard Earth Observing System-Chemistry model (GEOS-Chem) and regional Sulfur Transport and dEposition Model (STEM). Focusing on NASA's ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) field campaign period in June-July 2008, we first demonstrate that the negative biases in GEOS-Chem free simulation in the eastern Pacific at 400-900 hPa are reduced via assimilating Aura-Tropospheric Emission Spectrometer (TES) O3 profiles. Using the TES-constrained boundary conditions, we then assimilated into STEM the tropospheric nitrogen dioxide (NO2) columns from Aura-Ozone Monitoring Instrument to indicate U.S. nitrogen oxides (NOx = NO2 + NO) emissions at 12 × 12 km2 grid scale. Improved model skills are indicated from cross validation against independent ARCTAS measurements. Leveraging Aura observations, we show anomalously high wildfire NOx emissions in this summer in Northern California and the Central Valley while lower anthropogenic emissions in multiple urban areas than those representing the year of 2005. We found strong spatial variability of the daily maximum 8 h average background O3 and its contribution to the modeled total O3, with the mean value of 48 ppbv ( 77% of the total).