NASA Astrophysics Data System (ADS)
Medvedev, Nickolay S.; Shaverina, Anastasiya V.; Tsygankova, Alphiya R.; Saprykin, Anatoly I.
2018-04-01
The paper presents а comparison of analytical performances of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for trace analysis of high purity bismuth and bismuth oxide. Matrix effects in the ICP-MS and ICP-AES methods were studied as a function of Bi concentration, ICP power and nebulizer flow rate. For ICP-MS the strong dependence of the matrix effects versus the atomic mass of analytes was observed. For ICP-AES the minimal matrix effects were achieved for spectral lines of analytes with low excitation potentials. The optimum degree of sample dilution providing minimum values of the limits of detection (LODs) was chosen. Both methods let us to reach LODs from n·10-7 to n·10-4 wt% for more than 50 trace elements. For most elements the LODs of ICP-MS were lower in comparison to ICP-AES. Validation of accuracy of the developed techniques was performed by "added-found" experiments and by comparison of the results of ICP-MS and ICP-AES analysis of high-purity bismuth oxide.
Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.
Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S
2008-01-01
The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.
Garbarino, J.R.; Jones, B.E.; Stein, G.P.
1985-01-01
In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.
NASA Astrophysics Data System (ADS)
Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi
1995-08-01
High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.
The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...
The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...
Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I
2016-08-01
The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W
2006-01-23
Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.
Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN
2010-08-03
A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho
2016-03-30
Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.
Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.
Boaventura, G R; Barbosa, A C; East, G A
1997-01-01
A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.
NASA Astrophysics Data System (ADS)
Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.
2004-12-01
Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).
Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.
Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj
2009-04-01
An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.
STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE
Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...
Analysis of metal-laden water via portable X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw
2018-06-01
A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.
Provenance establishment of coffee using solution ICP-MS and ICP-AES.
Valentin, Jenna L; Watling, R John
2013-11-01
Statistical interpretation of the concentrations of 59 elements, determined using solution based inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma emission spectroscopy (ICP-AES), was used to establish the provenance of coffee samples from 15 countries across five continents. Data confirmed that the harvest year, degree of ripeness and whether the coffees were green or roasted had little effect on the elemental composition of the coffees. The application of linear discriminant analysis and principal component analysis of the elemental concentrations permitted up to 96.9% correct classification of the coffee samples according to their continent of origin. When samples from each continent were considered separately, up to 100% correct classification of coffee samples into their countries, and plantations of origin was achieved. This research demonstrates the potential of using elemental composition, in combination with statistical classification methods, for accurate provenance establishment of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.
1984-01-01
An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.
Hoffman, Gerald L.
1996-01-01
A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.
[Convertibility of the data determined by ICP-AES and FAAS for soil available K and Na].
Zhang, Jian-min; Wang, Meng; Ge, Xiao-ping; Wu, Jian-zhi; Ge, Ying; Li, Shi-peng; Chang, Jie
2009-05-01
In recent years, inductively coupled plasma atomic emission spectrometry (ICP-AES) have been commonly used to determine the soil available K and Na with the extraction solution of HCl-H2SO4, while previous data of soil available K and Na were measured by flame atomic absorption spectrometry (FAAS) with the extraction solution of NH4OAc. In order to utilize previous data, quest for the convertibility of the data determined by ICP-AES and FAAS, and compare the data determined by both methods, the authors chose four types of soil to determine soil available K and Na by ICP-AES and FAAS, respectively. Four types of soil represent grit soil, clay, silt from river and silt from sea, respectively. Soil samples included four types of soil and these samples represent different soil nutrition. The authors analyzed the correlations of two kinds of measured data. The paired samples t-test proves that there was significantly positively correlation between these two methods. The correlation coefficient of the data between these two methods for measuring soil available K is 0.98. The results of soil available K determined by the two methods can be conversed through the formula, y = l.14x + 6.53 (R2 = 0.91, n=24, p < 0.001). As for Na, although there is a significantly positively correlation between these two methods, the slopes of single model of clay and grit soil were different from that of general model. And so the results determined by the two methods can be conversed through different formula according to the types of soil, that is, for clay: y = l.23x + 10.03; for grit soil: y = 3.12x - 23.03; for silt: y = 0.60x. In conclusion, the authors' results showed that previous data of available K and Na measured by FAAS with the extraction solution of NH4OAc were available. And these data were comparable to the data measured by ICP-AES through definite formula The authors' results also suggested that ICP-AES was preferable when many elements were measured at the same time. Under this condition, ICP-AES was economical, efficient and reliable.
Considerations in As analysis and speciation
Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, Ronald C.; Taylor, Howard E.
1998-01-01
This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.
The purpose of this SOP is to detail the operation and maintenance of an Instruments, SA Inc., Jobin-Yvon Model 70 (JY-70) inductively coupled plasma atomic emissions spectrometry (ICP-AES). This procedure was followed to ensure consistent data retrieval during the Arizona NHEXA...
Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy
2011-11-01
The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.
Final report on CCQM-K125: elements in infant formula
NASA Astrophysics Data System (ADS)
Merrick, J.; Saxby, D.; Dutra, E. S.; Sena, R. C.; Araújo, T. O.; Almeida, M. D.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Sandoval, S.; Wei, C.; Castillo, M. E. D.; Oster, C.; Fisicaro, P.; Rienitz, O.; Pape, C.; Schulz, U.; Jährling, R.; Görlitz, V.; Lampi, E.; Kakoulides, E.; Sin, D. W. M.; Yip, Y. C.; Tsoi, Y. T.; Zhu, Y.; Okumu, T. O.; Yim, Y. H.; Heo, S. W.; Han, M.; Lim, Y.; Osuna, M. A.; Regalado, L.; Uribe, C.; Buzoianu, M. M.; Duta, S.; Konopelko, L.; Krylov, A.; Shin, R.; Linsky, M.; Botha, A.; Magnusson, B.; Haraldsson, C.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Coskun, F. G.; Tunc, M.; Entwisle, J.; O'Reilly, J.; Hill, S.; Goenaga-Infante, H.; Winchester, M.; Rabb, S. A.; Pérez, R.
2017-01-01
CCQM-K125 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (K, Cu and I) in infant formula. Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratory. In CCQM-K125, 25 institutes submitted the results for potassium, 24 institutes submitted the results for copper and 8 institutes submitted the results for iodine. For examination of potassium and copper, most of the participants used microwave-assisted acid digestion methods for sample dissolution. A variety of instrumental techniques including inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectrometry (AAS), flame atomic emission spectrometry (FAES) and microwave plasma atomic emission spectroscopy (MP-AES) were employed by the participants for determination. For analysis of iodine, most of the participants used alkaline extraction methods for sample preparation. ICP-MS and ID-ICP-MS were used by the participants for the determination. Generally, the participants' results of CCQM-K125 were found consistent for all measurands according to their equivalence statements. Except with some extreme values, most of the participants obtained the values of di/U(di) within +/- 1 for the measurands. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M
2007-09-01
Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.
The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis
NASA Astrophysics Data System (ADS)
Giorgis, Ilaria; Bonetto, Sabrina; Giustetto, Roberto; Lawane, Abdou; Pantet, Anne; Rossetti, Piergiorgio; Thomassin, Jean-Hugues; Vinai, Raffaele
2014-02-01
This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.
Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc
NASA Astrophysics Data System (ADS)
Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.
2007-09-01
The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.
The purpose of this SOP is to detail the operation and maintenance of an Instruments, SA Inc., Jobin-Yvon Model 70 (JY-70) inductively coupled plasma atomic emissions spectrometry (ICP-AES). This procedure was followed to ensure consistent data retrieval during the Arizona NHEXA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallimore, David L.
2012-06-13
The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less
Metal characterization of white hawthorn organs and infusions.
Juranović Cindrić, Iva; Zeiner, Michaela; Konanov, Darija Mihajlov; Stingeder, Gerhard
2015-02-18
Hawthorn is one of the most commonly used European and North American phytopharmaceuticals. Because there is no information on metals in seeds, and only rare data for leaves and flowers, the aim of the present study was elemental analysis of the white hawthorn (Crataegus monogyna) by inductively coupled plasma emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) after digestion in a microwave-assisted system. The limits of detection are below 2 μg/g for ICP-AES and 0.5 μg/g for ICP-MS. Hawthorn leaves and flowers contain essential elements at concentrations (mean values, RSD 2-8%) in mg/g of Ca, 1-4; K, 4-5; Mg, 1-2; and Na, <0.2); and at μg/g levels of Ba, 1-10; Co, <0.16; Cr, <1.4; Cu, 0.6-7; Fe, 1-37; Li, <0.5; Mn, 1-13; Mo, <0.17; Ni, <0.6; Sr, 0.2-2; and Zn, 1-31. Toxic elements were found in low quantities: As (<0.04), Cd (0.04-0.1), and Pb (0.1-2). Up to 10% of the metals is extracted into the infusions. The analyzed plant parts and infusions contain essential elements justifying its use as a medicinal plant, whereas the low quantities of harmful elements will not pose any risk to humans when consumed.
ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.
Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard
2012-12-15
The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
Menoutis, James; Parisi, Angela; Verma, Natasha
2018-04-15
In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.
Eppinger, Robert G.; Giles, Stuart A.; Lee, Gregory K.; Smith, Steven M.
2015-01-01
The geochemical sample media collected by the BGS and BRGM under the PRISM-I contract included rock, sediment, regolith, and soil samples. Details on sample collection procedures are in unpublished reports available from PRISM. These samples were analyzed under PRISM-I contract by ALS Chemex Laboratories using various combinations of modern methods including fire-assay inductively coupled plasma-atomic emission spectrometry (ICPAES) and ICP-mass spectrometry (ICP-MS) for Au; multi-acid digestion, atomic absorption spectroscopy (AAS) for Ag and As; 47-element, four-acid digestion, ICP-MS; 27-element, fouracid digestion, ICP-AES; special four-acid ICP-MS techniques for Pt and B; fire assay followed by ICP-AES for platinum-group elements; whole-rock analyses by wavelength dispersive X-ray fluorescence (XRF); special techniques for loss-on-ignition, inorganic C, and total S; and special ore-grade AAS techniques for Ag, Au, Cu, Ni, Pb, and Zn. Around 30,000 samples were analyzed by at least one technique. However, it is stressed here that: (1) there was no common sample medium collected at all sites, likely due to the vast geological and geomorphologic differences across the country, (2) the sample site distribution is very irregular, likely due in part to access constraints and sand dune cover, and (3) there was no common across-the-board trace element analytical package used for all samples. These three aspects fundamentally affect the ability to produce country-wide geochemical maps of Mauritania. Gold (Au), silver (Ag), and arsenic (As) were the three elements that were most commonly analyzed.
Garbarino, John R.
2000-01-01
Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.
Vučković, Ivana; Špirić, Zdravko; Stafilov, Trajče; Kušan, Vladimir; Bačeva, Katerina
2013-10-01
Moss samples were collected from 121 sampling sites all over Croatia during the summer and autumn of 2010. They were totally digested by using microwave digestion system and analysed by using atomic emission spectrometry with inductively coupled plasma (ICP-AES). Descriptive statistics and maps of distribution were made. The data obtained in this study were compared with those from the study in 2006 and additionally with the data obtained in the similar studies in neighbouring countries and Norway as pristine area. The median value of nickel is 3.16 mg kg(-1) and the content varies from 1.04 to 14.66 mg kg(-1). The content of vanadium ranges between 0.23 and 37.26 mg kg(-1) with the median value of 2.55 mg kg(-1). High contents of these elements are found in the vicinity of Rijeka, Zagreb and Sisak as a result of their emission from oil refinery, thermal power plant and industrial processes.
Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.
Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K
1993-01-01
Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.
Micronutrient Composition of 35 Food Fishes from India and Their Significance in Human Nutrition.
Mohanty, Bimal P; Sankar, T V; Ganguly, Satabdi; Mahanty, Arabinda; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Dayal, J Syama; Mathew, Suseela; Asha, K K; Mitra, Tandrima; Karunakaran, D; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N
2016-12-01
The micronutrients (vitamins and minerals) are required in small amounts but are essential for health, development, and growth. Micronutrient deficiencies, which affect over two billion people around the globe, are the leading cause of many ailments including mental retardation, preventable blindness, and death during childbirth. Fish is an important dietary source of micronutrients and plays important role in human nutrition. In the present investigation, micronutrient composition of 35 food fishes (includes both finfishes and shellfishes) was investigated from varying aquatic habitats. Macrominerals (Na, K, Ca, Mg) and trace elements (Fe, Cu, Zn, Mn, Se) were determined by either atomic absorption spectroscopy (AAS) or inductively coupled plasma mass spectrometry (ICP-MS)/atomic emission spectrometry (ICP-AES). Phosphorus content was determined either spectrophotometrically or by ICP-AES. Fat-soluble vitamins (A, D, E, K) were analyzed by high-performance liquid chromatography (HPLC). The analysis showed that, in general, the marine fishes were rich in sodium and potassium; small indigenous fishes (SIFs) in calcium, iron, and manganese; coldwater fishes in selenium; and the brackishwater fishes in phosphorous. The marine fishes Sardinella longiceps and Epinephelus spp. and the SIFs were rich in all fat-soluble vitamins. All these recommendations were made according to the potential contribution (daily value %) of the species to the recommended daily allowance (RDA). Information on the micronutrients generated would enhance the utility of fish in both community and clinical nutrition.
Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swafford, A.M.; Keller, J.M.
1993-03-17
Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756
Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.
Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh
2005-09-01
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.
Uemoto, Michihisa; Makino, Masanori; Ota, Yuji; Sakaguchi, Hiromi; Shimizu, Yukari; Sato, Kazuhiro
2018-01-01
Minor and trace metals in aluminum and aluminum alloys have been determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) as an interlaboratory testing toward standardization. The trueness of the measured data was successfully investigated to improve the analytical protocols, using certified reference materials of aluminum. Their precision could also be evaluated, feasible to estimate the uncertainties separately. The accuracy (trueness and precision) of the data were finally in good agreement with the certified values and assigned uncertainties. Repeated measurements of aluminum solutions with different concentrations of the analytes revealed the relative standard deviations of the measurements with concentrations, thus enabling their limits of quantitation. They differed separately and also showed slightly higher values with an aluminum matrix than those without one. In addition, the upper limit of the detectable concentration of silicon with simple acid digestion was estimated to be 0.03 % in the mass fraction.
Late-paleozoic granitoid complexes of the southwest Primorye: geochemistry, age and typification
NASA Astrophysics Data System (ADS)
Veldemar, A. A.; Vovna, G. M.
2017-12-01
The article presents the first data of geochemical studies of the Late Permian granitoids of the Gamov Complex located in the southwestern part of the Voznesenskiy terrane. The purpose of the study was to identify the main geochemical features of the Late Paleozoic granitoids of the southwestern Primorye, which in the future will allow us to draw conclusions about the petrogenesis of these granitoids. Elemental analysis of 20 samples was carried out, conducted statistical and mathematical processing of the data, have been constructed representative diagrams and graphs for this group of rocks. Elemental analysis was performed by atomic emission (ICP-AES) and inductively-coupled-plasma (ICP-MS) mass spectrometry, at the Analytical Center FEGI FEB RAS.
Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav
2003-12-01
The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.
Hopkins, D.M.
1991-01-01
Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a large suite of metals is simultaneously determined with acceptable analytical accuracy and precision. The proposed analytical technique can provide direct evidence of mineralization and is useful in the exploration for unknown ore deposits. ?? 1991.
Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan
2009-10-01
Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.
NASA Astrophysics Data System (ADS)
Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong
2017-04-01
In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.
Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong
2017-04-15
In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yu, Jie; Zhang, Xiaomin; Lu, Quanfang; Sun, Duixiong; Wang, Xing; Zhu, Shuwen; Zhang, Zhichao; Yang, Wu
2018-07-01
In this paper, a novel liquid cathode glow discharge (LCGD) was established as a micro-plasma excitation source of atomic emission spectrometry (AES) for simultaneous detection of trace Cu, Co and Ni in aqueous solution. In order to evaluate the analytical performance, the operating parameters such as discharge voltage, supporting electrolyte, solution pH and flow rate were thoroughly investigated. The results showed that the optimal conditions are 640 V discharge voltage, pH = 1 HNO3 as supporting electrolyte and 4.5 mL min-1 flow rate. The R2 of Cu, Co and Ni are 0.9977, 0.9991 and 0.9977, respectively. The relative standard deviation (RSD) is 1.4% for Cu, 3.2% for Co and 0.8% for Ni. Under this condition, the power of LCGD is below 55 W and the plasma is quite stable. The limits of detections (LODs) for Cu, Co and Ni are 0.380, 0.080, and 0.740 mg L-1, respectively, which are basically consistent with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). Compared with ICP-AES, the LCGD-AES has small size, low power consumption, no inert gas requirement and low cost in set-up. It may be developed as a portable instrument for in-site and real-time monitoring of metals in solution samples with further improvement.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
[Determination of 24 metal elements and their compounds in air of workplace by ICP-AES].
Wang, Xiang; Qiu, Jianguo; Zhao, Zhonglin; Guo, Ying
2014-06-01
To establish a method for determination of the levels of 24 metal elements and their compounds in the air of workplace by inductively coupled plasma-atomic emission spectroscopy (ICP- AES). Sampling filters were digested by microwave, and diluted to 25 ml. Twenty-four elements (Mg, Ni, K, Mo, Zn, Ca, Ba, Pb, Mn, Cd, Cr, Co, Cu, Sr, Bi, Tl, Sn, Li, Sb, Zr, In, V, Y, and Be) were simultaneously measured by ICP-AES. The detection limits for 24 elements were 0.001∼0.029 mg/L; liner correlation coefficient r values were all equal to or above 0.9994; the relative standard derivations were less than 5%; the recovery rates were 91.2%∼103.9%; the degradation rates in 7 days were less than 9.7%. ICP-AES technique is a simple, rapid, accurate, and reliable method, which can be used to measure 24 metal elements and their compounds in the air of workplace.
Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.
2010-01-01
During the 1960s through the 1980s, the U.S. Geological Survey (USGS) conducted reconnaissance geochemical surveys of the drainage basins throughout most of the Anchorage, Bering Glacier, Big Delta, Gulkana, Healy, McCarthy, Mount Hayes, Nabesna, Talkeetna Mountains, and Valdez 1:250,000-scale quadrangles in Alaska as part of the Alaska Mineral Resource Assessment Program (AMRAP). These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources on public and other lands, and provide data that may be used to determine regional-scale element baselines. This report provides new data for 366 of the previously collected stream-sediment samples. These samples were selected for reanalysis because recently developed analytical methods can detect additional elements of interest and have lower detection limits than the methods used when these samples were originally analyzed. These samples were all analyzed for arsenic by hydride generation atomic absorption spectrometry (HGAAS), for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation (FA/ICP-MS), and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry (ICP-AES-MS) after sodium peroxide sinter at 450 degrees Celsius.
Li, Lin; Zheng, Sihao; Yang, Qingzhen; Chen, Shilin; Huang, Linfang
2016-04-12
"Daodi herb" enjoys a good reputation for its quality and clinical effects. As one of the most popular daodi herbs, Astragalus membranaceus (Fisch.) Bge var. mongholicus (Bge.) Hsiao (A. membranaceus) is popularly used for its anti-oxidant, anti-inflammatory and immune-enhancing properties. In this study, we used inductively coupled plasma atomic emission spectrometry (ICP-AES) technique to investigate the inorganic elements contents in A. mongholicu and its soil samples from daodi area (Shanxi) and non-daodi areas (Inner Mongolia and Gansu). A total of 21 inorganic elements (Pb, Cd, As, Hg, Cu, P, K, Zn, Mn, Ca, Mg, Fe, Se, B, Al, Na, Cr, Ni, Ba, Ti and Sr) were simultaneously determined. Principal component analysis (PCA) was performed to differentiate A. mongholicu and soil samples from the three main producing areas. It was found that the inorganic element characteristics as well as the uptake and accumulation behavior of the three kinds of samples were significantly different. The high contents of Fe, B, Al, Na, Cr and Ni could be used as a standard in the elements fingerprint to identify daodi and non-daodi A. Mongholicus. As the main effective compounds were closely related to the pharmacodynamics activities, the inter-relationships between selected elements and components could reflect that the quality of A. Mongholicus from Shanxi were superior to others to a certain degree. This finding highlighted the usefulness of ICP-AES elemental analysis and evidenced that the inorganic element profile can be employed to evaluate the genuineness of A. mongholicus.
Ramamurthy, N; Thillaivelavan, K
2005-01-01
In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.
NASA Astrophysics Data System (ADS)
Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.
2000-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.
Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J
2011-07-01
Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.
Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique
2016-02-01
The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.
Garbarino, John R.; Struzeski, Tedmund M.
1998-01-01
Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.
Helmeczi, Erick; Wang, Yong; Brindle, Ian D
2016-11-01
Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis and study of the synthetic hydroxyapatite doped with aluminum
NASA Astrophysics Data System (ADS)
Goldberg, M.; Smirnov, V.; Antonova, O.; Konovalov, A.; Fomina, A.; Komlev, V. S.; Barinov, S.; Rodionov, A.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with aluminium (Al) ions in concentrations 0 and 20 mol. % were synthesized by the precipitation method from the nitrate solutions and investigated by atomic emission spectrometry with inductively coupled plasma (AES-ICP), X-ray diffraction (XRD), scanning electron microscopy (SEM), gas absorption and conventional electron paramagnetic resonance (EPR). It is shown that for the chosen synthesis route an introduction of Al provokes formation of highly anisotropic phase, leads to the decrease in the crystallinity while no significant changes in the EPR spectra of the radiation-induced defects is observed. The results could be used for understanding the structural transformations with Al doping of the mineralized materials for geological and biomedical applications.
Kubota, K; Wagatsuma, K
2001-01-02
A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated.
Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts.
Tan, Man Minh; Cui, Sheng; Yoo, Jonghyun; Han, Song-Hee; Ham, Kyung-Sik; Nam, Sang-Ho; Lee, Yonghoon
2012-03-01
We have investigated the feasibility of laser-induced breakdown spectroscopy (LIBS) as a fast, reliable classification tool for sea salts. For 11 kinds of sea salts, potassium (K), magnesium (Mg), calcium (Ca), and aluminum (Al), concentrations were measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the LIBS spectra were recorded in the narrow wavelength region between 760 and 800 nm where K (I), Mg (I), Ca (II), Al (I), and cyanide (CN) band emissions are observed. The ICP-AES measurements revealed that the K, Mg, Ca, and Al concentrations varied significantly with the provenance of each salt. The relative intensities of the K (I), Mg (I), Ca (II), and Al (I) peaks observed in the LIBS spectra are consistent with the results using ICP-AES. The principal component analysis of the LIBS spectra provided the score plot with quite a high degree of clustering. This indicates that classification of sea salts by chemometric analysis of LIBS spectra is very promising. Classification models were developed by partial least squares discriminant analysis (PLS-DA) and evaluated. In addition, the Al (I) peaks enabled us to discriminate between different production methods of the salts. © 2012 Society for Applied Spectroscopy
X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts
NASA Astrophysics Data System (ADS)
Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.
2017-09-01
Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.
Essential and toxic elements in meat of wild birds.
Roselli, Carla; Desideri, Donatella; Meli, Maria Assunta; Fagiolino, Ivan; Feduzi, Laura
2016-01-01
Essential and toxic elements were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES), mass spectrometry (MS), and atomic absorption (AS) in meat of 14 migratory birds originating from central and northern Europe to provide baseline data regarding game meat consumed in central Italy. In all samples analyzed, cobalt (Co) and chromium (Cr) (total) levels were <0.326 mg/kg ww . For nonessential or toxic elements, arsenic (As), barium (Ba), cadmium (Cd), stannous (Sn), thallium (Tl), tellurium (Te), titanium (Ti), cerium (Ce), lantanium (La), and uranium (U) concentrations were <0.326 mg/kg ww, thorium (Th) <1.63 mg/kg ww , and mercury (Hg) <0.0163 mg/kg ww . When detectable, lead (Pb) concentrations always exceeded maximal admissible levels for metal (0.1 mg/kg ww ) established by the European Commission for meat. These findings indicate that elevated Pb concentrations in game ingested by humans may be a cause for concern.
Ohata, Masaki
2016-01-01
The spectroscopic characteristics and analytical capability of argon-nitrogen (Ar-N2) inductively coupled plasma (ICP) in axially viewing optical emission spectrometry (OES) were examined and figures of merit were determined in the present study. The spectroscopic characteristics such as the emission intensity profile and the excitation temperature observed from the analytical zone of Ar-N2 ICP in axially viewing ICPOES, in order to elucidate the enhancement of the emission intensity of elements obtained in our previous study, were evaluated and compared to those of the standard ICP. The background and emission intensities of elements as well as their excitation behavior for both atom and ion lines were also examined. As results, a narrower emission intensity profile and an increased excitation temperature as well as enhancements for both background and emission intensities of elements, which could be due to the ICP shrunken as well as the enhancement of the interaction between the central channel of the ICP and samples introduced, were observed for Ar-N2 ICP in axially viewing OES. In addition, the elements with relatively higher excitation and ionization energies such as As, Bi, Cd, Ni, P, and Zn revealed larger enhancements of the emission intensities as well as improved limits of detection (LODs), which were also attributed to the enhanced interaction between Ar-N2 ICP and the samples. Since the Ar-N2 ICP could be obtained easily only by the addition of a small amount of N2 gas to the Ar plasma gas of the standard ICP and no optimization on the alignment between Ar-N2 ICP and the spectrometer in commercially available ICPOES instruments was needed, it could be utilized as simple and optional excitation and ionization sources in axially viewing ICPOES.
Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.
Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel
2014-08-01
As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.
Rehan, I; Gondal, M A; Rehan, K
2018-04-20
Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.
The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques.
Jarzynska, Grazyna; Falandysz, Jerzy
2011-01-01
This research presents an example of an excellent applied study on analytical problems due to hazardous mercury determination in environmental materials and validity of published results on content of this element in wild growing mushrooms. The total mercury content has been analyzed in a several species of wild-grown mushrooms and some herbal origin certified reference materials, using two analytical methods. One method was commonly known and well validated the cold-vapour atomic absorption spectroscopy (CV-AAS) after a direct sample pyrolysis coupled to the gold wool trap, which was a reference method. A second method was a procedure that involved a final mercury measurement using the inductively-coupled plasma atomic emission spectroscopy (ICP-AES) at λ 194.163 nm, which was used by some authors to report on a high mercury content of a large sets of wild-grown mushrooms. We found that the method using the ICP-AES at λ 194.163 nm gave inaccurate and imprecise results. The results of this study imply that because of unsuitability of total mercury determination using the ICP-AES at λ 194.163 nm, the reports on great concentrations of this metal in a large sets of wild-grown mushrooms, when examined using this method, have to be studied with caution, since data are highly biased.
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Arsenic Atomic Absorption... inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. 2 Barium Inductively Coupled Plasma 3120 B Atomic Absorption; Direct 3111 D Atomic Absorption; Furnace 3113 B 3113 B-04 Axially...
Sooriyaarachchi, Melani; Gailer, Jürgen
2010-08-28
The iron chelation therapy drugs desferrioxamine B (DFO) and deferiprone (DFP) are used to treat iron overload patients, but not much is known about their adverse effects on other essential metals in vivo. After the addition of a clinically relevant dose of DFP or an equimolar dose of DFO to human plasma in vitro, the mixtures were analyzed by size exclusion chromatography (SEC) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES). Simultaneous detection of the emission lines of copper, iron and zinc allowed the visualization of changes that these drugs exerted at the metalloprotein level. After the addition of DFP, a <10 kDa novel Fe-peak was detected and identified as (DFP)(3)Fe, whereas DFO resulted in the elution of a much smaller amount of Fe in this elution range. In fact, DFP was approximately 8-times more efficient than DFO regarding the removal of Fe from plasma proteins. The addition of both iron chelators also resulted in the elution of a <10 kDa novel Zn-peak. DFP abstracted twice as much Zn from plasma proteins compared to DFO. The identification of one of these peaks as (DFP)(2)Zn establishes a feasible biomolecular basis for the etiology of Zn-deficiency in patients that undergo long-term treatment with these drugs. Our results demonstrate that the analysis of plasma by SEC-ICP-AES can simultaneously provide insight into the efficacy of chelation therapy drugs and their adverse health effects at the metalloprotein level. Thus, SEC-ICP-AES emerges as a useful analytical tool to visualize health-relevant bioinorganic chemistry-related reactions of medicinal drugs in blood plasma in vitro.
Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Kerbal, Abdelali; Kajjout, Mohamed; Doumenq, Pierre; De Carvalho, Maria Luisa
2015-08-01
The most critical steps during the conservation-restoration treatment applied in Moroccan libraries are the deacidification using immersion in a saturated aqueous calcium hydroxide (Ca(OH)2) solution and the consolidation of degraded manuscripts using Japanese paper. The present study aims to assess the efficiency of this restoration method using a multi-analytical approach. For this purpose, three ancient Arabic Moroccan manuscript papers dating back to the 16th, 17th, and 18th centuries were investigated to characterize the paper support and make a comparative study between pre-restoration and post-restoration states. Three structural and molecular characterization techniques including solid-state nuclear magnetic resonance spectroscopy on (13)C with cross-polarization and magic-angle spinning nuclear magnetic resonance ((13)C CP-MAS NMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and X-ray diffraction (XRD) were used to elucidate the cellulose main features, to identify the inorganic composition of the papers, and to study the crystallinity of the samples. Inductively coupled plasma atomic emission spectrometry (ICP-AES) allowed us to obtain a qualitative and quantitative characterization of the mineral fillers used in the manufacturing of the papers. Scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) ascertained the state of conservation of the different papers and helped us to study the elemental composition of the samples. After restoration, it was shown that the deacidification improved the stability of papers by providing an important alkaline buffer, as demonstrated using FT-IR and energy dispersive spectrometry (EDS) results. However, XRD and ICP-AES did not confirm the pertinence of the treatment for all samples because of the unequal distribution of Ca on the paper surface during the restoration. The consolidation process was studied using SEM analysis; its effectiveness in restoring torn areas was found to be significant.
Characterization of brines and evaporites of Lake Katwe, Uganda
NASA Astrophysics Data System (ADS)
Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan
2014-03-01
Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.
Tank 40 Final SB7b Chemical Characterization Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.
2012-11-06
A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thoroughmore » mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method.« less
Preparation And Analysis Of Specimens Of Ablative Materials
NASA Technical Reports Server (NTRS)
Solomon, William C.
1994-01-01
Procedure for chemical analysis of specimens of silicone-based ablative thermal-insulation materials SLA-561 and MA25 involves acid digestion of specimens to prepare them for analysis by inductively-coupled-plasma/atomic-emission spectroscopy (ICP/AES). In comparison with atomic-absorption spectroscopy (AAS), ICP/AES is faster and more accurate than AAS. Results of analyses stored in data base, used to trace variations in concentrations of chemical elements in materials during long-term storage, and used in timely manner in investigations of failures. Acid-digestion portion of procedure applied to other thermal-insulation materials containing room-temperature-vulcanizing silicones and enables instrumental analysis of these materials.
Nicolás, Paula; Lassalle, Verónica L; Ferreira, María L
2017-02-01
The aim of this manuscript was to study the application of a new method of protein quantification in Candida antarctica lipase B commercial solutions. Error sources associated to the traditional Bradford technique were demonstrated. Eight biocatalysts based on C. antarctica lipase B (CALB) immobilized onto magnetite nanoparticles were used. Magnetite nanoparticles were coated with chitosan (CHIT) and modified with glutaraldehyde (GLUT) and aminopropyltriethoxysilane (APTS). Later, CALB was adsorbed on the modified support. The proposed novel protein quantification method included the determination of sulfur (from protein in CALB solution) by means of Atomic Emission by Inductive Coupling Plasma (AE-ICP). Four different protocols were applied combining AE-ICP and classical Bradford assays, besides Carbon, Hydrogen and Nitrogen (CHN) analysis. The calculated error in protein content using the "classic" Bradford method with bovine serum albumin as standard ranged from 400 to 1200% when protein in CALB solution was quantified. These errors were calculated considering as "true protein content values" the results of the amount of immobilized protein obtained with the improved method. The optimum quantification procedure involved the combination of Bradford method, ICP and CHN analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Soares Neto, Julino Assunção Rodrigues
2015-01-01
Our study analyzed 152 samples of alcoholic beverages collected from the states of São Paulo and Minas Gerais, Brazil, using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma atomic emission spectrometry (ICP-AES). The methanol content varied from 20 to 180 ppm in 28 samples, and the limit of the accepted level of 200 ppm was exceeded in only one sample. High content of cyanide derivatives and ethyl carbamate, above the accepted level of 150 ppb, was observed in 109 samples. Carbonyl compounds were also observed in 111 samples, showing hydroxy 2-propanone, 4-methyl-4-hepten-3-one, furfural, and 2-hydroxyethylcarbamate as main constituents. Copper was found at concentrations above 5 ppm in 26 samples; the maximum value observed was 28 ppm. This work evaluated the human health risk associated with the poor quality of suspected unrecorded alcohols beverages. PMID:26495155
Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal
NASA Astrophysics Data System (ADS)
Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng
2017-09-01
A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Mei-Hsiu; Chen, Ting-Chien; Ma, Sen-Yi
2007-10-01
A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 degrees C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards.
Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and flammable (C2H2) gases, cylinder handling and the running costs of equipment are low. Detection limits of elements for MP-AES lays between the AAS and ICP ones. The objective of this study was to compare the results of soil analysis using two multielemental analytical methods - ICP-OES and MP-AES. In the experiment, different soil types with various texture, content of organic matter and pH were used. For the study soil samples of Albeluvisols, Leptosols, Cambisols, Regosols and Histosols were used . The plant available nutrients were estimated by Mehlich 3 extraction. The ICP-OES analysis were provided in the Estonian Agricultural Research Centre and MP-AES analysis in department of Soil Science and Agrochemistry at Estonian University of Life Sciences. The detection limits and limits of quantification of Ca, K, Mg and P in extracts are calculated and reported.
Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric
2015-07-23
Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bowden, John A.; Nocito, Brian A.; Lowers, Russell H.; Guillette, Louis J., Jr.; Williams, Kathryn R.; Young, Vaneica Y.
2012-01-01
This experiment enlightens students on the use of environmental indicators and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and demonstrates the ability of these monitoring tools to measure metal deposition in environmental samples (both as a result of lab-simulated and real events). In this two-part study, the initial…
Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert
2016-09-06
Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (<5 pm) and the isotope shift of the emission lines of both nuclides, (234)U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass spectrometric approach and thus effectively adds to the quality assurance of (234)U/(238)Pu age dates.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan
Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.
INEL BNCT Research Program annual report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1993-05-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potentialmore » toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.« less
Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.
1987-01-01
Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.
Brenner, I.B.; Taylor, Howard E.
1992-01-01
Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matusiewicz, H.; Barnes, R.M.
1985-02-01
A method utilizing pressure decomposition to minimize sample pretreatment is described for the inductively coupled plasma atomic emission spectrometric analysis of red spruce and sugar maple. Cores collected from trees growing on Camels Hump Mountain, Vermont, were divided into decade increments in order to monitor the temporal changes in concentrations of 21 elements. Dried wood samples were decomposed in a bomb made of Teflon with 50% hydrogen peroxide heated in an oven at 125/sup 0/C for 4 h. The digestion permitted use of aqueous standards and minimized any potential matrix effects. The element concentrations were obtained sequentially by electrothermal vaporizationmore » ICP-AES using 5 ..mu..L sample aliquots. The method precision varied between 3 and 12%. Elements forming oxyanions (Al, As, Fe, Ge, Mn, Si, V) were found at elevated concentrations during the most recent three decades, while other metal (e.g., Mg, Zn) concentrations were unchanged or decreased. 45 references, 6 tables, 1 figure.« less
Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR
NASA Astrophysics Data System (ADS)
Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.
Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.
Tank 40 Final Sludge Batch 8 Chemical Characterization Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, Christopher J.
2013-09-19
A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into amore » 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.« less
Tank 40 final sludge batch 9 chemical and fissile radionuclide characterization results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Kubilius, W. P.; Pareizs, J. M.
A sample of Sludge Batch (SB) 9 was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS)i. The SB9 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is fed to the Defense Waste Processing Facility (DWPF) as SB9. At the Savannah River National Laboratory (SRNL), the 3-L Tank 40 SB9 sample was transferred from the shippingmore » container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 547 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO3/HCl (aqua regiaii) in sealed Teflon® vessels and four with NaOH/Na2O2 (alkali or peroxide fusioniii) using Zr crucibles. Three Analytical Reference Glass – 1iv (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma – mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB9 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the SB9 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.v« less
Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi
2015-01-01
With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.
Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique
2014-01-01
Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.
Kilburn, James E.; Smith, David B.; Closs, L. Graham; Smith, Steven M.
2007-01-01
Introduction This report contains major- and trace-element concentration data for soil samples collected in 1972 and 2005 from the Denver, Colorado, metropolitan area. A total of 405 sites were sampled in the 1972 study from an area approximately bounded by the suburbs of Golden, Thornton, Aurora, and Littleton to the west, north, east, and south, respectively. This data set included 34 duplicate samples collected in the immediate vicinity of the primary sample. In 2005, a total of 464 sites together with 34 duplicates were sampled from the same approximate localities sampled in 1972 as well as additional sites in east Aurora and the area surrounding the Rocky Mountain Arsenal. Sample density for both surveys was on the order of 1 site per square mile. At each site, sample material was collected from a depth of 0-5 inches. Each sample collected was analyzed for near-total major- and trace-element composition by the following methods: (1) inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; and (2) hydride generation-atomic absorption spectrometry for selenium. The samples collected in 2005 were also analyzed by a cold vapor-atomic absorption method for mercury. This report makes available the analytical results of these studies.
Growth and characterization of LiInSe2 single crystals
NASA Astrophysics Data System (ADS)
Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen
2015-04-01
Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.
Sumida, Takashi; Yamashita, Minoru; Okazaki, Yuka; Kawakita, Hirohisa; Fukutomi, Takashi
2012-01-01
A novel cellulose-based resin functionalized with polyallylamine was synthesized. It was applied to the collection of phosphate in environmental water samples, followed by concentration determination using an inductively coupled plasma-atomic emission spectrometer (ICP/AES). The synthesized resin, cellulose-glycidylmethacrylate-polyallylamine (CGP), showed good adsorption behavior toward trace amounts of phosphate over a wide pH range. The adsorbed-analyte can be easily eluted using 0.5 M hydrochloric acid; its recoveries was found to be 80 - 100%. The CGP resin synthesized was packed in a mini-column, which was then installed in a computer-controlled auto-pretreatment system for on-line collection/concentration and determination of trace phosphate by ICP/AES. The limit of detection for phosphate was found to be 0.6 µg P l(-1). The sample volumes were only 5 ml and the total analysis time was about 4 min. The developed method with CGP resin was successfully applied to the determination of phosphate in river water and tap water samples with satisfactory results. The recovery test showed that common matrices that may exist in environmental waters did not interfere with the determination of phosphate.
Shimizu, Hideaki; Akamatsu, Fumikazu; Kamada, Aya; Koyama, Kazuya; Okuda, Masaki; Fukuda, Hisashi; Iwashita, Kazuhiro; Goto-Yamamoto, Nami
2018-04-01
Differences in mineral concentrations were examined among three types of wine in the Japanese market place: Japan wine, imported wine, and domestically produced wine mainly from foreign ingredients (DWF), where Japan wine has been recently defined by the National Tax Agency as domestically produced wine from grapes cultivated in Japan. The main objective of this study was to examine the possibility of controlling the authenticity of Japan wine. The concentrations of 18 minerals (Li, B, Na, Mg, Si, P, S, K, Ca, Mn, Co, Ni, Ga, Rb, Sr, Mo, Ba, and Pb) in 214 wine samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and ICP-atomic emission spectrometry (ICP-AES). In general, Japan wine had a higher concentration of potassium and lower concentrations of eight elements (Li, B, Na, Si, S, Co, Sr, and Pb) as compared with the other two groups of wine. Linear discriminant analysis (LDA) models based on concentrations of the 18 minerals facilitated the identification of three wine groups: Japan wine, imported wine, and DWF with a 91.1% classification score and 87.9% prediction score. In addition, an LDA model for discrimination of wine from four domestic geographic origins (Yamanashi, Nagano, Hokkaido, and Yamagata Prefectures) using 18 elements gave a classification score of 93.1% and a prediction score of 76.4%. In summary, we have shown that an LDA model based on mineral concentrations is useful for distinguishing Japan wine from other wine groups, and can contribute to classification of the four main domestic wine-producing regions of Japan. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ball, J.W.; Nordstrom, D. Kirk
1994-01-01
Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of the remaining elements, Ba, Be, Ca, Cr, Mg, Mn, Sr, and Zn have roughly equivalent accuracy, precision, and detection limit by ICP and DCP. Cobalt and Ni were determined to be better analyzed by ICP, because of lower detection limits; B, Cu, Mo, and Si were determined to be better analyzed by DCP, because of relative freedom from interferences. The determination oral by DCP was far more sensitive, owing to the use of a more sensitive wavelength, compared with the ICP. However, there is a very serious potential interference from a strong Ca emission line near the 396.15 nanometer DCP wavelength. Thus, there is no clear choice between the plasma techniques tested, for the determination oral. The ICP and DCP detection limits are typically between 0.001 and 0.5 milligrams per liter in acid mine waters. For those metals best analyzed by ICP and/or DCP, but below these limits, GFAAS is the method of choice because of its relatively greater sensitivity and specificity. Six of the elements were not determined by DCP, ICP or Zeeman-corrected GFAAS, and are not discussed in this report. These elements are: Bi, Fe(11), Li, Sb, Se, and TI.
Mn-oxidizing Bacteria in Oak Ridge, TN and the Potential for Mercury Remediation
NASA Astrophysics Data System (ADS)
Wright, K. L.; McNeal, K. S.; Han, F. X.
2012-12-01
East Fork Poplar Creek (EFPC) in Oak Ridge, TN was highly contaminated with elemental mercury in the 1950 and 1960. The area is still experiencing the effects of mercury contamination, and researchers are searching for ways to remediate the EFPC. One possible mechanism for bioremediation is the use of biogenic Mn oxides to remove heavy metals from water systems. Six native Pseudomonas bacteria species were isolated from the EFPC in order to examine biogenic Mn oxides production and bioremediation of Oak Ridge slurries. To investigate the biochemical interactions of Pseudomonas and the native microbial communities with Hg, Mn, Fe, S, six different slurry treatment groups were compared using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and cold vapor atomic absorption spectrometry (CVAAS). Oak Ridge slurries were autoclaved to inhibit microbial growth (group 1), autoclaved and amended with HgS (group 2), autoclaved and amended with Pseudomonas isolates and additional HgS (group 3), untreated slurry (group 4), normal slurry amended with HgS (group 5), and normal slurry amended with Pseudomonas isolates and additional HgS (group 6). The comparison of the autoclaved groups with the counterpart untreated and normal Oak Ridge slurries highlighted important microbial interactions. Also, the Pseudomonas isolates were grown separately in a MnSO4 media, and the individual bacteria were monitored for Mn-oxidization using ICP-AES and transmission electron microscopy (TEM). In the slurry sediments, the Pseudomonas isolates did produce Mn oxides which bound to mercury, and mercury bound to organic matter significantly decreased. However, after a significant decrease of dissolved mercury in the water, dissolved mercury was cycled back into the water system on day 10 of the study. Additionally, two individual native Oak Ridge Pseudomonas isolates demonstrated Mn-oxidization. Biogenic Mn oxides have the potential to decrease mercury cycling, however there is need for more in depth and long-term studies to confirm their sustained use as Hg bioremediators.
Mechanisms and Permanence of Sequestered Pb and As in Soils: Impact on Human Bioavailability
2016-12-01
Human health risk assessment ICP-MS Inductively coupled plasma - mass spectrometry ICP-OES Inductively coupled plasma – optical emission spectrometry...the most common contaminants of concern exceeding risk criteria because soil ingestion is the primary human health risk driver at many DoD sites...development activities must address to realize the use of bioavailability in human health risk assessment (HHRA). Our proposal addressed three of the
Lewen, Nancy
2011-06-25
The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.
Water analysis via portable X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.
2017-01-01
Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.
Elemental analysis of forensic glasses by inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Duckworth, Douglas C.; Bayne, Charles K.; Morton, Sherman A.; Smith, David H.; Koons, Robert D.; Furton, Kenneth G.
1999-02-01
Flat glass is a common type of evidence collected from the scenes of crimes such as burglaries, vandalism, and hit-and- run accidents. The usefulness of such evidence lies in the ability to associate the glass from the scene (or a suspect) to the original source. Physical and chemical analysis of the glass can be used for discrimination between the possible sources of glass. If the sample is large enough, physical attributes such as fracture matches, density, color, and thickness can be employed for comparison between a recovered fragment(s) to the suspect source. More commonly, refractive index (RI) comparisons are employed. Due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses where approximately 6 - 9% of casework samples are not expected to be distinguished by RI alone even if they originated from different sources. Employing methods such as NAA, XRF, ICP-AES, and ICP-MS for the comparison of trace elemental compositions has been shown to be more discriminating than RI comparisons. The multielement capability and the sensitivity of ICP-AES and ICP-MS provide for excellent discrimination power. In this work, the sources of variability in ICP-MS of glass analysis are investigated to determine possible sources of variation. The sources of variation examined include errors due to sample preparation, instrument accuracy and precision, and interlaboratory reproducibility. Other sources of variation include inhomogeneity across a sheet of glass from the same source. Analysis of variance has been applied to our ICP-MS analysis of NIST standards and to the interlaboratory comparisons of float glass samples collected across a sheet in a production facility. The results of these experiments allows for a more accurate interpretation of forensic glass data and a better understanding of the discriminating power (absolute and practical) of ICP-MS.
Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.
Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier
2015-08-01
The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions.
Karlsson, Stefan; Sjöberg, Viktor; Ogar, Anna
2015-04-01
The use of nitrogen as plasma gas for microwave plasma atomic emission spectroscopy (MP AES) is an interesting development in analytical science since the running cost can be significantly reduced in comparison to the inductively coupled argon plasma. Here, we evaluate the performance of the Agilent 4100 MP AES instrument for the analysis of principal metals (Ca, K, Mg, and Na), lithogenic metals (Al, Fe, and Mn) and selected trace metals (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V, and Zn) in nitric acid plant digests. The digests were prepared by microwave-assisted dissolution of dry plant material from sunflower (Helianthus annuus) in concentrated nitric acid. Comparisons are made with analysis of the same solutions with ICP-MS (Agilent 7500cx) using the octopole reaction system (ORS) in the collision mode for As, Fe, and V. The limits of detection were usually in the low µg L(-1) range and all principal and lithogenic metals were successfully determined with the MP AES and provided almost identical results with the ICP-MS. The same applies for the selected trace metals except for As, Co and Mo where the concentrations were below the detection limit with the MP AES. For successful analysis we recommend that (i) only atom lines are used, (ii) ionization is minimized (e.g. addition of CsNO3) and (iii) the use of internal standards should be considered to resolve spectral interferences. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, K.E.
A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into themore » ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.« less
[Standard addition determination of impurities in Na2CrO4 by ICP-AES].
Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong
2015-02-01
Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.
Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Wiedenman, B. J.
2012-11-29
Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission linesmore » to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The results of this round-robin analytical study are the second subject of this report.« less
Mineral and heavy metal levels of some fruits grown at the roadsides.
Hamurcu, Mehmet; Ozcan, Mehmet Musa; Dursun, Nesim; Gezgin, Sait
2010-06-01
The rate of heavy metal pollution of some minor fruit samples growing at the roadsides in Turkey were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Pb, Zn and Cu were found at the high levels in the fruit samples. The results showed that the average level of Cu changed between 0.27 mg/kg (Sample 11) and 0.05 mg/kg (Sample 15), Cr 0.32 mg/kg (Sample 14) and 0.18 mg/kg (Sample 13), Ni 0.68 mg/kg (Sample 12) and 0.26 g/kg (Sample 15), Pb 2.86 mg/kg (Sample 12) and 1.54 mg/kg (Sample 4) and Se 12.96 mg/kg (Sample 14) and 5.42 mg/kg (Sample 7). The levels of Cu, Cd and Cr in samples do not appear to reach pollution levels. Copyright 2010 Elsevier Ltd. All rights reserved.
Wunnapuk, Klintean; Durongkadech, Piya; Minami, Takeshi; Ruangyuttikarn, Werawan; Tohno, Setsuko; Vichairat, Karnda; Azuma, Cho; Sribanditmongkol, Pongruk; Tohno, Yoshiyuki
2007-01-01
To elucidate characteristics of gunshot residues in gunshot entry wounds with full-jacketed and lead bullets, element contents in entry gunshot wounds and control skins were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). It was found that a high content of Fe and Zn was deposited in the gunshot entry wounds with full-jacketed bullet, whereas a high content of Pb was deposited in the gunshot entry wounds with lead (unjacked) bullet. It should be noted that the content of Pb was significantly higher in the gunshot entry wounds with lead bullet than in those with full-jacketed bullet. Regarding the relationships among elements, it was found that there were significant direct correlations between Pb and either Sb or Ba contents in both gunshot entry wounds with full-jacketed and lead bullets. As Pb increased in both gunshot entry wounds, Sb and Ba also increased in the wounds.
Multielement extraction system for determining 19 trace elements in gold exploration samples
Clark, J. Robert; Viets, John G.; ,
1990-01-01
A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.
García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M
2008-05-30
In order to achieve reliable information on speciation analysis, it is necessary to assess previously the species stability in the sample to analyse. Furthermore, in those cases where the sample treatment for species extraction is time-consuming, an assessment of the species integrity in the extracts is of paramount importance. Thus, the present paper reports total arsenic and arsenic species stability in alga samples (Sargassum fulvellum and Hizikia fusiformis), as well as in their aqueous extracts, which were stored in amber glass and polystyrene containers at different temperatures. Total arsenic determination was carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES), after sample acid digestion in a microwave oven, while arsenic speciation was conducted by anion exchange high performance liquid chromatography on-line coupled to ICP-AES, with and without sample introduction by hydride generation (HPLC-ICP-AES and HPLC-HG-ICP-AES), after aqueous microwave-assisted extraction. The results obtained for solid alga samples showed that total arsenic (for Hijiki alga) and arsenic species present (As(V) for Hijiki and NIES No. 9 Sargasso) are stable for at least 12 months when samples are stored in polystyrene containers at +20 degrees C. On the other hand, a different behaviour was observed in the stability of total arsenic and As(V) species in aqueous extracts for both samples, being the best storage conditions for Sargasso extracts a temperature of -18 degrees C and polystyrene containers, under which they are stable for at least 15 days, while Hijiki extracts must be stored in polystyrene containers at +4 degrees C in order to ensure the stability for 10 days.
Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su
2013-12-15
This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis
NASA Astrophysics Data System (ADS)
He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng
2017-01-01
Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.
Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco
2013-01-01
To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.
NASA Astrophysics Data System (ADS)
Ndimba, R.; Cloete, K.; Mehlo, L.; Kossmann, J.; Mtshali, C.; Pineda-Vargas, C.
2017-08-01
In the present study, possible differences in the mineral composition of transgenic versus non-transgenic sorghum grains were investigated using inductively coupled atomic emission spectroscopy (ICP-AES); and, in-tissue elemental mapping by micro Proton-Induced X-ray Emission (micro-PIXE) analysis. ICP AES was used to analyse the bulk mineral content of the wholegrain flour derived from each genotype; whilst micro-PIXE was used to interrogate localised differences in mineral composition specific to certain areas of the grain, such as the bran layer and the central endosperm tissue. According to the results obtained, no significant difference in the average Fe, Zn or Ca content was found to differentiate the transgenic from the wild-type grain using ICP-AES. However, using micro-PIXE, a significant reduction in zinc could be detected in the bran layer of the transgenic grains relative to wild-type. Although it is difficult to draw firm conclusions, as a result of the small sample size used in this study, micro-PIXE has nonetheless proven itself as a useful technique for highlighting the possibility that there may be reduced levels of zinc accumulation in the bran layer of the transgenic grains. Given that the genetic modification targets proteins that are highly concentrated in certain parts of the bran tissue, it seems plausible that the reduced levels of zinc may be an unintended consequence of the silencing of kafirin proteins. Although no immediate health or nutritional concerns emerge from this preliminary finding, it is noted that zinc plays an important biological role within this part of the grain as a structural stabiliser and antioxidant factor. Further study is therefore needed to assess more definitively the extent of the apparent localised reduction in zinc in the transgenic grains and how this may affect other important grain quality characteristics.
NASA Astrophysics Data System (ADS)
Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.
2005-10-01
In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, K.E.
A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol,more » methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.« less
Motooka, J.M.
1988-01-01
An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.
[Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].
Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu
2013-01-01
The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.
Lin, Kuo-Hsiung; Chiang, Hung-Lung
2014-04-30
Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust. Copyright © 2014 Elsevier B.V. All rights reserved.
[Determination of Mineral Elements in Choerospondias Axillaris and Its Extractives by ICP-AES].
Zhai, Yu-xin; Chen, Jun; Li, Ti; Liu, Ji-yan; Wang, Xie-yi; Cheng, Chao; Liu, Cheng-mei
2015-04-01
Nine elements in Choerospondias axillaris flesh, peels, aqueous extractives and gastric digesta were determined by the inductively coupled plasma atomic emission spectrometry (ICP-AES) in the present study. The results showed that the contents of Fe, Ca, Zn, Mn, Al, Mg, Cu, K and P in the flesh were 27.37, 269.88, 1.51, 2.45, 1.95, 195.30, 2.45, 2,970.11, and 133.94 µg · g(-1), respectively. They are lower than that in the peels, about 40.31%, 11.70%, 21.68%, 4.27%, 10.58%, 15.76%, 68.72%, 42.04%, and 22.59%, respectively. For microwave assistant extraction, the release rate of Mn was highest (81.68%), while Fe was lowest (4.42%) in the flesh. The release rate of Zn was the highest (79.00%), while that of A1 was the lowest (4.94%) in the peels. Except Fe, Cu and Zn, the release rates of the other elements in flesh were higher than those in the peels. After gastric digestion, the release rates of nine elements were 3.25%-87.51% in the flesh and 7.11%-50.69% in the peels. The release rates of minerals in the flesh were found to be higher than those in the peels except Fe and Cu. Microwave assistant extraction can more efficiently release Fe, Ca, Mn, Mg and K from the flesh than the gastric digestion do. While gastric digestion had a significant effect on the peels, the release rates of elements, except Zn, were higher than those in microwave assistant extraction. Therefore, the difference of distribution and release of mineral elements between peels and flesh of Choerospondias axillaris was understood, which will provide a positive guide for further study of bioavailability of minerals for human body.
ERIC Educational Resources Information Center
Hindy, Kamal T.; And Others
1992-01-01
An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…
Coelho, Patrícia; Costa, Solange; Silva, Susana; Walter, Alan; Ranville, James; Sousa, Ana C A; Costa, Carla; Coelho, Marta; García-Lestón, Julia; Pastorinho, M Ramiro; Laffon, Blanca; Pásaro, Eduardo; Harrington, Chris; Taylor, Andrew; Teixeira, João Paulo
2012-01-01
Mining activities may affect the health of miners and communities living near mining sites, and these health effects may persist even when the mine is abandoned. During mining processes various toxic wastes are produced and released into the surrounding environment, resulting in contamination of air, drinking water, rivers, plants, and soils. In a geochemical sampling campaign undertaken in the Panasqueira Mine area of central Portugal, an anomalous distribution of several metals and arsenic (As) was identified in various environmental media. Several potentially harmful elements, including As, cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), were quantified in blood, urine, hair, and nails (toe and finger) from a group of individuals living near the Panasqueira Mine who were environmentally and occupationally exposed. A group with similar demographic characteristics without known exposure to mining activities was also compared. Genotoxicity was evaluated by means of T-cell receptor (TCR) mutation assay, and percentages of different lymphocyte subsets were selected as immunotoxicity biomarkers. Inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis showed elevated levels of As, Cd, Cr, Mn, and Pb in all biological samples taken from populations living close to the mine compared to controls. Genotoxic and immunotoxic differences were also observed. The results provide evidence of an elevated potential risk to the health of populations, with environmental and occupational exposures resulting from mining activities. Further, the results emphasize the need to implement preventive measures, remediation, and rehabilitation plans for the region.
Bačeva, Katerina; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Makreski, Petre
2014-08-01
The aim of this study was to investigate the distribution of some toxic elements in topsoil and subsoil, focusing on the identification of natural and anthropogenic element sources in the small region of rare As-Sb-Tl mineralization outcrop and abandoned mine Allchar known for the highest natural concentration of Tl in soil worldwide. The samples of soil and sediments after total digestion were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Factor analysis (FA) was used to identify and characterize element associations. Six associations of elements were determined by the method of multivariate statistics: Rb-Ta-K-Nb-Ga-Sn-Ba-Bi-Li-Be-(La-Eu)-Hf-Zr-Zn-In-Pd-Ag-Pt-Mg; Tl-As-Sb-Hg; Te-S-Ag-Pt-Al-Sc-(Gd-Lu)-Y; Fe-Cu-V-Ge-Co-In; Pd-Zr-Hf-W-Be and Ni-Mn-Co-Cr-Mg. The purpose of the assessment was to determine the nature and extent of potential contamination as well as to broadly assess possible impacts to human health and the environment. The results from the analysis of the collected samples in the vicinity of the mine revealed that As and Tl elements have the highest median values. Higher median values for Sb are obviously as a result of the past mining activities and as a result of area surface phenomena in the past. Copyright © 2014 Elsevier Inc. All rights reserved.
Vivianite formation and distribution in Lake Baikal sediments
NASA Astrophysics Data System (ADS)
Fagel, N.; Alleman, L. Y.; Granina, L.; Hatert, F.; Thamo-Bozso, E.; Cloots, R.; André, L.
2005-04-01
In an effort to better understand vivianite formation processes, four Lake Baikal sediment cores spanning two to four interglacial stages in the northern, central and southern basins and under various biogeochemical environments are scrutinized. The vivianite-rich layers were detected by anomalous P-enrichments in bulk geochemistry and visually by observations on X-radiographs. The millimetric concretions of vivianite were isolated by sieving and analysed by X-ray diffraction, scanning electron microscope (SEM), microprobe, infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and mass spectrometry (ICP-AES, ICP-MS). All the vivianites display similar morphological, mineralogical and geochemical signature, suggesting a common diagenetic origin. Their geochemical signature is sensitive to secondary alteration where vivianite concretions are gradually transformed from the rim to the center into an amorphous santabarbaraite phase with a decreasing Mn content. We analysed the spatial and temporal distribution of the concretions in order to determine the primary parameters controlling the vivianite formation, e.g., lithology, sedimentation rates, and porewater chemistry. We conclude that vivianite formation in Lake Baikal is mainly controlled by porewater chemistry and sedimentation rates, and it is not a proxy for lacustrine paleoproductivity. Vivianite accumulation is not restricted to areas of slow sedimentation rates (e.g., Academician and Continent ridges). At the site of relatively fast sedimentation rate, i.e., the Posolsky Bank near the Selenga Delta, vivianite production may be more or less related to the Selenga River inputs. It could be also indirectly related to the past intensive methane escapes from the sediments. While reflecting an early diagenetic signal, the source of P and Fe porewater for vivianites genesis is still unclear.
Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus.
Sanchez, Diego H; Lippold, Felix; Redestig, Henning; Hannah, Matthew A; Erban, Alexander; Krämer, Ute; Kopka, Joachim; Udvardi, Michael K
2008-03-01
The model legume Lotus japonicus was subjected to non-lethal long-term salinity and profiled at the ionomic, transcriptomic and metabolomic levels. Two experimental designs with various stress doses were tested: a gradual step acclimatization and an initial acclimatization approach. Ionomic profiling by inductively coupled plasma/atomic emission spectrometry (ICP-AES) revealed salt stress-induced reductions in potassium, phosphorus, sulphur, zinc and molybdenum. Microarray profiling using the Lotus Genechip allowed the identification of 912 probesets that were differentially expressed under the acclimatization regimes. Gas chromatography/mass spectrometry-based metabolite profiling identified 147 differentially accumulated soluble metabolites, indicating a change in metabolic phenotype upon salt acclimatization. Metabolic changes were characterized by a general increase in the steady-state levels of many amino acids, sugars and polyols, with a concurrent decrease in most organic acids. Transcript and metabolite changes exhibited a stress dose-dependent response within the range of NaCl concentrations used, although threshold and plateau behaviours were also observed. The combined observations suggest a successive and increasingly global requirement for the reprogramming of gene expression and metabolic pathways to maintain ionic and osmotic homeostasis. A simple qualitative model is proposed to explain the systems behaviour of plants during salt acclimatization.
Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric
2015-07-23
Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the analysis of organic/hydro-organic matrices by ICP sources and would like to consider the theoretical background of effects induced by such matrices. The second part of this tutorial review will be dedicated to more practical consideration on instrumentation, such as adapted introductions devices, as well as instrumental and operating parameters optimization. The analytical strategies for elemental quantification in such matrices will also be addressed. Copyright © 2015 Elsevier B.V. All rights reserved.
Miyashita, Shin-ichi; Inagaki, Kazumi; Narukawa, Tomohiro; Zhu, Yanbei; Kuroiwa, Takayoshi; Hioki, Akiharu; Chiba, Koichi
2012-01-01
A certified reference material (CRM) for trace cadmium and other elements in brown rice flour was developed at the National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder after drying and frozen pulverization of fresh brown rice obtained from a Japanese domestic market. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), ICP high-resolution mass spectrometry, isotope-dilution ICP-MS, ICP optical emission spectrometry, and graphite-furnace atomic-absorption spectrometry. Property values were provided for six elements (Mn, Fe, Cu, Zn, As, and Cd). The concentration range of the property values was from 0.280 mg kg(-1) of As to 31.8 mg kg(-1) of Zn. The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, characterization, difference among analytical methods, dry-mass correction factor, and calibration standard. The range of the relative combined standard uncertainties was from 1.1% of Zn to 1.6% of As.
Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J
2011-11-01
Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.
Improved documentation of spectral lines for inductively coupled plasma emission spectrometry
NASA Astrophysics Data System (ADS)
Doidge, Peter S.
2018-05-01
An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.
Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan
2013-12-01
Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
Silva, L.F.O.; Oliveira, M.L.S.; Boit, K.M.; Finkelman, R.B.
2009-01-01
The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal. ?? Springer Science+Business Media B.V. 2008.
Ibe, K K; Adlegbembo, A O; Mafeni, J O; Danfillo, I S
1999-09-01
The aim of this study was to provide baseline data on the fluoride levels in waters associated with the late Maastrichtian Ajali formation in Ohafia-Arochukwu area of South Eastern Nigeria. Water samples from 14 artesian, perched springs and eight streams from the formation were collected with plastic containers. Fluoride analysis was carried out with inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipment at the laboratories of the Department of Earth Science, University of Leeds, United Kingdom. The results showed that fluoride occurred in only one of the 14 spring water samples. Fluoride level in the sample was 0.03 ppm. The spring water, which contained some fluoride, was possibly associated with another rock formation: namely, the limestone bearing Nsukka formation, which overlies the Ajali formation. No fluoride was observed in all the stream water samples. This study reported the absence of fluoride in spring and stream waters associated with the late Maastrichtian formations in Nigeria.
Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion.
Gailer, Jürgen; George, Graham N; Harris, Hugh H; Pickering, Ingrid J; Prince, Roger C; Somogyi, Arpad; Buttigieg, Gavin A; Glass, Richard S; Denton, M Bonner
2002-10-21
A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.
NASA Astrophysics Data System (ADS)
Sun, Yong; Zhou, Deqing; Zhao, Feng
2011-03-01
The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.
Stec, Katarzyna
2017-11-02
Materials made with chromite ore are widely applied in the industry metallurgy as well as in the foundry industry. The oxidation number of chromium in these materials is both (III) and (VI). Currently there are no procedures allowing proper determination of chrome in chromite ores and ore-containing materials. The analytical methods applied, which are dedicated to a very narrow range of materials, e.g., cement, and cannot be applied in the case of materials which, apart from trace amounts of Cr(VI), contain mainly compounds of Cr(III), Fe(III) as well as trace compounds of Cu(II), Ni(II) and V(V). In the work particular attention has been paid to the preparation of test samples and creating measurement conditions in which interferences from Cr(III) and Fe(III) spectral lines could be minimized. Two separate instrumental measurement techniques have been applied: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP AES) and the spectrophotometric method using diphenylcarbazide.
Almessiere, M A; Altuwiriqi, R; Gondal, M A; AlDakheel, R K; Alotaibi, H F
2018-08-01
In this work, we analysed human fingernails of people who suffer from vitamin D deficiency using the laser-induced breakdown spectroscopy(LIBS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES)techniques. The measurements have been conducted on 71 nail samples collected randomly from volunteers of different genders and ages ranged between 20 and 50 years. The main aim of this study is to find the correlation between vitamin D deficiency and the intensity of some dominated lines in the LIBS spectra. A LIBS spectrum consists of dominant lines of fifteen elements including calcium, magnesium, sodium, potassium, titanium, iron, chloride, sulphur, copper, chromium, zinc, nitrogen, phosphor, and oxygen. By recording the spectrum in specific ranges and focusing on calcium, magnesium, sodium, and potassium, we found a correlation between the intensity of the potassium (K) lines at (766.5 and 769.9 nm)and vitamin D level in both age groups (20 and 25 years old), with weak correlation for the calcium (Ca), magnesium (Mg), and sodium (Na) lines. To verify the validity of the LIBS results, we analysed the nail samples with ICP, a standard analytical technique. The elements detected with our LIBS technique are in a good agreement with those identified by ICP-AES. From the health and physiological perspectives, the LIBS system, which is used for spectral analysis in this work, is appropriate for diagnostic purposes such as to find the correlation between vitamin D deficiency and potassium content, especially for hypertensive patients who simultaneously take potassium-based medication and vitamin D supplement. Copyright © 2018 Elsevier B.V. All rights reserved.
Valente, Eduardo S; Campos, Tarcísio P R
2010-12-01
Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. Copyright 2010 Elsevier Ltd. All rights reserved.
Thermal protection system (TPS) monitoring using acoustic emission
NASA Astrophysics Data System (ADS)
Hurley, D. A.; Huston, D. R.; Fletcher, D. G.; Owens, W. P.
2011-04-01
This project investigates acoustic emission (AE) as a tool for monitoring the degradation of thermal protection systems (TPS). The AE sensors are part of an array of instrumentation on an inductively coupled plasma (ICP) torch designed for testing advanced thermal protection aerospace materials used for hypervelocity vehicles. AE are generated by stresses within the material, propagate as elastic stress waves, and can be detected with sensitive instrumentation. Graphite (POCO DFP-2) is used to study gas-surface interaction during degradation of thermal protection materials. The plasma is produced by a RF magnetic field driven by a 30kW power supply at 3.5 MHz, which creates a noisy environment with large spikes when powered on or off. AE are waveguided from source to sensor by a liquid-cooled copper probe used to position the graphite sample in the plasma stream. Preliminary testing was used to set filters and thresholds on the AE detection system (Physical Acoustics PCI-2) to minimize the impact of considerable operating noise. Testing results show good correlation between AE data and testing environment, which dictates the physics and chemistry of the thermal breakdown of the sample. Current efforts for the project are expanding the dataset and developing statistical analysis tools. This study shows the potential of AE as a powerful tool for analysis of thermal protection material thermal degradations with the unique capability of real-time, in-situ monitoring.
Schenk, Emily R; Almirall, José R
2012-04-10
The elemental analysis of glass evidence has been established as a powerful discrimination tool for forensic analysts. Laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES) has been compared to laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy dispersive micro X-ray fluorescence spectroscopy (μXRF/EDS) as competing instrumentation for the elemental analysis of glass. The development of a method for the forensic analysis of glass coupling laser ablation to ICP-OES is presented for the first time. LA-ICP-OES has demonstrated comparable analytical performance to LA-ICP-MS based on the use of the element menu, Al (Al I 396.15 nm), Ba (Ba II 455.40 nm), Ca (Ca II 315.88 nm), Fe (Fe II 238.20 nm), Li (Li I 670.78 nm), Mg (Mg I 285.21 nm), Sr (Sr II 407.77 nm), Ti (Ti II 368.51 nm), and Zr (Zr II 343.82 nm). The relevant figures of merit, such as precision, accuracy and sensitivity, are presented and compared to LA-ICP-MS. A set of 41 glass samples was used to assess the discrimination power of the LA-ICP-OES method in comparison to other elemental analysis techniques. This sample set consisted of several vehicle glass samples that originated from the same source (inside and outside windshield panes) and several glass samples that originated from different vehicles. Different match criteria were used and compared to determine the potential for Type I and Type II errors. It was determined that broader match criteria is more applicable to the forensic comparison of glass analysis because it can reduce the affect that micro-heterogeneity inherent in the glass fragments and a less than ideal sampling strategy can have on the interpretation of the results. Based on the test set reported here, a plus or minus four standard deviation (± 4s) match criterion yielded the lowest possibility of Type I and Type II errors. The developed LA-ICP-OES method has been shown to perform similarly to LA-ICP-MS in the discrimination among different sources of glass while offering the advantages of a lower cost of acquisition and operation of analytical instrumentation making ICP-OES a possible alternative elemental analysis method for the forensic laboratory. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka
2016-05-01
This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.
Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang
2014-11-01
In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Kmiecik, Ewa; Tomaszewska, Barbara; Wątor, Katarzyna; Bodzek, Michał
2016-06-01
The aim of the study was to compare the two reference methods for the determination of boron in water samples and further assess the impact of the method of preparation of samples for analysis on the results obtained. Samples were collected during different desalination processes, ultrafiltration and the double reverse osmosis system, connected in series. From each point, samples were prepared in four different ways: the first was filtered (through a membrane filter of 0.45 μm) and acidified (using 1 mL ultrapure nitric acid for each 100 mL of samples) (FA), the second was unfiltered and not acidified (UFNA), the third was filtered but not acidified (FNA), and finally, the fourth was unfiltered but acidified (UFA). All samples were analysed using two analytical methods: inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained were compared and correlated, and the differences between them were studied. The results show that there are statistically significant differences between the concentrations obtained using the ICP-MS and ICP-OES techniques regardless of the methods of sampling preparation (sample filtration and preservation). Finally, both the ICP-MS and ICP-OES methods can be used for determination of the boron concentration in water. The differences in the boron concentrations obtained using these two methods can be caused by several high-level concentrations in selected whole-water digestates and some matrix effects. Higher concentrations of iron (from 1 to 20 mg/L) than chromium (0.02-1 mg/L) in the samples analysed can influence boron determination. When iron concentrations are high, we can observe the emission spectrum as a double joined and overlapping peak.
Krachler, M; Irgolic, K J
1999-11-01
The advantages accruing to biochemical and clinical investigations from a method that allows the simultaneous quantification (RSD < or = 10%) of many elements in blood, plasma, and serum at concentrations equal to one-hundredth of the lower limits of the normal ranges are undeniable. The suitability of inductively coupled argon plasma low-resolution quadrupole mass spectrometry (ICP-MS), a simultaneous method with low detection limits, is evaluated for the quantification of inorganic constituents in whole blood, plasma, and serum with consideration of the dilution associated with the mineralization of the samples, of isobaric and polyatomic interferences and of normal ranges. Of the 3 bulk elements, the 3 major electrolytes, the 15 essential elements, the 8 toxic elements, the 4 therapeutic elements, and the 14 elements of potential interest (total of 47 elements) only 7 elements (Ca, Cu, K, Mg, Rb, Sr, Zn) can be simultaneously quantified under these rigorous conditions in serum and only 8 elements (additional element Pb) in whole blood. Quantification of elements in the Seronorm Standards "Whole Blood" and "Serum" showed, that this list of simultaneously determinable elements in these matrices is reasonable. Although this list is disappointingly short, the number of elements determinable simultaneously by ICP-MS is still larger than that by ICP-AES or GFAAS. Improved detectors, more efficient nebulizers, avoidance of interferences, better instrument design, and high-resolution mass spectrometers promise to increase the number of elements that can be determined simultaneously.
Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio
2010-04-15
In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
The deposition of gold nanoparticles in MWCNT forests
NASA Astrophysics Data System (ADS)
de Jong, Franciscus; Buffet, Adeline; Schlueter, Michael
2015-11-01
The deposition, i.e. transport and attachment, of small-sized particles is a basic process, on which many applications are based. The innumerable applications range from biology and medicine to engineering. Due to their promising mechanical properties multi-walled carbon nanotubes (MWCNTs) have gained increasing popularity in the past decade. A large number of dense packed vertically aligned MWCNTs form a so-called MWCNT forest. In our study we functionalized the MWCNT forest to filter gold nanoparticles from a colloidal suspension. An experimental investigation was carried out in which the particle deposition kinetics was locally determined with small-angle X-ray scattering (SAXS). Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to verify the local observations. It was concluded that both, SAXS and ICP-AES investigations shows very good agreement. Furthermore, an analytical deposition model was developed based on the DLVO-theory. The experimental and theoretical investigation presented here give insight in the deposition kinetics within a MWCNT forest. The results open up pathways to optimize MWCNT forests for filtering purposes.
Wang, Xue-mei; Zhang, Ji; Li, Tao; Li, Jie-qing; Wang, Yuan-zhong; Liu, Hong-gao
2015-05-01
P, Na, Ca, Cu, Fe, Mg, Zn, As, Cd, Co, Cr and Ni, contents have been examined in caps and stipes of Boletus tomentipes collected from different sites of Yunnan province, southwest China. The elements were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) with microwave digestion. P, Ca, Mg, Fe, Zn and Cu were the most abundant amongst elements determined in Boletus tomentipes. The caps were richer in P, Mg, Zn and Cd, and the stipes in Ca, Co and Ni. Cluster analysis showed a difference between Puer (BT7 and BT8) and other places. The PCA explained about 77% of the total variance, and the minerals differentiating these places were P (PC1) together with Ca, Cu, Fe, Mg, As and Ni, Na (PC2) together with Cd, and Zn (PC3). The results of this study imply that element concentrations of a mushroom are mutative when collected from the different bedrock soil geochemistry.
Wang, Jian-Chen; Zhang, Lin
2013-07-01
The determination method of Ru, Rh and Pd in 30% TRPO-kerosene ICP-AES was studied by using aqueous calibration reference solution and choosing ethanol as diluent. The effects of the contents of 30% TRPO-kerosene and aqueous solution and the concentration of HNO3 in 30% TRPO-kerosene on the intensities of Ru, Rh and Pd were described. The optimized condition for preparing samples and calibration solutions was chosen as follows: The contents of 30% TRPO-kerosene and aqueous phase were 10% (V/V) and 5% (V/V) respectively and the concentration of HNO3 30% TRPO-kerosene was 0.20 mol x L(-1). The determination method of Au, Ru and Pd was set up according to the above condition. The detection limit, precision and recovery ratio of Ru, Rh and Pd are well. The method is not only used in determination of Au, Ru and Pd in 30% TRPO-kerosene, but also used in other organic phases.
NASA Astrophysics Data System (ADS)
Mateus, Vinícius Lionel; Monteiro, Isabela Luizi Gonçalves; Rocha, Rafael Christian Chávez; Saint'Pierre, Tatiana Dillenburg; Gioda, Adriana
2013-08-01
Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m- 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m- 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3-6 μg m- 3). The anions found in the highest average concentrations were SO42 - in PM2.5 (2-4 μg m- 3) and Cl- in TSP (2-6 μg m- 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.
Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China
Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.
2007-01-01
The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.
Sert, Şenol
2013-07-01
A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.
Alvarez, Alfredo Montero; Estévez Alvarez, Juan R; do Nascimento, Clístenes Williams Araújo; González, Iván Pupo; Rizo, Oscar Díaz; Carzola, Lázaro Lima; Torres, Roberto Ayllón; Pascual, Jorge Gómez
2017-01-01
Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206 Pb/ 207 Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 μg L -1 ) confirms the official statement that leaded gasoline is no longer used in Cuba.
NASA Astrophysics Data System (ADS)
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-04-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10-6-1.0 × 10-2 M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 +/- 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
Several methods to determine heavy metals in the human brain
NASA Astrophysics Data System (ADS)
Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt
1999-05-01
The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.
Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata
2006-07-01
Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.
Smith, C.L.; Motooka, J.M.; Willson, W.R.
1984-01-01
Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.
Gonzálvez, A; Armenta, S; De La Guardia, M
2008-01-01
A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.
NASA Astrophysics Data System (ADS)
Zhang, Gai; Tian, Min
2015-04-01
This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.
NASA Astrophysics Data System (ADS)
Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.
2004-12-01
The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.
Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality
NASA Astrophysics Data System (ADS)
Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; de la Rosa, J.; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.
2013-02-01
The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.
Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook
2014-10-15
ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thomas L Eberhardt; Hui Pan
2013-01-01
Gasification of biomass ultimately generates at least one solid byproduct in which the inorganic constituents of the biomass are concentrated. Given the potential for utilization, or issues with disposal, facile methods are needed for determining the compositions of the fly ashes from recently-available gasifier-based bioenergy systems. Proton induced x-ray emission...
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, Nicole L.; Phillips, Mark C.; Duffin, Andrew M.
2016-01-01
Both laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are well-established analytical techniques with their own unique advantages and disadvantages. The combination of the two analytical methods is a very promising way to overcome the challenges faced by each method individually. We made a comprehensive comparison of local plasma conditions between nanosecond (ns) and femtosecond (fs) laser ablation (LA) sources in a combined LIBS and LA-ICP-MS system. The optical emission spectra and ICP-MS signal were recorded simultaneously for both ns- and fs-LA and figures of merit of the system were analyzed. Characterization of the plasma was conductedmore » by evaluating temperature and density of the plume under various irradiation conditions using optical emission spectroscopy, and correlations to ns- and fs-LIBS and LA-ICP-MS signal were made. The present study is very useful for providing conditions for a multimodal system as well as giving insight into how laser ablation plume parameters are related to LA-ICP-MS and LIBS results for both ns- and fs-LA.« less
Alqadami, Ayoub A; Abdalla, Mohammad Abulhassan; AlOthman, Zeid A; Omer, Kamal
2013-01-14
A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL-1, respectively. The relative standard deviations (RSDs) were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6-104.4%.
Sato, Kyoko; Suzuki, Ippei; Kubota, Hiroki; Furusho, Noriko; Inoue, Tomoyuki; Yasukouchi, Yoshikazu; Akiyama, Hiroshi
2014-01-01
Dietary aluminum (Al) intake by young children, children, youths, and adults in Japan was estimated using the market basket method. The Al content of food category (I–VII) samples for each age group was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The Al content in processed foods and unprocessed foods ranged from 0.40 to 21.7 mg/kg and from 0.32 to 0.54 mg/kg, respectively. For processed foods in all age groups, the Al content in food category VI samples, sugar and confections/savories, was the highest, followed by those in category II, cereals. The daily dietary Al intake from processed foods was much larger than that from unprocessed foods. The mean weekly percentages of the provisional tolerable weekly intake (PTWI, established by the joint FAO/WHO Expert Committee on Food Additives in 2011) from processed foods for all age groups are 43.1, 22.4, 17.6 and 15.1%, respectively. Only the highest consumer Al exposure value (>P95) of the young children group exceeded the PTWI. PMID:25473496
Baseline study on essential and trace elements in polished rice from South Korea.
Jung, Myung Chae; Yun, Seong-Taek; Lee, Jin-Soo; Lee, Jong-Un
2005-09-01
In 2000, 63 (polished) white rice samples were collected in eight administrative areas all over South Korea and analyzed for 16 elements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Potassium had the highest content, next to Mg, Ca, Si, Zn, Na, Al and Fe. Most of the samples contained worldwide average concentrations of essential and trace elements in rice grains reported by various researches. For inter-area differences in those elements in the rice, the statistical analysis showed no significant differences (p > 0.05) among the eight administrative areas, suggesting that inter-area differences were not substantial in most cases. Thus, the present data can be used as national background levels of elements in rice produced in South Korea. Using the published data on daily consumption of rice in South Korea, it was possible to estimate the daily intake of As, Cd, Cu, Pb and Zn via rice. The results showed that a regular consumption of rice produced in Korea plays an important role in accumulation of essential and trace elements in Korean, especially for farm-households consuming relatively large amounts of rice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Christopher Hysjulien
This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less
Wang, Hui; Song, Qiang; Yang, Rui-ming; Yao, Qiang; Chen, Chang-he
2010-09-01
Three acids (HNO3, HNO3/HF and HNO3 /HF+ H3BO3) were used to decompose gypsum with microwave digestion system. The contents of 10 mineral elements (Al, Ca, Mg, Fe, K, Na, S, Ti, Si and Sr) in gypsum were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) while 6 heavy metals (V, Cr, Mn, Zn, Se and Ce) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). GBW03109a, GBW03110 and FGD-2 were used as gypsum standard reference materials. The results showed that two-step microwave digestion with HNO3/HF at 210 degrees C and then adding H3BO3 for the removal of HF and fluorides completely decomposed the gypsums, while this method achieved good recoveries for all elements in the three gypsum standard reference materials. The recovery was from 88% to 112% and the RSD of tests was below 3%. The method was applied to the elemental analysis for flue gas desulfurization gypsums from three coal-fired power plants.
Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues
2016-04-01
A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
González, Lucy T.; Longoria Rodríguez, F. E.; Sánchez-Domínguez, M.; Cavazos, Aleyda; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Askar, Karim Acuña; Kharissov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.
2017-11-01
The concentration levels of trace metals of toxicological importance were evaluated in the total suspended particles (TSP) and particulate matter smaller than 2.5 μm (PM2.5) collected in the Metropolitan Area of Monterrey (MAM) in Mexico. Samples were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with an energy-dispersive spectroscopy system (SEM-EDS). In addition, the data were statistically treated by the methodology of Pearson Correlation (PC) and Principal Components Analysis (PCA) to identify the possible emitting sources. Surface analysis of the particulate matter (PM) by XPS revealed that the most abundant elements were Ca, Al, Na, Zn, Cu and Mg. The deconvolution of the Ca2p, Zn2p and Cu2p signals showed that the main contributors were CaCO3, ZnO and Cu/Cu2O, respectively. The bulk analysis of the PM by ICP-AES showed Fe, Cu and Zn as the most abundant elements. Fe-rich particles presented two different morphologies: the prismatic particles were associated with a natural origin, while the spherical particles with anthropogenic sources. The Zn and Cu were predominantly observed in the sampling stations with high vehicular traffic, and the emitting sources were associated with the burning of fuels from automobiles and the wear of the tires and brakes. The highest concentration of Pb was detected in the sampling station located near the industrial zones, and its cause was associated with the ceramic and glass industries, the burning of fuel oil in power plants and the production of lead-based batteries for automobiles.
Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Schneider, J.F.
1993-05-01
Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Krebstein, Kadri; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina
2015-04-01
Soils provide vital ecosystem functions, playing an important role in our economy and in healthy living environment. However, soils are increasingly degrading in Europe and at the global level. Knowledge about the content of major plant available nutrients, i.e. calcium, magnesium, potassium and phosphorus, plays an important role in the sustainable soil management. Mobility of nutrients depends directly on the environmental conditions, two of the most important factors are the pH and organic matter content. Therefore it is essential to have correct information about the content and behaviour of the above named elements in soil, both from the environmental and agronomical viewpoint. During the last decades several extracting solutions which are suitable for the evaluation of nutrient status of soils have been developed for this purpose. One of them is called Mehlich 3 which is widely used in USA, Canada and some European countries (e.g. Estonia, Czech Republic) because of its suitability to extract several major plant nutrients from the soil simultaneously. There are several different instrumental methods used for the analysis of nutrient elements in the soil extract. Potassium, magnesium and calcium are widely analysed by the AAS (atomic absorption spectroscopic) method or by the ICP (inductively coupled plasma) spectroscopic methods. Molecular spectroscopy and ICP spectroscopy were used for the phosphorus determination. In 2011 a new multielemental instrumental method MP-AES (microwave plasma atomic emission spectroscopy) was added to them. Due to its lower detection limits and multielemental character, compared with AAS, and lower exploitation costs, compared with ICP, the MP-AES has a good potential to achieve a leading position in soil nutrient analysis in the future. The objective of this study was to investigate: (i) the impact of soil pH and humus content and (ii) applicability of MP-AES instrumental method for the determination of soil nutrients extracted according to Mehlich 3. For the experiment 100 soil samples with different content of organic matter and pH were used. The determination of Ca, Mg, K and P was analysed by MP and ICP methods and additionally P was analysed molecular spectroscopically. Within the framework of the study the regressions between MP and ICP methods were created for all the analysed elements, i.e. Ca, Mg, K and P. According to MP and ICP, the relationships between the analysed soil major nutrient contents at different soil humus levels and at different pH ranges were determined for the evaluation of their impact. The optimal instrumental settings for calcium, magnesium and potassium analysis, according to Mehlich 3 using MP-AES method, are reported.
Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah
2014-01-01
The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10−6–1.0 × 10−2 M and pH range from 1–2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10−7 M, and 20 s, respectively. The direct determination of 4–39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out. PMID:24722576
Arantes de Carvalho, Gabriel G; Kondaveeti, Stalin; Petri, Denise F S; Fioroto, Alexandre M; Albuquerque, Luiza G R; Oliveira, Pedro V
2016-12-01
Analytical methods for the determination of rare earth elements (REE) in natural waters by plasma spectrochemical techniques often require sample preparation procedures for analytes preconcentration as well as for removing matrix constituents, that may interfere on the analytical measurements. In the present work, calcium alginate (CA) beads were used for the first time aiming at Ce, La and Nd preconcentration from groundwater samples for further determination by inductively coupled plasma optical emission spectrometry (ICP OES). Test samples were analyzed in batch mode by transferring a 40mL test portion (pH=5±0.2) into a 50mL polyethylene flask containing 125mg CA beads. After 15min contact, the analytes were quantitatively extracted from the loaded CA beads with 2.0mL of 1.0molL -1 HCl solution for further determination by ICP OES, using Ce (II) 456.236, La (II) 379.478 and Nd (II) 430.358nm emission lines. The proposed approach is a reliable alternative for REE single-stage preconcentration from aqueous samples, as it provided accurate results based on the addition and recovery analysis of groundwater. The results obtained by the proposed method were also compared with those from reference method based on inductively coupled plasma mass spectrometry (ICP-MS) and no significant differences were observed after applying the Student's t-test at 95% confidence level. Copyright © 2016 Elsevier B.V. All rights reserved.
Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick
2014-01-01
Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538
Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick
2014-01-01
Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.
Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi
2011-01-01
A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.
NASA Astrophysics Data System (ADS)
Alleman, Laurent Y.; Lamaison, Laure; Perdrix, Esperanza; Robache, Antoine; Galloo, Jean-Claude
2010-06-01
The elemental composition data of ambient aerosols collected upon selected wind sectors in the highly industrialised harbour of Dunkirk (France) were interpreted using pollution roses, elemental ratios, Enrichment Factors (EF), Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) receptor model. The objective was to identify the possible sources of PM10 aerosols, their respective chemical tracers and to determine their relative contribution at the sampling site. PM10 particles samples were collected from June 2003 to March 2005 in order to analyse up to 35 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Eu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Rb, S, Sb, Sc, Si, Sm, Sr, Th, Ti, U, V, Zn and Zr) using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES) and ICP-Mass Spectrometry (MS). A significant effort has been made on estimating the total uncertainty of each result by regularly analysing blanks, quality controls and SRM NIST standards. Based on this procedure, a selected set of 24 "robust" elements was compared to the 35-element matrix in order to evaluate the sturdiness of our PMF statistical treatment. Eight source factors were resolved by PCA for all the wind sectors explaining 90% of the total data variance. The PMF results confirmed that eight physically interpretable factors contributed to the ambient particulate pollution at the sampling site: crustal dust (11%), marine aerosols (12%), petrochemistry activities (9.2%), metallurgical sintering plant (8.6%), metallurgical coke plant (12.6%), ferromanganese plant (6.6%), road transport (15%) and a less clearly interpretable profile probably associated to dust resuspension (13%). These weighted contributions against wind direction frequencies demonstrate that industrial sources are the most important contributors to this site (37%) followed by the natural sources (detrital and marine sources) (23%) and the road transport (15%).
Schwarz, A; Heumann, K G
2002-09-01
Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.
Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro.
Đorđević, Neda O; Pejin, Boris; Novaković, Miroslav M; Stanković, Dalibor M; Mutić, Jelena J; Pajović, Snežana B; Tešević, Vele V
2018-02-01
The overall aim of this paper was to compare the multielement composition and antioxidant capacity of two Montenegrin Merlot wines obtained from specific vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011. Elemental composition was analysed using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Additionally, antioxidant capacity was assessed by cyclic voltammetry. VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, all three wines are good source of essential elements and products with a significant antioxidant activity and specific geographical origin.
Thyssen, G M; Holtkamp, M; Kaulfürst-Soboll, H; Wehe, C A; Sperling, M; von Schaewen, A; Karst, U
2017-06-21
Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g -1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.
Uncertainty estimation in the determination of metals in superficial water by ICP-OES
NASA Astrophysics Data System (ADS)
Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.
2016-07-01
From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.
Bai, Ru-feng; Ma, Shu-hua; Zhang, Hai-dong; Chang, Lin; Zhang, Zhong; Liu, Li; Zhang, Feng-qin; Guo, Zhao-ming; Shi, Mei-sen
2014-03-01
A block of an injury instrument will be left in wounds sometimes, and the suspect instrument can be discriminated by comparison with the block that was left through elemental analysis. In this study, three brands (Shibazi, Zhangxiaoquan, Qiaoxifu) of kitchen knives with forged, chop, and slice application series were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Infrared Absorption to investigate the type, number of elements and the reference range used for comparing. The results show that when regarding one or more element as the discriminative threshold, together with 5% relative standard deviation (RSD) as the reference range, all the samples could be distinguished among different series. Furthermore, within the same series, the discriminative capability could reach up to 88.57% for all samples. In addition, elements with high content, such as Cr, Mn, and C, were useful to discriminate among different series, and trace elements, such as Ni, Si, and Cu, were useful within the same series. However, in practice, it is necessary to evaluate the accuracy of the method by Standard Reference Material (SRM) before an examination is performed.
Elemental analyses of modern dust in southern Nevada and California
Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.
1999-01-01
Selected samples of modern dust collected in marble traps at sites in southern Nevada and California (Reheis and Kihl, 1995; Reheis, 1997) have been analyzed for elemental composition using instrumental neutron activation analysis (INAA) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). For information on these analytical techniques and their levels of precision and accuracy, refer to Baedecker and McKown (1987) for INAA, to Briggs (1996) for ICP-AES, and to Briggs and Meier (1999) for ICP-MS. This report presents the elemental compositions obtained using these techniques on dust samples collected from 1991 through 1997.The dust-trap sites were established at varying times; some have been maintained since 1984, others since 1991. For details on site location, dust-trap construction, and collection techniques, see Reheis and Kihl (1995) and Reheis (1997). Briefly, the trap consists of a coated angel-food cake pan painted black on the outside and mounted on a post about 2 m above the ground. Glass marbles rest on a circular piece of galvanized hardware cloth (now replaced by stainless-steel mesh), which is fitted into the pan so that it rests 3-4 cm below the rim. The 2-m height eliminates most saltating sand-sized particles. The marbles simulate the effect of a gravelly fan surface and prevent dust that has filtered or washed into the bottom of the pan from being blown back out. The dust traps are fitted with two metal straps looped in an inverted basket shape; the top surfaces of the straps are coated with a sticky material that effectively discourages birds from roosting.
A comparison of reliability of soil Cd determination by standard spectrometric methods
McBride, M.B.
2015-01-01
Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and ICP-MS measurements of Cd in acid digests. ICP-OES using the emission at 226.5 nm generally unable to quantify soil Cd at low (near-background) levels, and gave unreliable values compared to ICP-MS. Using the line at 228.nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to As interference even at soil As concentrations below 10 mg/kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg−1 when soil As was 100–150 mg kg−1. In attempting to avoid these ICP emission-specific interferences, we evaluated a method to estimate total soil Cd using 1 M HNO3 extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without pre-concentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO3 extracted an average of 82% of total soil Cd. The FAA method had no significant interferences, and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone pre-concentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd. PMID:22031569
Yang, Jichao; Wang, Weiguo; Zhao, Mengwei; Chen, Bin; Dada, Olusegun A; Chu, Zhihui
2015-02-15
The concentrations of As, Sb, Hg, Pb, Cd, and Ba in the surface and core sediments of the oil and gas producing region of the Beibu Gulf were measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Atomic Fluorescence Spectrometry (AFS), and the spatial distribution and historical trends of these elements are discussed. The results show that the concentrations of these elements are highest near the platforms. The results of Enrichment Factor (EF) and Potential Ecological Risk Index (PERI) also reveal significantly higher enrichment around the platforms, which imply that the offshore petroleum production was the cause of the unusual distribution and severe enrichment of these elements in the study area. The environment around the platforms was highly laden with toxic elements, thereby representing a very high ecological risk to the environment of the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fernandes, Ridvan N.; Campos, Luís Fernando P.
2003-01-01
A multicommutated flow system for simultaneous determination of iron and chromium in steel alloys by photometry is described. The flow network consisted of an automatic injector and four solenoid valves assembled to form two independent analytical pathways, each one comprising reaction coils and a flow cell. The light source (LED) and detector (photodiode) were attached to the flow cells to form a compact unit. The flow system was microcomputer controlled by Quick BASIC 4.5 software, which carried out all steps of the analytical procedure. The feasibility of the system was proved by the determination of iron and chromium in steel alloys and its accuracy was accessed by comparing results with those obtained by plasma atomic emission spectrometry (ICP-AES). No significant difference at the 95% confidence level was observed. Other profitable features such as low reagent consumption (0.33 mg 1,10-phenantroline and 0.03 mg 1,5-diphenylcarbazide per determination); relative standard deviations (n = 5) of 0.4% for iron and 1.2% for chromium; and an analytical throughput of 160 determinations per h were also achieved. PMID:18924884
A preliminary study of the phycological degradation of natural stone masonry.
Welton, Ryan G; Cuthbert, Simon J; Mclean, Roger; Hursthouse, Andrew; Hughes, John
2003-03-01
For many years it has been realised that the weathering of stone is not merely determined by physical and chemical factors but also by biological agents. When the stone in question is a historic building or monument, the damage done constitutes an irretrievable loss of our heritage and history. Laboratory studies have commenced in Paisley to study the effect of photoautotrophs on the major sedimentary rock forming minerals, with a view to expanding this work to study the overall effect of these micro-organisms on heritage masonry. Tests were carried out on Albite, Calcite, Dolomite, Orthoclase, Siderite and Quartz, using axenic cultures of the following: Chlorella vulgaris, Chlorococcum tetrasporum, Scenedesmus obliquus, Oocystis marsonii, Stichococcus bacillaris. The rock chips were immersed in either water or bolds basal media and exposed to a mix of the micro-organisms listed above and then tested weekly for their pH, fortnightly for the waters chemical composition using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and visually utilising the university's SEM facilities. Work so far has revealed biologically mediated etching of minerals, a well-defined pH profile over a period of 90 days, as well as a variety of elemental release patterns for the different minerals.
NASA Astrophysics Data System (ADS)
Li, Yanzhou; Luo, Jie; Zhang, Yanting; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang
2013-09-01
An inorganic-organic hybrid hexa-copper-substituted germanotungstate Na2[Cu(dap)2]2[Cu(dap)2] {[Cu6(H2O)2(dap)2][B-α-GeW9O34]2}·4H2O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O'Keefe) vertex symbol is 4·4·64·4·4·4·4·64·4·4·4·64·4·4·4 and the short vertex (Schläfli) symbol of 41263. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-CuII cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the WVI-based wave.
Effects of Precipitant and pH on Coprecipitation of Nanosized Co-Cr-V Alloy Powders.
Chen, Xiaoyu; Li, Yongxia; Huang, Lan; Zou, Dan; Wu, Enxi; Liu, Yanjun; Xie, Yuanyan; Yao, Rui; Liao, Songyi; Wang, Guangrong; Zheng, Feng
2017-09-21
Nanosized Co-Cr-V alloy powders were synthesized via coprecipitation method. Effects of precipitants ((NH₄)₂C₂O₄·H₂O and Na₂CO₃) and pH were investigated by X-ray diffraction (XRD), Zeta potential analyzer, thermogravimetry-differential scanning calorimetry (TG-DSC), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). Co-Cr-V alloy powders were consisted of major face-centered cubic Co (fcc Co) and minor hexagonal close-packed Co (hcp Co). Grain sizes of precursors and Co-Cr-V alloy powders were increased with pH value (7-10) within the ranges of 3~39 and 39~66 nm, respectively. Rod-like or granular Co-Cr-V alloy particles were assembled by interconnected nanograins. At pH = 7, Na₂CO₃ precipitant was found to be beneficial to maintain the desirable composition of Co-Cr-V powders. It was also found that lower pH favors the maintenance of pre-designed composition, while grain coarsens at higher pH. Effects of variation for precipitant and pH on the morphology and composition of Co-Cr-V alloy powder were discussed in detail and relevant mechanism was further proposed.
Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda
2016-09-01
To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Hong-gao; Wang, Yuan-zhong
2010-01-01
Using a micro-column packed with immobilized 1-phenyl-3-methyl-4-bonzoil-5-pyrazone(PMBP) on nanometer Al2O3 powder as the adsorption material, the adsorption and elution behaviors of rare earth ions (Sc3+, Y3+ and La3+) on the above material under dynamic conditions were studied with inductively coupled plasma-atomic emission spectrometry. The conditions for preconcentration of rare earth ions were optimized, and the results show that the studied ions can be adsorbed quantitatively on the above material at pH 4.5 and the analytes adsorbed on the column can be eluted with 0.5 mol x L(-1) HCl solution. The detection limits of the method for Sc, Y and La were 0.15, 0.18 and 0.34 microg x L(-1), respectively, and the relative standard deviations were 2.5%, 3.0% and 1.7%, respectively (n=12, c = 0.5 mg x L(-1)). The proposed method was applied to the determination of trace amount of Sc, Y and La in Tricholoma giganteum with satisfactory results.
ALqadami, Ayoub A.; Abdalla, Mohammad Abulhassan; ALOthman, Zeid A.; Omer, Kamal
2013-01-01
A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL−1, respectively. The relative standard deviations (RSDs) were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6–104.4%. PMID:23343988
NASA Astrophysics Data System (ADS)
Conver, Timothy S.; Koropchak, John A.
1995-06-01
This paper describes detailed work done in our lab to compare analytical figures of merit for pneumatic, ultrasonic and thermospray sample introduction (SI) systems with three different inductively coupled plasma-atomic emission spectrometry (ICP-AES) instruments. One instrument from Leeman Labs, Inc. has an air path echelle spectrometer and a 27 MHz ICP. For low dissolved solid samples with this instrument, we observed that the ultrasonic nebulizer (USN) and fused silica aperture thermospray (FSApT) both offered similar LOD improvements as compared to pneumatic nebulization (PN), 14 and 16 times, respectively. Average sensitivities compared to PN were better for the USN, by 58 times, compared to 39 times for the FSApT. For solutions containing high dissolved solids we observed that FSApT optimized at the same conditions as for low dissolved solids, whereas USN required changes in power and gas flows to maintain a stable discharge. These changes degraded the LODs for USN substantially as compared to those utilized for low dissolved solid solutions, limiting improvement compared to PN to an average factor of 4. In general, sensitivities for USN were degraded at these new conditions. When solutions with 3000 μg/g Ca were analyzed, LOD improvements were smaller for FSApT and USN, but FSApT showed an improvement over USN of 6.5 times. Sensitivities compared to solutions without high dissolved solids were degraded by 19% on average for FSApT, while those for USN were degraded by 26%. The SI systems were also tested with a Varian Instruments Liberty 220 having a vacuum path Czerny-Turner monochromator and a 40 MHz generator. The sensitivities with low dissolved solids solutions compared to PN were 20 times better for the USN and 39 times better for FSApT, and LODs for every element were better for FSApT. Better correlation between relative sensitivities and anticipated relative analyte mass fluxes for FSApT and USN was observed with the Varian instrument. LOD improvements averaged 18 times lower than PN with FSApT while with USN values averaged 8 times lower. When solutions with high dissolved solids were studied it was found that FSApT still offered 5.5 times better LODs than PN and USN offered 4.6 times better LODs than PN. Sensitivities for FSApT averaged 20 times better, while those for USN were 13 times better compared to PN. Finally, background RSDs on the Varian system were generally higher for FSApT than for the USN for similar sample types. A third instrument used for a small set of elements was a Perkin-Elmer model 5500 ICP-AES. This system has a 27 MHz generator with a N 2 purged Czerny-Turner monochromator. LOD trends, background RSDs, and sensitivities were similar to those with the Leeman instrument. However, matrix effects more closely resembled those seen with the Varian instrument for both SI systems. To compare performance and recoveries on a real sample, a National Institute of Standards and Technology, Standard Reference Material 1643c trace elements in water, was analyzed using the Varian system and it was found that both SI systems offered similar recoveries.
NASA Astrophysics Data System (ADS)
Menegário, Amauri A.; Fernanda Giné, Maria
2001-10-01
A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l -1 HCl at a flow rate of 82 μl min -1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l -1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h -1.
Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.
Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter
2018-01-01
Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.
[Determination of tungsten and cobalt in the air of workplace by ICP-OES].
Zhang, J; Ding, C G; Li, H B; Song, S; Yan, H F
2017-08-20
Objective: To establish the inductively coupled plasma optical emission spectrometry (ICP-OES) method for determination of cobalt and tungsten in the air of workplace. Methods: The cobalt and tungsten were collected by filter membrane and then digested by nitric acid, inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the detection of cobalt and tungsten. Results: The linearity of tungsten was good at the range of 0.01-1 000 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.006 7 μg/ml and 0.022 μg/ml, respectively. The recovery was ranged from 98%-101%, the RSD of intra-and inter-batch precision were 1.1%-3.0% and 2.1%-3.8%, respectively. The linearity of cobalt was good at the range of 0.01-100 μg/ml with a correlation coefficient of 0.999 9, the LOD and LOQ were 0.001 2 μg/ml and 0.044 μg/ml, respectively. The recovery was ranged from 95%-97%, the RSD of intra-and inter-batch precision were 1.1%-2.4% and 1.1%-2.9%, respectively. The sampling efficiency of tungsten and cobalt were higher than 94%. Conclusion: The linear range, sensitivity and precision of the method was suitable for the detection of tungsten and cobalt in the air of workplace.
Shekhar, R
2012-05-15
A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. Copyright © 2012 Elsevier B.V. All rights reserved.
Chaney, Rufus L; Green, Carrie E; Lehotay, Steven J
2018-05-04
With the establishment by CODEX of a 200 ng/g limit of inorganic arsenic (iAs) in polished rice grain, more analyses of iAs will be necessary to ensure compliance in regulatory and trade applications, to assess quality control in commercial rice production, and to conduct research involving iAs in rice crops. Although analytical methods using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) have been demonstrated for full speciation of As, this expensive and time-consuming approach is excessive when regulations are based only on iAs. We report a streamlined sample preparation and analysis of iAs in powdered rice based on heated extraction with 0.28 M HNO 3 followed by hydride generation (HG) under control of acidity and other simple conditions. Analysis of iAs is then conducted using flow-injection HG and inexpensive ICP-atomic emission spectroscopy (AES) or other detection means. A key innovation compared with previous methods was to increase the acidity of the reagent solution with 4 M HCl (prior to reduction of As 5+ to As 3+ ), which minimized interferences from dimethylarsinic acid. An inter-laboratory method validation was conducted among 12 laboratories worldwide in the analysis of six shared blind duplicates and a NIST Standard Reference Material involving different types of rice and iAs levels. Also, four laboratories used the standard HPLC-ICP-MS method to analyze the samples. The results between the methods were not significantly different, and the Horwitz ratio averaged 0.52 for the new method, which meets official method validation criteria. Thus, the simpler, more versatile, and less expensive method may be used by laboratories for several purposes to accurately determine iAs in rice grain. Graphical abstract Comparison of iAs results from new and FDA methods.
Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli
2018-03-01
A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.
Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?
Amadasi, Alberto; Camici, Arianna; Porta, Davide; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Profumo, Antonella; Rassifi, Nabila; Cattaneo, Cristina
2017-09-01
The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX. © 2017 American Academy of Forensic Sciences.
[Determination of diborane in the air of workplace by ICP-AES].
Ding, Chun-Guang; Zhang, Jing; Yan, Hui-Fang
2011-06-01
A sampling method was established to collect diborane in the air of workplace and an ICP-AES method was developed to determine the Boron in desorbed solution. Diborane in the air of workplace was collected by solid sorbent tube filled with oxidant impregnated activated carbon. The adsorbed diborane was desorbed into 3% H2O2 aqueous, and then the desorbed Boron was determined by ICP-AES. The sampling efficiency of this method was 99.6% with the desorption efficiency of diborane with 5.660 microg and 56.6 microg spiked were 90.9% and 99.5%, respectively. Both the intra-and inter-precision RSD were less than 8%. The standard curve of this method ranged from 0.1 to 10.0 microg/ml (Boron), and the LOD and LOQ were 0.011 mg/m3 and 0.035 mg/m3 (15L samples) respectively. The method established was suitable for diborane sampling and determination in the air of workplace.
[Study on microwave digestion of coal for the determination of multi-element by ICP-OES and ICP-MS].
Wang, Hui; Song, Qiang; Yao, Qiang; Chen, Chang-He; Yu, Fei-Lu
2012-06-01
Effects of temperature and four acids (HNO3, HNO3/H2O2, HNO3/HF and HNO3/HF+H3BO3) on the coal decomposition by microwave digestion and the multi-element analysis were studied. SARM20 was used as a coal standard reference material. The contents of 10 mineral elements (Al, Ca, Fe, Mg, K, Na, S, Si, Sr and Ti) in the coal SARM20 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). And the contents of 20 heavy metals (Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Zr, Sn, Cs, Ba, Ce, Eu and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the coal was completely decomposed by microwave digestion with HNO3/HF+ H3BO3 at 210 degrees C. Good recoveries for all elements in the coal SARM20 were obtained by this two-step microwave digestion method. The recoveries of the 10 mineral elements were from 87.5% to 98.8%, and the recoveries of the 20 heavy metals were from 85% to 112.5%. All RSDs of tests were below 3%.
El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris
2015-06-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Currently there are no EPA reference sampling methods that have been promulgated for measuring stack emissions of Hg from coal combustion sources, however, EPA Method 29 is most commonly applied. The draft ASTM Ontario Hydro Method for measuring oxidized, elemental, particulate-b...
NASA Astrophysics Data System (ADS)
da Silva, Caroline Santos; Pinheiro, Fernanda Costa; do Amaral, Clarice Dias Britto; Nóbrega, Joaquim Araújo
2017-12-01
Some inorganic impurities are toxic to human health even when present at low concentrations and therefore must be carefully monitored in products as continuous use drugs. This work aimed the development of a simple microwave-assisted digestion procedure for different types of drugs and excipients and the analytical determination of elemental impurities according to the new regulations of the United States Pharmacopeia (USP) 232 and 233 using inductively coupled plasma optical emission spectrometry (ICP-OES) or inductively coupled plasma mass spectrometry (ICP-MS). Eight drugs samples and two excipients of different brands were microwave-assisted digested with inverse aqua regia. Addition and recovery experiments were performed according to J values, once permissible daily exposure value is specific for each element and estimated according to the maximum daily dose of drug indicated by the label. Samples were spiked with values of 1.5J in order to check accuracies for As, Cd, Hg, and Pb. Recoveries obtained by ICP-OES ranged from 75 to 148% and for ICP-MS ranged from 74 to 120%. The limits of detection for ICP-OES ranged from 0.4 to 17 mg kg- 1 and for ICP-MS from 7.4 to 41.6 μg kg- 1. Both analytical methods were adequate in terms of accuracies and sensitivities. Considering the maximum daily dose, all drugs samples and excipients contained As, Cd, Hg and Pb below the maximum limits stipulated by USP since all of them presented contents below respective limits of detection.
Qi, Luming; Liu, Honggao; Li, Jieqing; Li, Tao; Wang, Yuanzhong
2018-01-15
Origin traceability is an important step to control the nutritional and pharmacological quality of food products. Boletus edulis mushroom is a well-known food resource in the world. Its nutritional and medicinal properties are drastically varied depending on geographical origins. In this study, three sensor systems (inductively coupled plasma atomic emission spectrophotometer (ICP-AES), ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared spectroscopy (FT-MIR)) were applied for the origin traceability of 192 mushroom samples (caps and stipes) in combination with chemometrics. The difference between cap and stipe was clearly illustrated based on a single sensor technique, respectively. Feature variables from three instruments were used for origin traceability. Two supervised classification methods, partial least square discriminant analysis (FLS-DA) and grid search support vector machine (GS-SVM), were applied to develop mathematical models. Two steps (internal cross-validation and external prediction for unknown samples) were used to evaluate the performance of a classification model. The result is satisfactory with high accuracies ranging from 90.625% to 100%. These models also have an excellent generalization ability with the optimal parameters. Based on the combination of three sensory systems, our study provides a multi-sensory and comprehensive origin traceability of B. edulis mushrooms.
Qi, Luming; Liu, Honggao; Li, Jieqing; Li, Tao
2018-01-01
Origin traceability is an important step to control the nutritional and pharmacological quality of food products. Boletus edulis mushroom is a well-known food resource in the world. Its nutritional and medicinal properties are drastically varied depending on geographical origins. In this study, three sensor systems (inductively coupled plasma atomic emission spectrophotometer (ICP-AES), ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared spectroscopy (FT-MIR)) were applied for the origin traceability of 184 mushroom samples (caps and stipes) in combination with chemometrics. The difference between cap and stipe was clearly illustrated based on a single sensor technique, respectively. Feature variables from three instruments were used for origin traceability. Two supervised classification methods, partial least square discriminant analysis (FLS-DA) and grid search support vector machine (GS-SVM), were applied to develop mathematical models. Two steps (internal cross-validation and external prediction for unknown samples) were used to evaluate the performance of a classification model. The result is satisfactory with high accuracies ranging from 90.625% to 100%. These models also have an excellent generalization ability with the optimal parameters. Based on the combination of three sensory systems, our study provides a multi-sensory and comprehensive origin traceability of B. edulis mushrooms. PMID:29342969
Quantification of chemical elements in blood of patients affected by multiple sclerosis.
Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni
2005-01-01
Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).
Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong
2012-05-01
Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.
ARO - Terrestrial Research Program, Methodologies and Protocols for Characterization of Geomaterials
2015-05-14
of ice involves melting, digestion, and analysis using inductively coupled plasma – mass spectrometry (ICPMS). ICP-MS analysis established elemental...4] have distinct chemical compositions. Knowledge of the chemical composition of the mineral assemblage present in a rock is critical to...activation analysis (INAA), to inductively-coupled plasma analysis and mass spectrometry (ICP & ICP-MS), mass spectrometry (MS), and laser-ablation
[Recent Development of Atomic Spectrometry in China].
Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei
2015-09-01
As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.
Lech, Teresa
2014-04-01
In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Qing; Zhang, Zhen; Wang, Zheng
2014-10-03
A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310). Copyright © 2014. Published by Elsevier B.V.
Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-09-27
The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Rastogi, L.; Dash, K.; Arunachalam, J.
2013-01-01
The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the “high performance” methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements. PMID:29403814
[Performance comparison of material tests for cadmium and lead in food contact plastics].
Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Ishii, Rie; Itoh, Yuko; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kaneko, Reiko; Kawamura, Yoko; Shibata, Hiroshi; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Nomura, Chie; Hikida, Akinori; Matsuyama, Sigetomo; Murakami, Ryo; Yamaguchi, Miku; Wada, Takenari; Watanabe, Kazunari; Akiyama, Hiroshi
2014-01-01
Based on the Japanese Food Sanitation Law, the performances of official and alternative material test methods for cadmium (Cd) and lead (Pb) in food contact plastics were compared. Nineteen laboratories participated to an interlaboratory study, and quantified Cd and Pb in three PVC pellets. in the official method, a sample is digested with H2SO4, taken up in HCl, and evaporated to dryness on a water bath, then measured by atomic absorption spectrometry (AAS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). Statistical treatment revealed that the trueness, repeatability (RSDr) and reproducibility (RSDr) were 86-95%, 3.1-9.4% and 8.6-22.1%, respectively. The values of the performance parameters fulfilled the requirements , and the performances met the test specifications. The combination of evaporation to dryness on a hot plate and measurement by AAS or ICP-OES is applicable as an alternative method. However, the trueness and RSDr were inferior to those of the official method. The performance parameters obtained by using the microwave digestion method (MW method) to prepare test solution were better than those of the official method. Thus, the MW method is available as an alternative method. Induced coupled plasma-mass spectrometry (ICP-MS) is also available as an alternative method. However, it is necessary to ensure complete digestion of the sample.
Kane, J.S.; Evans, J.R.; Jackson, J.C.
1989-01-01
Accurate and precise determinations of tin in geological materials are needed for fundamental studies of tin geochemistry, and for tin prospecting purposes. Achieving the required accuracy is difficult because of the different matrices in which Sn can occur (i.e. sulfides, silicates and cassiterite), and because of the variability of literature values for Sn concentrations in geochemical reference materials. We have evaluated three methods for the analysis of samples for Sn concentration: graphite furnace atomic absorption spectrometry (HGA-AAS) following iodide extraction, inductively coupled plasma atomic emission spectrometry (ICP-OES), and energy-dispersive X-ray fluorescence (EDXRF) spectrometry. Two of these methods (HGA-AAS and ICP-OES) required sample decomposition either by acid digestion or fusion, while the third (EDXRF) was performed directly on the powdered sample. Analytical details of all three methods, their potential errors, and the steps necessary to correct these errors were investigated. Results showed that similar accuracy was achieved from all methods for unmineralized samples, which contain no known Sn-bearing phase. For mineralized samples, which contain Sn-bearing minerals, either cassiterite or stannous sulfides, only EDXRF and fusion ICP-OES methods provided acceptable accuracy. This summary of our study provides information which helps to assure correct interpretation of data bases for underlying geochemical processes, regardless of method of data collection and its inherent limitations. ?? 1989.
[Determination of multi-element contents in gypsum by ICP-AES].
Guo, Zhong-bao; Bai, Yong-zhi; Cui, Jin-hua; Mei, Yi-fei; Ma, Zhen-zhu
2014-08-01
The content of multi-element in gypsum was determined by ICP-AES. The sample was pretreated by acid-soluble method or alkali-fusion method. Acid-soluble method is suitable for the determination of CaO, SOs, Al2O3, Fe2O3, MgO, K2O, Na2O, TiO2, P2O5, MnO, SrO and BaO. Alkali-fusion method is suitable for the determination of CaO, SO3, SiO2, Al2O3, Fe2O3, MgO, TiO2, P2O5, MnO, SrO, BaO and B2O3. Different series standard solutions were prepared considering the properties and content of elements and solution matrix. The limit of detection and quantification were confirmed for each element under their best analysis spectral lines. The recoveries of the two pretreatment methods were from 93% to 110%, besides that for TiO2 was 81%-87% as pretreated by acid-soluble method. All RSDs (n=6) of tests were from 0.70%-3.42%. The accuracies of CaO and SO3 with ICP-AES method were less than the chemical analysis method. The determination of CaO and SO3 with ICP-AES method is only suitable for the case of low accuracy requirement. The results showed that the method can be used for the determination of multi-element contents in gypsum, with simple operation, fast analysis and reliable results. Total elements can be analysed with both acid-soluble method and alkali-fusion method.
NASA Astrophysics Data System (ADS)
Zhao, Shuwen; Xia, Donglin; Zhao, Ruimin; Zhu, Hao; Zhu, Yiru; Xiong, Yuda; Wang, Youfa
2017-01-01
Hexagonal-phase NaGdF4: Yb, Er upconversion nanocrystals (UCNCs) with tunable morphology and properties were successfully prepared via a thermal decomposition method. The influences of the adding sequence of the precursors on the morphology, chemical composition, luminescence and magnetic properties were investigated by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), upconversion (UC) spectroscopy, and a vibrating sample magnetometer (VSM). It was found that the resulting nanocrystals, with different sizes ranging from 24 to 224 nm, are in the shape of spheres, hexagonal plates and flakes; moreover, the composition percentage of Yb3+-Er3+ and Gd3+ ions was found to vary in a regular pattern with the adding sequence. Furthermore, the intensity ratios of emission colors (f g/r, f g/p), and the magnetic mass susceptibility of hexagonal-phase NaGdF4: Yb, Er nanocrystals change along with the composition of the nanocrystals. A positive correlation between the susceptibility and f g/r of NaGdF4: Yb, Er was proposed. The decomposition processes of the precursors were investigated by a thermogravimetric (TG) analyzer. The result indicated that the decomposition of the resolved lanthanide trifluoroacetate is greatly different from lanthanide trifluoroacetate powder. It is of tremendous help to recognize the decomposition process of the precursors and to understand the related reaction mechanism.
Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.
Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A
2018-02-01
Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (p<0.05), while potassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES.
Xie, Jian-Hua; Shen, Ming-Yue; Nie, Shao-Ping; Liu, Xin; Yin, Jun-Yi; Huang, Dan-Fei; Zhang, Hui; Xie, Ming-Yong
2013-04-15
The contents of 18 kinds of mineral elements in Cyclocarya paliurus polysaccharide samples were determined by ICP-AES. The limits of detection (LOD) of the method for 18 elements were in the range of 0.01-3.80 mg/kg. The average recoveries obtained by the standard addition method were found between 94.34% and 105.69% (RSD, 1.01-4.23%). The results showed that C. paliurus polysaccharides were abundant in major and trace elements which are healthy for human body. The contents of Ca, Al, Mg, K, Fe, Mn and P were very high, ranging from 274.5±10.3 to 5980.0±102.7 mg/kg, while the contents of Zn, Na, Se, Cr, Pb, Cu and As ranged from 0.9±0.1 to 37.1±4.2 mg/kg. Finally, the levels of Ni, Cd, V and Co were not detected in the samples. ICP-AES is a simple, precise and efficient method for the determination of many mineral elements in polysaccharide samples simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method of low tantalum amounts determination in niobium and its compounds by ICP-OES technique.
Smolik, Marek; Turkowska, Magdalena
2013-10-15
A method of determination of low amounts of tantalum in niobium and niobium compounds without its prior separation by means of inductively coupled plasma optical emission spectrometry (ICP-OES) has been worked out. The method involves dissolution of the analyzed samples of niobium as well as its various compounds (oxides, fluorides, chlorides, niobates(V)) in fluoride environments, precipitation of sparingly soluble niobic(tantalic) acid (Nb2O5(Ta2O5) · xH2O), converting them into soluble complex compounds by means of oxalic acid with addition of hydrogen peroxide and finally analyzing directly obtained solutions by ICP-OES. This method permits determination of Ta in niobium at the level of 10(-3)% with relatively good precision (≤ 8% RSD) and accuracy (recovery factor: 0.9-1.1). Relative differences in the results obtained by two independent methods (ICP-OES and ICP-MS) do not exceed 14%, and other elements present in niobium compounds (Ti, W, Zr, Hf, V, Mo, Fe, Cr) at the level of 10(-2)% do not affect determination. © 2013 Elsevier B.V. All rights reserved.
Folens, Karel; Van Acker, Thibaut; Bolea-Fernandez, Eduardo; Cornelis, Geert; Vanhaecke, Frank; Du Laing, Gijs; Rauch, Sebastien
2018-02-15
Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg -1 , comparable to the Pt content in road dust of other medium-sized cities. Further sample characterization was performed by single particle (sp) ICP-MS following an ultrasonic extraction procedure using stormwater runoff for leaching. The method was found to be suitable for the characterization of Pt nanoparticles in road dust leachates. The extraction was optimized using road dust reference material BCR-723, for which an extraction efficiency of 2.7% was obtained by applying 144kJ of ultrasonic energy. Using this method, between 0.2% and 18% of the Pt present was extracted from road dust samples. spICP-MS analysis revealed that Pt in the leachate is entirely present as nanoparticles of sizes between 9 and 21nm. Although representing only a minor fraction of the total content in road dust, the nanoparticulate Pt leachate is most susceptible to biological uptake and hence most relevant in terms of bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.
Studies of Be migration in the JET tokamak using AMS with 10Be marker
NASA Astrophysics Data System (ADS)
Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.
2016-03-01
The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.
Sebecić, Blazenka; Vedrina-Dragojević, Irena
2004-04-01
Cereal-based confectionery products being consumed through whole human life are considered mainly to be a source of carbohydrates, that is energy, although cereals are a rich source of minerals as well. To evaluate some hard biscuits produced in Croatia as a source of different trace elements in nutrition, in this study Zn and Cu contents were determined in classic wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and skimmed milk. Zn was determined by flame atomic absorption spectrometry (AAS); Cu was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results show that the Zn content in different kinds of biscuits ranges from 5.89 up to 17.64 mg/kg and the Cu content ranges from 1.15 up to 2.79 mg/kg depending on the type of wheat milling products and mineral content of other ingredients used. Enriched dietetic biscuits produced from wheat flour type 850 and whole wheat grain flour and/or soya flour and skimmed milk were almost 200% and 150% higher in Zn and Cu, respectively, in comparison to classic white wheat flour biscuits and can be considered as good sources of Zn and Cu in nutrition.
Liberation characteristic and physical separation of printed circuit board (PCB).
Guo, Chao; Wang, Hui; Liang, Wei; Fu, Jiangang; Yi, Xin
2011-01-01
Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.
He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng
2017-12-09
Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.
Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L
2014-02-01
The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Precipitant and pH on Coprecipitation of Nanosized Co-Cr-V Alloy Powders
Chen, Xiaoyu; Li, Yongxia; Huang, Lan; Zou, Dan; Wu, Enxi; Liu, Yanjun; Xie, Yuanyan; Yao, Rui; Liao, Songyi; Wang, Guangrong
2017-01-01
Nanosized Co-Cr-V alloy powders were synthesized via coprecipitation method. Effects of precipitants ((NH4)2C2O4·H2O and Na2CO3) and pH were investigated by X-ray diffraction (XRD), Zeta potential analyzer, thermogravimetry-differential scanning calorimetry (TG-DSC), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). Co-Cr-V alloy powders were consisted of major face-centered cubic Co (fcc Co) and minor hexagonal close-packed Co (hcp Co). Grain sizes of precursors and Co-Cr-V alloy powders were increased with pH value (7–10) within the ranges of 3~39 and 39~66 nm, respectively. Rod-like or granular Co-Cr-V alloy particles were assembled by interconnected nanograins. At pH = 7, Na2CO3 precipitant was found to be beneficial to maintain the desirable composition of Co-Cr-V powders. It was also found that lower pH favors the maintenance of pre-designed composition, while grain coarsens at higher pH. Effects of variation for precipitant and pH on the morphology and composition of Co-Cr-V alloy powder were discussed in detail and relevant mechanism was further proposed. PMID:28934147
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption D 3697-07 Atomic Absorption; Furnace 3113 B Axially viewed inductively coupled plasma-atomic... C Hydride Atomic Absorption 3114 B D 2972-08 B Axially viewed inductively coupled plasma-atomic emission spectrometry (AVICP-AES) 200.5, Revision 4.2. Barium Inductively Coupled Plasma 3120 B Atomic...
NASA Astrophysics Data System (ADS)
Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.
2009-06-01
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.
Hua, Li; Wu, Yi-Ping; An, Bing; Lai, Xiao-Wei
2008-11-01
The harm of heavy metals contained in electronic and electrical equipment (EEE) on environment is of high concern by human. Aiming to handle the great challenge of RoHS compliance, the determinations of trace or ultratrace chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb) by inductively coupled plasma optical emission spectrometry (ICP-OES) was performed in the present paper, wherein, microwave extraction technology was used to prepare the sample solutions. In addition, the precision, recovery, repeatability and interference issues of this method were also discussed. The results exhibited that using the microwave extraction system to prepare samples is more quick, lossless, contamination-free in comparison with the conventional extraction methods such as dry ashing, wet-oven extraction etc. By analyzing the recoveries of these four heavy metals over different working time and wavelengths, the good recovery range between 85% and 115% showed that there was only tiny loss or contamination during the process of microwave extraction, sample introduction and ICP detection. Repeatability experiments proved that ICP plasma had a good stability during the working time and the matrix effect was small. Interference was a problem troublesome for atomic absorption spectrometry (AAS), however, the techniques of standard additions or inter-element correction (IEC) method can effectively eliminated the interferences of Ni, As, Fe etc. with the Cd determination. By employing the multi-wavelengths and two correction point methods, the issues of background curve sloping shift and spectra overlap were successfully overcome. Besides, for the determinations of trace heavy metal elements, the relative standard deviation (RSD) was less than 3% and the detection limits were less than 1 microg x L(-10 (3sigma, n = 5) for samples, standard solutions, and standard additions, which proved that ICP-OES has a good precision and high reliability. This provided a reliable technique support for electronic and electrical (EE) industries to comply with RoHS directive.
NASA Astrophysics Data System (ADS)
Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.
2010-06-01
A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.
NASA Astrophysics Data System (ADS)
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon
2010-11-01
This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.
Church, S.E.; Mosier, E.L.; Motooka, J.M.
1987-01-01
We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.
Muller, Edson I; Souza, Juliana P; Muller, Cristiano C; Muller, Aline L H; Mello, Paola A; Bizzi, Cezar A
2016-08-15
In this work a green digestion method which only used H2O2 as an oxidant and high temperature and pressure in the single reaction chamber system (SRC-UltraWave™) was applied for subsequent elemental determination by inductively coupled plasma-based techniques. Milk powder was chosen to demonstrate the feasibility and advantages of the proposed method. Samples masses up to 500mg were efficiently digested, and the determination of Ca, Fe, K, Mg and Na was performed by inductively coupled plasma optical emission spectrometry (ICP-OES), while trace elements (B, Ba, Cd, Cu, Mn, Mo, Pb, Sr and Zn) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Residual carbon (RC) lower than 918mgL(-1) of C was obtained for digests which contributed to minimizing interferences in determination by ICP-OES and ICP-MS. Accuracy was evaluated using certified reference materials NIST 1549 (non-fat milk powder certified reference material) and NIST 8435 (whole milk powder reference material). The results obtained by the proposed method were in agreement with the certified reference values (t-test, 95% confidence level). In addition, no significant difference was observed between results obtained by the proposed method and conventional wet digestion using concentrated HNO3. As digestion was performed without using any kind of acid, the characteristics of final digests were in agreement with green chemistry principles when compared to digests obtained using conventional wet digestion method with concentrated HNO3. Additionally, H2O2 digests were more suitable for subsequent analysis by ICP-based techniques due to of water being the main product of organic matrix oxidation. The proposed method was suitable for quality control of major components and trace elements present in milk powder in consonance with green sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploration of robust operating conditions in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Tromp, John W.; Pomares, Mario; Alvarez-Prieto, Manuel; Cole, Amanda; Ying, Hai; Salin, Eric D.
2003-11-01
'Robust' conditions, as defined by Mermet and co-workers for inductively coupled plasma (ICP)-atomic emission spectrometry, minimize matrix effects on analyte signals, and are obtained by increasing power and reducing nebulizer gas flow. In ICP-mass spectrometry (MS), it is known that reduced nebulizer gas flow usually leads to more robust conditions such that matrix effects are reduced. In this work, robust conditions for ICP-MS have been determined by optimizing for accuracy in the determination of analytes in a multi-element solution with various interferents (Al, Ba, Cs, K, Na), by varying power, nebulizer gas flow, sample introduction rate and ion lens voltage. The goal of the work was to determine which operating parameters were the most important in reducing matrix effects, and whether different interferents yielded the same robust conditions. Reduction in nebulizer gas flow and in sample input rate led to a significantly decreased interference, while an increase in power seemed to have a lesser effect. Once the other parameters had been adjusted to their robust values, there was no additional improvement in accuracy attainable by adjusting the ion lens voltage. The robust conditions were universal, since, for all the interferents and analytes studied, the optimum was found at the same operating conditions. One drawback to the use of robust conditions was the slightly reduced sensitivity; however, in the context of 'intelligent' instruments, the concept of 'robust conditions' is useful in many cases.
Identification and characterization of gadolinium(III) complexes in biological tissue extracts.
Kahakachchi, Chethaka L; Moore, Dennis A
2010-07-01
The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.
Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS.
Pereira, João B; Dantas, Kelly G F
2016-04-01
The determination of Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, and Zn by inductively coupled plasma optical emission spectrometry (ICP OES), and Se by graphite furnace atomic absorption spectrometry (GF AAS), has been carried out in dry matter and teas from 11 samples of the cat's claw plant. The accuracy and precision values were verified against GBW 07604 (Poplar leaves) certified reference material and by the recovery test. Results showed a high content of Ca in the medicinal plant studied, followed by Mg and P. The values obtained showed that the elements studied have different concentrations depending on the method of tea preparation. The highest levels were observed in Ca and Mg, and the lowest for Se and Pb, by both infusion and decoction. Teas prepared from this plant were found to be at safe levels for human consumption, and may be suitable as sources of these elements in the human diet. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simplified multi-element analysis of ground and instant coffees by ICP-OES and FAAS.
Szymczycha-Madeja, Anna; Welna, Maja; Pohl, Pawel
2015-01-01
A simplified alternative to the wet digestion sample preparation procedure for roasted ground and instant coffees has been developed and validated for the determination of different elements by inductively coupled plasma optical emission spectrometry (ICP-OES) (Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, Zn) and flame atomic absorption spectrometry (FAAS) (Ca, Fe, K, Mg, Na). The proposed procedure, i.e. the ultrasound-assisted solubilisation in aqua regia, is quite fast and simple, requires minimal use of reagents, and demonstrated good analytical performance, i.e. accuracy from -4.7% to 1.9%, precision within 0.5-8.6% and recovery in the range 93.5-103%. Detection limits of elements were from 0.086 ng ml(-1) (Sr) to 40 ng ml(-1) (Fe). A preliminary classification of 18 samples of ground and instant coffees was successfully made based on concentrations of selected elements and using principal component analysis and hierarchic cluster analysis.
Lichte, F.E.; Meier, A.L.; Crock, J.G.
1987-01-01
A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Charles J.; Edwards, Thomas B.
2005-04-30
The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.« less
Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin
2009-08-15
Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.
Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D
2001-08-01
Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.
Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine.
Bouvier-Capely, C; Ritt, J; Baglan, N; Cossonnet, C
2004-05-01
The applicability of inductively coupled plasma-mass spectrometry (ICP-MS) for determining actinides in urine was investigated. Performances of ICP-MS including detection limit and analysis time were studied and compared with alpha spectrometry performances. In the field of individual monitoring of workers, the comparison chart obtained in this study can be used as a guide for medical laboratories to select the most adequate procedure to be carried out depending on the case in question (the radioisotope to be measured, the required sensitivity, and the desired response time).
Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa
2017-12-28
In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.
Mass spectrometry of long-lived radionuclides
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2003-10-01
The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass spectrometry and accelerator mass spectrometry for the determination of long-lived radionuclides in quite different materials.
NASA Astrophysics Data System (ADS)
Lun Leung, Kwun
2010-05-01
The combustion of coal usually leads to many different kinds of pollution around coke-making factories. Among these pollutions, the heavy metal contamination in the soil and plants is one of the major concerns by people living around. Heavy metals are highly attracted to the biological tissue, and can stay in bodies of organisms for long period of time, causing a lot of hazardous diseases to human beings, animal and plants. In the developing regions of China, developing of industries has been based on the sacrifices of environments and human health. In order to evaluate the danger of heavy metal contamination from a coke factory to citizens of close inhabitants, a survey on soil and plants was conducted in the region around a coke-making factory in Jiyuan city, which is a major electricity supplying city for the Henan Province in China. In this study, 8 surface soil samples and 11 plant samples were collected from 8 different places around the coke-making factory in Jiyuan city. The collected samples are then treated in the laboratory, and 8 types of heavy metals, which include arsenic, cadmium, chromium, cobalt, copper, lead, nickel and zinc, are analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The concentration data of heavy metals that collected from the analysis are then used to evaluate their toxicity towards living organisms and ecology by applying several biological effect standards, such as effect-range low (ERL), effect-range median (ERM) and several maximum allowances standards of heavy metal concentrations in soils and plants that established by different countries. Moreover, the relationship between the distance from the factory and the concentration of heavy metals in soils and plants are also evaluated in order to find out the contamination ranges of those heavy metals from the source. The result shows that the concentration of these 8 types of heavy metals in the site exceeds the ERL, with lead being the heavy metals that exceeds the biological effect standards the most. This study suggests some remediate measures that must be made in order to decrease the emission of these elements to meet the national standards. The local government is now realized the problems and begins to limit the emissions and offers medical treatments to kids detected with high blood lead.
Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.
1989-01-01
Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.
Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F
2015-01-01
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm
2016-09-28
Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice. Copyright © 2016 Elsevier B.V. All rights reserved.
Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko
2018-06-01
A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.
[Determination of twenty one elements in lithium hexafluorophosphate by ICP-AES].
Fang, Yi-wen; Hao, Zhi-feng; Song, Yi-bing; Sun, Chang-yong; Yu, Jian; Yu, Lin
2005-02-01
One gram (+/- 0.0001 g) of lithium hexafluorophosphate was weighed exactly under dry atmosphere and was dissolved with an adequate amount of dimethyl carbonate (DMC). After the sample solution was pretreated with a series of methods, Be, Cu, Pb, Ca, Zr, Co, Mg, V, Ti, Mo, Ni, Mn, Sr, Zn, K, Al, Ba, Cd, Fe, Cr and Na were determined by ICP-AES. The results show that the recoveries of standard addition were 93.3%-102.1%, and the relative standard deviations (n = 11) were 0%-3.56%. The method is efficient, accurate and easy to operate. It has been applied to the determination of lithium hexafluorophosphate products with satisfactory results.
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto
2003-01-01
A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).
KEY COMPARISON: Final report on CCQM-K57: Chemical composition of clay
NASA Astrophysics Data System (ADS)
Salas, Antonio; Ramírez, Estele
2009-01-01
After the successful completion of the pilot study, CCQM-P65 [1], the Inorganic Analysis Working Group of CCQM agreed to conduct key comparison CCQM-K57, Chemical composition of clay, in Paris, April 2006. The natural mass fraction levels of five elements—Si, Ca, Fe, Al and Mg—were measured and reported as oxides in clay. Six national metrology institutes participated in CCQM K57, and CENAM (Querétaro, Mexico) coordinated. The methods employed were isotope dilution mass spectrometry (IDMS), inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES) using the dehydration method and condensation method, gravimetric analysis, neutron activation analysis (NAA), prompt gamma activation analysis (PGAA) and x-ray fluorescence spectrometry (XRF) with the reconstitution method and external calibration. This final report presents the capability of the participant institutes, based on the KCRV, which was approved at the IAWG spring meeting in 2008, and the equivalence statements regarding the KCRV, approved at its autumn meeting. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
NASA Astrophysics Data System (ADS)
Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek
2017-04-01
Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd:
Li, Zhuguo; Ohnuki, Toshihiko; Ikeda, Ko
2016-01-01
Ambient temperature geopolymerization of paper sludge ashes (PS-ashes) discharged from paper mills was studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), induction coupled plasma atomic emission spectrometry (ICP-AES), and X-ray absorption near edge structure (XANES). Two varieties of alkaline liquors were used in the PS-ash based geopolymers, corresponding to aqueous Na-metasilicate and Na-disilicate compositions. PS-ashes were found to be semi-crystalline and to have porous structures that make it possible to absorb much liquor. Flexural strengths of PS-ash-based geopolymers with liquor/filler ratios (L/F) of 1.0–1.5 ranged from 0.82 to 1.51 MPa at 4 weeks age, depending on PS-ashes and liquors used. The reaction process of the constituent minerals of the PS-ash is discussed. Furthermore, we attempted to solidify hazardous water contaminated with radioisotopes. Non-radioactive strontium and cesium nitrates were added as surrogates at a dosage of 1% into the PS-ash-based geopolymers. Generally, high immobilization ratios up to 99.89% and 98.77% were achieved for Sr2+ and Cs+, respectively, depending on the source of PS-ashes, alkaline liquors, and material ages. However, in some cases, poor immobilization ratios were encountered, and we further discussed the causes of the instability of derived geopolymer gels on the basis of XANES spectra. PMID:28773754
Yilmaz, Selehattin; Türe, Melike; Sadikoglu, Murat; Duran, Ali
2010-08-01
The wastewater pollution in industrial areas is one of the most important environmental problems. Heavy metal pollution, especially chromium pollution in the wastewater sources from electroplating, dyeing, and tannery, has affected the life on earth. This pollution can affect on all ecosystems and human health directly or by food chain. Therefore, the determination of total chromium in this study is of great importance. In this study, accurate, rapid, sensitive, selective, simple, and low-cost technique for the direct determination of total Cr in wastewater samples collected from the some Cr electroplating factories in March 2008 by inductively coupled plasma-atomic emission spectrometry has been developed. The analysis of a given sample is completed in about 15 min by this technique applied. As the result of the chromium analysis, the limit of quantification for the total Cr were founded to be over the limit value (0.05 mg L(-1); WHO, EPA, TSE 266, and inland water quality classification) as 1,898.78+/-0.34 mg/L at station 1 and 3,189.02+/-0.56 mg/L at station 2. The found concentration of total Cr has been determined to be IV class quality water according to the inland water classification. In order to validate the applied method, recovery studies were performed.
Mechanism research on arsenic removal from arsenopyrite ore during a sintering process
NASA Astrophysics Data System (ADS)
Cheng, Ri-jin; Ni, Hong-wei; Zhang, Hua; Zhang, Xiao-kun; Bai, Si-cheng
2017-04-01
The mechanism of arsenic removal during a sintering process was investigated through experiments with a sintering pot and arsenic-bearing iron ore containing arsenopyrite; the corresponding chemical properties of the sinter were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). The experimental results revealed that the reaction of arsenic removal is mainly related to the oxygen atmosphere and temperature. During the sintering process, arsenic could be removed in the ignition layer, the sinter layer, and the combustion zone. A portion of FeAsS reacted with excess oxygen to generate FeAsO4, and the rest of the FeAsS reacted with oxygen to generate As2O3(g) and SO2(g). A portion of As2O3(g) mixed with Al2O3 or CaO, which resulted in the formation of arsenates such as AlAsO4 and Ca3(AsO4)2, leading to arsenic residues in sintering products. The FeAsS component in the blending ore was difficult to decompose in the preliminary heating zone, the dry zone, or the bottom layer because of the relatively low temperatures; however, As2O3(g) that originated from the high-temperature zone could react with metal oxides, resulting in the formation of arsenate residues.
Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits.
Özcan, Mehmet Musa; Harmankaya, Mustafa; Gezgin, Sait
2012-01-01
The rate of heavy metal pollution in some minor fruit samples growing at roadsides in Turkey were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The mineral contents of samples were found to be different depending on the several parts Citrus fruits. The highest minor and heavy metal levels for Citrus fruits were determined between 17.24 and 45.30 mg/kg boron, 2.08 and 15.05 mg/kg copper, 1.01 and 16.00 mg/kg iron and 2.35 and 9.87 mg/kg zinc. Boron content ranged from 16.54 mg/kg (Deveci pear inner pulp) to 89.89 mg/kg (Arjantin apple outer skin). The level of Fe ranged from 1.49 mg/kg (quince pulp) to 25.05 mg/kg (Ankara pear pulp). Cu content of fruits ranged between 2.52 mg/kg (Fuji apple skin) and 25.93 mg/kg quince skin). Zn content was found between 0.46 mg/kg (Golden apple pulp) and 14.34 mg/kg (quince skin). P contents ranged from 651 mg/kg (Golden apple pulp) to 1269 mg/kg (quince skin). Na was found between 500 mg/kg (Fuji apple skin) and 907 mg/kg (Arjantin apple skin).
Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes.
Ou, Hsin-Hung; Liao, Ching-Hui; Liou, Ya-Hsuan; Hong, Jian-Hao; Lo, Shang-Lien
2008-06-15
Characterizations of microwave-induced titanate nanotubes (NaxH(2-x)Ti3O7, TNTs) were conducted by the determinations of specific surface area (S(BET)), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS), ionic coupled plasma-atomic emission spectrometry(ICP-AES), scanning electron microscopy/ energy dispersive X-ray (SEM/EDX), and high-resolution transmission electron microscopy (HR-TEM). The applied level of microwave irradiation during the fabrication process is responsible for both the intercalation intensity of Na atoms into TNTs and the type of crystallization phase within TNTs, which dominate the efficiency of photocatalytic NH3/NH4+. A pure TNT phase presents no powerful ability toward photocatalytic NH3/ NH4+, while the photocatalytic efficiency can be enhanced with the presence of a rutile phase within TNTs. In addition, the mixture of anatase and rutile phase within P25 TiO2 prefers forming NO3-, whereas TNTs yield higher NO2- amount Regarding the effect of acid-washing treatment on TNTs, the acid-treated TNTs with enhanced ion exchangeability considerably improve the NH3/NH4+ degradation and NO2-/NO3- yields. This result is likely ascribed to the easy intercalation of NH3/ NH4+ into the structure of acid-washing TNTs so that the photocatalytic oxidation of intercalated NH3/NH4+ is not limited to the shielding effect resulting from the overload of TNTs.
Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal.
Zhou, Changsong; Sun, Lushi; Zhang, Anchao; Wu, Xiaofeng; Ma, Chuan; Su, Sheng; Hu, Song; Xiang, Jun
2015-04-01
A series of novel spinel Fe3-xCuxO4 (0
Emerson, Rachel M.
2015-01-01
Abstract Inorganic compounds in biomass, often referred to as ash, are known to be problematic in the thermochemical conversion of biomass to bio-oil or syngas and, ultimately, hydrocarbon fuels because they negatively influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. The most common ash-analysis methods, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS), require considerable time and expensive reagents. Laser-induced breakdown spectroscopy (LIBS) is emerging as a technique for rapid analysis of the inorganic constituents in a wide range of biomass materials. This study compares analytical results using LIBS data to results obtained from three separate ICP-OES/MS methods for 12 samples, including six standard reference materials. Analyzed elements include aluminum, calcium, iron, magnesium, manganese, phosphorus, potassium, sodium, and silicon, and results show that concentrations can be measured with an uncertainty of approximately 100 parts per million using univariate calibration models and relatively few calibration samples. These results indicate that the accuracy of LIBS is comparable to that of ICP-OES methods and indicate that some acid-digestion methods for ICP-OES may not be reliable for Na and Al. These results also demonstrate that germanium can be used as an internal standard to improve the reliability and accuracy of measuring many elements of interest, and that LIBS can be used for rapid determination of total ash in biomass samples. Key benefits of LIBS include little sample preparation, no reagent consumption, and the generation of meaningful analytical data instantaneously. PMID:26733765
Spark ablation-inductively coupled plasma spectrometry for analysis of geologic materials
Golightly, D.W.; Montaser, A.; Smith, B.L.; Dorrzapf, A.F.
1989-01-01
Spark ablation-inductively coupled plasma (SA-ICP) spectrometry is applied to the measurement of hafnium-zirconium ratios in zircons and to the determination of cerium, cobalt, iron, lead, nickel and phosphorus in ferromanganese nodules. Six operating parameters used for the high-voltage spark and argon-ICP combination are established by sequential simplex optimization of both signal-to-background ratio and signal-to-noise ratio. The time-dependences of the atomic emission signals of analytes and matrix elements ablated from a finely pulverized sample embedded in a pressed disk of copper demonstrate selective sampling by the spark. Concentration ratios of hafnium to zirconium in zircons are measured with a precision of 4% (relative standard deviation, RSD). For ferromanganese nodules, spectral measurements based on intensity ratios of analyte line to the Mn(II) 257.610 nm line provide precisions of analysis in the range from 7 to 14% RSD. The accuracy of analysis depends on use of standard additions of the reference material USGS Nod P-1, and an independent measurement of the Mn concentration. ?? 1989.
NASA Astrophysics Data System (ADS)
dos Santos, Éder José; Herrmann, Amanda Beatriz; de Caires, Suzete Kulik; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José
2009-06-01
A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH 4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 µg L - 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL - 1 was 0.10 µg g - 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.
Vijayaraghavan, K; Joshi, U M
2013-01-01
Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.
NASA Astrophysics Data System (ADS)
Almirall, Jose R.; Montero, Shirly; Furton, Kenneth G.
2002-08-01
The importance of glass as evidence of association between a crime event and a suspect has been recognized for some time. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. The physical and chemical properties of glass can be used to differentiate between possible sources and as evidence of association between two fragments of glass thought to originate from the same source. Refractive index (RI) comparisons have been used for this purpose but due to the improved control over glass manufacturing processes, RI values often cannot differentiate glasses, even if the glass originates from different sources. Elemental analysis methods such as NAA, XRF, ICP-AES, and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have also been used for the comparison of trace elemental compositions and these techniques have been shown to provide an improvement in the discrimination of glass fragments over RI comparisons alone. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The methodology for solution analysis (digestion procedure) and solid sample analysis (laser ablation) of glass is reported and the analytical results are compared. An isotope dilution method is also reported as a high precision technique for elemental analysis of glass fragments. The optimum sampling parameters for laser ablation, for semi-quantitative analysis and element ratio comparisons are also presented. Finally, the results of a case involving the breaking of 15 vehicle windows in an airport parking lot and the association of a suspect to the breakings by the glass fragments found on his person are also presented.
Report of the CCQM-K123: trace elements in biodiesel fuel
NASA Astrophysics Data System (ADS)
Kuroiwa, T.; Zhu, Y.; Inagaki, K.; Long, S. E.; Christopher, S. J.; Puelles, M.; Borinsky, M.; Hatamleh, N.; Murby, J.; Merrick, J.; White, I.; Saxby, D.; Sena, R. C.; Almeida, M. D.; Vogl, J.; Phukphatthanachai, P.; Fung, W. H.; Yau, H. P.; Okumu, T. O.; Kang'iri, J. N.; Télle, J. A. S.; Campos, E. Z.; Gal&vacute; n, E. C.; Kaewkhomdee, N.; Taebunpakul, S.; Thiengmanee, U.; Yafa, C.; Tokman, N.; Tunç, M.; Can, S. Z.
2017-01-01
The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. Most of the participants used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participants. Concerning S, the variation in results between participants, particularly those using IDMS methods was observed. According to the additional evaluation and investigation, the revised results were overlapping between IDMS measurements at the k = 2 level. However, this KC does not support S measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Oliver, Ian W; Graham, Margaret C; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G
2008-12-15
The mobility and bioavailability of depleted uranium (DU) in soils at a UK Ministry of Defence (UK MoD) weapons testing range were investigated. Soil and vegetation were collected near a test-firing position and at eight points along a transect line extending approximately 200 m down-slope, perpendicular to the firing line, toward a small stream. Earthworms and porewaters were subsequently separated from the soils and both total filtered porewater (<0.2 microm) and discrete size fractions (0.2 microm-100 kDa, 100-30 kDa, 30-3 kDa, and <3 kDa)obtainedvia centrifugal ultrafiltration were examined. Uranium concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for soils and ICP-mass spectrometry (MS) for earthworms and porewaters, while 235U:238U atom ratios were determined by multicollector (MC)-ICP-MS. Comparison of the porewater and earthworm isotopic values with those of the soil solids indicated that DU released into the environment during weapons test-firing operations was more labile and more bioavailable than naturally occurring U in the soils at the testing range. Importantly, DU was shown to be present in soil porewater even at a distance of approximately 185 m from the test-firing position and, along the extent of the transect was apparently associated with organic colloids.
USDA-ARS?s Scientific Manuscript database
Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2016-03-01
Efficient synthesis of various benzimidazoles and benzothiazoles under mild conditions catalyzed by Cu(II) anchored onto UiO-66-NH2 metal organic framework is reported. In this manner, first, the aminated UiO-66 was modified with thiophene-2-carbaldehyde and then the prepared Schiff base was reacted with CuCl2. The prepared catalyst was characterized by FT-IR, UV-vis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). The UiO-66-NH2-TC-Cu was applied as a highly efficient catalyst for synthesis of benzimidazole and benzothiazole derivatives by the reaction of aldehydes with 1,2-diaminobenzene or 2-aminothiophenol. The Cu(II)-containing MOF was reused several times without any appreciable loss of its efficiency.
NASA Astrophysics Data System (ADS)
Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz
2015-03-01
Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.
NASA Astrophysics Data System (ADS)
Godoi, Quienly; Santos, Dario, Jr.; Nunes, Lidiane C.; Leme, Flávio O.; Rufini, Iolanda A.; Agnelli, José A. M.; Trevizan, Lilian C.; Krug, Francisco J.
2009-06-01
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of São Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time, integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated.
Chen, Xi; Du, Peng; Guan, Qing; Feng, Xu; Xu, Dong-qun; Lin, Shao-bin
2015-06-01
To investigate the characteristics of chemical constitute and pollution sources of aerosol fine particulate matter during haze-fog day in Beijing in winter 2013. The samples of PM2.5 were collected in Beijing from January to February, 2013. The technique of ICP-MS and ICP-AES coupled with procedure of bathing-ultrasonic extraction was applied to determine the concentration of 40 elements in the aerosol samples to analyze the characteristics of elements distribution statistically. The absolute principal factor method was used to apportion the pollution sources of PM2.5 during the haze weather in Beijing city in winter 2013. The results showed that during the period of sampling, the volume concentration of Li, Mn, Pb, S etc. obeyed normal distribution approximately, and according to National Ambient Air Quality Standard issued by Ministry of Environmental Protection of the People's Republic of China, the geometric mean concentration of As was twice the annual limit of standard reference, while Pb of some aerosol samples beyond the annual limit of standard reference respectively. The mass fraction of Fe, Zn, Pb, Ti accounted for over 0.1%, while that of Mn, Cu, As, Se etc. 0.01%. These elements were primary inorganic pollutants, and especially the hazards and sources of As and Pb should be concerned. There were 6 main pollution sources were chosen by the factor analysis method, including industrial dust and human beings activities, biomass combustion and building dust, soil and sand dusts, fossil fuel, electronic waste and metal smelting, with the variance contribution rate of 40.3%, 27.0%, 9.1%, 4.9%, 4.8% and 4.6% respectively. ICP-MS and ICP-AES can be applied to analyzing multi-elements in PM2.5 accurately and quickly to facilitate source apportionment, and it indicated that the relevant pollution sources should be considered and the effect of regional transferring of haze pollution sources should be taken into account, and specific measures should be taken for control.
Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)
NASA Technical Reports Server (NTRS)
Coedo, A. G.; Lopez, M. T. D.
1986-01-01
The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel.
NASA Astrophysics Data System (ADS)
Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.
2015-03-01
A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.
Quantitative aspects of inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Bulska, Ewa; Wagner, Barbara
2016-10-01
Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue 'Quantitative mass spectrometry'.
Rimmer, D A; Johnson, P D; Bradley, S D
2001-09-14
A method for the determination of zinc octoate (zinc 2-ethylhexanoate) and acypetacs zinc in occupational hygiene samples and wood treatments formulations is described. The zinc carboxylates are liquid-liquid partitioned between toluene and 1 M HCl, with the liberated acids being extracted into the toluene and zinc (chloride) into the acid. The carboxylic acids are then methylated using trimethylsilyldiazomethane-methanol and the resultant methyl esters are selectively and sensitively analysed by gas chromatography with mass selective detection (GC-MS). Alternatively, the zinc content of the acid extract can be analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). GC-MS is the preferred method of analysis for zinc octoate, where a single analyte (methyl-2-ethylhexanoate) is produced for analysis. Because acypetacs zinc contains a complex mixture of carboxylates, quantitative GC-MS analysis of the methyl esters produced is impractical and ICP-AES is the preferred method for quantitation. In this case, GC-MS can be used to confirm the identity of the product used. The analysis of occupational hygiene samples (cotton pads, gloves and socks as well as Tenax tubes and GF/A filters) spiked with metal carboxylates is demonstrated. Recoveries around 70-90% and reproducibilities of 5-23% (n=6-8) were typically achieved for the determination of tin octoate (a surrogate for zinc octoate) at spiking levels ranging from 4 to 190 microg per sampling device. Recoveries around 102-106% and reproducibilities of 10-12% (n=5-6) were typically achieved for acypetacs zinc at spiking levels ranging from 100 mg per sampling device. Reaction yields for the octoate methylation reaction were in the region of 85-87%. The method was used to monitor for occupational exposure to zinc octoate and acypetacs zinc during the application of wood treatments to fences.
Content of nutritional elements in sudangrass and ryegrass determined by ICP-AES.
Li, Wen-Xi; Lu, Jian-Wei; Seneweera, Saman P; Wu, Ji; Chen, Fang; Lu, Jun-Ming; Li, Xiao-Kun
2011-09-01
The sudangrass (Sorghum sudanense) and ryegrass (Lolium multi florum L.) rotation is a new type of cropping system, which has developed rapidly in recent years in the south of China. The contents of nutritional elements for forage grass in the sudangrass and ryegrass rotation system were determined by ICP-AES. The results showed that there were abundant and essential nutritional elements for animals in sudangrass and ryegrass. The contents of P, K, Ca, Mg, S, Fe, B, Cu, Zn and Mn for sudangrass were 0.20% -0.29%, 1.94%-2.57%, 0.62%-0.97%, 0.39%-0.69%, 0.12%-0.18%, 108.35-180.12, 3.04-5.96, 6.17-10.02, 20.37-31.36 and 46.80-101.29 mg x kg(-1), respectively. The contents of P, K, Ca, Mg, S, Fe, B, Cu, Zn, Mn for ryegrass were 0.39%-0.70%, 3.77%-5.07%, 0.61%-0.84%, 0.28% -0.47%, 0.32%-0.41%, 291.65- 632.20, 2.13-3.23, 13.29-15.19, 30.73-42.98 and 92.08-156.04 mg x kg(-1), respectively, and there were differences between various periods in nutritional elements in the two forage grasses. The application of ICP-AES could reflect fast and efficiently the content of nutritional elements for forage grass as animals feed.
Sulfur analysis by inductively coupled plasma-mass spectrometry: A review
NASA Astrophysics Data System (ADS)
Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.
2015-06-01
In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.
2017-12-01
of acronyms ASTM: American Society for Testing and Materials CSA: Canadian Standard Association FA: fly ash GU: general use ( cement ) ICP...OES: inductively coupled plasma optical emission spectrometry OPC: Ordinary Portland cement RH: relative humidity UFGS: Unified Facilities Guide...Specifications w/b: water-to-binder ratio w/c: water-to- cement ratio SIMCO Technologies Inc. 2013 Page | 3 1 Executive summary SIMCO
NASA Astrophysics Data System (ADS)
Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard
2000-07-01
Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.
Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel
2016-09-06
A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%.
Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki
2017-04-01
Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.
TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C.
2012-03-15
A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB7b. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred frommore » the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH{sup -}/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described. The following conclusions were drawn from the analytical results reported here: (1) The ratios of the major elements for the SB7b WAPS sample are different from those measured for the SB7a WAPS sample. There is less Al and Mn relative to Fe than the previous sludge batch. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. The element ratios for Al/Fe, Ca/Fe, Mn/Fe, and U/Fe agree within 10% between this work and the DWPF Sludge Receipt and Adjustment Tank (SRAT) receipt analyses. (3) Sulfur in the SB7b WAPS sample is 82% soluble, slightly less than results reported for SB3, SB4, and SB6 samples but unlike the 50% insoluble sulfur observed in the SB5 WAPS sample. In addition, 23% of the soluble sulfur is not present as sulfate in SB7b. (4) The average activities of the fissile isotopes of interest in the SB7b WAPS sample are (in {mu}Ci/g of total dried solids): 4.22E-02 U-233, 6.12E-04 U-235, 1.08E+01 Pu-239, and 5.09E+01 Pu-241. The full radionuclide composition will be reported in a future document. (5) The fission product noble metal and Ag concentrations appear to have largely peaked in previous DWPF sludge batches, with the exception of Ru, which still shows a slight increase in SB7b.« less
Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.
Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max
2011-06-01
We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.
Pollutant Source Tracking (PST) Technical Guidance
2011-12-01
in the context of heavy metals (lead, copper), is considered to be a minor process contribution to the source fingerprint. 3.7 RAPID SCREENING...limits (summarized in Table 2) support the use of ICP-AES (ICP-OES) for heavy metal determination in soils , sediments, wastewater and other matrices...are included here. Isotopic ratios of stable isotopes of the metal of interest can be used for source identification and apportionment in complex
Lecompte, Yannick; Bohand, Sandra; Laroche, Pierre; Cazoulat, Alain
2013-01-01
After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (β emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.
Characterization of metals emitted from motor vehicles.
Schauer, James J; Lough, Glynis C; Shafer, Martin M; Christensen, William F; Arndt, Michael F; DeMinter, Jeffrey T; Park, June-Soo
2006-03-01
A systematic approach was used to quantify the metals present in particulate matter emissions associated with on-road motor vehicles. Consistent sampling and chemical analysis techniques were used to determine the chemical composition of particulate matter less than 10 microm in aerodynamic diameter (PM10*) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5), including analysis of trace metals by inductively coupled plasma mass spectrometry (ICP-MS). Four sources of metals were analyzed in emissions associated with motor vehicles: tailpipe emissions from gasoline- and diesel-powered vehicles, brake wear, tire wear, and resuspended road dust. Profiles for these sources were used in a chemical mass balance (CMB) model to quantify their relative contributions to the metal emissions measured in roadway tunnel tests in Milwaukee, Wisconsin. Roadway tunnel measurements were supplemented by parallel measurements of atmospheric particulate matter and associated metals at three urban locations: Milwaukee and Waukesha, Wisconsin, and Denver, Colorado. Ambient aerosol samples were collected every sixth day for one year and analyzed by the same chemical analysis techniques used for the source samples. The two Wisconsin sites were studied to assess the spatial differences, within one urban airshed, of trace metals present in atmospheric particulate matter. The measurements were evaluated to help understand source and seasonal trends in atmospheric concentrations of trace metals. ICP-MS methods have not been widely used in analyses of ambient aerosols for metals despite demonstrated advantages over traditional techniques. In a preliminary study, ICP-MS techniques were used to assess the leachability of trace metals present in atmospheric particulate matter samples and motor vehicle source samples in a synthetic lung fluid.
Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar
2011-08-01
Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.
NASA Astrophysics Data System (ADS)
Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.
2016-08-01
X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD Mobile® XRF units were shown to be suitable for rapid screening of samples likely to be encountered in field based studies.
Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dion, Michael P.; Liezers, Martin; Farmer, Orville T.
2015-01-01
We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.
NASA Astrophysics Data System (ADS)
Meysurova, A. F.; Notov, A. A.
2016-01-01
The gross and average contents of 15 metals (Al, As, Cd, Co, Cu, Ge, Fe, Mn, Mo, Ni, Pb, Sn, Ti, V, and Zn) in samples of Hypogymnia physodes collected from a reserve area in Tver Region were determined using inductively-coupled plasma atomic emission spectroscopy (ICP-AES). Apparently, most of these elements appeared as a result of transboundary transfer. Their concentration in lichens depended on the atmospheric humidity. An excess of moisture in ecotopes located near rivers and swamps increased the gross concentration of separate elements in the lichens. The average contents of most elements in the specimens were within permissible limits, which allowed possible baseline element concentration ranges for this region to be established.
A survey on uncertainty in bioassay measurements carried out within the OMINEX project.
Hurtgen, C; Cossonnet, C
2003-01-01
One of the topics covered by the OMINEX (Optimisation of Monitoring for Internal Exposure) project was to look at the bioassay measurements performed in the European laboratories. Questionnaires on bioassay measurements by alpha spectrometry or inductively coupled plasma-mass spectrometry (ICP-MS) were sent to European laboratories. The main objective was to collect information on analytical procedures and on the uncertainties associated with bioassay results. Alpha spectrometry is the technique most often used for the determination of alpha emitters, such as actinides in biological samples. ICP-MS is not used much as yet for routine measurements of actinides in biological samples, but is very sensitive for measurements of long-lived radionuclides. The different parameters influencing the uncertainties on the results and the minimum detectable amount have been investigated. Optimum conditions for achieving low result uncertainties and high sensitivity are given for alpha spectrometry and ICP-MS.
Michalke, Bernhard
2017-03-01
Boron exposure is of interest and concern from an occupational point of view. Usual daily boron intake is related to boron blood plasma concentration <1mg/L and to <3mg/L in urine, but after exposure urine concentrations are quickly elevated. Reliable boron biomonitoring, typically in urine, thus is mandatory for occupational health control institutions. This paper reports on the development of a simple, fast and reliable boron determination procedure based on inductively coupled plasma - optical emission spectrometry (ICP-OES). Major aims for this method were simplicity in sample preparation, low risk for artifacts and interferences, high precision and accuracy, possibly low costs, including lower costs for element selective detection, short total analysis time and suitability for occupational health laboratories. Precision data (serial or day-to-day) from urine and doped urine were very good: <1.5 or <2%. Accuracy was calculated from analysis of a certified reference material (ERM-CD 281), as 99% or according to recoveries of doped concentrations ranging from 102 to 109% recovery. For cross-checking ICP-OES determinations, samples were analyzed also by quadrupole ICP-qMS and by sectorfield ICP-sf-MS at low and medium resolution. Both systems confirmed ICP-OES measurements when using 11 B for quantification. Determinations based on 10 B however showed some bias, except with ICP-sf-MS at medium resolution. The observed elevated signals are discussed with respect to the known Ne ++ interference (as an impurity in Ar), which is not separated in low resolving quadrupole ICP-MS systems or ICP-sf-MS at low resolution. Copyright © 2016 Elsevier GmbH. All rights reserved.
2015-05-20
Joint Oil Analysis Program Spectrometer Standards SCP Science (Conostan) Qualification Report For D19-0, D3-100, and D12- XXX Series Standards NF...Candidate Type D19-0 ICP-AES Results ..................................................................... 4 Table V. Candidate Type D12- XXX ...Physical Property Results .................................................. 5 Table VI. Candidate Type D12- XXX Rotrode-AES Results
Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie
2006-11-01
A fast protein liquid chromatographic method for purification of selenium-containing phycocyanin (Se-PC) from selenium-enriched Spirulina platensis was described in this study. The purification procedures involved fractionation by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange chromatography and Sephacry S-300 size exclusion chromatography. The purity ratio (A620/A280) and the separation factor (A620/A655) of the purified Se-PC were 5.12 and 7.92, respectively. The Se concentration of purified Se-PC was 496.5 microg g(-1) protein, as determined by ICP-AES analysis. The purity of the Se-PC was further characterized by UV-VIS and fluorescence spectrometry, SDS-PAGE, RP-HPLC and gel filtration HPLC. The apparent molecular mass of the native Se-PC determined by gel filtration HPLC was 109 kDa, indicating that the protein existed as a trimer. SDS-PAGE of the purified Se-PC yielded two major bands corresponding to the alpha and beta subunits. A better separation of these two subunits was obtained by RP-HPLC. Identification of the alpha and beta subunits separated by SDS-PAGE and RP-HPLC was achieved by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF mass spectrometry.
NASA Astrophysics Data System (ADS)
Kuroiwa, T.; Fung, W. H.; Zhu, Y.; Inagaki, K.; Sin, D. W. M.; Chu, H. S.; Saxby, D.; Merrick, J.; White, I.; Araujo, T.; Almeida, M. D.; Rodrigues, J.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Riquelme, S. S.; Pérez, L.; Barriga, R.; Núñez, C.; Chao, J.; Wang, J.; Wang, Q.; Shi, N.; Lu, H.; Song, P.; Nüykki, T.; Aho, T. Sara; Labarraque, G.; Oster, C.; Rienitz, O.; Jührling, R.; Pape, C.; Lampi, E.; Kakoulides, E.; Ketrin, R.; Mardika, E.; Komalasari, I.; Okumu, T. O.; Kang'iri, J. N.; Yim, Y. H.; Heo, S. W.; Lee, K. S.; Suh, J. K.; Lim, Y.; Manzano, J. V. L.; Uribe, C.; Carrasco, E.; Tayag, E. D.; Dablio, A. R. C.; Encarnacion, E. K. P.; Damian, R. L.; Konopelko, L.; Krylov, A.; Vadim, S.; Shin, R.; Peng, S. L.; Juan, W.; Chang, X.; Dewi, F.; Horvat, M.; Zuliani, T.; Taebunpakul, S.; Yafa, C.; Kaewkhomdee, N.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Ari, B.; Cankur, O.; Goenaga Infante, H.; Ferreira, E.; Pérez, R.; E Long, S.; Kassim, B. L.; E Murphy, K.; Molloy, J. L.; Butler, T. A.
2017-01-01
CCQM-K124 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (As, B, Cd, Ca, Cr, Hg and Mo) and hexavalent chromium (Cr(VI)) in drinking water. The National Metrology Institute of Japan (NMIJ) and the Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratories. This comparison is divided into two parts. Part A was organized by the NMIJ and the trace elements were the analytes, and Part B was organised by the GLHK and Cr(VI) was the analyte. In Part A, results were submitted by 14 NMIs and nine DIs. The participants used different measurement methods, though most of them used direct measurement using inductively coupled plasma-optical emission spectrometry (ICP-OES), inductively coupled plasma-mass spectrometry (ICP-MS), and isotope dilution technique with ICP-MS. The results of As, B, Cd, Ca and Cr show good agreement with the exception of some outliers. Concerning Hg, instability was observed when the sample was stored in the light. And some participants observed instability of Mo. Therefore, it was agreed to abandon the Hg and Mo analysis as this sample was not satisfactory for KC. In Part B, results were submitted by six NMIs and one DI. The methods applied were direct measurement using 1,5-diphenylcarbazide (DPC) derivatisation UV-visible spectrophotometry, standard addition using ion chromatography-UV-visible spectrophotometry or HPLC—inductively coupled plasma-mass spectrometry (ICP-MS) and isotope dilution technique with ion chromatography—ICP-MS. The results of all participants show good agreement. Accounting for relative expanded uncertainty, comparability of measurement results for each of As, B, Cd, Ca, Cr and Cr(VI) was successfully demonstrated by the participating NMIs or DIs. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Zhou, Hui; Tan, Qian; Gao, Ya-ling; Sang, Shi-hua; Chen, Wen
2015-10-01
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Flame Atomic Absorption Spectrometry (FAAS) and Visible Spectrometry (VS) was applied for determination of Ag and Li in lithium-aluminium alloy standard sample and test sample, their respective advantages and disadvantages were compared, the excellent selectivity of ICP-OES was confirmed by analyses of certified standard sample. Three different sample digestion methods were compared and discussed in this study. It was found that the better accuracy would be obtained by digesting sample with chloroazotic acid while the content of Li was measured by FAAS, and it was better to digest sample with hydrochloric acid and hydrogen peroxide while determining Ag and Li by ICP-OES simultaneously and determining Ag by FAAS and VS. The interference of co-existing elements and elimination methods was detailedly discussed. Ammonium hydroxide was added to adjust the sample solution into alkalescent and Al, Ti, Zr was precipitated by forming hydroxide precipitation, Mg and Cu was formed complex precipitation with 8-hydroxyquinoline in this condition, then the interference from matrix element to determinate Ag by FAAS was eliminated. In addition, phosphate was used to precipitate Ti to eliminate its interference for determination of Li by FAAS. The same treatment of determination for Ag by FAAS was used to eliminate the interference of matrix element for determination of Ag by VS, the excess of nitrate was added into sample and heated to release Ag+ from silver chloride complex, and the color of 8-hydroxyquinoline was eliminated because of decomposed by heating. The accuracy of analysis result for standard sample was conspicuously improved which confirms the efficient of the method to eliminate interference in this study. The optimal digestion method and eliminate interference method was applied to lithium-aluminium alloy samples. The recovery of samples was from 100.39% to 103.01% by ICP-OES determination for Ag, and from 100.42% to 103.01% by ICP-OES determination for Li. The recovery ranged from 95.91% to 99.98% by FAAS determination for Ag, and ranged from 98.04% to 99.98% for FAAS determination of Li. The recovery was from 98.00% to 101.00 by VS determination for Ag, the analysis results all meet the analysis requirement.
Document designed to offer data reviewers guidance in determining the validity ofanalytical data generated through the USEPA Contract Laboratory Program (CLP) Statement ofWork (SOW) ISM01.X Inorganic Superfund Methods (Multi-Media, Multi-Concentration)
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar
2006-01-01
In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.
Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro
2017-09-01
Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.
[Spectroscopic methods applied to component determination and species identification for coffee].
Chen, Hua-zhou; Xu, Li-li; Qin, Qiang
2014-06-01
Spectroscopic analysis was applied to the determination of the nutrient quality of ground, instant and chicory coffees. By using inductively coupled plasma atomic emission spectrometry (ICP-ES), nine mineral elements were determined in solid coffee samples. Caffeine was determined by ultraviolet (UV) spectrometry and organic matter was investigated by Fourier transform infrared (FTIR) spectroscopy. Oxidation-reduction titration was utilized for measuring the oxalate. The differences between ground coffee and instant coffee was identified on the basis of the contents of caffeine, oxalate and mineral elements. Experimental evidence showed that, caffeine in instant coffee was 2-3 times higher than in ground coffee. Oxalate in instant coffee was significantly higher in ground coffee. Mineral elements of Mg, P and Zn in ground coffee is lower than in instant coffee, while Cu is several times higher. The mineral content in chicory coffee is overall lower than the instant coffee. In addition, we determined the content of Ti for different types of coffees, and simultaneously detected the elements of Cu, Ti and Zn in chicory coffee. As a fast detection technique, FTIR spectroscopy has the potential of detecting the differences between ground coffee and instant coffee, and is able to verify the presence of caffeine and oxalate.
Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming
2016-07-01
Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ye, Dai-Xin; Ma, Ying-Ying; Zhao, Wei; Cao, Hong-Mei; Kong, Ji-Lie; Xiong, Huan-Ming; Möhwald, Helmuth
2016-04-26
ZnO quantum dots (QDs) were synthesized with polymer shells, coordinated with Gd(3+) ions and adsorbed doxorubicin (DOX) together to form a new kind of multifunctional ZnO-Gd-DOX nanoplatform. Such pH sensitive nanoplatforms were shown to release DOX to cancer cells in vitro and to mouse tumors in vivo, and reveal better specificity and lower toxicity than free DOX, and even better therapeutic efficacy than an FDA approved commercial DOX-loading drug DOX-Liposome Injection (DOXIL, NDA#050718). The ZnO-Gd-DOX nanoplatforms exhibited strong red fluorescence, which benefited the fluorescent imaging on live mice. Due to the special structure of ZnO-Gd-DOX nanoparticles, such nanoplatforms possessed a high longitudinal relaxivity r1 of 52.5 mM(-1) s(-1) at 0.55 T, which was superior to many other Gd(3+) based nanoparticles. Thus, both fluorescence labeling and magnetic resonance imaging could be applied simultaneously on the tumor bearing mice along with drug delivery. After 36 days of treatment on these mice, ZnO-Gd-DOX nanoparticles greatly inhibited the tumor growth without causing any appreciable abnormality in major organs. The most important merit of ZnO-Gd-DOX was that such a nanoplatform was biodegraded completely and showed no toxic side effects after H&E (hematoxylin and eosin) staining of tumor slices and ICP-AES (inductively coupled plasma atomic emission spectrometry) bioanalyses.
NASA Astrophysics Data System (ADS)
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-01
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.
Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun
2014-01-03
A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g(-1), respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L(-1) EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.
Ortega, Richard; Bresson, Carole; Fraysse, Aurélien; Sandre, Caroline; Devès, Guillaume; Gombert, Clémentine; Tabarant, Michel; Bleuet, Pierre; Seznec, Hervé; Simionovici, Alexandre; Moretto, Philippe; Moulin, Christophe
2009-07-10
Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.
Effects of chelating agents on the mineral content of root canal dentin.
Cobankara, Funda Kont; Erdogan, Hilal; Hamurcu, Mehmet
2011-12-01
The objective of this in vitro study was to assess the effect of several chelating agents on the mineral content of root dentin. Extracted human mandibular incisor roots were prepared and divided into groups according to the following irrigation protocols: 1) 17% ethylenediaminetetraacetic acid (EDTA); 2) 10% citric acid solution; 3) 18% etidronate; 4) 2.25% peracetic acid; 5) and deionized water (control). Dentin chips were obtained (Gates-Glidden nos. 3, 4, and 5). The levels of different minerals were analyzed with the use of inductively coupled plasma-atomic emission spectrometry (ICP-AES). 1) Peracetic acid significantly decreased P, K, Mg, Na, and S levels compared with the other groups (P < .05). 2) S decreased by different levels in all of the chelating solutions (P < .05), and the greatest decrease was observed in peracetic acid. 3) Ca levels significantly decreased in peracetic acid, citric acid, and EDTA (P < .05). 4) Mn levels significantly decreased in the citric acid and peracetic acid groups (P < .05). 5) Na and Zn levels significantly decreased in the peracetic acid, citric acid, and etidronate groups (P < .05). The chelation agents can create different effects on mineral contents of root dentin, so it is important to know what effects each solution will have on root dentin before their clinical use. In addition, according to the results of this in vitro study, it might be recommended that peracetic acid, in particular, should be used with caution. Copyright © 2011 Mosby, Inc. All rights reserved.
Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek
2018-06-05
Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho
2016-01-01
Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP–AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP–AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP–AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP–AES analysis data, PXRF analysis data, both ICP–AES and transformed PXRF analysis data by considering the correlation between the ICP–AES and PXRF analysis data, and co-kriging to both the ICP–AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP–AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP–AES and PXRF analysis data. PMID:27043594
Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan
2018-04-01
The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.
Final Report on Jobin Yvon Contained Inductively Coupled Plasma Emission Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennebaker, F.M.
2003-03-17
A new Inductively Coupled Plasma -- Emission Spectrometer (ICP-ES) was recently purchased and installed in Lab B-147/151 at SRTC. The contained JY Model Ultima 170-C ICP-ES has been tested and compared to current ADS ICP-ES instrumentation. The testing has included both performance tests to evaluate instrumental ability, and the measurement of matrix standards commonly analyzed by ICP-ES at Savannah River. In developing operating procedures for this instrument, we have implemented the use of internal standards and off-peak background subtraction. Both of these techniques are recommended by EPA SW-846 ICP-ES methods and are common to current ICP-ES operations. Based on themore » testing and changes, the JY Model Ultima 170-C ICP-ES provides improved performance for elemental analysis of radioactive samples in the Analytical Development Section.« less
Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J
2007-01-16
An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.
NASA Astrophysics Data System (ADS)
Qu, Chengrui; Zhang, Mo; Mann, Michael. D.
2018-03-01
The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.
Helama, Samuli; Heikkilä, Pasi; Rinne, Katja; Nielsen, Jan Kresten; Nielsen, Jesper Kresten
2015-05-01
Understanding of the uranium uptake processes (both in vivo and post-mortem) into the skeletal structures of marine calcifiers is a subject of multi-disciplinary interest. U-concentration changes within the molluscan shell may serve as a paleoceanographic proxy of the pH history. A proxy of this type is needed to track the effects of fossil fuel emissions to ocean acidification. Moreover, attaining reliable U-series dates using shell materials would be a geochronological breakthrough. Picturing the high-resolution changes of U-concentrations in shell profiles is now possible by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Here, we analyzed in situ U-concentration variations in sub-fossilized shells of ocean quahog (Arctica islandica), a commonly studied bivalve species in Quaternary geoscience, using LA-ICP-MS. Microstructural details of the shell profiles were achieved by the scanning electron microscopy (SEM). Comparison of the shell aragonite microstructure with the changes in U-concentration revealed that uranium of possibly secondary origin is concentrated into the porous granular layers of the shell. Our results reinforce the hypothesis that U-concentration variations can be linked with microstructural differences within the shell. A combination of LA-ICP-MS and SEM analyses is recommended as an interesting approach for understanding the U-concentration variations in similar materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.; Jones, V.
2009-05-27
A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.« less
NASA Astrophysics Data System (ADS)
Subedi, Kiran; Trejos, Tatiana; Almirall, José
2015-01-01
Elemental analysis, using either LA-ICP-MS or LIBS, can be used for the chemical characterization of materials of forensic interest to discriminate between source materials originating from different sources and also for the association of materials known to originate from the same source. In this study, a tandem LIBS/LA-ICP-MS system that combines the benefits of both LIBS and LA-ICP-MS was evaluated for the characterization of samples of printing inks (toners, inkjets, intaglio and offset.). The performance of both laser sampling methods is presented. A subset of 9 black laser toners, 10 colored (CMYK) inkjet samples, 12 colored (CMYK) offset samples and 12 intaglio inks originating from different manufacturing sources were analyzed to evaluate the discrimination capability of the tandem method. These samples were selected because they presented a very similar elemental profile by LA-ICP-MS. Although typical discrimination between different ink sources is found to be > 99% for a variety of inks when only LA-ICP-MS was used for the analysis, additional discrimination was achieved by combining the elemental results from the LIBS analysis to the LA-ICP-MS analysis in the tandem technique, enhancing the overall discrimination capability of the individual laser ablation methods. The LIBS measurements of the Ca, Fe, K and Si signals, in particular, improved the discrimination for this specific set of different ink samples previously shown to exhibit very similar LA-ICP-MS elemental profiles. The combination of these two techniques in a single setup resulted in better discrimination of the printing inks with two distinct fingerprint spectra, providing information from atomic/ionic emissions and isotopic composition (m/z) for each ink sample.
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine
2002-12-01
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.
NASA Astrophysics Data System (ADS)
de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank
2017-06-01
This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.
Westphal, Craig S; McLean, John A; Hakspiel, Shelly J; Jackson, William E; McClain, David E; Montaser, Akbar
2004-09-01
Inductively coupled plasma mass spectrometry (ICP-MS), coupled with a large-bore direct injection high efficiency nebulizer (LB-DIHEN), was utilized to determine the concentration and isotopic ratio of uranium in 11 samples of synthetic urine spiked with varying concentrations and ratios of uranium isotopes. Total U concentrations and (235)U/(238)U isotopic ratios ranged from 0.1 to 10 microg/L and 0.0011 and 0.00725, respectively. The results are compared with data from other laboratories that used either alpha-spectrometry or quadrupole-based ICP-MS with a conventional nebulizer-spray chamber arrangement. Severe matrix effects due to the high total dissolved solid content of the samples resulted in a 60 to 80% loss of signal intensity, but were compensated for by using (233)U as an internal standard. Accurate results were obtained with LB-DIHEN-ICP-MS, allowing for the positive identification of depleted uranium based on the (235)U/(238)U ratio. Precision for the (235)U/(238)U ratio is typically better than 5% and 15% for ICP-MS and alpha-spectrometry, respectively, determined over the concentrations and ratios investigated in this study, with the LB-DIHEN-ICP-MS system providing the most accurate results. Short-term precision (6 min) for the individual (235)U and (238)U isotopes in synthetic urine is better than 2% (N = 7), compared to approximately 5% for conventional nebulizer-spray chamber arrangements and >10% for alpha-spectrometry. The significance of these measurements is discussed for uranium exposure assessment of Persian Gulf War veterans affected by depleted uranium ammunitions.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and its Application in Life Sciences
NASA Astrophysics Data System (ADS)
Xu, Gu-feng; Wang, Hong-mei
2001-08-01
Inductively-coupled plasma mass spectrometry (ICP-MS) has made much progress since its birth in the late 1990s. This paper will give a rather systematic overview on the use of this technique in new devices and technologies related to plasma source, sample-introducing device and detecting spectrometer etc. In this overview, an emphasis will be put on the evaluation of the ICP-MS technique in combination with a series of physical, chemical and biological techniques, such as laser ablation (LA), capillary electrophoresis (CE) and high performance liquid chromatograph (HPLC), along with their representative high accuracy and high sensitivity. Finally, comprehensive and fruitful applications of the ICP-MS and its combinative techniques in the detection of trace metallic elements and isotopes in complex biological and environmental samples will be revealed.
NASA Astrophysics Data System (ADS)
Rosen, Amy L.; Hieftje, Gary M.
2004-02-01
To gain an understanding of the function, toxicity and distribution of trace elements, it is necessary to determine not only the presence and concentration of the elements of interest, but also their speciation, by identifying and characterizing the compounds within which each is present. For sensitive detection of compounds containing elements of interest, inductively coupled plasma mass spectrometry (ICP-MS) is a popular method, and for identification of compounds via determination of molecular weight, electrospray ionization mass spectrometry (ESI-MS) is gaining increasing use. ICP-MS and ESI-MS, usually coupled to a separation technique such as chromatography or capillary electrophoresis, have already been applied to a large number of research problems in such diverse fields as environmental chemistry, nutritional science, and bioinorganic chemistry, but a great deal of work remains to be completed. Current areas of research to which ICP-MS and ESI-MS have been applied are discussed, and the existing instrumentation used to solve speciation problems is described.
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
NASA Astrophysics Data System (ADS)
Gatta, G. Diego; Redhammer, Günther J.; Guastoni, Alessandro; Guastella, Giorgio; Meven, Martin; Pavese, Alessandro
2016-05-01
The crystal chemistry of a ferroaxinite from Colebrook Hill, Rosebery district, Tasmania, Australia, was investigated by electron microprobe analysis in wavelength-dispersive mode, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), 57Fe Mössbauer spectroscopy and single-crystal neutron diffraction at 293 K. The chemical formula obtained on the basis of the ICP-AES data is the following: ^{X1,X2} {{Ca}}_{4.03} Y ( {{{Mn}}_{0.42} {{Mg}}_{0.23} {{Fe}}^{2 + }_{1.39} } )_{Σ 2.04} ^{Z1,Z2} ( {{{Fe}}^{3 + }_{0.15} {{Al}}_{3.55} {{Ti}}_{0.12} } )_{Σ 3.82} ^{T1,T2,T3,T4} ( {{{Ti}}_{0.03} {{Si}}_{7.97} } )_{Σ 8} ^{T5} {{B}}_{1.96} {{O}}_{30} ( {{OH}} )_{2.18} . The 57Fe Mössbauer spectrum shows unambiguously the occurrence of Fe2+ and Fe3+ in octahedral coordination only, with Fe2+/Fe3+ = 9:1. The neutron structure refinement provides a structure model in general agreement with the previous experimental findings: the tetrahedral T1, T2, T3 and T4 sites are fully occupied by Si, whereas the T5 site is fully occupied by B, with no evidence of Si at the T5, or Al or Fe3+ at the T1- T5 sites. The structural and chemical data of this study suggest that the amount of B in ferroaxinite is that expected from the ideal stoichiometry: 2 a.p.f.u. (for 32 O). The atomic distribution among the X1, X2, Y, Z1 and Z2 sites obtained by neutron structure refinement is in good agreement with that based on the ICP-AES data. For the first time, an unambiguous localization of the H site is obtained, which forms a hydroxyl group with the oxygen atom at the O16 site as donor. The H-bonding scheme in axinite structure is now fully described: the O16- H distance (corrected for riding motion effect) is 0.991(1) Å and an asymmetric bifurcated bonding configuration occurs, with O5 and O13 as acceptors [i.e. with O16··· O5 = 3.096(1) Å, H··· O5 = 2.450(1) Å and O16- H··· O5 = 123.9(1)°; O16··· O13 = 2.777(1) Å, H··· O13 = 1.914(1) Å and O16- H··· O13 = 146.9(1)°].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Cory Thomas
2008-01-01
The focus of this dissertation is the development of techniques with which to enhance the existing abilities of inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a powerful technique for trace metal analysis in samples of many types, but like any technique it has certain strengths and weaknesses. Attempts are made to improve upon those strengths and to overcome certain weaknesses.
Furuzono, Tsutomu; Okazaki, Masatoshi; Azuma, Yoshinao; Iwasaki, Mitsunobu; Kogai, Yasumichi; Sawa, Yoshiki
2017-01-01
Thirteen patients with chlorhexidine-silver sulfadiazine-impregnated catheters have experienced serious anaphylactic shock in Japan. These adverse reactions highlight the lack of commercially available catheters impregnated with strong antibacterial chemical agents. A system should be developed that can control both biocompatibility and antibacterial activity. Hydroxyapatite (HAp) is biocompatible with bone and skin tissues. To provide antibacterial activity by using an external physical stimulus, titanium (Ti) ions were doped into the HAp structure. Highly dispersible, Ti-doped HAp (Ti-HAp) nanoparticles suitable as a coating material were developed. In 3 kinds of Ti-HAp [Ti/(Ca + Ti) = 0.05, 0.1, 0.2], the Ti content in the HAp was approximately 70% of that used in the Ti-HAp preparation, as determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). ICP-AES and X-ray diffraction showed Ti ions were well substituted into the HAp lattice. The nanoparticles were almost uniformly coated on a polyethylene (PE) sheet in a near-monolayer with a surface coverage ratio >95%. The antibacterial activity of the Ti-HAp nanoparticles containing 7.3% Ti ions and coating the sheet was evaluated by calculating the survival ratio of Pseudomonas aeruginosa on the coated sheet after ultraviolet (UV) irradiation. The Ti-HAp-coated sheet showed a 50% decrease in the number of P. aeruginosa compared with that on an uncoated control PE sheet after UV irradiation for 30 s. Key Messages: A system of biocompatibility and antibacterial activity with an on/off switch controlled by external UV stimulation was developed. The system is expected to be applicable in long-term implanted intravascular catheters. © 2017 S. Karger AG, Basel.
Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hotchkiss, R.S.; Song, S.K.; Ling, C.S.
The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosedmore » as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.« less
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
Liu, Xiao-ru; Deng, Ze-yuan; Fan, Ya-wei; Li, Jing; Liu, Zhi-han
2010-08-01
In the present study, a special kind of Momordica charantia seeds produced in Hai Nan was selected and analyzed. Firstly, inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) was used to determine the mineral elements. It was clear that the contents of K, Mg and P are the highest in the seeds; Cr and Zn takes up to 5.65% and 45.45% high, especially, which are rare in plant foods. These minerals, especially Cr and Zn might have a complex effect on those proteins or polysaccharides and form a stronger anticipation of hyperlipidemia, hyperglycemia and cholesterol. Secondly, seed oil was extracted by supercritical CO2 extraction with a yield ratio of 36.89, and the fatty acids were treated by methylation in alkaline process and purified by thin-layer chromatography, then analyzed by gas chromatography-mass spectrometer (GC-MS) identification. The saturated fatty acids (SFA) take up 36.712, and mainly are stearic acid; monounsaturated fatty acid (MUFA) is only 3.33% which is dominantly linoleic acid (LA); Polyunsaturated fatty acid (PUFA) accounted for 59.96%, and the alpha-eleostearic acid takes up 54.26% as the main fatty acids in all. The plentiful alpha-eleostearic acid leads to strong effects of inhibiting tumor cell proliferation, lowering blood fat, anti-cancer, anti-inflammatory and preventing cardiovascular diseases, and so on. Knowing clearly the mineral elements distribution and identifying the composition of fatty acid, especially the main fatty acids in the oil, are both of great guiding importance to further exploit the clinical and edible value in Momordica charantiap seeds.
Fey, David L.; Church, Stan E.
1998-01-01
Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubility. Sediments, fluvial tailings and water from High Ore Creek have been identified as significant contributors to water quality degradation of the Boulder River below Basin, Montana. A study of 42 fluvial tailings cores and 7 stream sediments from High Ore Creek was undertaken to determine the concentrations of environmentally sensitive elements (i.e. Ag, As, Cd, Cu, Pb, Zn) present in these materials, and the mineral phases containing those elements. Two sites of fluvial deposition of mine-waste contaminated sediment on upper High Ore Creek were sampled using a one-inch soil probe. Forty-two core samples were taken producing 247 subsamples. The samples were analyzed by ICP-AES (inductively coupled-plasma atomic emission spectroscopy) using a total mixed-acid digestion. Results of the core analyses show that the elements described above are present at very high concentrations (to 22,000 ppm As, to 460 ppm Ag, to 900 ppm Cd, 4,300 ppm Cu, 46,000ppm Pb, and 50,000 ppm Zn). Seven stream-sediment samples were also analyzed by ICP-AES for total element content and for leachable element content. Results show that the sediment of High Ore Creek has elevated levels of ore-related metals throughout its length, down to the confluence with the Boulder River, and that the metals are, to a significant degree, contained in the leachable phase, namely the hydrous amorphous iron- and manganese-hydroxide coatings on detrital sediment particles.
Precise and traceable carbon isotope ratio measurements by multicollector ICP-MS: what next?
Santamaria-Fernandez, Rebeca
2010-06-01
This article reviews recent developments in the use of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) to provide high-precision carbon isotope ratio measurements. MC-ICP-MS could become an alternative method to isotope ratio mass spectrometry (IRMS) for rapid carbon isotope ratio determinations in organic compounds and characterisation and certification of isotopic reference materials. In this overview, the advantages, drawbacks and potential of the method for future applications are critically discussed. Furthermore, suggestions for future improvements in terms of precision and sensitivity are made. No doubt, this is an exciting analytical challenge and, as such, hurdles will need to be cleared.
NASA Astrophysics Data System (ADS)
Wang, W.; Finlayson-Pitts, B. J.
2003-01-01
The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.
Gitari, M W; Akinyemi, S A; Ramugondo, L; Matidza, M; Mhlongo, S E
2018-04-30
The economic benefits of mining industry have often overshadowed the serious challenges posed to the environments through huge volume of tailings generated and disposed in tailings dumps. Some of these challenges include the surface and groundwater contamination, dust, and inability to utilize the land for developmental purposes. The abandoned copper mine tailings in Musina (Limpopo province, South Africa) was investigated for particle size distribution, mineralogy, physicochemical properties using arrays of granulometric, X-ray diffraction, and X-ray fluorescence analyses. A modified Community Bureau of Reference (BCR) sequential chemical extraction method followed by inductively coupled plasma mass spectrometry/atomic emission spectrometry (ICP-MS/AES) technique was employed to assess bioavailability of metals. Principal component analysis was performed on the sequential extraction data to reveal different loadings and mobilities of metals in samples collected at various depths. The pH ranged between 7.5 and 8.5 (average ≈ 8.0) indicating alkaline medium. Samples composed mostly of poorly grated sands (i.e. 50% fine sand) with an average permeability of about 387.6 m/s. Samples have SiO 2 /Al 2 O 3 and Na 2 O/(Al 2 O 3 + SiO 2 ) ratios and low plastic index (i.e. PI ≈ 2.79) suggesting non-plastic and very low dry strength. Major minerals were comprised of quartz, epidote, and chlorite while the order of relative abundance of minerals in minor quantities is plagioclase > muscovite > hornblende > calcite > haematite. The largest percentage of elements such as As, Cd and Cr was strongly bound to less extractable fractions. Results showed high concentration and easily extractable Cu in the Musina Copper Mine tailings, which indicates bioavailability and poses environmental risk and potential health risk of human exposure. Principal component analysis revealed Fe-oxide/hydroxides, carbonate and clay components, and copper ore process are controlling the elements distribution.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics.
Chahrour, Osama; Malone, John
2017-01-01
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) hyphenated to different separation techniques have promoted it as a valuable tool in protein/peptide quantification. These emerging ICP-MS applications allow absolute quantification by measuring specific elemental responses. One approach quantifies elements already present in the structure of the target peptide (e.g. phosphorus and sulphur) as natural tags. Quantification of these natural tags allows the elucidation of the degree of protein phosphorylation in addition to absolute protein quantification. A separate approach is based on utilising bi-functional labelling substances (those containing ICP-MS detectable elements), that form a covalent chemical bond with the protein thus creating analogs which are detectable by ICP-MS. Based on the previously established stoichiometries of the labelling reagents, quantification can be achieved. This technique is very useful for the design of precise multiplexed quantitation schemes to address the challenges of biomarker screening and discovery. This review discusses the capabilities and different strategies to implement ICP-MS in the field of quantitative proteomics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool.
Ammann, Adrian A
2007-04-01
Inductively coupled plasma (ICP) mass spectrometry (MS) is routinely used in many diverse research fields such as earth, environmental, life and forensic sciences and in food, material, chemical, semiconductor and nuclear industries. The high ion density and the high temperature in a plasma provide an ideal atomizer and element ionizer for all types of samples and matrices introduced by a variety of specialized devices. Outstanding properties such as high sensitivity (ppt-ppq), relative salt tolerance, compound-independent element response and highest quantitation accuracy lead to the unchallenged performance of ICP MS in efficiently detecting, identifying and reliably quantifying trace elements. The increasing availability of relevant reference compounds and high separation selectivity extend the molecular identification capability of ICP MS hyphenated to species-specific separation techniques. While molecular ion source MS is specialized in determining the structure of unknown molecules, ICP MS is an efficient and highly sensitive tool for target-element orientated discoveries of relevant and unknown compounds. This special-feature, tutorial article presents the principle and advantages of ICP MS, highlighting these using examples from recently published investigations. Copyright 2007 John Wiley & Sons, Ltd.
Zhao, Lingling; Zhong, Shuxian; Fang, Keming; Qian, Zhaosheng; Chen, Jianrong
2012-11-15
A dual-cloud point extraction (d-CPE) procedure has been developed for simultaneous pre-concentration and separation of heavy metal ions (Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion) in water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on forming complexes of metal ion with 8-hydroxyquinoline (8-HQ) into the as-formed Triton X-114 surfactant rich phase. Instead of direct injection or analysis, the surfactant rich phase containing the complexes was treated by nitric acid, and the detected ions were back extracted again into aqueous phase at the second cloud point extraction stage, and finally determined by ICP-OES. Under the optimum conditions (pH=7.0, Triton X-114=0.05% (w/v), 8-HQ=2.0×10(-4) mol L(-1), HNO3=0.8 mol L(-1)), the detection limits for Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ions were 0.01, 0.04, 0.01, 0.34, 0.05, and 0.04 μg L(-1), respectively. Relative standard deviation (RSD) values for 10 replicates at 100 μg L(-1) were lower than 6.0%. The proposed method could be successfully applied to the determination of Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Faraji, Mohammad; Yamini, Yadollah; Shariati, Shahab
2009-07-30
Copper, as a heavy metal, is toxic for many biological systems. Thus, the determination of trace amounts of copper in environmental samples is of great importance. In the present work, a new method was developed for the determination of trace amounts of copper in water samples. The method is based on the formation of ternary Cu(II)-CAS-CTAB ion-pair and adsorption of it into a mini-column packed with cotton prior applying inductively coupled plasma optical emission spectrometry (ICP-OES). The experimental parameters that affected the extraction efficiency of the method such as pH, flow rate and volume of the sample solution, concentration of chromazurol S (CAS) and cethyltrimethylammonium bromide (CTAB) as well as type and concentration of eluent were investigated and optimized. The ion-pair (Cu(II)-CAS-CTAB) was quantitatively retained on the cotton under the optimum conditions, then eluted completely using a solution of 25% (v/v) 1-propanol in 0.5 mol L(-1) HNO(3) and directly introduced into the nebulizer of the ICP-OES. The detection limit (DL) of the method for copper was 40 ng L(-1) (V(sample)=100mL) and the relative standard deviation (R.S.D.) for the determination of copper at 10 microg L(-1) level was found to be 1.3%. The method was successfully applied to determine the trace amounts of copper in tap water, deep well water, seawater and two different mineral waters, and suitable recoveries were obtained (92-106%).
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
Romarís-Hortas, Vanessa; García-Sartal, Cristina; Barciela-Alonso, María Carmen; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2010-02-10
Major and trace elements in North Atlantic seaweed originating from Galicia (northwestern Spain) were determined by using inductively coupled plasma-optical emission spectrometry (ICP-OES) (Ba, Ca, Cu, K, Mg, Mn, Na, Sr, and Zn), inductively coupled plasma-mass spectrometry (ICP-MS) (Br and I) and hydride generation-atomic fluorescence spectrometry (HG-AFS) (As). Pattern recognition techniques were then used to classify the edible seaweed according to their type (red, brown, and green seaweed) and also their variety (Wakame, Fucus, Sea Spaghetti, Kombu, Dulse, Nori, and Sea Lettuce). Principal component analysis (PCA) and cluster analysis (CA) were used as exploratory techniques, and linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA) were used as classification procedures. In total, t12 elements were determined in a range of 35 edible seaweed samples (20 brown seaweed, 10 red seaweed, 4 green seaweed, and 1 canned seaweed). Natural groupings of the samples (brown, red, and green types) were observed using PCA and CA (squared Euclidean distance between objects and Ward method as clustering procedure). The application of LDA gave correct assignation percentages of 100% for brown, red, and green types at a significance level of 5%. However, a satisfactory classification (recognition and prediction) using SIMCA was obtained only for red seaweed (100% of cases correctly classified), whereas percentages of 89 and 80% were obtained for brown seaweed for recognition (training set) and prediction (testing set), respectively.
Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G
2004-01-01
The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.
Acoustic emission studies of large advanced composite rocket motor cases.
NASA Technical Reports Server (NTRS)
Robinson, E. Y.
1973-01-01
Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.
Dehydration and melting experiments constrain the fate of subducted sediments
NASA Astrophysics Data System (ADS)
Johnson, Marie C.; Plank, Terry
1999-12-01
Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 +/- 25°C at 2 GPa, 810 +/- 15°C at 3 GPa, and 1025 +/- 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ~ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.
Dehydration and melting experiments constrain the fate of subducted sediments
NASA Astrophysics Data System (ADS)
Johnson, Marie C.; Plank, Terry
2000-12-01
Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.
Effect of dietary phytate on zinc homeostasis in young and elderly Korean women.
Kim, Jihye; Paik, Hee Young; Joung, Hyojee; Woodhouse, Leslie R; Li, Shanji; King, Janet C
2007-02-01
Previous studies suggest that consumption of predominantly plant-based diets with high phytate content contribute to zinc deficiency by inhibiting zinc absorption. Age of the individual may also affect the ability to maintain zinc homeostasis. This study was designed to determine the effect of dietary phytate on zinc homeostasis and to evaluate the effect of age on the capacity to maintain the zinc homeostasis with changes in dietary phytate in young and elderly Korean women. Seven healthy young women (22-24 yr) and 10 healthy elderly women (66-75 yr) were studied consecutively for 3 months in 2 metabolic periods (MP) in two different metabolic units. During MP1 the women consumed a high phytate (HP) diet (P:Zn molar ratio = 23) for 9 days. After a 10 d wash-out period at home eating their usual diets, a lower phytate diet (LP) (P:Zn molar ratio = 10) was fed in MP2 for 9 d. Phytase was added to selected foods in the high phytate diet to reduce the phytate content of the meals in the LP period. The zinc content of both diets was about 6.5 mg/d. Stable isotopes of Zn ((70)Zn) were administered intravenously on d 5 of MP 1 and 2 for measuring endogenous fecal zinc excretion. Plasma samples were also collected on d 5 for measuring plasma zinc concentrations by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). 24 hr urine samples were collected for 5 d and complete fecal samples were collected for 9 d after isotope administration. Fractional zinc absorption (FZA) was calculated from mass balance corrected for endogenous fecal zinc (EFZ) excretion and EFZ was determined by using an isotopic dilution technique. Isotopic ratios for FZA and EFZ were measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Statistical analyses were done using ANOVA. Both the young and elderly women were in negative zinc balance during the HP period. This was due to a significant decrease in FZA and total absorbed zinc (TAZ) with a HP diet (43 vs 22% in young women, 34 vs 20% in elderly women, p < 0.001). EFZ excretion did not differ in the young and elderly women during the LP and HP periods. Dietary phytate did not alter plasma zinc concentrations or and urinary zinc excretion in either group. Adjustments in zinc homeostasis with an increase in dietary phytate did not differ between young and elderly women in this study.
[Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].
Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou
2014-08-01
In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).
Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.
Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring
NASA Technical Reports Server (NTRS)
Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa
2010-01-01
Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.
Uras, Yusuf; Uysal, Yagmur; Arikan, Tugba Atilan; Kop, Alican; Caliskan, Mustafa
2015-06-01
The aim of this study was to investigate the sources of drinking water for Derebogazi Village, Kahramanmaras Province, Turkey, in terms of hydrogeochemistry, isotope geochemistry, and medical geology. Water samples were obtained from seven different water sources in the area, all of which are located within quartzite units of Paleozoic age, and isotopic analyses of (18)O and (2)H (deuterium) were conducted on the samples. Samples were collected from the region for 1 year. Water quality of the samples was assessed in terms of various water quality parameters, such as temperature, pH, conductivity, alkalinity, trace element concentrations, anion-cation measurements, and metal concentrations, using ion chromatography, inductively coupled plasma (ICP) mass spectrometry, ICP-optical emission spectrometry techniques. Regional health surveys had revealed that the heights of local people are significantly below the average for the country. In terms of medical geology, the sampled drinking water from the seven sources was deficient in calcium and magnesium ions, which promote bone development. Bone mineral density screening tests were conducted on ten females using dual energy X-ray absorptiometry to investigate possible developmental disorder(s) and potential for mineral loss in the region. Of these ten women, three had T-scores close to the osteoporosis range (T-score < -2.5).
Heaven and Earth - `Madonne col Bambino' and `Rustiques figulines'
NASA Astrophysics Data System (ADS)
Bouquillon, A.
Analyses of the productions of della Robbia and Palissy, two masters of Renaissance ceramics in France and in Italy, have enlightened their contributions to the improvement of the glazed terracotta technique. Della Robbia used very homogeneous materials: marly clay for the bodies, and tin-opacified coloured glazes. The technique is here very robust and very mastered. Palissy used different types of clay with different colours and physical properties, associated with specific productions. So far, we have identified seven pastes. Concerning the glazes, he played with transparency and opacity, with lead glazes and with tin-opacified lead glazes. He added traditional colouring oxides as well as specific pigments (lead-tin yellow, haematite, etc.). The mixed-earth technique is specific to his palette. So, the materials used by both artists are completely different and illustrate their different philosophical approaches. To perform the different analyses, new methodologies have been developed: ICP/AES-MS, petrography and X-ray diffractometry for the bodies, PIXE and micro-PIXE, SEM coupled with EDS and Raman spectrometry for the glazes.
A Multi-Pumping Flow System for In Situ Measurements of Dissolved Manganese in Aquatic Systems
Meyer, David; Prien, Ralf D.; Dellwig, Olaf; Waniek, Joanna J.; Schuffenhauer, Ingo; Donath, Jan; Krüger, Siegfried; Pallentin, Malte; Schulz-Bull, Detlef E.
2016-01-01
A METals In Situ analyzer (METIS) has been used to determine dissolved manganese (II) concentrations in the subhalocline waters of the Gotland Deep (central Baltic Sea). High-resolution in situ measurements of total dissolved Mn were obtained in near real-time by spectrophotometry using 1-(2-pyridylazo)-2-naphthol (PAN). PAN is a complexing agent of dissolved Mn and forms a wine-red complex with a maximum absorbance at a wavelength of 562 nm. Results are presented together with ancillary temperature, salinity, and dissolved O2 data. Lab calibration of the analyzer was performed in a pressure testing tank. A detection limit of 77 nM was obtained. For validation purposes, discrete water samples were taken by using a pump-CTD system. Dissolved Mn in these samples was determined by an independent laboratory based method (inductively coupled plasma–optical emission spectrometry, ICP-OES). Mn measurements from both METIS and ICP-OES analysis were in good agreement. The results showed that the in situ analysis of dissolved Mn is a powerful technique reducing dependencies on heavy and expensive equipment (pump-CTD system, ICP-OES) and is also cost and time effective. PMID:27916898
Wang, Hong; Wu, Qi-nan; Wu, Cheng-ying; Fan, Xiu-he; Jiang, Zheng; Gu, Wei; Yue, Wei
2015-01-01
To establish a simple, rapid and efficient method for determination of different inorganic elements in Euryale Semen from different habitats. Inductively coupled plasma-optical emission spectrometry(ICP-OES) was applied to determine inorganic elements in Euryale Semen, and the results were analyzed by principal component analysis. Euryale Semen from different habitats contained the kind of inorganic elements ranging from 22 to 26, including micronutrient elements like Iron, Zinc, Selenium, Copper, Molybdenum, Chrome and Cobalt, as well as macronutrient elements such as Potassium, Calcium, Sodium, Magnesium and Phosphorus. Five factors were extracted and used to comprehensively evaluate Euryale Semen from 20 different habitats covered almost China. The comprehensive function was F = 0. 38828F1 + 0. 25603F2 + 0. 07617F3 + 0. 06860F4 + 0. 04868F5, which resulted in the top three samples coming from Jiangsu Gaoyou, Hunan Xiangxi and Jiangsu Suzhou respectively. The study indicates that ICP-OES is a quick, accurate and sensitive method to determine the contents of inorganic elements in Euryale Semen,which provides scientific and reliable reference for its quality control and safety assessment.
Welna, Maja; Szymczycha-Madeja, Anna
2014-09-15
Various sample preparation procedures for the simultaneous determination of As, Sb and Se in fruit juices by hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) were examined. Applicability of total wet digestion with HNO3/H2O2, partial decomposition (solubilisation in aqua regia), 1:1 dilution with 2% (v/v) HNO3 and direct analysis were evaluated. Hydrides were generated in the reaction of an acidified sample with NaBH4 after pre-reduction with KI-ascorbic acid for total As and Sb, and boiling with HCl for total Se. Best results, i.e. limits of detection (LODs) of 0.51-0.73 ng mL(-1), precision (RSD) within 1.7-3.6% and recoveries for spiked samples between 101% and 106% were found using aqua regia treatment. This procedure simplifying and improving sample preparation step prior to As, Sb and Se measurements in fruit juices by HG-ICP-OES, thus could be adequate for the routine analysis in terms of the quality control of these drinks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cruz, Elisa Castañeda Santa; Susanne Becker, J; Sabine Becker, J; Sussulini, Alessandra
2018-01-01
Selenium and selenoproteins are important components of living organisms that play a role in different biological processes. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful analytical technique that has been employed to obtain distribution maps of selenium in biological tissues in a direct manner, as well as in selenoproteins, previously separated by their molecular masses and isoelectric points using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In this chapter, we present the protocols to perform LA-ICP-MS imaging experiments, allowing the distribution visualization and determination of selenium and/or selenoproteins in biological systems.
Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs.
Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai
2014-01-01
Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003-2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat's lungs was examined by histology. As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 µg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats.
Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan
2012-01-01
This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431
Matrix effects in inductively coupled plasma mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaoshan
1995-07-07
The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the "Fassel" TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS,more » the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.« less
Ornatsky, Olga I; Baranov, Vladimir I; Bandura, Dmitry R; Tanner, Scott D; Dick, John
2006-01-01
Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells.
Ornatsky, Olga I.; Baranov, Vladimir I.; Bandura, Dmitry R.; Tanner, Scott D.; Dick, John
2006-01-01
Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells. PMID:23662035
NASA Astrophysics Data System (ADS)
Ma, Yinbiao; Wei, Xiaojuan
2017-04-01
A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.
Inorganic trace analysis by mass spectrometry
NASA Astrophysics Data System (ADS)
Becker, Johanna Sabine; Dietze, Hans-Joachim
1998-10-01
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.
Kachenko, Anthony G; Gräfe, Markus; Singh, Balwant; Heald, Steve M
2010-06-15
The fate and chemical speciation of arsenic (As) during uptake, translocation, and storage by the As hyperaccumulating fern Pityrogramma calomelanos var. austroamericana (Pteridaceae) were examined using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and synchrotron-based micro-X-ray absorption near edge structure (micro-XANES) and micro-X-ray fluorescence (micro-XRF) spectroscopies. Chemical analysis revealed total As concentration was ca. 6.5 times greater in young fronds (5845 mg kg(-1) dry weight (DW)) than in old fronds (903 mg kg(-1) DW). In pinnae, As concentration decreased from the base (6822 mg kg(-1) DW) to the apex (4301 mg kg(-1) DW) of the fronds. The results from micro-XANES and micro-XRF of living tissues suggested that more than 60% of arsenate (As(V)) absorbed was reduced to arsenite (As(III)) in roots, prior to transport through vascular tissues as As(V) and As(III). In pinnules, As(III) was the predominant redox species (72-90%), presumably as solvated, oxygen coordinated compounds. The presence of putative As(III)-sulphide (S(2-)) coordination throughout the fern tissues (4-25%) suggests that S(2-) functional groups may contribute in the biochemical reduction of As(V) to As(III) during uptake and transport at a whole-plant level. Organic arsenicals and thiol-rich compounds were not detected in the species and are unlikely to play a role in As hyperaccumulation in this fern. The study provides important insights into homeostatic regulation of As following As uptake in P. calomelanos var. austroamericana.
Deme, Tesfaye; Haki, Gulelat D; Retta, Nigussie; Woldegiorgis, Ashagrie; Geleta, Mulatu
2017-04-01
Oilseeds are rich sources of micronutrients and contribute to combating malnutrition caused by micronutrient deficiency. The objective of this study was to investigate the mineral and anti-nutritional contents of different varieties of niger seed, linseed and sesame. Five niger seed, eight linseed and ten sesame varieties were used. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) was used for mineral analysis and the standard method was adopted to estimate tannin and phytate. Twelve mineral elements; Ca, K, Mg, Na, P, B, Cu, Fe, Mn, S, Se and Zn were analyzed for each oilseed variety. In niger seed, phosphorous was the most abundant mineral element ranging from 661 to 867 mg/100 g and selenium was the least, ranging from 0.1 to 0.33 mg/100 g. Potassium was recorded in the range of 502 to 732 mg/100 g for linseed varieties. Calcium was the most common mineral element in sesame (1112 to 1787 mg/100 g). The average phytate contents of niger seed, linseed and sesame varieties were353 mg/100 g, 104 mg/100 g and 285 mg/100 g, respectively. Tannin ranged from 91 to 201 mg/100 g, 96 to 695 mg/100 g and 85 to 660 mg/100 g in niger seed, linseed and sesame, respectively. In conclusion, there is a significant variation among the varieties within each crop species as well as among the different oilseeds in terms of their mineral and anti-nutritional contents.
Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong; ...
2018-02-02
Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less
Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua
2009-09-07
A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, R.D.
In 1995, available subsegment samples of wastes taken from the Hanford Site underground radioactive waste storage tanks 241-C-112 (C-112) and 241-C-109 (C-109) were reanalyzed to determine the nickel concentrations in the samples and to determine whether the use of a nickel crucible in the analytical sample preparation biased the reported nickel concentrations reported by Simpson and coworkers and in the original report that this report supplements. The reanalysis strategy to determine nickel was to use a sodium peroxide flux in a zirconium crucible instead of the previously used potassium hydroxide flux in a nickel crucible. This supplemental report provides themore » results of the reanalyses and updates tables from the original report which reflect the new nickel analyses. Nickel is important with respect to management of the potentially reactive ferrocyanide wastes as it is one of the key defining characteristics of the solids that resulted from scavenging radiocesium using ferrocyanides. In Hanford Site wastes, few other processes introduced nickel into the wastes other than radiocobalt scavenging, which was often coupled with the ferrocyanide-scavenging process. Thus the presence of nickel in a waste provides strong evidence that the original waste was or contained ferrocyanide waste at one time. Given the potential import of nickel as a defining characteristic and marker for ferrocyanide wastes, the Pacific Northwest Laboratory`s (PNL) Analytical Chemistry Laboratory (ACL) reanalyzed available samples from tanks C-112 and C-109 using inductively coupled argon plasma/atomic emission spectrometry (ICP/AES) and an alternative sample preparation method which precluded contamination of the analytical samples with nickel.« less
Lead levels of edibles grown in contaminated residential soils: a field survey.
Finster, Mary E; Gray, Kimberly A; Binns, Helen J
2004-03-29
Plants grown in lead contaminated soils can accumulate lead from the adherence of dust and translocation into the plant tissue. In order to evaluate the potential health hazard due to the consumption of plants grown in residential gardens contaminated by lead, a survey of the lead concentrations in a typical array of edible vegetables, fruits and herbs was conducted. Samples of garden plants harvested from the field were washed with detergent or water alone to remove adhered soil. They were dried, separated into sections including root, shoot and edible fruit, and then analyzed for lead content using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Soil samples, taken in conjunction with the plant harvesting, were analyzed using flame atomic absorbance (FAA). A pattern of lead transference from soil through the root to the stem and leaves of garden crops was found. The majority of the lead was concentrated in the roots (root:soil ranging from 0.02 to 0.51), with some translocation into the shoots (shoot:soil as high as 0.10). This pattern is a concern particularly for crops in which the root, stems, stalks or leaves are edible. The lead concentration in fruiting vegetables was less than the detection limit of 10 ppm (microgram lead/gram dry plant matter). Some edible portions of the leafy vegetables and herbs, however, were found to have lead levels that, if consumed, could contribute to the total body burden of lead. Therefore, urban gardeners should test the lead levels in their soils and develop strategies to ensure safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouat, Aidan R.; Whitford, Cassandra L.; Chen, Bor-Rong
Here, a surface metal–organic complex, (-AlO x)Pd(acac) (acac = acetylacetonate), is prepared by chemically grafting the precursor Pd(acac) 2 onto γ-Al 2O 3 in toluene at 25 °C. The resulting surface complex is characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and dynamic nuclear polarization surface-enhanced solid-state nuclear magnetic resonance spectroscopy (DNP SENS). This surface complex is a precursor in the direct synthesis of size-controlled Pd nanoparticles under mild reductive conditions and in the absence of additional stabilizers or pretreatments. Indeed, upon exposure to gaseous ethylene or liquid 1-octene at 25more » °C, the Pd 2+ species is reduced to form Pd 0 nanoparticles with a mean diameter of 4.3 ± 0.6 nm, as determined by scanning transmission electron microscopy (STEM). These nanoparticles are catalytically relevant using the aerobic 1-phenylethanol oxidation as a probe reaction, with rates comparable to a conventional Pd/Al 2O 3 catalyst but without an induction period. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction mass spectrometry (TPR-MS) reveal that the surface complex reduction with ethylene coproduces H 2, acetylene, and 1,3-butadiene. This process reasonably proceeds via an olefin activation/coordination/insertion pathway, followed by β-hydride elimination to generate free Pd 0. Lastly, the well-defined nature of the single-site supported Pd 2+ precursor provides direct mechanistic insights into this unusual and likely general reductive process.« less
NASA Astrophysics Data System (ADS)
Uji, K.; Waki, T.; Tabata, Y.; Nakamura, H.
2017-01-01
The cation compositions in the Ca-La magnetoplumbite-type (M-type) ferrite, CaxLayFezO19, prepared from various initial fractions of reagents, were analyzed by wavelength-dispersive X-ray (WDX) spectroscopy. The reliability of the WDX composition analysis was confirmed by a crosscheck using inductively coupled plasma atomic emission spectrometry (ICP-AES). For particular polycrystalline samples furnace-cooled from 1250 ° C , the solubility ranges of Ca, La, and Fe were found to be 0.45 ≤ x ≤ 0.70 , 0.39 ≤ y ≤ 0.66 , and 11.82 ≤ z ≤ 11.92 , respectively, assuming x + y + z = 13 . Despite that the samples were synthesized from various starting compositions, the values of z / (x + y) of the matrix M phase are smaller than the M-type regular value, 12, for all the samples and comes in a very limited range at ∼ 11 , suggesting most probably Ca occupation at particular Fe sites or Fe deficiency due to insertion of stacking fault to Ca/La/O packing. Single crystals of CaxLayFezO19 with various x / y ratios were synthesized successfully by the self-flux method, followed by the characterization of their magnetic properties. The saturation magnetization and the Curie temperature were found to be almost independent of the cation composition. In contrast, the hard-axis magnetization process at low temperature depended significantly on the Ca/La ratio, and showed a sharp jump at ≲ 10 kOe, which can be attributed to a spin reorientation transition associated with the appearance of Fe2+.
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.; ...
2018-01-30
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchkin, A.; Stebelkov, V.; Zhizhin, K.
Seven laboratories used the results of bulk uranium isotopic analysis by either inductively coupled plasma mass spectrometry (ICP-MS) or thermal ionization mass spectrometry (TIMS) for characterization of the samples in the Nuclear Forensic International Technical Working Group fourth international collaborative material exercise, CMX-4. Comparison of the measured isotopic compositions of uranium in three exercise samples is implemented for identifying any differences or similarities between the samples. The role of isotopic analyses in the context of a real nuclear forensic investigation is discussed. Several limitations in carrying out ICP-MS or TIMS analysis in CMX-4 are noted.
PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry
NASA Astrophysics Data System (ADS)
Wong, David S.; Fraser, Paul; Lavoie, Pascal; Kim, Jooil
2015-02-01
Perfluorinated carbon compounds (PFCs) CF4 and C2F6 are potent greenhouse gases that are generated in aluminum reduction cells during events known as anode effects (AEs). Since the 1990s, the aluminum industry has made considerable progress in reducing PFCs from conventionally defined and detected AEs. However in recent years, the industry has noted the presence of unaccounted PFCs that are generated outside the conventional AE definition. Two additional AE categories have been proposed, namely low-voltage, propagating AEs (LVP-AEs) and nonpropagating AEs (NP-AEs) that relate to continuous, background levels of PFC emissions. These unaccounted PFC phenomena may help explain the recent discrepancy between industry accounting and atmospheric measurements of global PFC emissions. Estimates from AGAGE, a global network of atmospheric observatories, suggest as much as 50% underaccounting of PFCs by the aluminum industry in the 2006-2010 period. The following work reviews this discrepancy and the potential role played by LVP-AEs and NP-AEs.
Precise and accurate isotope ratio measurements by ICP-MS.
Becker, J S; Dietze, H J
2000-09-01
The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.
NASA Astrophysics Data System (ADS)
Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.
2014-04-01
Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp).Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp). Electronic supplementary information (ESI) available: Material synthesis; experimental details; X-ray diffraction (XRD), UV-excited lifetimes, ICP-AES, and additional TEM data. See DOI: 10.1039/c4nr00497c
NASA Astrophysics Data System (ADS)
Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.
2004-11-01
Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.
NASA Astrophysics Data System (ADS)
Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.
2016-04-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.
Wolf, Ruth E.; Adams, Monique
2015-01-01
Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.
Implementation of ICP-MS protocols for uranium urinary measurements in worker monitoring.
Baglan, N; Cossonnet, C; Trompier, F; Ritt, J; Bérard, P
1999-10-01
The uranium concentration in human urine spiked with natural uranium and rat urine containing metabolized depleted uranium was determined by ICP-MS. The use of ICP-MS was investigated without any chemical treatment or after the different stages of a purification protocol currently carried out for routine monitoring. In the case of spiked urine, the measured uranium concentrations were consistent with those certified by an intercomparison network in radiotoxicological analysis (PROCORAD) and with those obtained by alpha spectrometry in the case of the urine containing metabolized uranium. The quantitative information which could be obtained in the different protocols investigated shows the extent to which ICP-MS provides greater flexibility for setting up appropriate monitoring approaches in radiation protection routines and accidental situations. This is due to the combination of high sensitivity and the accuracy with which traces of uranium in urine can be determined in a shorter time period. Moreover, it has been shown that ICP-MS measurement can be used to quantify the 235U isotope, which is useful for characterizing the nature of the uranium compound, but difficult to perform using alpha spectrometry.
Turnlund, Judith R; Keyes, William R
2002-09-01
Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.
Quantitative aspects of inductively coupled plasma mass spectrometry
Wagner, Barbara
2016-01-01
Accurate determination of elements in various kinds of samples is essential for many areas, including environmental science, medicine, as well as industry. Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful tool enabling multi-elemental analysis of numerous matrices with high sensitivity and good precision. Various calibration approaches can be used to perform accurate quantitative measurements by ICP-MS. They include the use of pure standards, matrix-matched standards, or relevant certified reference materials, assuring traceability of the reported results. This review critically evaluates the advantages and limitations of different calibration approaches, which are used in quantitative analyses by ICP-MS. Examples of such analyses are provided. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644971
Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.
Borkowska-Burnecka, J
2000-11-01
Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.
Li, Wen-jing; Chen, Yue; Li, Nai-sheng; Li, Bin; Luo, Wu-gan
2015-03-01
ICP-AES was used to determine the elemental composition of solutions in different conservation steps for understanding the impact of cleaning agents on ceramics from Huaguangjiao I shipwreck. The results showed that high content in solution of Al, Fe, Mg ions, which can be indexes to reflect the damage in conservation of ceramics. According to these indexes, we discovered that agents of strong cleaning ability bring more damage to ceramic samples. Meanwhile, the state of preservation of the ceramics was closely related to the damage in conservation. Ceramics in an excellent state of preservation endure less damage than that in bad state. We also found that each cleaning agent cause certain degree of damage on porcelains, even neutral reagent, like deionized water. Moreover, moderate cleaning reagent, when using a long time, bring the same degree of damage as the strong acid. Therefore, in actual protection procedure, for conservation ceramics safe and effective, damage of each cleaning agents and cumulative damage should be considered.
Ariga, Tomoko; Zhu, Yanbei; Ito, Mika; Takatsuka, Toshiko; Terauchi, Shinya; Kurokawa, Akira; Inagaki, Kazumi
2018-04-01
Area densities of Au/Ni/Cu layers on a Cr-coated quartz substrate were characterized to certify a multiple-metal-layer certified reference material (NMIJ CRM5208-a) that is intended for use in the analysis of the layer area density and the thickness by an X-ray fluorescence spectrometer. The area densities of Au/Ni/Cu layers were calculated from layer mass amounts and area. The layer mass amounts were determined by using wet chemical analyses, namely inductively coupled plasma mass spectrometry (ICP-MS), isotope-dilution (ID-) ICP-MS, and inductively coupled plasma optical emission spectrometry (ICP-OES) after dissolving the layers with diluted mixture of HCl and HNO 3 (1:1, v/v). Analytical results of the layer mass amounts obtained by the methods agreed well with each another within their uncertainty ranges. The area of the layer was determined by using a high-resolution optical scanner calibrated by Japan Calibration Service System (JCSS) standard scales. The property values of area density were 1.84 ± 0.05 μg/mm 2 for Au, 8.69 ± 0.17 μg/mm 2 for Ni, and 8.80 ± 0.14 μg/mm 2 for Cu (mean ± expanded uncertainty, coverage factor k = 2). In order to assess the reliability of these values, the density of each metal layer calculated from the property values of the area density and layer thickness measured by using a scanning electron microscope were compared with available literature values and good agreement between the observed values and values obtained in previous studies.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Dunlea, Ann G.; Auer, Gerald; Anderson, Chloe H.; Brumsack, Hans; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A.; März, Christian; Schnetger, Bernhard; Murray, Richard W.; Pälike, Heiko
2017-03-01
During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.
NASA Astrophysics Data System (ADS)
Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.
2009-04-01
The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high correlation between PM10 emissions from these sources and ambient key components levels (R2= 0.61-0.98).
Silva, Sidnei G; Donati, George L; Santos, Luana N; Jones, Bradley T; Nóbrega, Joaquim A
2013-05-30
Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L(-1) Co, WCAES limit of detection for Cr (λ=425.4 nm) is calculated as 0.070 mg L(-1); a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr(+) by charge transfer reactions. In a second step, Cr(+)/e(-) recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25-10 mg L(-1) and repeatability of 3.8% (RSD, n=10) for a 2.0 mg L(-1) Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and 112%. Copyright © 2013 Elsevier B.V. All rights reserved.
Baytak, Sıtkı; Arslan, Zikri
2015-01-01
This study presents a simple, robust and environmentally friendly solid phase preconcentration procedure for multielement determination by inductively coupled plasma optical emission spectrometry (ICP-OES) using diphenylcarbazone (DPC) impregnated TiO2 nanopowder (n-TiO2). DPC was successfully impregnated onto n-TiO2 in colloidal solution. A number of elements, including Co(II), Cr(III), Cu(II), Fe(III), Mn(II) and Zn(II) were quantitatively preconcentrated from aqueous solutions between pH 8 and 8.5 at a flow rate of 2 mL min−1, and then eluted with 2 mL of 5% (v/v) HNO3. A mini-column packed with 0.12 g DPC impregnated n-TiO2 retained all elements quantitatively from up to 250 mL multielement solution (2.5 μg per analyte) affording an enrichment factor of 125. The limits of detection (LOD) for preconcentration of 50 mL blank solutions (n = 12) were 0.28, 0.15, 0.25, 0.22, 0.12, and 0.10 μg L−1 for Co, Cr, Cu, Fe, Mn, and Zn, respectively. The relative standard deviation (RSD) for five replicate determinations was 0.8, 3.4, 2.6, 2.2, 1.2 and 3.3% for Co, Cr, Cu, Fe, Mn and Zn, respectively, at 5 μg L−1 level. The method was validated with analysis of Freshwater (SRM 1643e) and Lobster hepatopancreas (TORT-2) certified reference materials, and then applied to the determination of the elements from tap water and lake water samples by ICP-OES. PMID:26236403
Yi, Xiaowei; Shi, Yanmei; Xu, Jiang; He, Xiaobing; Zhang, Haitao; Lin, Jianfeng
A radiochemical procedure is developed for the determination of 237 Np in soil with multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) and gamma-spectrometry. 239 Np (milked from 243 Am) was used as an isotopic tracer for chemical yield determination. The neptunium in the soil is separated by thenoyl-trifluoracetone extraction from 1 M HNO 3 solution after reducing Np to Np(IV) with ferrous sulfamate, and then purified with Dowex 1 × 2 anion exchange resin. 239 Np in the resulting solution is measured with gamma-spectrometry for chemical yield determination while the 237 Np is measured with MC-ICP-MS. Measurement results for soil samples are presented together with those for two reference samples. By comparing the determined value with the reference value of the 237 Np activity concentration, the feasibility of the procedure was validated.
Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D
2000-10-01
Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.
Cao, Yupin; Deng, Biyang; Yan, Lizhen; Huang, Hongli
2017-05-15
An environmentally friendly and highly efficient gas pressure-assisted sample introduction system (GPASIS) was developed for inductively-coupled plasma mass spectrometry. A GPASIS consisting of a gas-pressure control device, a customized nebulizer, and a custom-made spray chamber was fabricated. The advantages of this GPASIS derive from its high nebulization efficiencies, small sample volume requirements, low memory effects, good precision, and zero waste emission. A GPASIS can continuously, and stably, nebulize 10% NaCl solution for more than an hour without clogging. Sensitivity, detection limits, precision, long-term stability, double charge and oxide ion levels, nebulization efficiencies, and matrix effects of the sample introduction system were evaluated. Experimental results indicated that the performance of this GPASIS, was equivalent to, or better than, those obtained by conventional sample introduction systems. This GPASIS was successfully used to determine Cd and Pb by ICP-MS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.
Selih, Vid S; Sala, Martin; Drgan, Viktor
2014-06-15
Inductively coupled plasma mass spectrometry and optical emission were used to determine the multi-element composition of 272 bottled Slovenian wines. To achieve geographical classification of the wines by their elemental composition, principal component analysis (PCA) and counter-propagation artificial neural networks (CPANN) have been used. From 49 elements measured, 19 were used to build the final classification models. CPANN was used for the final predictions because of its superior results. The best model gave 82% correct predictions for external set of the white wine samples. Taking into account the small size of whole Slovenian wine growing regions, we consider the classification results were very good. For the red wines, which were mostly represented from one region, even-sub region classification was possible with great precision. From the level maps of the CPANN model, some of the most important elements for classification were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yücel, Yasin; Sultanoğlu, Pınar
2013-09-01
Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Becker, J. Sabine
2005-04-01
For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.
Rodríguez-Cea, Andrés; de la Campa, María Rosario Fernández; Sanz-Medel, Alfredo
2005-01-01
Cytochromes P-450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiological and xenobiotic compounds in eukaryotes and prokaryotes. The multiplicity of this group of enzymes has been widely studied by chromatographic techniques, mainly high-performance liquid chromatography (HPLC). Because these enzymes are membrane-bound proteins, sample preparation for chromatographic separation of P-450 enzymes requires a solubilization step. The sample-preparation procedures are critical, because detergents affect not only the efficiency of protein solubilization but also their further chromatographic resolution. Trout liver microsomes have been taken here as a model sample to investigate iron speciation in cytochrome P-450. Trouts were treated intraperitoneally with beta-naphthoflavone, a potent inducer of some P-450 enzymes, and a microsomal suspension containing 7.4+/-0.1 nmol mL(-1) P-450 enzymes was obtained by ultracentrifugation. Lubrol PX was selected as detergent for solubilization, resulting in about 90% solubilization recovery. The solubilized cytochromes P-450 were further separated by AE-FPLC, with UV detection, or coupled to ICP-MS with an octapole reaction system, ICP-(ORS)MS (monitoring Fe signals at masses 54, 56, and 57). A sampling procedure and chromatographic conditions are developed and were successfully applied to iron speciation in trout liver P-450 enzymes. ICP-(ORS)MS detection of P-450 enzymes is Fe-specific and so will give accurate information on the prosthetic group of the protein, which can constitute an advantageous alternative to classical methods for detection of these hemoproteins.
NASA Astrophysics Data System (ADS)
Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.
1995-07-01
The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.
The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?
NASA Technical Reports Server (NTRS)
Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria
1993-01-01
It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.
Zeiner, Michaela; Juranović Cindrić, Iva; Požgaj, Martina; Pirkl, Raimund; Šilić, Tea; Stingeder, Gerhard
2015-03-15
The use of medical herbs for the treatment of many human diseases is increasing nowadays due to their mild features and low side effects. Not only for their healing properties, but also for their nutritive value supplementation of diet with various herbs is recommended. Thus also their analysis is of rising importance. While total elemental compositions are published for many common herbs, the origin of toxic as well as beneficial elements is not yet well investigated. Thus different indigenous medicinal plants, namely Croatian spruce (Picea abies), savory (Satureja montana L.), mountain yarrow (Achillea clavennae), showy calamint (Calamintha grandiflora), micromeria (Micromeria croatica), yellow gentian (Gentiana lutea) and fir (Abies alba) together with soil samples were collected in the National Park Northern Velebit. The macro- and trace elements content, after microwave digestion, was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). The study focuses on the one hand on essential elements and on the other hand on non-essential elements which are considered as toxic for humans, covering in total Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn. Copyright © 2014 Elsevier B.V. All rights reserved.
DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
NASA Astrophysics Data System (ADS)
Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick
2015-03-01
The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.
Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland
Adamiec, Ewa
2017-01-01
Road dust as a by-product of exhaust and non-exhaust emissions can be a major cause of systemic oxidative stress and multiple disorders. Substantial amounts of road dust are repeatedly resuspended, in particular at traffic lights and junctions where more braking is involved, causing potential threat to pedestrians, especially children. In order to determine the degree of contamination in the heavily traffic-congested cities of Poland, a total of 148 samples of road dust (RD), sludge from storm drains (SL) and roadside soil (RS) were collected. Sixteen metals were analysed using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) in all samples. Chemical evaluation followed by Principal Component Analysis (PCA) revealed that road environments have been severely contaminated with traffic-related elements. Concentration of copper in all road-environment samples is even higher, exceeding even up to 15 times its average concentrations established for the surrounding soils. Non-carcinogenic health risk assessment revealed that the hazard index (HI) for children in all road-environment samples exceeds the safe level of 1. Therefore, greater attention should be paid to potential health risks caused by the ingestion of traffic-related particles during outdoor activities. PMID:28661464
Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland.
Adamiec, Ewa
2017-06-29
Road dust as a by-product of exhaust and non-exhaust emissions can be a major cause of systemic oxidative stress and multiple disorders. Substantial amounts of road dust are repeatedly resuspended, in particular at traffic lights and junctions where more braking is involved, causing potential threat to pedestrians, especially children. In order to determine the degree of contamination in the heavily traffic-congested cities of Poland, a total of 148 samples of road dust (RD), sludge from storm drains (SL) and roadside soil (RS) were collected. Sixteen metals were analysed using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) in all samples. Chemical evaluation followed by Principal Component Analysis (PCA) revealed that road environments have been severely contaminated with traffic-related elements. Concentration of copper in all road-environment samples is even higher, exceeding even up to 15 times its average concentrations established for the surrounding soils. Non-carcinogenic health risk assessment revealed that the hazard index (HI) for children in all road-environment samples exceeds the safe level of 1. Therefore, greater attention should be paid to potential health risks caused by the ingestion of traffic-related particles during outdoor activities.
Labat, L; Dehon, B; Lhermitte, M
2003-05-01
An inductively coupled plasma mass spectrometer (ICP-MS) with a rapid sample-preparative procedure was used for the determination of selenium in blood serum. Blood serum was prepared by dilution in an acidic solution consisting of nitric acid (1%), X-triton (0.1%) and 1-butanol (0.8%). A calibration curve was established for 1-40 microg mL(-1) (r(2)>0.99). The limit of detection was 0.5 microg mL(-1). Repeatability and intermediate precision were satisfactory with relative standard deviations (RSD) of 2.0% and 3.2%, respectively. This method was easily applied to reference materials with satisfactory accuracy. Good correlation (r(2)=0.96) was observed between ICP-MS and atomic absorption spectrometry (AAS) for the determination of (82)Se in blood serum from 23 patients. These results suggest that the sample preparative procedure coupled with ICP-MS can be used for the routine determination of (82)Se in human blood serum.
Determination of Microelements in Human Milk and Infant Formula Without Digestion by ICP-OES.
Đurović, Dijana; Milisavljević, Branka; Nedović-Vuković, Mirjana; Potkonjak, Branislav; Spasić, Snežana; Vrvić, Miroslav
2017-06-01
The concentrations of zinc (Zn), iron (Fe) and copper (Cu) in both human milk and infant formula were determined using a new sample preparation method, by inductively coupled plasma - optical emission spectometry (ICP-OES) and flame atomic absorption spectrometry (FAAS). Human milk samples were diluted in ultrapure water. The infant formula of powder samples (suitable for an infant 1-6 months of age) and standard reference material (SRM-1849) were analyzed in parallel. The results have shown that FAAS method was more sensitive for Fe determination in human milk while ICP-OES was more sensitive for both Zn and Cu detection. The limit of quantification for both Zn and Cu was 5 μg L-1 and 10 μg L-1 for Fe and the recovery for Zn, Fe and Cu was ranged from 90% to 94%, 97% to 103% and 90% to 102%, respectively. Mean concentrations of Zn, Fe, and Cu in human milk samples were 5.35, 0.47 and 0.83 mg L-1, respectively while these values in infant formula were ranged from 3.52-4.75 mg L-1, 3.37-4.56 mg L-1 and 0.28-0.41 mg L-1, respectively. Despite the sample complexity, the proposed method using dilution of milk samples with water was simple, rapid, effective and accurate. ICP-OES was a better method for Zn determination while FAAS was a better method for Fe determination. In the case of Cu both methods were comparable.
Capillary electrophoresis-high resolution sector field inductively coupled plasma mass spectrometry.
Sonke, Jeroen E; Salters, Vincent J M
2007-08-03
The background and applications of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) as a detector for capillary (CE) and gel electrophoretic separations are reviewed. Notable progress has been made in the fields of bioinorganic and environmental (geo-) chemistry. Metallomics, the study of metal species interactions and functions in biological systems, puts substantial technical demands on speciation analysis. The combination of high species resolving power (CE) and high sensitivity-high mass resolving power (HR-ICP-MS) provides a solid base to meet such demands.
NASA Astrophysics Data System (ADS)
Russell, Robin Ann
It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were obtained for these elements from the detection limits (˜1 ppb) to greater than 1 ppm. Used lubricating oil samples were also analyzed by microwave digestion ICP-MS. Oil samples were collected from a Rolling Contact Fatigue tester. Two bearing systems were evaluated: M50 steel balls on an M50 steel rod, and Sisb3Nsb4 balls on an M50 steel rod. Improved operating conditions were obtained when the Sisb3Nsb4 balls were used, which corresponds to longer engine lifetimes.
Rapid Analysis of Ash Composition Using Laser-Induced Breakdown Spectroscopy (LIBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler L. Westover
2013-01-01
Inorganic compounds are known to be problematic in the thermochemical conversion of biomass to syngas and ultimately hydrocarbon fuels. The elements Si, K, Ca, Na, S, P, Cl, Mg, Fe, and Al are particularly problematic and are known to influence reaction pathways, contribute to fouling and corrosion, poison catalysts, and impact waste streams. Substantial quantities of inorganic species can be entrained in the bark of trees during harvest operations. Herbaceous feedstocks often have even greater quantities of inorganic constituents, which can account for as much as one-fifth of the total dry matter. Current methodologies to measure the concentrations of thesemore » elements, such as inductively coupled plasma-optical emission spectrometry/mass spectrometry (ICP-OES/MS) are expensive in time and reagents. This study demonstrates that a new methodology employing laser-induced breakdown spectroscopy (LIBS) can rapidly and accurately analyze the inorganic constituents in a wide range of biomass materials, including both woody and herbaceous examples. This technique requires little or no sample preparation, does not consume any reagents, and the analytical data is available immediately. In addition to comparing LIBS data with the results from ICP-OES methods, this work also includes discussions of sample preparation techniques, calibration curves for interpreting LIBS spectra, minimum detection limits, and the use of internal standards and standard reference materials.« less
Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process
NASA Astrophysics Data System (ADS)
Jung, Myungwon; Mishra, Brajendra
2018-02-01
This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Click, D. R.; Edwards, T. B.; Wiedenman, B. J.
2013-03-18
This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch ormore » qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.« less
Pettersson, Mattias; Pettersson, Jean; Molin Thorén, Margareta; Johansson, Anders
2017-01-01
Abstract In the present study, amount of titanium (Ti) released into the surrounding bone during placement of implants with different surface structure was investigated. Quantification of Ti released during insertion from three different implants was performed in this ex vivo study. Jaw bone from pigs was used as model for installation of the implants and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) was used for analysis of the released Ti. Implant surface were examined with scanning electron microscopy (SEM), before and after the placement into the bone. Ti was abraded to the surrounding bone upon insertion of a dental implant and the surface roughness of the implant increased the amount of Ti found. Diameter and total area of the implant were of less importance for the Ti released to the bone. No visible damages to the implant surfaces could be identified in SEM after placement. PMID:29242814
[Determination and correlation analysis of trace elements in Boletus tomentipes].
Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao
2011-07-01
The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.
Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.
Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander
2018-05-10
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Biological monitoring of glazers exposed to lead in the ceramics industry in Iran.
Shouroki, Fatemeh Kargar; Shahtaheri, Seyed Jamaleddin; Golbabaei, Farideh; Barkhordari, Abolfazle; Rahimi-Froushani, Abbas
2015-01-01
Exposure to heavy metals, particularly lead, takes place in the ceramics industry. Lead is used in glaze to produce smooth and brilliant surfaces; thus, there is a likelihood of occupational adverse effects on humans. Urine samples were collected from 49 glazers at the start and end of the work shifts (98 samples). Solid phase extraction was used for separation and pre-concentration of the analyte. Samples were analysed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Lung function tests were performed on both control and lead exposed subjects. Statistical analysis of covariance (ANCOVA) was used to evaluate the data obtained. The concentration of lead in glazers was 6.37 times higher than in the control group. Lung functions were significantly lower in the glazers compared to the control group (p < 0.001). Results showed that poor ventilation systems, overtime work and work history are effective determinants of high exposure levels.
Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan
2014-10-01
We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Déjeant, Adrien; Bourva, Ludovic; Sia, Radia; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael
2014-11-01
The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pickhardt, Carola; Dietze, Hans-Joachim; Becker, J. Sabine
2005-04-01
Isotope ratio measurements have been increasingly used in quite different application fields, e.g., for the investigation of isotope variation in nature, in geoscience (geochemistry and geochronology), in cosmochemistry and planetary science, in environmental science, e.g., in environmental monitoring, or by the application of the isotope dilution technique for quantification purposes using stable or radioactive high-enriched isotope tracers. Due to its high sensitivity, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is today a challenging mass spectrometric technique for the direct determination of precise and accurate isotope ratios in solid samples. In comparison to laser ablation quadrupole ICP-MS (LA-ICP-QMS), laser ablation coupled to a double-focusing sector field ICP-MS (LA-ICP-SFMS) with single ion detection offers a significant improvement of sensitivity at low mass resolution, whereby isotope ratios can be measured with a precision to 0.1% relative standard deviation (R.S.D.). In LA-ICP-SFMS, many disturbing isobaric interferences of analyte and molecular ions can be separated at the required mass resolution (e.g., 40Ar16O+ and 56Fe+ for iron isotope ratio measurements). The precision on isotope ratio measurements was improved by one order of magnitude via the simultaneous detection of mass-separated ion currents of isotopes using multiple ion collectors in LA-ICP-MS (LA-MC-ICP-MS). The paper discusses the state of the art, the challenges and limits in isotope ratio measurements by LA-ICP-MS using different instrumentations at the trace and ultratrace level in different fields of application as in environmental and biological research, geochemistry and geochronology with respect to their precision and accuracy.
Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio
2014-10-01
The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.
2009-01-01
Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.
Investigation of a measure of robustness in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Makonnen, Yoseif; Beauchemin, Diane
2015-01-01
In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2011-09-01
Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.
Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel
NASA Astrophysics Data System (ADS)
Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri
2012-10-01
In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.
Iron levels change in larval Heliothis virescens tissues following baculovirus infection
USDA-ARS?s Scientific Manuscript database
Inductively-coupled plasma mass spectrometry (ICP-MS) and 59Fe radiotracers were used to investigate changes in levels of iron (Fe) in the tissues of Heliothis virescens following baculovirus infection. Fe concentrations were determined by ICP-MS in hemolymph collected from 4th instar larvae infect...
Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda
2016-01-01
An experimental nanosilver-coated low-density polyethylene (LDPE) food packaging was incubated with food simulants using a conventional oven and tested for migration according to European Commission Regulation No. 10/2011. The commercial LDPE films were coated using a layer-by-layer (LbL) technique and three levels of silver (Ag) precursor concentration (0.5%, 2% and 5% silver nitrate (AgNO3), respectively) were used to attach antimicrobial Ag. The experimental migration study conditions (time, temperature and food simulant) under conventional oven heating (10 days at 60°C, 2 h at 70°C, 2 h at 60°C or 10 days at 70°C) were chosen to simulate the worst-case storage period of over 6 months. In addition, migration was quantified under microwave heating. The total Ag migrant levels in the food simulants were quantified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Mean migration levels obtained by ICP-AES for oven heating were in the range 0.01-1.75 mg l(-1). Migration observed for microwave heating was found to be significantly higher when compared with oven heating for similar temperatures (100°C) and identical exposure times (2 min). In each of the packaging materials and food simulants tested, the presence of nanoparticles (NPs) was confirmed by scanning electron microscopy (SEM). On inspection of the migration observed under conventional oven heating, an important finding was the significant reduction in migration resulting from the increased Ag precursor concentration used to attach Ag on the LDPE LbL-coated films. This observation merits further investigation into the LbL coating process used, as it suggests potential for process modifications to reduce migration. In turn, any reduction in NP migration below regulatory limits could greatly support the antimicrobial silver nanoparticle (AgNP)-LDPE LbL-coated films being used as a food packaging material.
Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi
2010-12-15
Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles. Copyright © 2010 Elsevier B.V. All rights reserved.
Quantification of 60Fe atoms by MC-ICP-MS for the redetermination of the half-life.
Kivel, Niko; Schumann, Dorothea; Günther-Leopold, Ines
2013-03-01
In many scientific fields, the half-life of radionuclides plays an important role. The accurate knowledge of this parameter has direct impact on, e.g., age determination of archeological artifacts and of the elemental synthesis in the universe. In order to derive the half-life of a long-lived radionuclide, the activity and the absolute number of atoms have to be analyzed. Whereas conventional radiation measurement methods are typically applied for activity determinations, the latter can be determined with high accuracy by mass spectrometric techniques. Over the past years, the half-lives of several radionuclides have been specified by means of multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) complementary to the earlier reported values mainly derived by accelerator mass spectrometry. The present paper discusses all critical aspects (amount of material, radiochemical sample preparation, interference correction, isotope dilution mass spectrometry, calculation of measurement uncertainty) for a precise analysis of the number of atoms by MC-ICP-MS exemplified for the recently published half-life determination of 60Fe (Rugel et al, Phys Rev Lett 103:072502, 2009).
Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud
2009-11-15
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.
Feist, Barbara; Mikula, Barbara
2014-03-15
A method of separation and preconcentration of cadmium, cobalt, copper, nickel, lead, and zinc at trace level using activated carbon is proposed. Activated carbon with the adsorbed trace metals was mineralised using a high-pressure microwave mineraliser. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The influence of several parameters, such as pH, sorbent mass, shaking time was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The experiment shows that foreign ions did not influence recovery of the determined elements. The detection limits (DL) of Cd, Co, Cu, Ni, Pb, and Zn were 0.17, 0.19, 1.60, 2.60, 0.92 and 1.50 μg L(-)(1), respectively. The recovery of the method for the determined elements was better than 95% with relative standard deviation from 1.3% to 3.7%. The preconcentration factor was 80. The proposed method was applied for determination of Cd, Co, Cu, Ni, Pb, and Zn in fruits materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). Copyright © 2013 Elsevier Ltd. All rights reserved.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
Ahamad, Syed Rizwan; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Qamar, Wajhul; Aljarboa, Suliman
2017-07-01
The aim of the present investigation was to explore the constituents of the Arabian myrrh resin obtained from Commiphora myrrha. The organic and inorganic composition of the myrrh gum resin has been investigated using gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Analysis executed by ICP-MS reveals the presence of various inorganic elements in significant amount in the myrrh resin. The elements that were found to be present in large amounts include calcium, magnesium, aluminum, phosphorus, chlorine, chromium, bromine and scandium. The important organic constituents identified in the myrrh ethanolic extract include limonene, curzerene, germacrene B, isocericenine, myrcenol, beta selinene, and spathulenol,. The present work complements other myrrh associated investigations done in the past and provides additional data for the future researches.
FRP/steel composite damage acoustic emission monitoring and analysis
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Chen, Zhi
2015-04-01
FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.
Molina, D Kimberley; Martinez, Michael; Garcia, James; DiMaio, Vincent J M
2007-09-01
Several different methods can be employed to test for gunshot residue (GSR) on a deceased person's hands, including scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each of these techniques has been extensively studied, especially on living individuals. The current studies (Part I and Part II) were designed to compare the use and utility of the different GSR testing techniques in a medical examiner setting. In Part I, the hands of deceased persons who died from undisputed suicidal handgun wounds were tested for GSR by SEM-EDX over a 4-year period. A total of 116 cases were studied and analyzed for caliber of weapon, proximity of wound, and results of GSR testing, including spatial deposition upon the hands. It was found that in only 50% of cases with a known self-inflicted gunshot wound was SEM-EDX positive for at least 1 specific particle for GSR. In 18% of the cases there was a discernible pattern (spatial distribution) of the particles on the hand such that the manner in which the weapon was held could be determined. Since only 50% of cases where the person is known to have fired a weapon immediately prior to death were positive for GSR by SEM-EDX, this test should not be relied upon to determine whether a deceased individual has discharged a firearm. Furthermore, in only 18% of cases was a discernible pattern present indicating how the firearm was held. The low sensitivity, along with the low percentage of cases with a discernible pattern, limits the usefulness of GSR test results by SEM-EDX in differentiating self-inflicted from non-self-inflicted wounds.
Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.
Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B
2015-08-26
A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.
Yadav, Suman; Jan, Rohi; Roy, Ritwika; Satsangi, P Gursumeeran
2016-12-01
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM 50 values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM 50 values for summer and lower TM 50 values during winter.
Photocatalytic property and structural stability of CuAl-based layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com
2015-07-15
Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210more » mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl« less
Laporte-Saumure, Mathieu; Martel, Richard; Mercier, Guy
2011-01-01
Backstop soils of four small-arms firing ranges (SAFRs) of the Canadian Force Bases (CFBs) were characterized in terms of their total soil Cu, Pb, Sb and Zn concentrations, grain size distribution, mineralogy, chemical properties, vertical in-depth contamination distribution (for one CFB), and scanning electron microscope (SEM-EDS) characterization. Metal availability from the soils was evaluated with three leaching tests: the toxicity characteristics leaching procedure (TCLP), representing a landfill leachate; the synthetic precipitation leaching procedure (SPLP), representing field conditions; and the gastric juice simulation test (GJST), representing the leachate of the human stomach during the digestive process and, therefore, the potential metal transfer to humans in the case of soil ingestion. Metal analyses of soils and leaching test extracts were conducted with an Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) instrument. Total soil results showed maximal concentrations of 27,100 mg/kg for Pb, 7720 mg/kg for Cu, 1080 mg/kg for Zn, and 570 mg/kg for Sb. The SEM-EDS analysis showed significant amounts of lead carbonates, which resulted from the alteration of the initial metallic Pb particles. Metal availability evaluation with the leaching tests showed that TCLP Pb and Sb thresholds were exceeded. For the SPLP and the GJST, the drinking water thresholds of the Ministère du Développement Durable, de l'Environnement et des Pares (MDDEP) of Quebec were exceeded by Pb and Sb. The metal availability assessment showed that SAFR backstop soils may pose a potential risk to the environment, groundwater and humans, and affect the management of such soils in order to minimize potential metal dispersion in the environment.
Geochemical properties of topsoil around the coal mine and thermoelectric power plant.
Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka
2018-03-19
The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.
Umemura, Tomonari; Usami, Yosuke; Aizawa, Sho-ichi; Tsunoda, Kin-ichi; Satake, Ken-ichi
2003-12-30
The level of dissolved aluminum and its chemical forms in soil solutions consecutively collected by a porous cup vacuum sampler were monitored over a period from January 2001 to December 2001 at a Japanese cedar (Cryptomeria japonica) forestry area susceptible to acid deposition to characterize current soil dynamics and to evaluate potential tree damages. Distinction and characterization of Al species with differential toxicities were performed by two complementary speciation techniques; cation-exchange HPLC with fluorometric detection using 8-hydroxyquinoline-5-sulfonic acid (HQS) and size-fractionation/inductively coupled plasma atomic emission spectrometry (ICP-AES). The concentrations of free Al (mainly Al3+ and Al(OH)2+) and inert Al (existing as the complexed and/or colloidal forms) ranged between 0-150 microM and 10-50 microM, respectively. The concentrations of inert Al were mostly below 40 microM during an annual cycle and showed no marked seasonal variation, while free Al concentrations showed a clear tendency to increase in the spring and summer seasons (in the period from April to August) probably due to the enhanced activity of microbial nitrification and the resultant soil acidification. Major cations and anions were also regularly determined and their seasonal changes were correlated with that of the dissolved Al concentration. Correlations between total Al (mainly existing as free Al) and the related species (and environmental conditions) were as follows: Al and Mg (R=0.96, P<0.01), Al and Ca (R=0.97, P<0.01), Al and NO3- (R=0.68, P<0.01), Al and temperature (R=0.68, P<0.01), Al and solution pH (R=-0.61, P<0.01), solution pH and NO3- (R=-0.65, P<0.01).
Bonin, L; Bains, N; Vitry, V; Cobley, A J
2017-05-01
The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.
García-Salgado, Sara; Quijano, M Ángeles
2016-12-01
Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L -1 calcium chloride (CaCl 2 ), 0.43 mol L -1 acetic acid (CH 3 COOH), and 0.05 mol L -1 ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl 2 and EDTA extractions and 15 min for CH 3 COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl 2 and EDTA extractions and 15 min at 120 °C for CH 3 COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.
Sun, Ming-Zhong; Guo, Chunmei; Tian, Yuxiang; Chen, Duo; Greenaway, Frederick T; Liu, Shuqing
2010-04-01
An L-amino acid oxidase (Akbu-LAAO) was isolated from the venom of Agkistrodon blomhoffii ussurensis snake using DEAE Sephadex A-50 ion-exchange, Sephadex G-75 gel filtration, and high performance liquid chromatographies. The homogeneity and molecular mass of Akbu-LAAO were analyzed by SDS-PAGE and MALDI-TOF spectrometry. The sequences of ten peptides from Akbu-LAAO were established by HPLC-nESI-MS/MS analysis. Protein sequence alignment indicated that i) that Akbu-LAAO is a new snake venom LAAO, and ii) Akbu-LAAO shares homology with several LAAOs from the venoms of Calloselasma rhodost, Agkistrodon halys, Daboia russellii siamensis, and Trimeresurus stejnegeri. Akbu-LAAO is a homodimer with a molecular mass of approximately 124.4 kDa. It reacts optimally with its enzymatic substrate, Leu, at pH 4.7 with a K(m) of 2.1 mM. ICP-AES measurements showed that Akbu-LAAO contains four Zn(2+) per dimer that are unessential for the hydrolytic activity of the enzyme. The emission fluorescence intensity of Akbu-LAAO decreases by 61% on removal of Zn(2+) indicating that the zinc probably helps maintain the structural integrity of the enzyme. The addition of exogenous metal ions, including Mg(2+), Mn(2+), Ca(2+), Ce(3+), Nd(3+), Co(2+) and Tb(3+), increases the l-Leu hydrolytic activity of the enzyme. Akbu-LAAO shows apparent anti-aggregation effects on human and rabbit platelets. It exhibits a strong bacteriostasis effect on Staphylococcus aureus, eighteen fold that of cephalosporin C under the same conditions. Taken together, the biochemical, proteomic, structural and functional characterizations reveal that Akbu-LAAO is a novel LAAO with promise for biotechnological and medical applications. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs*
Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai
2014-01-01
Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003–2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat’s lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 μg). Female rats were more sensitive to PM extracts than males in terms of their pulmonary damages. Conclusions: PMs were not mutagenic to S. typhimurium but can damage the lung tissue of rats. PMID:24390747
Development of high temperature acoustic emission sensing system using fiber Bragg grating
NASA Astrophysics Data System (ADS)
Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang
2018-03-01
In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.
NASA Astrophysics Data System (ADS)
Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.
2018-04-01
Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references
Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko
2015-01-01
In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.
Measurement of In-Flight Aircraft Emissions
NASA Technical Reports Server (NTRS)
Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.
1995-01-01
Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.
Hendriks, Lyndsey; Gundlach-Graham, Alexander; Günther, Detlef
2018-04-25
Due to the rapid development of nanotechnologies, engineered nanomaterials (ENMs) and nanoparticles (ENPs) are becoming a part of everyday life: nanotechnologies are quickly migrating from laboratory benches to store shelves and industrial processes. As the use of ENPs continues to expand, their release into the environment is unavoidable; however, understanding the mechanisms and degree of ENP release is only possible through direct detection of these nanospecies in relevant matrices and at realistic concentrations. Key analytical requirements for quantitative detection of ENPs include high sensitivity to detect small particles at low total mass concentrations and the need to separate signals of ENPs from a background of dissolved elemental species and natural nanoparticles (NNPs). To this end, an emerging method called single-particle inductively coupled plasma mass spectrometry (sp-ICPMS) has demonstrated great potential for the characterization of inorganic nanoparticles (NPs) at environmentally relevant concentrations. Here, we comment on the capabilities of modern sp-ICPMS analysis with particular focus on the measurement possibilities offered by ICP-time-of-flight mass spectrometry (ICP-TOFMS). ICP-TOFMS delivers complete elemental mass spectra for individual NPs, which allows for high-throughput, untargeted quantitative analysis of dispersed NPs in natural matrices. Moreover, the multi-element detection capabilities of ICP-TOFMS enable new NP-analysis strategies, including online calibration via microdroplets for accurate NP mass quantification and matrix compensation.
Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P
2008-10-01
Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...
Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan
2012-04-01
A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bank, Tracy L.; Roth, Elliot A.; Tinker, Phillip
2016-04-17
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure the concentrations of rare earth elements (REE) in certified standard reference materials including shale and coal. The instrument used in this study is a Perkin Elmer Nexion 300D ICP-MS. The goal of the study is to identify sample preparation and operating conditions that optimized recovery of each element of concern. Additionally, the precision and accuracy of the technique are summarized and the drawbacks and limitations of the method are outlined.
Acoustic emission monitoring of steel bridge members : interim report.
DOT National Transportation Integrated Search
1995-01-01
This interim report describes the current status of acoustic emission (AE) monitoring of steel bridge members. The report includes a brief introduction to the theory of acoustic emission and a comprehensive summary of previous efforts to apply AE mon...
Ryhänen, J; Kallioinen, M; Serlo, W; Perämäki, P; Junila, J; Sandvik, P; Niemelä, E; Tuukkanen, J
1999-12-15
Its shape memory effect, superelasticity, and good wear and damping properties make the NiTi shape memory alloy a material with fascinating potential for orthopedic surgery. It provides a possibility for making self-locking, self-expanding, and self-compressing implants. Problems, however, may arise because of its high nickel content. The purpose of this work was to determine the corrosion of NiTi in vivo and to evaluate the possible deleterious effects of NiTi on osteotomy healing, bone mineralization, and the remodeling response. Femoral osteotomies of 40 rats were fixed with either NiTi or stainless steel (StSt) intramedullary nails. The rats were killed at 2, 4, 8, 12, 26, and 60 weeks. Bone healing was examined with radiographs, peripheral quantitative computed tomography, (pQCT) and histologically. The corrosion of the retrieved implants was analyzed by electron microscopy (FESEM). Trace metals from several organs were determined by graphite furnace atomic absorption spectrometry (GF-AAS) or by inductively coupled plasma-atomic emission spectrometry (ICP-AES). There were more healed bone unions in the NiTi than in the StSt group at early (4 and 8 weeks) time points. Callus size was equal between the groups. The total and cortical bone mineral densities did not differ between the NiTi and StSt groups. Mineral density in both groups was lower in the osteotomy area than in the other areas along the nail. Density in the nail area was lower than in the proximal part of the operated femur or the contralateral femur. Bone contact to NiTi was close. A peri-implant lamellar bone sheet formed in the metaphyseal area after 8 weeks, indicating good tissue tolerance. The FESEM assessment showed surface corrosion changes to be more evident in the StSt implants. There were no statistically significant differences in nickel concentration between the NiTi and StSt groups in any of the organs. NiTi appears to be an appropriate material for further intramedullary use because it has good biocompatibility in bone tissue. Copyright 1999 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Dykas, Brian; Harris, James
2017-09-01
Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.
Influence of methane addition on selenium isotope sensitivity and their spectral interferences.
Floor, Geerke H; Millot, Romain; Iglesias, Mónica; Négrel, Philippe
2011-02-01
The measurements of stable selenium (Se) isotopic signatures by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) are very challenging, due to the presence of spectral interferences and the low abundance of Se in environmental samples. We systematically investigated the effect of methane addition on the signal of Se isotopes and their interferences. It is the first time that the effect of methane addition has been assessed for all Se isotopes and its potential interferences using hydride generator multi-collector inductively coupled plasma mass spectrometry (HG-MC-ICP-MS). Our results show that a small methane addition increases the sensitivity. However, the response differs between a hydride generator and a standard introduction system, which might be related to differences in the ionization processes. Both argon and hydrogen-based interferences, the most common spectral interferences on selenium isotopes in HG-MC-ICP-MS, decrease with increasing methane addition. Therefore, analyte-interference ratios and precision are improved. Methane addition has thus a high potential for the application to stable Se isotopes ratios by HG-MC-ICP-MS. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Levine, Lanfang H.; Garland, Jay L.; Johnson, Jodie V.
2002-01-01
An amphoteric (cocamidopropylbetaine, CAPB) and a nonionic (alcohol polyethoxylate, AE) surfactant were characterized by electrospray ionization quadrupole ion trap mass spectrometry (ESI-MS) as to their homologue distribution and ionization/fragmentation chemistry. Quantitative methods involving reversed-phase gradient HPLC and (+)ESI-MSn were developed to directly determine these surfactants in hydroponic plant growth medium that received simulated graywater. The predominant homologues, 12 C alkyl CAPB and 9 EO AE, were monitored to represent the total amount of the respective surfactants. The methods demonstrated dynamic linear ranges of 0.5-250 ng (r2 > 0.996) for CAPB and 8-560 ng (r2 > 0.998) for AE homologue mixture, corresponding to minimum quantification limits of 25 ppb CAPB and 0.4 ppm AE with 20-microL injections. This translated into an even lower limit for individual components due to the polydispersive nature of the surfactants. The procedure was successfully employed for the assessment of CAPB and AE biodegradation in a hydroponic plant growth system used as a graywater bioreactor.
Analysis of acoustic emission during abrasive waterjet machining of sheet metals
NASA Astrophysics Data System (ADS)
Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir
2018-04-01
The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.
A novel Bayesian approach to acoustic emission data analysis.
Agletdinov, E; Pomponi, E; Merson, D; Vinogradov, A
2016-12-01
Acoustic emission (AE) technique is a popular tool for materials characterization and non-destructive testing. Originating from the stochastic motion of defects in solids, AE is a random process by nature. The challenging problem arises whenever an attempt is made to identify specific points corresponding to the changes in the trends in the fluctuating AE time series. A general Bayesian framework is proposed for the analysis of AE time series, aiming at automated finding the breakpoints signaling a crossover in the dynamics of underlying AE sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Deformation and failure information from composite materials via acoustic emission
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1978-01-01
The paper reviews some principles of applying acoustic emission (AE) to the study of fiber-composite materials and structures. This review covers the basics of using AE to monitor the deformation and fracture processes that occur when fiber-composite materials are stressed. Also, new results in some areas of current research interest are presented. The following areas are emphasized: study of couplants for AE testing of composites, evaluation of a special immersion-type AE transducer, and wave propagation complications and the development of techniques for locating AE sources in Kevlar 49/epoxy composite pre
Damage source identification of reinforced concrete structure using acoustic emission technique.
Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein
2013-01-01
Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.
Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique
Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein
2013-01-01
Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681
The Potential of Using Acoustical Emission to Detect Termites Within Wood
Vernard R. Lewis; Richard L. Lemaster
1991-01-01
Acoustical emission (AE) equipment was used to detect drywood termites Incisitermes minor in ponderosa pine Pinus ponderosa blocks under laboratory conditions. Using a 60 kHz transducer, AE levels were recorded for 0, 5, 10, 15, and 20 termites per block. The association of AE and varying numbers of drywood termites best fit an...
Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D
2014-04-01
A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D
2014-12-01
A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES. Copyright © 2014 Elsevier B.V. All rights reserved.
Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review.
Yang, Lu
2009-01-01
For many decades the accurate and precise determination of isotope ratios has remained a very strong interest to many researchers due to its important applications in earth, environmental, biological, archeological, and medical sciences. Traditionally, thermal ionization mass spectrometry (TIMS) has been the technique of choice for achieving the highest accuracy and precision. However, recent developments in multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have brought a new dimension to this field. In addition to its simple and robust sample introduction, high sample throughput, and high mass resolution, the flat-topped peaks generated by this technique provide for accurate and precise determination of isotope ratios with precision reaching 0.001%, comparable to that achieved with TIMS. These features, in combination with the ability of the ICP source to ionize nearly all elements in the periodic table, have resulted in an increased use of MC-ICP-MS for such measurements in various sample matrices. To determine accurate and precise isotope ratios with MC-ICP-MS, utmost care must be exercised during sample preparation, optimization of the instrument, and mass bias corrections. Unfortunately, there are inconsistencies and errors evident in many MC-ICP-MS publications, including errors in mass bias correction models. This review examines "state-of-the-art" methodologies presented in the literature for achievement of precise and accurate determinations of isotope ratios by MC-ICP-MS. Some general rules for such accurate and precise measurements are suggested, and calculations of combined uncertainty of the data using a few common mass bias correction models are outlined.
NASA Astrophysics Data System (ADS)
Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.
2003-02-01
Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.
Linscheid, Michael W
2018-03-30
To understand biological processes, not only reliable identification, but quantification of constituents in biological processes play a pivotal role. This is especially true for the proteome: protein quantification must follow protein identification, since sometimes minute changes in abundance tell the real tale. To obtain quantitative data, many sophisticated strategies using electrospray and MALDI mass spectrometry (MS) have been developed in recent years. All of them have advantages and limitations. Several years ago, we started to work on strategies, which are principally capable to overcome some of these limits. The fundamental idea is to use elemental signals as a measure for quantities. We began by replacing the radioactive 32 P with the "cold" natural 31 P to quantify modified nucleotides and phosphorylated peptides and proteins and later used tagging strategies for quantification of proteins more generally. To do this, we introduced Inductively Coupled Plasma Mass Spectrometry (ICP-MS) into the bioanalytical workflows, allowing not only reliable and sensitive detection but also quantification based on isotope dilution absolute measurements using poly-isotopic elements. The detection capability of ICP-MS becomes particularly attractive with heavy metals. The covalently bound proteins tags developed in our group are based on the well-known DOTA chelate complex (1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid) carrying ions of lanthanoides as metal core. In this review, I will outline the development of this mutual assistance between molecular and elemental mass spectrometry and discuss the scope and limitations particularly of peptide and protein quantification. The lanthanoide tags provide low detection limits, but offer multiplexing capabilities due to the number of very similar lanthanoides and their isotopes. With isotope dilution comes previously unknown accuracy. Separation techniques such as electrophoresis and HPLC were used and just slightly adapted workflows, already in use for quantification in bioanalysis. Imaging mass spectrometry (MSI) with MALDI and laser ablation ICP-MS complemented the range of application in recent years. © 2018 Wiley Periodicals, Inc.
Nischkauer, Winfried; Vanhaecke, Frank; Limbeck, Andreas
2016-08-01
We present a technique for the fast screening of the lead concentration in whole blood samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The whole blood sample is deposited on a polymeric surface and wiped across a set of micro-grooves previously engraved into the surface. The engraving of the micro-grooves was accomplished with the same laser system used for LA-ICP-MS analysis. In each groove, a part of the liquid blood is trapped, and thus, the sample is divided into sub-aliquots. These aliquots dry quasi instantly and are then investigated by means of LA-ICP-MS. For quantification, external calibration against aqueous standard solutions was relied on, with iron as an internal standard to account for varying volumes of the sample aliquots. The (208)Pb/(57)Fe nuclide ratio used for quantification was obtained via a data treatment protocol so far only used in the context of isotope ratio determination involving transient signals. The method presented here was shown to provide reliable results for Recipe ClinChek® Whole Blood Control levels I-III (nos. 8840-8842), with a repeatability of typically 3 % relative standard deviation (n = 6, for Pb at 442 μg L(-1)). Spiked and non-spiked real whole blood was analysed as well, and the results were compared with those obtained via dilution and sectorfield ICP-MS. A good agreement between both methods was observed. The detection limit (3 s) for lead in whole blood was established to be 10 μg L(-1) for the laser ablation method presented here. Graphical Abstract Micro-grooves are filled with whole blood, dried, and analyzed by laser ablation ICP-mass spectrometry. Notice that the laser moves in perpendicular direction with regard to the micro-grooves.
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission
NASA Astrophysics Data System (ADS)
Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian
2011-04-01
Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.
Santamaria-Fernandez, Rebeca; Hearn, Ruth; Wolff, Jean-Claude
2009-06-01
Isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) are highly important techniques that can provide forensic evidence that otherwise would not be available. MC-ICP-MS has proved to be a very powerful tool for measuring high precision and accuracy isotope amount ratios. In this work, the potential of combining isotope amount ratio measurements performed by MC-ICP-MS and IRMS for the detection of counterfeit pharmaceutical tablets has been investigated. An extensive study for the antiviral drug Heptodin has been performed for several isotopic ratios combining MC-ICP-MS and an elemental analyser EA-IRMS for stable isotope amount ratio measurements. The study has been carried out for 139 batches of the antiviral drug and analyses have been performed for C, S, N and Mg isotope ratios. Authenticity ranges have been obtained for each isotopic system and combined to generate a unique multi-isotopic pattern only present in the genuine tablets. Counterfeit tablets have then been identified as those tablets with an isotopic fingerprint outside the genuine isotopic range. The combination of those two techniques has therefore great potential for pharmaceutical counterfeit detection. A much greater power of discrimination is obtained when at least three isotopic systems are combined. The data from these studies could be presented as evidence in court and therefore methods need to be validated to support their credibility. It is also crucial to be able to produce uncertainty values associated to the isotope amount ratio measurements so that significant differences can be identified and the genuineness of a sample can be assessed.
Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry
NASA Astrophysics Data System (ADS)
Farnsworth, Paul B.; Spencer, Ross L.
2017-08-01
Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.
Vicenzi, Edward P.; Eggins, Stephen; Logan, Amelia; Wysoczanski, Richard
2002-01-01
An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. PMID:27446764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.
Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less
Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.
2017-01-01
Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the intracellular distribution. In vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) of the hybrid peptide were shown to be similar. Assessment of tracer distribution in excised tissues revealed the location of tracer uptake with both LA-ICP-MS-imaging and fluorescence imaging. Conclusion: Lanthanide-isotope chelation expands the scope of fluorescent/radioactive hybrid tracers to include MS-based analytical tools such as mass-cytometry, ICP-MS and LA-ICP-MS imaging in molecular pathology. In contradiction to common expectations, MS detection using a single chelate imaging agent was shown to be feasible, enabling a direct link between nuclear medicine-based imaging and theranostic methods. PMID:28255355
NASA Astrophysics Data System (ADS)
Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.
In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.
Metal concentrations of wild edible mushrooms from Turkey.
Sarikurkcu, Cengiz; Tepe, Bektas; Solak, Mehmet Halil; Cetinkaya, Serap
2012-01-01
In the present study, the contents of Zn, Fe, Cu, Mn, Co, Ni, Pb, Cd, Cr, Al, Ca, Mg, and K in Agaricus campestris, Agrocybe cylindracea, Collybia dryophila, Helvella leucopus, Russula delica, Tricholoma auratum, Amanita ovoidea, Melanoleuca excissa, Rhizopogon roseolus, Russula chloroides, Volvoriella gloiocephala, Lyophyllum decastes, Morcella angusticeps, Morchella esculenta and Morcella eximia collected from Isparta, Mugla, and Osmaniye provinces (Turkey) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion. The intake of heavy metals (Pb, Cd) and other metals (Fe, Cu, Zn) by consumption of 30 g dry weight of mushrooms daily poses no risk at all except in A. cylindracea and H. leucopus (for Cd) for the consumer.
Non-Aqueous Sol-Gel Synthesis of FePt Nanoparticles in the Absence of In Situ Stabilizers
Preller, Tobias; Knickmeier, Saskia; Porsiel, Julian Cedric; Temel, Bilal
2018-01-01
The synthesis of FePt nanocrystals is typically performed in an organic solvent at rather high temperatures, demanding the addition of the in situ stabilizers oleic acid and oleylamine to produce monomodal particles with well-defined morphologies. Replacing frequently-used solvents with organic media bearing functional moieties, the use of the stabilizers can be completely circumvented. In addition, various morphologies and sizes of the nanocrystals can be achieved by the choice of organic solvent. The kinetics of particle growth and the change in the magnetic behavior of the superparamagnetic FePt nanocrystals during the synthesis with a set of different solvents, as well as the resulting morphologies and stoichiometries of the nanoparticles were determined by powder X-ray diffraction (PXRD), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES)/mass spectrometry (ICP-MS), and superconducting quantum interference device (SQUID) measurements. Furthermore, annealing of the as-prepared FePt nanoparticles led to the ordered L10 phase and, thus, to hard magnetic materials with varying saturation magnetizations and magnetic coercivities. PMID:29751508
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.
2016-02-13
Assay methods for measuring 238U, 232Th, and 210Pb concentrations in refined lead are presented. The 238U and 232Th concentrations are assayed via inductively coupled plasma mass spectrometry (ICP-MS) after anion exchange column separation on dissolved lead samples. The 210Pb concentration is inferred through α-spectroscopy of a daughter isotope, 210Po, after chemical precipitation separation on dissolved lead samples. Subsequent to the 210Po α-spectroscopy assay, a method for evaluating 210Pb concentrations in solid lead samples was developed via measurement of bremsstrahlung radiation from β-decay of a daughter isotope, 210Bi, by employing a 14-crystal array of high purity germanium (HPGe) detectors. Ten sourcesmore » of refined lead were assayed. The 238U concentrations were <34 microBq/kg and the 232Th concentrations ranged <0.6 – 15 microBq/kg, as determined by the ICP-MS assay method. The 210Pb concentrations ranged from ~0.1 – 75 Bq/kg, as inferred by the 210Po α-spectroscopy assay method.« less
Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Zook, J. David
1998-07-01
An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.
Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions
NASA Technical Reports Server (NTRS)
Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.
1975-01-01
The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Travis
This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios inmore » particulate samples.« less
Préat, Alain R; de Jong, Jeroen T M; Mamet, Bernard L; Mattielli, Nadine
2008-08-01
The iron (Fe) isotopic composition of 17 Jurassic limestones from the Rosso Ammonitico of Verona (Italy) have been analyzed by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Such analysis allowed for the recognition of a clear iron isotopic fractionation (mean -0.8 per thousand, ranging between -1.52 to -0.06 per thousand) on a millimeter-centimeter scale between the red and grey facies of the studied formation. After gentle acid leaching, measurements of the Fe isotopic compositions gave delta(56)Fe values that were systematically lower in the red facies residues (median: -0.84 per thousand, range: -1.46 to +0.26 per thousand) compared to the grey facies residues (median: -0.08 per thousand, range: -0.34 to +0.23 per thousand). In addition, the red facies residues were characterized by a lighter delta(56)Fe signal relative to their corresponding leachates. These Fe isotopic fractionations could be a sensitive fingerprint of a biotic process; systematic isotopic differences between the red and grey facies residues, which consist of hematite and X-ray amorphous iron hydroxides, respectively, are hypothesized to have resulted from the oxidizing activity of iron bacteria and fungi in the red facies. The grey Fe isotopic data match the Fe isotopic signature of the terrestrial baseline established for igneous rocks and low-C(org) clastic sedimentary rocks. The Fe isotopic compositions of the grey laminations are consistent with the influx of detrital iron minerals and lack of microbial redox processes at the water-interface during deposition. Total Fe concentration measurements were performed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) (confirmed by concentration estimations obtained by MC-ICP-MS analyses of microdrilled samples) on five samples, and resultant values range between 0.30% (mean) in the grey facies and 1.31% (mean) in the red facies. No correlation was observed between bulk Fe content and pigmentation or between bulk Fe content and Fe isotopic compositions. The rapid transformation of the original iron oxyhydroxides to hematite could have preserved the original isotopic composition if it had occurred at about the same temperature. This paper supports the use of Fe isotopes as sensitive tracers of biological activities recorded in old sedimentary sequences that contain microfossils of iron bacteria and fungi. However, a careful interpretation of the iron isotopic fractionation in terms of biotic versus abiotic processes requires supporting data or direct observations to characterize the biological, (geo)chemical, or physical context in relation to the geologic setting. This will become even more pertinent when Fe isotopic studies are expanded to the interplanetary realm.
Piezoelectric micromachined acoustic emission sensors for early stage damage detection in structures
NASA Astrophysics Data System (ADS)
Kabir, Minoo; Kazari, Hanie; Ozevin, Didem
2018-03-01
Acoustic emission (AE) is a passive nondestructive evaluation (NDE) method that relies on the energy release of active flaws. The passive nature of this NDE method requires highly sensitive transducers in addition to low power and lightweight characteristics. With the advancement of micro-electro-mechanical systems (MEMS), acoustic emission (AE) transducers can be developed in low power and miniaturized. In this paper, the AE transducers operating in plate flexural mode driven piezoelectrically known as Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) are presented. The AE PMUTs are manufactured using PiezoMUMPS process by MEMSCAP and tuned to 46 kHz and 200 kHz. The PiezoMUMPs is a 5-mask level SOI (silicon-on-insulator) patterning and etching process followed by deposition of 0.5 micron Aluminum Nitride (AlN) to form piezoelectric layer to form the transducers. The AE transducers are numerically modeled using COMSOL Multiphysics software in order to optimize the performance before manufacturing. The electrometrical characterization experiments are presented. The efficiency of the proposed AE PMUTs compared to the conventional AE transducers in terms of power consumption, weight and sensitivity is presented.
Search for gamma-ray emission from AE Aquarii with seven year of Fermi LAT observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Torres, Diego F.; Rea, Nanda
2016-11-14
AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (more » $${P}_{\\mathrm{spin}}$$ = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. When using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. We detected no gamma-ray pulsations above 3σ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We also impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $$1.3\\times {10}^{-12}$$ erg cm -2 s -1 in the 100 MeV–300 GeV energy range, providing constraints on models.« less
Field turbidity method for the determination of lead in acid extracts of dried paint.
Studabaker, William B; McCombs, Michelle; Sorrell, Kristen; Salmons, Cynthia; Brown, G Gordon; Binstock, David; Gutknecht, William F; Harper, Sharon L
2010-07-08
Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid extraction with measurement using the new turbidimetric method, and the other half was analyzed using microwave extraction and measurement by ICP-AES. The average relative percent difference between the turbidimetric method and the ICP-AES method for the 24 sets measured as milligrams of lead per cm(2) is -0.63 +/- 32.5%; the mean difference is -2.1 +/- 7.0 mg lead per cm(2). Non-parametric and parametric statistical tests on these data showed no difference in the results for the two procedures. At the federal regulated level of 1 mg of lead per cm(2) paint, this turbidimetric method meets the performance requirements for EPA's National Lead Laboratory Accreditation Program (NLLAP) of accuracy within +/-20% and has the potential to meet the performance specifications of EPA's RRP rule.
Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A
2014-11-01
Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.
NASA Astrophysics Data System (ADS)
Furger, Markus; Slowik, Jay G.; Cruz Minguillón, María; Hueglin, Christoph; Koch, Chris; Prévôt, André S. H.; Baltensperger, Urs
2016-04-01
Aerosol-bound trace elements can affect the environment in significant ways especially when they are toxic. Characterizing the trace element spatial and temporal variability is a prerequisite for human exposure studies. The requirement for high time resolution and consequently the low sample masses asked for analysis methods not easily accessible, such as synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). In recent years, instrumentation that samples and analyzes airborne particulate matter with time resolutions of less than an hour in near real time has entered the market. We present the results of a three-week campaign in a rural environment close to a freeway. The measurement period included the fireworks of the Swiss National Day. The XRF instrument was set up at the monitoring station Härkingen of the Swiss Monitoring Network for Air Pollution (NABEL). It was configured to sample and analyze ambient PM10 aerosols in 1-hour intervals. Sample analysis with XRF was performed by the instrument immediately after collection, i.e. during the next sampling interval. 24 elements were analyzed and quantified (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba, Pt, Hg, Pb, Bi). The element concentrations obtained by the XRF instrument were compared to those determined by ICP-AES and ICP-MS in PM10 samples collected by NABEL high volume samplers. The results demonstrate the capability of the instrument to measure over a wide range of concentrations, from a few ng m-3 to μg m-3, under ambient conditions. The time resolution allows for the characterization of diurnal variations of element concentrations, which provides information on the contribution of emission sources, such as road traffic, soil, or fireworks. Some elements (V, Co, As, Pt) were below their detection limit during most of the time, but As could be quantified during the fireworks. Transition metals Cr, Mn, Fe, Cu, Zn could be attributed to freeway traffic. K, S, Ba, and Bi were strongly linked to the fireworks. The field test provided good evidence for the applicability and ease of use of the instrument. It provided also an idea on the sensitivity of the method in realistic, ambient conditions, although the 3-week period was too short for a thorough assessment, e.g. for different weather conditions.
Preflight and Inflight Calibration of TES and AES
NASA Technical Reports Server (NTRS)
Rider, David M.
1997-01-01
The Thermal Emission Spectrometer (TES), an EOS CHEM platform instrument, and its companion instrument, the Airborne Emission Spectrometer (AES), are both Fourier transform spectrometers designed for remote sensing of the troposphere.
Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was also concentrated onto a macroreticular resin and fractionation into three operationally defined fract...
Acoustic emission during tensile deformation of M250 grade maraging steel
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna
2012-05-01
Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).
Ultrasonic emissions during ice nucleation and propagation in plant xylem.
Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan
2015-08-01
Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Fatigue crack localization with near-field acoustic emission signals
NASA Astrophysics Data System (ADS)
Zhou, Changjiang; Zhang, Yunfeng
2013-04-01
This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.
NASA Astrophysics Data System (ADS)
Koch, J.; Feldmann, I.; Hattendorf, B.; Günther, D.; Engel, U.; Jakubowski, N.; Bolshov, M.; Niemax, K.; Hergenröder, R.
2002-06-01
The analytical figures of merit for ultraviolet laser ablation-inductively coupled plasma mass spectrometry (UV-LA-ICP-MS) at 266 nm with respect to the trace element analysis of high-purity, UV-transmitting alkaline earth halides are investigated and discussed. Ablation threshold energy density values and ablation rates for mono- and poly-crystalline CaF 2 samples were determined. Furthermore, Pb-, Rb-, Sr-, Ba- and Yb-specific analysis was performed. For these purposes, a pulsed Nd:YAG laser operated at the fourth harmonic of the fundamental wavelength (λ=266 nm) and a double-focusing sector field ICP-MS detector were employed. Depending on the background noise and isotope-specific sensitivity, the detection limits typically varied from 0.7 ng/g for Sr to 7 ng/g in the case of Pb. The concentrations were determined using a glass standard reference material (SRM NIST612). In order to demonstrate the sensitivity of the arrangement described, comparative measurements by means of a commercial ablation system consisting of an ArF excimer laser (λ=193 nm) and a quadrupole-type ICP-MS (ICP-QMS) instrument were carried out. The accuracy of both analyses was in good agreement, whereas ablation at 266 nm and detection using sector-field ICP-MS led to a sensitivity that was one order of magnitude above that obtained at 193 nm with ICP-QMS.
Gulson, Brian; Kamenov, George D; Manton, William; Rabinowitz, Michael
2018-04-11
There has been a massive increase in recent years of the use of lead (Pb) isotopes in attempts to better understand sources and pathways of Pb in the environment and in man or experimental animals. Unfortunately, there have been many cases where the quality of the isotopic data, especially that obtained by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), are questionable, resulting in questionable identification of potential sources, which, in turn, impacts study interpretation and conclusions. We present several cases where the isotopic data have compromised interpretation because of the use of only the major isotopes 208 Pb/ 206 Pb and 207 Pb/ 206 Pb, or their graphing in other combinations. We also present some examples comparing high precision data from thermal ionization (TIMS) or multi-collector plasma mass spectrometry (MC-ICP-MS) to illustrate the deficiency in the Q-ICP-MS data. In addition, we present cases where Pb isotopic ratios measured on Q-ICP-MS are virtually impossible for terrestrial samples. We also evaluate the Pb isotopic data for rat studies, which had concluded that Pb isotopic fractionation occurs between different organs and suggest that this notion of biological fractionation of Pb as an explanation for isotopic differences is not valid. Overall, the brief review of these case studies shows that Q-ICP-MS as commonly practiced is not a suitable technique for precise and accurate Pb isotopic analysis in the environment and health fields.