DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A
2008-12-14
The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMasi, A.; Piper, L; Zhang, Y
2008-01-01
The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studiesmore » and the present data reveal the presence of clear photon-induced damage in the former.« less
1998-01-01
Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared
Laser-Induced-Emission Spectroscopy In Hg/Ar Discharge
NASA Technical Reports Server (NTRS)
Maleki, Lutfollah; Blasenheim, Barry J.; Janik, Gary R.
1992-01-01
Laser-induced-emission (LIE) spectroscopy used to probe low-pressure mercury/argon discharge to determine influence of mercury atoms in metastable 6(Sup3)P(Sub2) state on emission of light from discharge. LIE used to study all excitation processes affected by metastable population, including possible effects on excitation of atoms, ions, and buffer gas. Technique applied to emissions of other plasmas. Provides data used to make more-accurate models of such emissions, exploited by lighting and laser industries and by laboratories studying discharges. Also useful in making quantitative measurements of relative rates and cross sections of direct and two-step collisional processes involving metastable level.
NASA Technical Reports Server (NTRS)
Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.
2017-01-01
Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.
Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.
Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai
2010-12-01
The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.
Synthesis and characterization of silicon nanorod on n-type porous silicon.
Behzad, Kasra; Mat Yunus, Wan Mahmood; Bahrami, Afarin; Kharazmi, Alireza; Soltani, Nayereh
2016-03-20
This work reports a new method for growing semiconductor nanorods on a porous silicon substrate. After preparation of n-type porous silicon samples, a thin layer of gold was deposited on them. Gold deposited samples were annealed at different temperatures. The structural, thermal, and optical properties of the samples were studied using a field emission scanning electron microscope (FESEM), photoacoustic spectroscopy, and photoluminescence spectroscopy, respectively. FESEM analysis revealed that silicon nanorods of different sizes grew on the annealed samples. Thermal behavior of the samples was studied using photoacoustic spectroscopy. Photoluminescence spectroscopy showed that the emission peaks were degraded by gold deposition and attenuated for all samples by annealing.
NASA Astrophysics Data System (ADS)
Aparna, N.; Vasa, Nilesh J.; Sarathi, R.; Rajan, J. Sundara
2014-10-01
In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I-Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.
Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter
2014-01-01
In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less
Fan Beam Emission Tomography for Laminar Fires
NASA Technical Reports Server (NTRS)
Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas
2003-01-01
Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.
NASA Astrophysics Data System (ADS)
Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.
2018-03-01
In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.
Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A
2016-08-23
The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.
NASA Astrophysics Data System (ADS)
Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.
2016-08-01
The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.
Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.
2016-01-01
The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials. PMID:27550235
Field emission study of carbon nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Xin
Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.
Optimizing soft X-ray NEXAFS spectroscopy in the laboratory
NASA Astrophysics Data System (ADS)
Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.
2017-05-01
Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.
2015-01-01
By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
NASA Astrophysics Data System (ADS)
Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin
2016-05-01
Single core-hole (SCH) and double core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma density effects on level populations are demonstrated with an x-ray photon energy of 2000 eV. For laser photon energy in the range of 937 - 1360 eV, resonant absorptions (RA) of 1s-np (n> = 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.
Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.
Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad
2015-12-01
This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.
Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs
NASA Astrophysics Data System (ADS)
Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai
2018-06-01
In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.
Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.
Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter
2012-12-01
Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.
Anomalous photoelectric emission from Ag on zinc-phthalocyanine film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Senku, E-mail: senku@ele.kindai.ac.jp; Otani, Tomohiro; Fukuzawa, Ken
2014-05-12
Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum levelmore » shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.« less
Characterizing Exoplanet Habitability with Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Robinson, Tyler
2018-01-01
Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.
Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S
2010-10-01
A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.
Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes
NASA Astrophysics Data System (ADS)
Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.
2017-09-01
Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.
NASA Astrophysics Data System (ADS)
Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin
2018-02-01
Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.
Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).
Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P
2015-12-01
Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-01-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-10-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebata, T.; Ito, M.
1992-04-16
This paper reports the intramolecular vibrational redistribution (IVR) of the jet-cooled p-alkylphenols and p-alkylanilines in S{sub 0} state by using stimulated emission ion dip and stimulated raman-UV optical double-resonance spectroscopy. The IVR rate constants of several vibrational levels localized in the benzene ring are estimated. 31 refs., 12 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik
2018-06-01
In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.
A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission
ERIC Educational Resources Information Center
McBane, George C.; Cannella, Christian; Schaertel, Stephanie
2018-01-01
A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…
NASA Astrophysics Data System (ADS)
Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.
2015-07-01
This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.
Infrared heterodyne spectroscopy. [for observation of thermal emission from astrophysical objects
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Kostiuk, T.; Buhl, D.; Chin, G.; Zipoy, D.
1982-01-01
Infrared heterodyne spectroscopy is an extremely useful tool for Doppler-limited studies of atomic and molecular lines in diverse astrophysical regions. The current state of the art is reviewed, and the analysis of CO2 lines in the atmosphere of Mars is outlined. Doppler-limited observations have enabled the discovery of natural laser emission in the mesosphere of Mars and the discovery of failure of local thermodynamic equilibrium near the surface of Mars.
Stepwise synthesis and characterization of germa[4], [5], [8], and [10]pericyclynes.
Tanimoto, Hiroki; Nagao, Tomohiko; Fujiwara, Taro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi
2015-07-14
The stepwise syntheses of germa[N]pericyclynes, including [5]pericyclynes, and their characterization are described. The yields of germa[4] and [8]pericyclynes were improved significantly compared to those obtained in previous studies. The routes reported herein afforded the novel germa[5] and [10]pericyclynes, which were characterized by X-ray crystallography, UV-Vis spectroscopy, and fluorescence emission spectroscopy. A unique fluorescence emission was observed for the large germa[10]pericyclyne ring.
Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy
NASA Technical Reports Server (NTRS)
Schlagen, Kenneth J.
1992-01-01
Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.
Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy
NASA Astrophysics Data System (ADS)
Limandri, S.; Robledo, J.; Tirao, G.
2018-06-01
High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.
THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS
Three decades of study of environmental conditions necessary for the protection of freshwater
aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
The...
Ángel Aguirre, Miguel; Hidalgo, Montserrat; Canals, Antonio; Nóbrega, Joaquim A; Pereira-Filho, Edenir R
2013-12-15
This study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation. Some polymeric internal parts in contact with the inner pieces of the mobiles and covered with a special paint presented a strong emission signal for Cr. The white pieces presented mainly Al, Ba and Ti in their composition. Finally, this study developed a procedure for LIBS emission spectra using chemometric strategies and suitable information can be obtained for identification of manufacturer and counterfeit products. In addition, the results obtained can improve the classification for establishing recycling strategies of e-waste. © 2013 Elsevier B.V. All rights reserved.
Optical emission from a small scale model electric arc furnace in 250-600 nm region.
Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H
2013-04-01
Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.
NASA Astrophysics Data System (ADS)
Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.
2015-03-01
This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.
NASA Astrophysics Data System (ADS)
Mabilangan, Arvin I.; Lopez, Lorenzo P.; Faustino, Maria Angela B.; Muldera, Joselito E.; Cabello, Neil Irvin F.; Estacio, Elmer S.; Salvador, Arnel A.; Somintac, Armando S.
2016-12-01
Porosity dependent terahertz emission of porous silicon (PSi) was studied. The PSi samples were fabricated via electrochemical etching of boron-doped (100) silicon in a solution containing 48% hydrofluoric acid, deionized water and absolute ethanol in a 1:3:4 volumetric ratio. The porosity was controlled by varying the supplied anodic current for each sample. The samples were then optically characterized via normal incidence reflectance spectroscopy to obtain values for their respective refractive indices and porosities. Absorbance of each sample was also computed using the data from its respective reflectance spectrum. Terahertz emission of each sample was acquired through terahertz - time domain spectroscopy. A decreasing trend in the THz signal power was observed as the porosity of each PSi was increased. This was caused by the decrease in the absorption strength as the silicon crystallite size in the PSi was minimized.
The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer
2015-12-30
unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 19 Harold D. Ladouceur (202) 767-3558 Fourier ...13 REFERENCES………………………………………………………………………………….………..14 E-1 EXECUTIVE SUMMARY Fourier transform infrared...Raman spectroscopy, ambient x-ray photoelectron spectroscopy, near- infrared thermal imaging, and Fourier transform infrared emission spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craje, M.W.J.; Kraan, A.M. van der; Louwers, S.P.A.
1992-06-25
EXAFS was used in this paper to study 4 sulfided catalysts that have the same structure as their {sup 57}Co counterparts characterized by Mossbauer emission spectroscopy. The {open_quotes}Co-Mo-S{close_quotes} phase in Co/C is similar to CoMo/C due to a very highly dispersed Co species. Without Mo, the sulfidic Co results in a Co{sub 9}S{sub 8} phase during sulfidation at 673K, Mo prevents Co sintering in CoMo/C. 37 refs., 6 figs., 2 tabs.
NASA Technical Reports Server (NTRS)
Williams, Robert (Editor); Livio, Mario (Editor); Dufour, Reginald J.
1994-01-01
A review of the field of astronomical spectroscopy with emphasis on emission lines in astrophysical plasmas is presented. A brief history of UV spectroscopy instruments is given, following by a discussion and tabulation of major atlases of UV emission-line objects to date (mid-1994). A discussion of the major diagnostic UV emission lines in the approx. 912-3200 A spectral region that are useful for determining electron densities, temperatures, abundances, and extinction in low- to moderate density plasmas is given, with examples of applications to selected objects. The review concludes by presenting some recent results from HST, HUT, and IUE on UV emission-line spectroscopy of nebulae and active galaxies.
NASA Astrophysics Data System (ADS)
Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin
2016-02-01
Single-core-hole (SCH) and double-core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma-density effects on level populations and charge-state distribution are demonstrated with an x-ray photon energy of 2000 eV. It is shown that atomic number density of relevant experiment is about 1 × 1018 cm-3, which is comparable to a recent experiment. At this density, we systematically investigate the emissivity of the transient neon plasmas. For laser photon energy in the range 937-1360 eV, resonant absorptions (RA) of 1s\\to {np} (n≥slant 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. The RA effects are illustrated in detail for an x-ray pulse of 944 eV photon energy, which creates the 1s\\to 2p RA from the SCH states (1s2{s}22{p}4, 1s2s2p5, and 1s2p6) of Ne3+. After averaging over the space and time distribution of x-ray pulse, DCH emission spectroscopy is studied at x-ray photon energies of 937, 944, 955, 968, 980, and 990 eV, where there exist 1s\\to 2p resonances from SCH states of Ne2+-Ne7+. The processes with producing DCH states are discussed. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.
2018-03-01
Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.
Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2
NASA Astrophysics Data System (ADS)
Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin
2017-05-01
In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.
Yang, Clayton S C; Jin, Feng; Swaminathan, Siva R; Patel, Sita; Ramer, Evan D; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Samuels, Alan C
2017-10-30
This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere. Distinct atomic and molecular LIBS emission signatures of the target compounds measured simultaneously in UVN (200 to 1100 nm) and LWIR (5.6 to 10 µm) spectral regions are readily detected and identified without the need to employ complex data processing. In depth profiling studies of these two pharmaceutical tablets without any sample preparation, one can easily monitor the transition of the dominant LWIR emission signatures from coating ingredients gradually to the pharmaceutical ingredients underneath the coating. The observed LWIR LIBS emission signatures provide complementary molecular information to the UVN LIBS signatures, thus adding robustness to identification procedures. LIBS techniques are more surface specific while NIR spectroscopy has the capability to probe more bulk materials with its greater penetration depth. Both UVN + LWIR LIBS and NIR absorption spectroscopy have shown the capabilities of acquiring useful target analyte spectral signatures in comparable short time scales. The addition of a rapid LWIR spectroscopic probe to these widely used optical analytical methods, such as NIR spectroscopy and UVN LIBS, may greatly enhance the capability and accuracy of the combined system for a comprehensive analysis.
de Paula Campos, Carolina; de Paula D'Almeida, Camila; Nogueira, Marcelo Saito; Moriyama, Lilian Tan; Pratavieira, Sebastião; Kurachi, Cristina
2017-12-01
Ultraviolet (UV) radiation may induce skin alterations as observed in photoaging. Some recognized modifications are epidermal hyperplasia, amorphous deposition of degraded elastic fibers and reduction in the number of collagen fibers. They alter the tissue biochemical properties that can be interrogated by steady state fluorescence spectroscopy (SSFS). In this study, we monitored the changes in endogenous fluorescence emission from hairless mice skin during a protocol of photoaging using UVB irradiation. To perform the fluorescence spectroscopy, it was used a violet laser (408nm) to induce the native fluorescence that is emitted in the visible range. Under 408nm excitation, the emission spectrum showed bands with peaks centered around 510, 633 and 668nm for irradiated and control groups. A relative increase of the fluorescence at 633nm emission on the flank was observed with time when compared to the ventral skin at the same animal and the non-irradiated control group. We correlated the emission at 633nm with protoporphyrin IX (PpIX), and our hypothesis is that the PpIX metabolism in the photoaged and aged skin are different. PpIX fluorescence intensity in the photoaged skin is higher and more heterogeneous than in the aged skin. Notwithstanding, more spectroscopic and biochemistry studies investigating the 510 and 633nm emission are needed to confirm this hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy
Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.; ...
2017-09-13
In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less
Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.
In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less
Effects of surface preparation on quality of aluminum alloy weldments
NASA Technical Reports Server (NTRS)
Kizer, D.; Saperstein, Z.
1968-01-01
Study of surface preparations and surface contamination effects on the welding of 2014 aluminum involves several methods of surface analysis to identify surface properties conducive to weld defects. These methods are radioactive evaporation, spectral reflectance mass spectroscopy, gas chromatography and spark emission spectroscopy.
Mobile humic acids and recalcitrant calcium humate in eight US soils
USDA-ARS?s Scientific Manuscript database
Both excitation-emission matrix (EEM) fluorescence spectroscopy and solid state C-13 nuclear magnetic resonance (NMR) spectroscopy have been applied for studying soil organic matter (SOM), but rarely have both techniques been employed together. We analyzed the fluorescence features of water extracta...
Frost, Ray L; Adebajo, Moses; Weier, Matt L
2004-02-01
Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.
A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER.
Jaspers, R J E; Scheffer, M; Kappatou, A; van der Valk, N C J; Durkut, M; Snijders, B; Marchuk, O; Biel, W; Pokol, G I; Erdei, G; Zoletnik, S; Dunai, D
2012-10-01
A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.
NASA Astrophysics Data System (ADS)
Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.
2015-03-01
Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.
NASA Astrophysics Data System (ADS)
Aumaille, K.; Granier, A.; Schmidt, M.; Grolleau, B.; Vallée, C.; Turban, G.
2000-08-01
Oxygen/tetraethoxysilane (O2/TEOS) plasmas created in a low-pressure (2 mTorr) rf helicon reactor have been studied by optical emission spectroscopy and mass spectrometry as a function of the rf (13.56 MHz) power injected into the plasma, which is varied from 25 to 300 W. Complementary measurements for the interpretation of the mass spectrometric data have also been carried out using the threshold ionization mass spectrometry technique. It is shown that valuable information on the parent molecules is obtained by both optical emission spectroscopy and threshold ionization mass spectrometry techniques. At low rf power TEOS molecules and organic compounds like hydrocarbons (CH4, C2H2) and alcohols (CH3CH2OH) as well as H2, H2O, CO, O2, CO2 are observed. At high rf power TEOS and O2 molecules are totally or mostly depleted, the share of hydrocarbons decreases and carbon monoxide, carbon dioxide, water and hydrogen become the essential parts of the gas phase.
Workshop on Thermal Emission Spectroscopy and Analysis of Dust, Disk, and Regoliths
NASA Technical Reports Server (NTRS)
Sprague, Ann L. (Editor); Lynch, David K. (Editor); Sitko, Michael (Editor)
1999-01-01
This volume contains abstracts that have been accepted for presentation at the workshop on Thermal Emission Spectroscopy and analysis of Dust, Disks and Regoliths, held April 28-30, 1999, in Houston Texas.
NASA Astrophysics Data System (ADS)
Zhang, Y. G.; Wang, H. S.; Somesfalean, G.; Wang, Z. Y.; Lou, X. T.; Wu, S. H.; Zhang, Z. G.; Qin, Y. K.
2010-11-01
A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO 2) and nitric oxide (NO) from a 220-ton h -1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO 2 and NO from the CFB boiler fluctuated in the range of 750-1300 mg m -3 and 100-220 mg m -3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO 2 and lower for NO. The relatively high emission concentrations of SO 2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.
Adhesion and transfer of PTFE to metals studied by auger emission spectroscopy
NASA Technical Reports Server (NTRS)
Pepper, S. V.; Buckley, D. H.
1972-01-01
The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum has been studied using Auger emission spectroscopy. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.
A Study of Rovibrational H2O, OH, and CO emission from the Herbig Ae/Be star HD 250550
NASA Astrophysics Data System (ADS)
Leiendecker, Harrison; Brittain, Sean; Jensen, Stanley; Najita, Joan R.; Carr, John S.
2018-01-01
We present high-resolution spectroscopy (R∼75,000) of the Herbig Ae/Be star HD 250550. The L-band spectroscopy was obtained with the infrared echelle spectrograph (iSHELL) from The NASA Infrared Telescope Facility. We will describe the performance of the instrument and compare the CO and OH emission and upper limit on H2O emission to other Herbig Ae/Be stars. Specifically, L-band observationsof the ro-vibrational OH emission from the disk surrounding HD 250550 is compared to emission properties of the sources studied by Brittain et al. (2016). The OH 2Π3/2 P4.5 (1+,1-) doublet and the P5.5 (1+) line are spectrally resolved and have the same spectral profile as the CO ro-vibrational lines indicating that they arise from the same emitting region of the disk. The relative fluxes of the ro-vibrational lines from CO indicate that the rotational temperature of the gas is 1060 ± 115 K. The relative fluxes of the ro-vibrational lines from OH are consistent with this temperature.
Thermally emissive sensing materials for chemical spectroscopy analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Zsolt; Ohodnicki, Paul R.
A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to themore » material.« less
Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian
2015-01-01
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.
NASA Astrophysics Data System (ADS)
Sivabalan, Shanmugam; Vedeswari, C. Ponranjini; Jayachandran, Sadaksharam; Koteeswaran, Dornadula; Pravda, Chidambaranathan; Aruna, Prakasa Rao; Ganesan, Singaravelu
2010-01-01
Native fluorescence spectroscopy has shown potential to characterize and diagnose oral malignancy. We aim at extending the native fluorescence spectroscopy technique to characterize normal and oral submucous fibrosis (OSF) patients under pre- and post-treated conditions, and verify whether this method could also be considered in the monitoring of therapeutic prognosis noninvasively. In this study, 28 normal subjects and 28 clinically proven cases of OSF in the age group of 20 to 40 years are diagnosed using native fluorescence spectroscopy. The OSF patients are given dexamethasone sodium phosphate and hyaluronidase twice a week for 6 weeks, and the therapeutic response is monitored using fluorescence spectroscopy. The fluorescence emission spectra of normal and OSF cases of both pre- and post-treated conditions are recorded in the wavelength region of 350 to 600 nm at an excitation wavelength of 330 nm. The statistical significance is verified using discriminant analysis. The oxidation-reduction ratio of the tissue is also calculated using the fluorescence emission intensities of flavin adenine dinucleotide and nicotinamide adinine dinucleotide at 530 and 440 nm, respectively, and they are compared with conventional physical clinical examinations. This study suggests that native fluorescence spectroscopy could also be extended to OSF diagnosis and therapeutic prognosis.
Freestanding silicon quantum dots: origin of red and blue luminescence.
Gupta, Anoop; Wiggers, Hartmut
2011-02-04
In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.
NIR emission studies and dielectric properties of Er(3+)-doped multicomponent tellurite glasses.
Sajna, M S; Thomas, Sunil; Jayakrishnan, C; Joseph, Cyriac; Biju, P R; Unnikrishnan, N V
2016-05-15
Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~63 nm), stimulated emission cross-section (9.67 × 10(-21) cm(2)) and lifetime (2.56 ms) of (4)I13/2 level for 0.5 mol% of Er(3+) makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er(3+) ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er(3+) -doped glass was confirmed as the optimum composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Tian, Yunfei; Wu, Peng; Wu, Xi; Jiang, Xiaoming; Xu, Kailai; Hou, Xiandeng
2013-04-21
A simple and economical multi-channel optical sensor using corona discharge radical emission spectroscopy is developed and explored as an optical nose for discrimination analysis of volatile organic compounds, wines, and even isomers.
NASA Astrophysics Data System (ADS)
Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.
2013-07-01
The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.
Spectral properties of Dy3+ doped ZnAl2O4 phosphor
NASA Astrophysics Data System (ADS)
Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.
Hu, Dandan; Zhang, Yingying; Lin, Jian; Hou, Yike; Li, Dongsheng; Wu, Tao
2017-03-21
A new host-guest hybrid system with MnS clusters confined in a chalcogenide-based semiconductor zeolite was for the first time constructed and its photoluminescence (PL) properties were also investigated. The existence of MnS clusters in the nanopores of the semiconductor zeolite was revealed by UV-Vis absorption spectroscopy, steady-state fluorescence analysis, Raman as well as Fourier transform infrared (FTIR) spectroscopy. The aggregation state of the entrapped MnS clusters at different measurement temperatures was probed by electron paramagnetic resonance (EPR) spectroscopy. Of significant importance is the fact that the entrapped MnS clusters displayed dual emissions at 518 nm (2.39 eV) and 746 nm (1.66 eV), respectively, and the long-wavelength emission has never been observed in other MnS-confined host-guest systems. These two emission peaks displayed tunable PL intensity affected by the loading level and measurement temperature. This can be explained by the different morphologies of MnS clusters with different aggregation states at the corresponding loading level or measurement temperature. The current study opens a new avenue to construct inorganic chalcogenide cluster involved host-guest systems with a semiconductor zeolite as the host matrix.
NASA Astrophysics Data System (ADS)
Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik
2017-10-01
In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.
NASA Astrophysics Data System (ADS)
Cichos, J.; Karbowiak, M.
2012-05-01
For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd3+ to Eu3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF4) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.
Tomography of a simply magnetized toroidal plasma
NASA Astrophysics Data System (ADS)
Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI
2018-02-01
Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.
Thermal emission measurements with FINESSE in the era of JWST
NASA Astrophysics Data System (ADS)
Bean, Jacob; FINESSE Science Team
2018-01-01
FINESSE (Fast INfrared Exoplanet Spectroscopy Survey Explorer) is a candidate Medium-Class Explorer (MIDEX) mission dedicated to performing a statistical census of transiting exoplanet atmospheres. The objectives of FINESSE are to test theories of planetary origins and climate, enable comparative planetology, and open up discovery space on atmospheric chemistry, planetary evolution, and other topics. The baseline design for FINESSE is a 75 cm telescope observing from L2. The FINESSE instrument is a high throughput spectrometer with continuous coverage from 0.5 to 5.0 microns in a single shot. FINESSE will survey on order of 1000 exoplanets with a combination of transmission, dayside emission, and phase-resolved emission spectroscopy during a two year mission. FINESSE is currently being developed as part of a Phase A concept study. I will present an overview of FINESSE with a particular emphasis on the thermal emission measurements and their importance in the era of JWST.
NASA Astrophysics Data System (ADS)
Ying, Minju; Wang, XiaoXiao; Cheng, Wei; Liao, Bin; Zhang, Xu
2015-06-01
Optical emission spectra of the plasma produced by 1.06-μm Nd:YAG laser irradiation of a potassium titanyl phosphate (KTP) crystal were recorded and analyzed in a time- and spatially resolved manner. The composition and evolution of the plasma plume were studied in low vacuum conditions. Emission lines associated with Ti(I), Ti(II) and K(I) were identified in the plasma. The delay times of emission peaks for the ablated species were investigated as a function of the observation distance from the target surface, and the velocities of these species were derived accordingly. Two emission peaks corresponding to a fast and a slow component of ablated Ti(I) were observed by optical time-of-flight spectroscopy. The origins of the two peaks and a possible mechanism for the laser ablation are discussed.
Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, J. G.; Yu, S. -W.; Qiao, R.
The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.
Oxidant K edge x-ray emission spectroscopy of UF 4 and UO 2
Tobin, J. G.; Yu, S. -W.; Qiao, R.; ...
2018-01-31
The K-Edge (1s) x-ray emission spectroscopy of uranium tetrafluoride and uranium dioxide were compared to each other and to the results of a pair of earlier cluster calculations. Here, using a very simplified approach, it is possible to qualitatively reconstruct the main features of the x-ray emission spectra from the cluster calculation state energies and 2p percentages.
Yan, Ge; Kim, Guebuem
2017-10-17
Brown carbon (BrC) plays a significant role in the Earth's radiative balance, yet its sources and chemical composition remain poorly understood. In this work, we investigated BrC in the atmospheric environment of Seoul by characterizing dissolved organic matter in precipitation using excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The two independent fluorescent components identified by PARAFAC were attributed to humic-like substance (HULIS) and biologically derived material based on their significant correlations with measured HULIS isolated using solid-phase extraction and total hydrolyzable tyrosine. The year-long observation shows that HULIS contributes to 66 ± 13% of total fluorescence intensity of our samples on average. By using dual carbon ( 13 C and 14 C) isotopic analysis conducted on isolated HULIS, the HULIS fraction of BrC was found to be primarily derived from biomass burning and emission of terrestrial biogenic gases and particles (>70%), with minor contributions from fossil-fuel combustion. The knowledge derived from this study could contribute to the establishment of a characterizing system of BrC components identified by EEM spectroscopy. Our work demonstrates that, EEM fluorescence spectroscopy is a powerful tool in BrC study, on the basis of its chromophore resolving power, allowing investigation into individual components of BrC by other organic matter characterization techniques.
NASA Technical Reports Server (NTRS)
Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.
1998-01-01
Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.
AC Glow Discharge Plasma in N2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousif, F. B.; Martinez, H.; Robledo-Martinez, A.
2006-12-04
This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emissionmore » range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O{sub 2}{sup +} are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen.« less
NASA Technical Reports Server (NTRS)
Canizares, C. R.; Clark, G. W.; Markert, T. H.; Berg, C.; Smedira, M.; Bardas, D.; Schnopper, H.; Kalata, K.
1979-01-01
The paper deals with high-resolution X-ray spectroscopy performed to study the extended source surrounding the giant elliptical galaxy, M87, in the Virgo cluster. From observations carried out with a focal plane crystal spectrometer, L-alpha emission was detected from hydrogenic oxygen (O VIII). Upper limits could be set on lines from intermediate ionization states of iron. The presence of a quantity of cooler matter surrounding M87 was revealed, which has important implications for cluster models and favors a radiatively controlled accretion mechanism.
Steelmaking process control using remote ultraviolet atomic emission spectroscopy
NASA Astrophysics Data System (ADS)
Arnold, Samuel
Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.
Investigation of excited-state relaxation processes of organic dyes by time-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Przhonska, O.; Slominsky, Yu.; Kachkovsky, A.; Stahl, U.; Senoner, M.; Dähne, S.
1996-04-01
The results of the measurements of the fluorescence decay kinetics of the new series of polymethine dyes in liquid and solid polymeric media are reported. The effects of polymeric media on absorption-relaxation-emission processes are studied at wide excitation, emission and temperature regions.
NASA Astrophysics Data System (ADS)
Jamroz, P.; Zyrnicki, W.
2002-09-01
The dc and 100 kHz low pressure discharges in acetylene-nitrogen mixture have been studied here. Optical emission spectroscopy was used for identification of active plasma components and to determine plasma temperature. Relative concentrations of H, CH and CN were investigated versus experimental conditions by optical actinometry techniques. Emission intensities of N2 and N2^+ normalized to intensity of argon line were also monitored as a function of experimental parameters. The rotational temperatures from the N2^+ B^2Σ_u^+-X^2Σ_g^+ (0-0) and CN B^2Σ^+-X^2Σ^+ (0-0) bands and vibrational temperatures from the CN (B^2Σ^+-X^2Σ^+) and N2 (C^3Pi_u-B^3Pi_g) spectra were determined. Plasma processes and plasma equilibrium state were discussed.
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...
2017-11-02
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito
Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS
Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...
Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...
NASA Astrophysics Data System (ADS)
Hainschwang, Thomas; Karampelas, Stefanos; Fritsch, Emmanuel; Notari, Franck
2013-06-01
The methods of luminescence spectroscopy and microscopy are widely used for the analysis of gem materials. This paper gives an overview of the most important applications of the analysis of laser and UV excited luminescence by spectroscopy and visually by microscopy with emphasis on diamond, and specifically natural type Ib diamond, little studied so far. Luminescence based techniques are paramount to the gemmological analysis of diamond, in order to determine whether it is natural, treated or synthetic. The great sensitivity of luminescence helps detect some emitting centres that are undetectable by any other analytical method. Hence, especially for diamond, luminescence is an enabling technology, as illustrated by its pioneering use of imagery for the separation of natural and synthetic diamond, and of spectroscopy for the detection of High Pressure-High Temperature treatment. For all other gemstones the applications are at the moment less numerous, but nevertheless they remain highly important. They provide quickly information on the identification of a gem material, and its treatment. Besides the study of broad band emissions caused by various colour centres, the typical PL-causing trace elements (amongst others) are chromium, manganese, uranium and rare earth elements. In pearls the study of broad band luminescence can be useful, and particularly the study of pink to red porphyrin luminescence in pearls from certain species such as Pinctada and Pteria and others can help identify the pearl-producing mollusc, or if a pearl has been dyed or not. Type Ib diamonds are representative of the importance and complexity of the analysis of luminescence by microscopy and spectroscopy. They show a wide range of sometimes very complex emissions that result in luminescence colours from green to yellow to orange or red. These emissions show generally very inhomogeneous distribution. They are caused by a range of defects, however only a few of them are well characterized.
On the early history of field emission including attempts of tunneling spectroscopy
NASA Astrophysics Data System (ADS)
Kleint, C.
1993-04-01
Field emission is certainly one of the oldest surface science techniques, its roots reaching back about 250 years to the time of enlightenment. An account of very early studies and of later work is given but mostly restricted to Leipzig and to pre-Müllerian investigations. Studies of field emission from metal tips were carried out in the 18th century by Johann Heinrich Winkler who used vacuum pumps built by Jacob Leupold, a famous Leipzig mechanic. A short account of the career of Winkler will be given and his field emission experiments are illustrated. Field emission was investigated again in Leipzig much later by Julius Edgar Lilienfeld who worked on the improvement of X-ray tubes. He coined the terms ‘autoelektronische Entladung’ of ‘Äona-Effekt’ in 1922, and developed degassing procedures which are very similar to modern ultra-high vacuum processing. A pre-quantum mechanical explanation of the field emission phenomena was undertaken by Walter Schottky. Cunradi (1926) tried to measure temperature changes during field emission. Franz Rother, in a thesis (1914) suggested by Otto Wiener, dealt with the distance dependence of currents in vacuum between electrodes down to 20 nm. His habilitation in 1926 was an extension of his early work but now with field emission tips as a cathode. We might look at his measurements of the field emission characteristics in dependence on distance as a precursor to modern tunneling spectroscopy as well.
Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation
NASA Astrophysics Data System (ADS)
Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.
2007-04-01
Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.
Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R
1998-03-01
Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.
NASA Astrophysics Data System (ADS)
Appelbaum, Ian; Thompson, Pete; van Schendel, P. J. A.
2006-04-01
We describe the design and implementation of modifications to an ambient STM with a slip stick approach mechanism to create a system capable of ballistic electron emission microscopy (BEEM) and spectroscopy (BEES). These modifications require building a custom sample holder which operates as a high gain transimpedance preamplifier. Results of microscopy and spectroscopy using a Au/n-GaAs Schottky device demonstrate the effectiveness of our design.
NASA Astrophysics Data System (ADS)
Pereira, Wyllamanney da S.; Sczancoski, Júlio C.; Calderon, Yormary N. C.; Mastelaro, Valmor R.; Botelho, Gleice; Machado, Thales R.; Leite, Edson R.; Longo, Elson
2018-05-01
Materials presenting high photocatalytic performance and interesting photoluminescence emissions are promising candidates for photodegradation of organic pollutants discharged into natural waters as well as for development of new electro-optical devices, respectively. In this study, Ag3-2xCuxPO4 (x = 0.00, 0.01, 0.02, 0.04 and 0.08) powders were synthesized by the precipitation method. The long- and short-range structural ordering was affected when the copper (Cu) content was increased in the lattice, as identified by X-ray diffraction patterns, Fourier transform infrared spectroscopy and Raman spectroscopy, respectively. The field emission scanning electron microscope and transmission electron microscope revealed a particle system composed of irregular spherical-like microcrystals. The presence of Cu as well as its real amount in the samples were confirmed by means of X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry, respectively. On increasing Cu level, a slight variation was noted on the photocatalytic activity of Ag3-2xCuxPO4 powders for degradation of rhodamine B under visible light irradiation. A photodegradation mechanism was proposed in details. The photoluminescence emissions were explained by electronic transitions involving intermediary energy levels in the band gap. The origin these energy levels was related to defects caused by the substitution of Ag by Cu in the crystalline structure.
NASA Astrophysics Data System (ADS)
Mokoena, P. P.; Nagpure, I. M.; Kumar, Vinay; Kroon, R. E.; Olivier, E. J.; Neethling, J. H.; Swart, H. C.; Ntwaeaborwa, O. M.
2014-08-01
Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/2→8S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.
Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per
2012-04-01
Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.Y.; Turner, B.R.; Schowalter, L.J.
1993-07-01
Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottkymore » barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.« less
Infrared Spectroscopy of Pa-beta and [Fe II] Emission in NGC 4151
NASA Technical Reports Server (NTRS)
Knop, R. A.; Armus, L.; Larkin, J. E.; Matthews, K.; Shupe, D. L.; Soifer, B. T.
1996-01-01
We present spatially resolved 1.24-1.30 micron spectroscopy with a resolution of 240 km/s of the Seyfert 1.5 galaxy NGC 4151. Broad Pa-beta, narrow Pa-beta, and narrow [Fe II] (lambda = 1.2567 micron) emission lines are identified in the spectrum. Additionally, a spatially unresolved narrow component probably due to [S ix] (lambda = 1.25235 micron) is observed on the nucleus. The narrow Pa-beta and [Fe II] lines are observed to be extended over a scale of 5 sec. The spatial variation of the velocity centers of the Pa-beta and [Fe II] lines show remarkable similarity, and additionally show similarities to the velocity structure previously observed in ground based spectroscopy of [O III] emission in NGC 4151. This leads to the conclusion that the [Fe II] emission arises in clouds in the Seyfert narrow line region that are physically correlated with those narrow line clouds responsible for the optical emission. The [Fe II] emission line, however, is significantly wider than the Pa-beta emission line along the full spatial extent of the observed emission. This result suggests that despite the correlation between the bulk kinematics of Pa-beta and [Fe II], there is an additional process, perhaps fast shocks from a wind in the Seyfert nucleus, contributing to the [Fe II] emission.
The goals of gamma-ray spectroscopy in high energy astrophysics
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.
1990-01-01
The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.
NASA Astrophysics Data System (ADS)
Hlásek, T.; Rubešová, K.; Jakeš, V.; Nekvindová, P.; Kučera, M.; Daniš, S.; Veis, M.; Havránek, V.
2015-11-01
Erbium (Er3+) doped ytterbium garnet (Er:Yb3Al5-yGayO12; y = 0, 0.55 and 1.1) single crystalline thick films have been grown by the low-temperature liquid phase epitaxy method (LPE). The composition of the films was determined using the high resolution XRD, the particle-induced X-ray emission spectroscopy (PIXE) and the particle-induced gamma-ray emission spectroscopy (PIGE). The lattice mismatch between films and substrates was investigated by the high-resolution X-ray diffraction. The surface analysis was carried out by the atomic force microscopy (AFM). Pure infrared emission of Er3+ ions was observed in all films containing gallium. The characteristics such as refractive index, thickness and light propagation were studied by the m-line spectroscopy (MLS) using several wavelengths (633, 964, 1311 and 1552 nm). All samples, where y = 1.1, were multimode waveguides. For these reasons, the Er:Yb3Al3.9Ga1.1O12 seems to be a promising material for light amplifiers in the IR region.
NASA Astrophysics Data System (ADS)
Samari, Fayezeh; Yousefinejad, Saeed
2017-11-01
Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.
Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.
DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M
2014-05-16
Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.
Terahertz emission and spectroscopy on InN epilayer and nanostructure
NASA Astrophysics Data System (ADS)
Ahn, H.; Pan, C.-L.; Gwo, S.
2009-02-01
We report a comprehensive study on THz emission and spectroscopy of indium nitride (InN) films and its nanorod arrays grown by plasma-assisted molecular beam epitaxy technique. For the enhancement of THz emission from InN, we demonstrated two method; firstly using nanorod arrays, which have large surface area for optical absorption and THz emission, and secondly using nonpolar InN film, of which the electric field is along the sample surface. We propose that a "screened" photo-Dember effect due to narrow surface electron accumulation layer of InN is responsible for the nanorod-size-dependent enhancement from InN nanorods. The primary THz radiation mechanism of nonpolar InN is found to be due to the acceleration of photoexcited carriers under the polarization-induced in-plane electric field. THz time-domain spectroscopy has been used to investigate THz conductivity and dielectric response of InN nanorod arrays and epitaxial film. The complex THz conductivity of InN film is well fitted by the Drude model, while the negative imaginary conductivity of the InN nanorods can be described by using a non-Drude model, which includes a preferential backward scattering due to defects in InN nanorods, or a Coulombic restoring force from charged defects.
Datta, Barun Kumar; Thiyagarajan, Durairaj; Ramesh, Aiyagari; Das, Gopal
2015-08-07
A dialdehyde-based multi-analyte sensor renders distinctive emission spectra for Al(3+), Zn(2+) and F(-) ions. The ligand exhibited different types of interactions with these three different ions resulting in the enhancement of fluorescence intensity at three different wavelengths. All the sensing processes were studied in detail by absorption spectroscopy, emission spectroscopy and (1)H-NMR titration experiment. The ligand has the working ability in a wide pH range including the physiological pH. The ligand is non-toxic and amicable for sensing intracellular Al(3+) and Zn(2+) in live HeLa cells.
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Averill, Robert D.
1992-01-01
The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.
Liu, Jingyue
2005-06-01
Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.
Chen, Aixi
2014-11-03
In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.
Khosroshahi, Mohamad E; Rahmani, Mahya
2012-01-01
The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.
Airborne measurements of ethene from industrial sources using laser photo-acoustic spectroscopy.
De Gouw, J A; te Lintel Hekkert, S; Mellqvist, J; Warneke, C; Atlas, E L; Fehsenfeld, F C; Fried, A; Frost, G J; Harren, F J M; Holloway, J S; Lefer, B; Lueb, R; Meagher, J F; Parrish, D D; Patel, M; Pope, L; Richter, D; Rivera, C; Ryerson, T B; Samuelsson, J; Walega, J; Washenfelder, R A; Weibring, P; Zhu, X
2009-04-01
A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlig, J.; Doriese, W. B.; Fowler, J. W.
2015-04-21
X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edgemore » sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.« less
Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah
2014-05-14
A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Schwab, A.; Weiss, A.
1990-08-01
We report the experimental observation of the temperature dependence of the intensity of low-energy positron-annihilation-induced Auger-electron emission spectroscopy (PAES) from Cu(100). These studies show that the mechanism for stimulating Auger electrons is found to compete with positronium (Ps) emission from a surface. The positrons that induce Auger-electron emission therefore originate from the same surface state from which Ps is thermally desorbed. Hence, PAES should have higher surface sensitivity ({approximately}1 A) relative to conventional methods for generating Auger-electron emission from surfaces ({approximately}5--10 A).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Avshish; Parveen, Shama; Husain, Samina
2014-02-28
Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current densitymore » of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.« less
Correlation of CVD Diamond Electron Emission with Film Properties
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.
1996-03-01
Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.
Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species
March, Anne Marie; Assefa, Tadesse A.; Bressler, Christian; ...
2015-02-09
X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. Here In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES formore » time-resolved experiments. Lastly, we discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.« less
March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...
2017-01-17
Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina
Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less
NASA Astrophysics Data System (ADS)
Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit
2018-03-01
The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.
Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.
Weidman, Matthew; Baudelet, Matthieu; Palanco, Santiago; Sigman, Michael; Dagdigian, Paul J; Richardson, Martin
2010-01-04
Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.
ERIC Educational Resources Information Center
Bowden, John A.; Nocito, Brian A.; Lowers, Russell H.; Guillette, Louis J., Jr.; Williams, Kathryn R.; Young, Vaneica Y.
2012-01-01
This experiment enlightens students on the use of environmental indicators and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and demonstrates the ability of these monitoring tools to measure metal deposition in environmental samples (both as a result of lab-simulated and real events). In this two-part study, the initial…
Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W
2006-05-29
A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.
β -delayed neutron emission from 85Ga
NASA Astrophysics Data System (ADS)
Miernik, K.; Rykaczewski, K. P.; Grzywacz, R.; Gross, C. J.; Madurga, M.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Korgul, A.; Mazzocchi, C.; Mendez, A. J.; Liu, Y.; Paulauskas, S. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.
2018-05-01
Decay of 85Ga was studied by means of β -neutron-γ spectroscopy. A pure beam of 85Ga was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and a high-resolution electromagnetic separator. The β -delayed neutron emission probability was measured for the first time, yielding 70(5)%. An upper limit of 0.1% for β -delayed two-neutron emission was also experimentally established for the first time. A detailed decay scheme including absolute γ -ray intensities was obtained. Results are compared with theoretical β -delayed emission models.
2012-01-01
Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions. PMID:22214494
Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition
NASA Astrophysics Data System (ADS)
Bollmann, Joachim; Venter, Andre
2018-04-01
A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.
Iparraguirre, I; Azkargorta, J; Balda, R; Venkata Krishnaiah, K; Jayasankar, C K; Al-Saleh, M; Fernández, J
2011-09-26
The influence of the host matrix on the spectroscopic and laser properties of Nd(3+) in a K-Ba-Al phosphate glass has been investigated as a function of rare-earth concentration. Site-selective time resolved laser spectroscopy and stimulated emission experiments under selective wavelength laser pumping show the existence of a very complex crystal field site distribution of Nd(3+) ions in this glass. The peak of the broad stimulated (4)F(3/2)→(4)I(11/2) emission shifts in a non monotonous way up to 3 nm as a function of the excitation wavelength. This behavior can be explained by the relatively moderate inter-site energy transfer among Nd(3+) ions found in this system and measured by using fluorescence line narrowing spectroscopy. The best slope efficiency obtained for the laser emission was 40%. © 2011 Optical Society of America
Follow-up FOCAS Spectroscopy for [O iii] Blobs at z 0.7
NASA Astrophysics Data System (ADS)
Yuma, Suraphong
2014-01-01
We propose FOCAS spectroscopy for our eight newly selected [O_iii] blobs at z~0.7, showing remarkably extended [O_iii] emission larger than 30 kpc down to 1.2x10^{-18} erg^{-1}cm^{-2} arcsec^{-2} in continuum-subtracted narrowband images. This extended oxygen nebulae beyond stellar component is thought to be hot metal-right gas outflowing from galaxies. However, without spectroscopy to verify gas motion of the system, we cannot certainly conclude that the extended feature of [O_iii] emission is caused by gas outflow. With FOCAS, we expect to observe Fe_ii, Mg_ii absorption lines and [O_ii}], Hbeta, and [O_iii] emission lines, which all fall into optical window at this redshift. We will 1) confirm the outflow of these blobs through Fe_ii and/or Mg_ii absorption lines, 2) constrain energy source of the outflow (AGN or stellar feedback) through line-ratio diagnostic diagram, and 3) for the first time investigate if the extended oxygen emission is just due to the photo-ionized outflowing gas or involving shock heating process through [O_ii]/[O_iii] ratios in extended regions. The last goal can only be accomplished with FOCAS optical spectroscopy, which can observe both [O_ii] and [O_iii] emission lines simultaneously.
Confocal shift interferometry of coherent emission from trapped dipolar excitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repp, J.; Nanosystems Initiative Munich; Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München
2014-12-15
We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.
Laser induced breakdown spectroscopy on meteorites
NASA Astrophysics Data System (ADS)
de Giacomo, A.; Dell'Aglio, M.; de Pascale, O.; Longo, S.; Capitelli, M.
2007-12-01
The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite).
Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere
NASA Astrophysics Data System (ADS)
Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.
2005-10-01
Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.
Optical Emission Spectroscopy in an Unmagnetized Plasma
NASA Astrophysics Data System (ADS)
Milhone, Jason; Cooper, Christopher; Desangles, Victor; Nornberg, Mark; Seidlitz, Blair; Forest, Cary; WiPAL Team
2015-11-01
An optical emission spectroscopic analysis has been developed to measure electron temperature, neutral burnout, and Zeff in Ar and He plasmas in the Wisconsin plasma astrophysics laboratory (WiPAL). The WiPAL vacuum chamber is a 3 meter diameter spherical vessel lined with 3000 SmCo permanent magnets (B > 3 kG) that create an axisymmetric multi-cusp ring for confining the plasma. WiPAL is designed to study unmagnetized plasmas that are hot (Te > 10 eV), dense (ne >1018), and with high ionization fraction. Electron temperature and density can be measured via Langmuir probes. However, probes can disturb the plasma, be difficult to interpret, and become damaged by large heat loads from the plasma. A low cost non-invasive spectroscopy system capable of scanning the plasma via a linear stage has been installed to study plasma properties. From the neutral particle emission, the neutral burnout and estimated neutral temperature can be inferred. A modified coronal model with metastable states is being implemented to determine Te for Ar plasmas.
[Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].
He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi
2016-03-01
It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.
CdZnO coated film: A material for photovoltaic applications
NASA Astrophysics Data System (ADS)
Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.
2018-06-01
The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.
Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan
2015-12-08
Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odedra, R.; Smith, L.M.; Rushworth, S.A.
2000-01-01
Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples andmore » with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.« less
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.
2018-06-01
Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.
Structural studies of a green-emitting terbium doped calcium zinc phosphate phosphor
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Rambabu, B.; Joo, S. W.; Raju, B. Deva Prasad
2018-03-01
In this study, a new green emitting CaZn2(PO4)2:Tb3+ phosphors were synthesized through solid-state reaction route. The phosphors were characterized structurally by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). All the synthesized phosphors were crystallized in triclinic crystal structure with P 1 bar space group. The phosphate groups in the phosphors were confirmed by FTIR analysis. The surface elements O 1s, P 2p, Ca 2p, Zn 2p and Tb 3d were studied by high-resolution XPS spectra. Upon excitation at 378 nm, the dominant green emission of CaZn2(PO4)2:Tb3+ phosphors at 542 nm were noticed in the emission spectra. For various emission wavelengths (at 435 and 489 nm) and constant excitation wavelength (at 378 nm), the decay curves have shown two different decay dynamics of phosphors. The lighting properties such as Commission International de l'Eclairage (x = 0.319, y = 0.398) and color temperature (5995 K) were calculated.
NASA Technical Reports Server (NTRS)
Bregman, Jesse; Sloan, G. C.
1996-01-01
The emission from polycyclic aromatic hydrocarbons (PAH's) in the Orion Bar region is investigated using a combination of narrow-band imaging and long-slit spectroscopy. The goal was to study how the strength of the PAH bands vary with spatial position in this edge-on photo-dissociation region. The specific focus here is how these variations constrain the carrier of the 3.4 micron band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.
2014-11-15
The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.
Late-time particle emission from laser-produced graphite plasma
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Hassanein, A.; Polek, M.
2011-09-01
We report a late-time "fireworks-like" particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.
NASA Astrophysics Data System (ADS)
Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl
2016-07-01
Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.
Synthesis and characterization of germa[n]pericyclynes.
Tanimoto, Hiroki; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Iseda, Fumiyasu; Nagato, Yuko; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi
2014-06-14
The synthesis and characterization of novel pericyclynes comprising germanium atoms and acetylenes, germa[n]pericyclynes, are described. The prepared germa[4]-, [6]-, and [8]pericyclynes were compared by (13)C NMR spectroscopy, X-ray crystallography, cyclic voltammetry, UV-visible spectroscopy, fluorescence emission spectroscopy, Raman spectroscopy, and density functional theory calculation analyses.
Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices
NASA Astrophysics Data System (ADS)
Thakur, Shashi; Gathania, Arvind K.
2015-10-01
YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.
Study of Mn laser ablation in methane atmosphere
NASA Astrophysics Data System (ADS)
Krstulović, N.; Labazan, I.; Milošević, S.
2006-02-01
Laser ablation of Mn target in vacuum and in the presence of CH4 was studied under 308 nm laser irradiation. Time-resolved emission using gated detection and scanning monochromator and absorption using the cavity ring-down spectroscopy were used to study vaporized plume. In the CH4 atmosphere we observed transitions identified as C2 and MnH bands, while these spectral features were not detected in emission spectra. This is a clear evidence of importance in combining both spectroscopic techniques in laser vaporized plume study.
Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces
NASA Technical Reports Server (NTRS)
Sollit, Luke S.; Beegle, Luther W.
2008-01-01
Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.
NASA Astrophysics Data System (ADS)
Sulfikkarali, N. K.; Krishnakumar, N.
2013-04-01
The aim of the present study is to investigate the chemopreventive effects of prepared naringenin-loaded nanoparticles (NARNPs) relative to the efficacy of free naringenin (NAR) in modifying the carcinogenic process and to study the changes in the endogenous fluorophores during DMBA-induced hamster buccal pouch (HBP) carcinogenesis by laser-induced autofluorescence (LIAF) spectroscopy. LIAF emission spectra from the hamster buccal mucosa of the control and experimental groups of animals were recorded in the 350-700 nm spectral range on a miniature fiber optic spectrometer from different anatomical sites of each group, with excitation at 404 nm from a diode laser. Oral squamous cell carcinoma (OSCC) was developed in the buccal pouch of golden Syrian hamsters by painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks. DMBA-painted animals revealed morphological changes, hyperplasia, dysplasia and well-differentiated squamous cell carcinoma. LIAF emission spectra showed significant difference between the control and tumor tissues. The tumor tissues are characterized by an increase in the emission of porphyrins and a decrease in the emission of nicotinamide adenine dinucleotide hydrogenase (NADH) and flavin adenine nucleotide (FAD) when compared to the control tissues. Furthermore, oral administration of NAR and its nanoparticulates restored the status of endogenous fluorophores in the buccal mucosa of DMBA-painted animals. On a comparative basis, the treatment of nanoparticulate naringenin was found to be more effective than free naringenin in completely preventing the formation of squamous cell carcinoma and in improving the status of endogenous porphyrins to a normal range in DMBA-induced hamster buccal pouch carcinogenesis. The result of the present study further suggests that LIAF spectroscopy may be a very valuable tool for rapid and sensitive detection of endogenous fluorophore changes in response to chemopreventive agents.
SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oraiqat, I; Rehemtulla, A; Lam, K
2016-06-15
Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 dropsmore » from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.« less
Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong
2017-02-08
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N
2007-08-16
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.
Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization
NASA Astrophysics Data System (ADS)
Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.
To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.
Remote sensing of nitric oxide emissions from planes, trains and automobiles
NASA Astrophysics Data System (ADS)
Popp, Peter John
Remote sensing has been proven as an effective method for measuring in-use mobile source emissions. This document describes the development of a remote sensor for mobile source nitric oxide, based on an instrument previously developed at the University of Denver for measuring carbon monoxide and hydrocarbon emissions. The new remote sensor makes use of a high-speed ultraviolet spectrometer to quantify nitric oxide by absorption spectroscopy at 226 nm in the ultraviolet region. The high-speed spectrometer is coupled to an existing FEAT remote sensor, for the simultaneous measurement of CO, CO2 and hydrocarbons by non-dispersive infrared absorption spectroscopy. The utility of the instrument was demonstrated in the measurement of nitric oxide emissions from automobiles, commercial aircraft, and railroad locomotives. The remote sensor was used to measure nitric oxide emissions from motor vehicles in Chicago in 1997 and 1998, as part of a five-year study to characterize motor vehicle emissions and deterioration in that city. Emissions data were collected for over 19,000 vehicles in 1997 and almost 23,000 vehicles in 1998. All of these records contained valid measurements for carbon monoxide and hydrocarbons, in addition to nitric oxide. In September of 1997, a study was conducted with the cooperation of British Airways and the British Airports Authority to demonstrate the capability of the remote sensor in measuring nitric oxide emissions from in-use commercial aircraft. In two days of sampling at London Heathrow Airport, a total of 122 measurements were made of 90 different aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s. The measured nitric oxide emission indices were not inconsistent with commercial aircraft emission indices published by the International Civil Aviation Organization. The utility of the remote sensor in measuring nitric oxide emissions from railroad locomotives was demonstrated in January of 1999, in a study conducted with the cooperation of the Burlington Northern Santa Fe Railway. Nitric oxide emissions measured from freight locomotives in a controlled test at a switchyard agreed with previously published values. Measurements of in-use locomotives hauling coal trains revealed higher NO emissions than those measured from similar locomotives in the controlled test.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J.; Freiberg, Arvi; Köhler, Jürgen
2014-01-01
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. PMID:24806933
Sexithiophenes as efficient luminescence quenchers of quantum dots
Mason, Christopher R; Li, Yang; O’Brien, Paul; Findlay, Neil J
2011-01-01
Summary Sexithiophenes 1a and 1b, in which a 4-(dimethylamino)phenyl unit is incorporated as an end-capping group, were synthesised and characterised by cyclic voltammetry, absorption spectroscopy and UV–vis spectroelectrochemistry. Additionally, their ability to function as effective luminescence quenchers for quantum dot emission was studied by photoluminescence spectroscopy and compared with the performance of alkyl end-capped sexithiophenes 2a and 2b. PMID:22238551
Positron annihilation induced Auger electron spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, A.
1991-02-01
A review is given on the results of PAES (positron annihilation induced Auger Electron Spectroscopy) studies to data, with a concentration on those results obtained at the University of Texas at Arlington. Low energy positions, trapped in a surface localized state annihilate with core electrons resulting in the emission of Auger electrons. The advantages of PEAS include: (i) the elimination of the very large secondary electron background, and (ii) increased surface selectivity. (AIP)
NASA Astrophysics Data System (ADS)
Festou, M. C.; Feldman, P. D.
Observations of comets obtained with the IUE satellite since its launch in 1978 are reviewed. The status of UV observation of comets prior to IUE is discussed, and particular attention is given to low-resolution UV spectroscopy of cometary comae, the detection of new species in the UV emission, high-dispersion spectroscopy, spatial mapping of the emissions, abundance determinations, and short-term variability. Diagrams, graphs, sample spectra, and tables of numerical data are provided.
Partially autoionizing states of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Petrosky, V. E.
1974-01-01
Certain Rydberg states and an intershell transition of atomic oxygen were shown to partially autoionize, and to produce emission spectra competitive with autoionization. These states are forbidden to autoionize on the basis of LS coupling; but they were observed both in emission spectroscopy and in photoelectron spectroscopy. The results explain an unidentified structure in the 584 Angstrom He I atomic O spectrum observed by previous investigators.
Extended germa[N]pericyclynes: synthesis and characterization.
Tanimoto, Hiroki; Fujiwara, Taro; Mori, Junta; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Ito, Shunichiro; Tanaka, Kazuo; Chujo, Yoshiki; Kakiuchi, Kiyomi
2017-02-14
We herein describe the syntheses and characterization of extended germa[N]pericyclynes, which are macrocycles composed of germanium-butadiyne units. The obtained novel extended germa[4]-[8]pericyclynes were characterized by X-ray crystallography, UV-Vis spectroscopy, fluorescence and phosphorescence emission spectroscopy, and cyclic voltammetry, and exhibited characteristic absorptions and emissions. Density functional theory (DFT) calculations suggested smaller HOMO-LUMO gap energy compared to that of general germapericyclynes.
Barbisan, M; Zaniol, B; Pasqualotto, R
2014-11-01
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.
Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
NASA Astrophysics Data System (ADS)
Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo
2016-03-01
We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.
Studies in shocked nitromethane through High dynamic range spectroscopy
NASA Astrophysics Data System (ADS)
Bhowmick, Mithun; Nissen, Erin; Matveev, Sergey; Dlott, Dana
2017-06-01
In this talk we describe a tabletop apparatus that can reproducibly drive shocks through tiny cells containing liquid arranged in an array for high-throughput shock compression studies. This talk will focus on nitromethane, a liquid reactive to shocks and capable of detonation. In our studies, a laser-driven ?yer plate was used to shock nitromethane, and a spectrometer with high dynamic range was employed to measure emission spectra from nanosecond to millisecond time scales. Typically, 50 single-shock experiments were performed per day with precisely controllable shock speeds below, above, or equal to the detonation shock speed. The emission spectra provide temperature histories using the grey body approximation. The ability to conveniently shock nitromethane on a benchtop was used with isotopically substituted and amine-sensitized nitromethane and in future will be combined with other spectroscopies such as infrared absorption. Multidisciplinary University Research Initiative (MURI), Office of Naval Research.
Structural and optical investigation in Er3+ doped Y2MoO6 phosphors
NASA Astrophysics Data System (ADS)
Mondal, Manisha; Rai, Vineet Kumar
2018-05-01
The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.
JPL in-house fluidized-bed reactor research
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1984-01-01
Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.
Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy
NASA Astrophysics Data System (ADS)
Hellesen, C.; Gatu Johnson, M.; Andersson Sundén, E.; Conroy, S.; Ericsson, G.; Eriksson, J.; Sjöstrand, H.; Weiszflog, M.; Johnson, T.; Gorini, G.; Nocente, M.; Tardocchi, M.; Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; EFDA Contributors, JET
2013-11-01
The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.
The Study of Carious Teeth by Laser-Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Hamzaoui, S.; Nouir, R.; Jaidene, N.
2017-03-01
The aim of this work is a multi-component analysis of the element composition of the enamel and carious parts of teeth and the quantification of enamel demineralization using laser-induced breakdown spectroscopy (LIBS). For each tooth the P/Ca ratios of the emission line intensities in the enamel part and those in the carious regions were compared. Since zinc is a trace element, the same procedure was performed for Zn/Ca ratios in the enamel and carious parts. These comparisons showed that the mineral loss from carious lesions occurs at different rates for the studied elements. Calcium has the highest casualty rate. On the other hand, the zinc level diminishes also in the carious region but at a lower rate. The lines were obtained from plume plasma emission generated on the enamel and carious regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co
Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less
Diagnostics of the ITER neutral beam test facility.
Pasqualotto, R; Serianni, G; Sonato, P; Agostini, M; Brombin, M; Croci, G; Dalla Palma, M; De Muri, M; Gazza, E; Gorini, G; Pomaro, N; Rizzolo, A; Spolaore, M; Zaniol, B
2012-02-01
The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.
2012-10-15
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Emission Spectroscopy of the 4X Source Discharge With and Without N 2 Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Horace Vernon
2016-01-14
This tech note summarizes the December, 1988 emission spectroscopy measurements made on the 4X source discharge with and without N₂ gas added to the H + Cs discharge. This study is motivated by the desire to understand why small amounts of N₂ gas added to the source discharge results in a reduction in the H⁻ beam noise. The beneficial effect of N₂ gas on H⁻ beam noise was first discovered by Bill Ingalls and Stu Orbesen on the ATS SAS source. For the 4X source the observed effect is that when N2 gas is added to the discharge the H⁻more » beam noise is reduced about a factor of 2.« less
Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies
NASA Technical Reports Server (NTRS)
Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.
1972-01-01
Surface research tools such as LEED, Auger emission spectroscopy analysis, and field ion microscopy are discussed. Examples of their use in studying adhesion, friction, wear, and lubrication presented. These tools have provided considerable insight into the basic nature of solid surface interactions. The transfer of metals from one surface to another at the atomic level has been observed and studied with each of these devices. The field ion microscope has been used to study polymer-metal interactions and Auger analysis to study the mechanism of polymer adhesion to metals. LEED and Auger analysis have identified surface segregation of alloying elements and indicated the influence of these elements in metallic adhesion. LEED and Auger analysis have assisted in adsorption studies in determining the structural arrangement and quantity of adsorbed species present in making an understanding of the influence of these species on adhesion possible. These devices are assisting in the furtherance of understanding of the fundamental mechanism involved in the adhesion, friction, wear, and lubrication processes.
Origin of Broad Visible Emission from Branched Polysilane and Polygermane Chains
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Sato, Takaaki; Matsuda, Minoru
2001-11-01
The emission properties of branched polysilane and polygermane are studied using time-resolved emission spectroscopy. As branched polymers, the organosilicon cluster (OSI) and organogermanium cluster (OGE) are investigated, which are prepared from tetrachlorosilane and tetrachlorogermane, respectively, and have a hyperbranched structure. The broad visible emissions of OSI and OGE are explained by the energy diagram based on a configuration coordinate model, and the excited states are attributed to a localized state around the branching point. The molecular orbital (MO) calculation suggested the formation of a localized state by the distortion around the branching point in the excited state. The potential barrier for the nonradiative relaxation process was determined from the temperature dependence of the emission lifetime.
Braga, Sheila Regina Maia; De Faria, Dalva Lúcia Araújo; De Oliveira, Elisabeth; Sobral, Maria Angela Pita
2011-12-01
This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P < 0.05). Morphology of enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman. Copyright © 2011 Wiley Periodicals, Inc.
Stangl, Thomas; Bange, Sebastian; Schmitz, Daniela; Würsch, Dominik; Höger, Sigurd; Vogelsang, Jan; Lupton, John M
2013-01-09
A set of π-conjugated oligomer dimers templated in molecular scaffolds is presented as a model system for studying the interactions between chromophores in conjugated polymers (CPs). Single-molecule spectroscopy was used to reveal energy transfer dynamics between two oligomers in either a parallel or oblique-angle geometry. In particular, the conformation of single molecules embedded in a host matrix was investigated via polarized excitation and emission fluorescence microscopy in combination with fluorescence correlation spectroscopy. While the intramolecular interchromophore conformation was found to have no impact on the fluorescence quantum yield, lifetime, or photon statistics (antibunching), the long-term nonequilibrium dynamics of energy transfer within these bichromophoric systems was accessible by studying the linear dichroism in emission at the single-molecule level, which revealed reversible switching of the emission between the two oligomers. In bulk polymer films, interchromophore coupling promotes the migration of excitation energy to quenching sites. Realizing the presence and dynamics of such interactions is crucial for understanding limitations on the quantum efficiency of larger CP materials.
Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C
2017-04-01
Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.
Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2
2016-01-12
15. SUBJECT TERMS Materials Characterization, Materials Chemistry, Nonlinear Optical Materials, Spectroscopy 16. SECURITY CLASSIFICATION...nanostructures will translate into new ground-breaking developments that not only allow the structure-property relationships to be probed in greater detail... spectroscopy . I. Experimental method 1. Steady-state Spectroscopy - UV-Vis-NIR Absorption & Emission Steady-state Spectroscopy - NIR
NASA Astrophysics Data System (ADS)
Schmidt, K. B.; Treu, T.; Bradač, M.; Vulcani, B.; Huang, K.-H.; Hoag, A.; Maseda, M.; Guaita, L.; Pentericci, L.; Brammer, G. B.; Dijkstra, M.; Dressler, A.; Fontana, A.; Henry, A. L.; Jones, T. A.; Mason, C.; Trenti, M.; Wang, X.
2016-02-01
We present a census of Lyα emission at z≳ 7, utilizing deep near-infrared Hubble Space Telescope grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected galaxies we detect emission lines consistent with Lyα in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations, we expect the completeness and the purity of the sample to be 40%-100% and 60%-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1σ flux limits reach 5 × 10-18 erg s-1 cm-2 per position angle over the full wavelength range of GLASS (0.8-1.7 μm). Based on the conditional probability of Lyα emission measured from the ground at z˜ 7, we would have expected 12-18 Lyα emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Lyα emission with respect to z˜ 6. Deeper follow-up spectroscopy, here exemplified by Keck spectroscopy, is necessary to improve our estimates of completeness and purity and to confirm individual candidates as true Lyα emitters. These candidates include a promising source at z = 8.1. The spatial extent of Lyα in a deep stack of the most convincing Lyα emitters with < z> = 7.2 is consistent with that of the rest-frame UV continuum. Extended Lyα emission, if present, has a surface brightness below our detection limit, consistent with the properties of lower-redshift comparison samples. From the stack we estimate upper limits on rest-frame UV emission line ratios and find {f}{{C}{{IV}}}/{f}{Lyα }≲ 0.32 and {f}{{C}{{III}}]}/{f}{Lyα }≲ 0.23, in good agreement with other values published in the literature.
Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...
2016-08-08
Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro
2016-08-01
Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.
Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range
NASA Astrophysics Data System (ADS)
Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina
2018-02-01
High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.
Thermal removal from near-infrared imaging spectroscopy data of the Moon
Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.
2011-01-01
In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.
Thermal removal from near-infrared imaging spectroscopy data of the Moon
Clark, Roger N.; Pieters, Carle M.; Green, Robert O.; Boardman, J.W.; Petro, Noah E.
2011-01-01
In the near-infrared from about 2 μm to beyond 3 μm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 μm pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon.
Laser techniques for spectroscopy of core-excited atomic levels
NASA Technical Reports Server (NTRS)
Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.
1982-01-01
We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.
Stimulated x-ray emission spectroscopy in transition metal complexes
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; ...
2018-03-27
We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less
Stimulated x-ray emission spectroscopy in transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto
We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less
Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes
NASA Astrophysics Data System (ADS)
Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe
2018-03-01
We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.
Measurement of In-Flight Aircraft Emissions
NASA Technical Reports Server (NTRS)
Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.
1995-01-01
Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.
Sahu, M; Gupta, Santosh K; Jain, D; Saxena, M K; Kadam, R M
2018-04-15
An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr 2 CeO 4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr 2 CeO 4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, impedance spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr 2 CeO 4 which has tendency to decompose peritectically to SrCeO 3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr 2 CeO 4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO 6 6- (octahedral uranate) in Sr 2 CeO 4 . Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr 2 CeO 4 and it has two different environments due to its stabilization at both Sr 2+ as well as Ce 4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce 4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr 2 CeO 4 based optoelectronic material as well exploring it for actinides studies. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahu, M.; Gupta, Santosh K.; Jain, D.; Saxena, M. K.; Kadam, R. M.
2018-04-01
An effort was taken to carry our speciation study of uranium ion in technologically important cerate host Sr2CeO4 using time resolved photoluminescence spectroscopy. Such studies are not relevant only to nuclear industry but can give rich insight into fundamentals of 5f electron chemistry in solid state systems. In this work both undoped and varied amount of uranium doped Sr2CeO4 compound is synthesized using complex polymerization method and is characterized systematically using X-ray diffraction (XRD), Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy (SEM). Both XRD and Raman spectroscopy confirmed the formation of pure Sr2CeO4 which has tendency to decompose peritectically to SrCeO3 and SrO at higher temperature. Uranium doping is confirmed by XRD. Uranium exhibits a rich chemistry owing to its variable oxidation state from +3 to +6. Each of them exhibits distinct luminescence properties either due to f-f transitions or ligand to metal charge transfer (LMCT). We have taken Sr2CeO4 as a model host lattice to understand the photophysical characteristics of uranium ion in it. Emission spectroscopy revealed the stabilization of uranium as U (VI) in the form of UO66- (octahedral uranate) in Sr2CeO4. Emission kinetics study reflects that uranate ions are not homogeneously distributed in Sr2CeO4 and it has two different environments due to its stabilization at both Sr2+ as well as Ce4+ site. The lifetime population analysis interestingly pinpointed that majority of uranate ion resided at Ce4+ site. The critical energy-transfer distance between the uranate ion was determined based on which the concentration quenching mechanism was attributed to electric multipolar interaction. These studies are very important in designing Sr2CeO4 based optoelectronic material as well exploring it for actinides studies.
Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K
2018-06-07
X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.
Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.
Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G
2018-08-01
In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J; Struzhkin, V V; Garriliuk, A
2006-05-23
Electronic spin-pairing transition of iron in magnesiow{umlt u}stite-(Mg,Fe)O has been recently studied with X-ray emission and M{umlt o}ssbauer spectroscopies under high pressures. While these studies reported a high-spin to low-spin transition of iron to occur at pressures above approximately 50 GPa, the width of the observed transition varies significantly. In particular, Kantor et al. reported that the transition in (Mg0.8,Fe0.2)O occurs over a pressure range of approximately 50 GPa in high-pressure M{umlt o}ssbauer measurements. To account for the discrepancy in the transition pressure, Kantor et al. reanalyzed the X-ray emission spectra by Lin et al. using a simple spectral decompositionmore » method and claimed that X-ray emission measurements are also consistent with a spin crossover of iron at high pressures. Here we show that the proposed fitting method is inadequate to describe the X-ray emission spectrum of the low-spin FeS2 and would give an erroneous satellite peak (K{sub beta}') intensity, leading to an artificial high-spin component and, consequently, to invalid conclusions regarding the width of the pressure-induced transition in magnesiow{umlt u}stite. Furthermore, we compare Kantor's M{umlt o}ssbauer data with other recent high-pressure M{umlt o}ssbauer studies and show that the width of the transition can be simply explained by different experimental conditions (sample thickness, diameter, and hydrostaticity).« less
Syafiuddin, Achmad; Hadibarata, Tony; Beng Hong Kueh, Ahmad; Razman Salim, Mohd
2017-12-26
This is the first investigation to demonstrate the use of biochemical contents present within Cyperus rotundus , Eleusin indica , Euphorbia hirta , Melastoma malabathricum , Clidemia hirta and Pachyrhizus erosus extracts for the reduction of silver ion to silver nanoparticles (AgNPs) form. In addition, the antibacterial capability of the synthesized AgNPs and plant extracts alone against a rare bacterium, Chromobacterium haemolyticum ( C. haemolyticum ), was examined. Moreover, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and inductively coupled plasma atomic emission spectroscopy (ICPOES) of the synthesized AgNPs were characterized. The smallest AgNPs can be produced when Cyperus rotundus extracts were utilized. In addition, this study has found that the synthesis efficiencies using all plant extracts are in the range of 72% to 91% with the highest percentage achieved when Eleusin indica extract was employed. All synthesized AgNPs have antibacterial capability against all examined bacteria depending on their size and bacteria types. Interestingly, Melastoma malabathricum and Clidemia hirta extracts have demonstrated an antibacterial ability against C. haemolyticum .
Hadibarata, Tony; Beng Hong Kueh, Ahmad; Razman Salim, Mohd
2017-01-01
This is the first investigation to demonstrate the use of biochemical contents present within Cyperus rotundus, Eleusin indica, Euphorbia hirta, Melastoma malabathricum, Clidemia hirta and Pachyrhizus erosus extracts for the reduction of silver ion to silver nanoparticles (AgNPs) form. In addition, the antibacterial capability of the synthesized AgNPs and plant extracts alone against a rare bacterium, Chromobacterium haemolyticum (C. haemolyticum), was examined. Moreover, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and inductively coupled plasma atomic emission spectroscopy (ICPOES) of the synthesized AgNPs were characterized. The smallest AgNPs can be produced when Cyperus rotundus extracts were utilized. In addition, this study has found that the synthesis efficiencies using all plant extracts are in the range of 72% to 91% with the highest percentage achieved when Eleusin indica extract was employed. All synthesized AgNPs have antibacterial capability against all examined bacteria depending on their size and bacteria types. Interestingly, Melastoma malabathricum and Clidemia hirta extracts have demonstrated an antibacterial ability against C. haemolyticum. PMID:29278389
Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy
2009-05-01
have been studied analogously by seeding thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic...effects of self-absorption. Additionally, candidate thermometric species must produce several strong emission lines in the spectrum that originate from...different upper energy levels in order to allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
NASA Astrophysics Data System (ADS)
Tang, Jian; Deng, Chunfeng; Wu, Chunlei; Lu, Biao; Hu, Yonghong
2017-12-01
The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330-340 nm and 498-503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.
Low threshold field emission from high-quality cubic boron nitride films
NASA Astrophysics Data System (ADS)
Teii, Kungen; Matsumoto, Seiichiro
2012-05-01
Field emission performance of materials with mixed sp2/sp3 phases often depends upon the phase composition at the surface. In this study, the emission performance of high-quality cubic boron nitride (cBN) films is studied in terms of phase purity. Thick cBN films consisting of micron-sized grains are prepared from boron trifluoride gas by chemical vapor deposition in a plasma jet and an inductively coupled plasma. Both the bulk and surface phase purities as well as crystallinities of cBN evaluated by visible and ultraviolet Raman spectroscopy, glancing-angle x-ray diffraction, and x-ray photoelectron spectroscopy are the highest when the film is deposited in a plasma jet under an optimized condition. The emission turn-on field decreases with increasing the phase purity, down to around 5 V/μm for the highest cBN purity, due to the larger field enhancement, while it is higher than 14 V/μm without cBN (sp2-bonded hexagonal BN only). The results indicate that the total field enhancement for the high phase purity film is governed by the internal field amplification related to the surface coverage of more conductive cBN, rather than the external one related to the surface topology or roughness.
NASA Astrophysics Data System (ADS)
Oropeza, D.
2016-12-01
A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.
Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi
2010-11-28
Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.
NASA Astrophysics Data System (ADS)
Hu, Leqian; Ma, Shuai; Yin, Chunling
2018-03-01
In this work, fluorescence spectroscopy combined with multi-way pattern recognition techniques were developed for determining the geographical origin of kudzu root and detection and quantification of adulterants in kudzu root. Excitation-emission (EEM) spectra were obtained for 150 pure kudzu root samples of different geographical origins and 150 fake kudzu roots with different adulteration proportions by recording emission from 330 to 570 nm with excitation in the range of 320-480 nm, respectively. Multi-way principal components analysis (M-PCA) and multilinear partial least squares discriminant analysis (N-PLS-DA) methods were used to decompose the excitation-emission matrices datasets. 150 pure kudzu root samples could be differentiated exactly from each other according to their geographical origins by M-PCA and N-PLS-DA models. For the adulteration kudzu root samples, N-PLS-DA got better and more reliable classification result comparing with the M-PCA model. The results obtained in this study indicated that EEM spectroscopy coupling with multi-way pattern recognition could be used as an easy, rapid and novel tool to distinguish the geographical origin of kudzu root and detect adulterated kudzu root. Besides, this method was also suitable for determining the geographic origin and detection the adulteration of the other foodstuffs which can produce fluorescence.
NASA Astrophysics Data System (ADS)
Weimer, Wayne A.; Johnson, Curtis E.
1990-12-01
A microwave plasma enhanced chemical vapor deposition system is characterized using optical emission spectroscopy and mass spectrometry. CH4 CH2 CH4 and CO were used as carbon source gases. The effects of 02 addition to the feed gas is examined. Emission from CH in the plasma is observed and CH4 is a stable reaction product for all carbon source gases used. 02 is fully consumed and converted to H20 and CO. Emission from C is observed for all hydrocarbon gases when 02 is added but is absent when CO is the carbon source gas. Addition of 02 also dramatically affects the relative amount of reaction products as the carbon in the system is converted to CO. 1.
NASA Astrophysics Data System (ADS)
Lewis, William; Williams, Maura; Franco, Walfre
2017-02-01
The aim of our study was to identify fluorescence excitation-emission pairs correlated with atherosclerotic pathology in ex-vivo human aorta. Wide-field images of atherosclerotic human aorta were captured using UV and visible excitation and emission wavelength pairs of several known fluorophores to investigate correspondence with gross pathologic features. Fluorescence spectroscopy and histology were performed on 21 aortic samples. A matrix of Pearson correlation coefficients were determined for the relationship between relevant histologic features and the intensity of emission for 427 wavelength pairs. A multiple linear regression analysis indicated that elastin (370/460 nm) and tryptophan (290/340 nm) fluorescence predicted 58% of the variance in intima thickness (R-squared = 0.588, F(2,18) = 12.8, p=.0003), and 48% of the variance in media thickness (R-squared = 0.483, F(2,18) = 8.42, p=.002), suggesting that endogenous fluorescence intensity at these wavelengths can be utilized for improved pathologic characterization of atherosclerotic plaques.
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
NASA Astrophysics Data System (ADS)
Alves, Julio Cesar L.; Poppi, Ronei J.
2013-02-01
This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.
Lamiri, Lyes; Guerbous, Lakhdar; Samah, Madani; Boukerika, Allaoua; Ouhenia, Salim
2015-12-01
Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Tilvi, V.; Pirzkal, N.; Malhotra, S.; Finkelstein, S. L.; Rhoads, J. E.; Windhorst, R.; Grogin, N. A.; Koekemoer, A.; Zakamska, N. L.; Ryan, R.;
2016-01-01
Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-Alpha emission and the Lyman break from a z = 7.512 +/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble SpaceTelescope (HST), show a significant emission line detection (6 Sigma) in two observational position angles (PA), with Lyman-Alpha line flux of 1.06 +/- 0.19 x 10(exp -17) erg s(exp -1) cm(exp -2). The line flux is nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-Alpha measurements. A 4-Alpha detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), and if confirmed would make this source the highest-redshift AGN yet found.These observations from the Hubble Space Telescope thus clearly demonstrate the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.
Synthesis and characterization of white light-emitting Dy3+-doped Gd2O3 nanophosphors
NASA Astrophysics Data System (ADS)
Nambram, S.; Singh, S. D.; Meetei, S. D.
2016-03-01
A series of Gd2O3 nanophosphors doped with different concentration of Dy3+ has been synthesized by chemical precipitation method. X-ray diffraction study of the undoped and doped samples suggests that Dy3+ atoms remain in the crystallite cubic lattice of the host. The particle sizes are in the range of 14-19 nm. Energy-dispersive analysis of X-ray spectroscopy study and Fourier transform infrared spectroscopy studies are also performed to analyze the elements present in the samples. Photoluminescence emission peak of Dy3+ in doped samples are observed at 487, 575 and 672 nm corresponding to the 4F9/2-6H15/2, 4F9/2-6H13/2 and 4F9/2-6H11/2 transition, respectively. Effective energy transfer from Gd3+ to Dy3+ is observed, yielding efficient emission under UV excitation. The maximum emission intensity is found at 1.5 at.% Dy3+-doped Gd2O3 sample. The enhancement in the emission intensity with the increase in Dy3+ is due to the increase in energy transfer from Gd3+ of host to Dy3+ ions. The CIE ( Commission Internationale de l'é clairage) coordinates of the doped samples are found to be very close to that of standard white color (0.33, 0.33).
ERIC Educational Resources Information Center
Chinni, Rosemarie C.
2012-01-01
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
Barbui, T.; Krychowiak, M.; König, R.; ...
2016-09-27
A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. Lastly, this setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.
The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.
Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder
2009-12-01
gas fusion, and all other elements were measured by direct current plasma emission spectroscopy. The analysis showed a relatively high amount of...measured by direct current plasma emission spectroscopy, and oxygen was detected by inert gas fusion. The results show that carbon and cobalt levels...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey
2014-01-01
In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057
Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...
2014-09-10
In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less
X-ray diagnostics of massive star winds
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.
2017-11-01
Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.
NASA Astrophysics Data System (ADS)
Hassanimatin, M. M.; Tavassoli, S. H.
2018-05-01
A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.
X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.
Lancaster, Kyle M; Roemelt, Michael; Ettenhuber, Patrick; Hu, Yilin; Ribbe, Markus W; Neese, Frank; Bergmann, Uwe; DeBeer, Serena
2011-11-18
Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kβ x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.
Thin film of polyelectrolyte complex nanoparticles for protein sensing
NASA Astrophysics Data System (ADS)
Talukdar, Hrishikesh; Kundu, Sarathi
2018-04-01
Polyelectrolyte complex nanoparticles (PEC NPs) are prepared using two polyelectrolytes poly(Na-4-styrene sulphonate) (PSS) and poly(diallyldimethylammoniumchloride) (PDADMAC) at a molar mixing ratio of n-/n+ ≈ 0.67 by consecutive centrifugation. PEC NPs formation is investigated through dynamic light scattering (DLS) and atomic force microscopy (AFM). Optical behaviors of PEC NPs in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. Although absorption peaks of PSS occurs at the same position before and after the formation of PEC NPs but emission peaks are found at ≈ 278 and 305 nm whereas for pure PSS emission peaks exist at ≈ 295 and 365 nm. Hence, thin film of PEC NPs can be applied as very sensitive material for protein sensing since absorption of protein is occurred at ≈ 278 nm. Protein sensing behavior of such PEC NPs thin film is studied using photoluminescence spectroscopy.
Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules.
Sekar, Gajalakshmi; Florance, Ida; Sivakumar, A; Mukherjee, Amitava; Chandrasekaran, Natarajan
2016-12-01
The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup
2018-06-01
We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.
Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin
2017-11-01
Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less
Low thermal emissivity surfaces using AgNW thin films
NASA Astrophysics Data System (ADS)
Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.
2017-12-01
The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.
Kunz, Ralf; Timpmann, Kõu; Southall, June; Cogdell, Richard J; Freiberg, Arvi; Köhler, Jürgen
2014-05-06
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Synthesis of Novel Sea-Urchin-Like CdS and Their Optical Properties.
Kamran, Muhammad Arshad; Liu, Ruibin; Shi, Li-Jie; Bukhtiar, Arfan; Li, Jing; Zou, Bingsuo
2015-06-01
A novel morphology of CdS sea-urchin-like microstructures is synthesized by simple thermal evaporation process. Microstructures with average size of 20-50 μm are composed of single crystalline CdS nanobelts. The structural, compositional, morphological characterization of the product were examined by X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, scanning electron microscope, transmission electron microscopy and selected area electron diffraction while optical properties are investigated by Photoluminescence spectroscopy and time-resolved Photoluminescence measurements. The tentative growth mechanism for the growth of sea-urchin-like CdS is proposed and described briefly. A strong green emission with a maximum around 517 nm was observed from the individual CdS microstructure at room temperature, which was attributed to band-edge emission of CdS. These Novel structures exhibit excellent lasing (stimulated emission) with low threshold (9.07 μJ cm(-2)) at room temperature. We analyze the physical mechanism of stimulated emission. These results are important in the design of green luminescence, low-threshold laser and display devices in the future.
NASA Astrophysics Data System (ADS)
Bonamente, Massimiliano; Nevalainen, Jukka
2011-09-01
We present spatially resolved spectroscopy of the galaxy cluster AS1101, also known as Sèrsic 159-03, with Chandra, XMM-Newton, and ROSAT, and investigate the presence of soft X-ray excess emission above the contribution from the hot intracluster medium. In earlier papers we reported an extremely bright soft excess component that reached 100% of the thermal radiation in the R2 ROSAT band (0.2-0.4 keV), using the H I column density measurement by Dickey and Lockman. In this paper we use the newer Leiden-Argentine-Bonn survey measurements of the H I column density toward AS1101, significantly lower than the previous value, and show that the soft excess emission in AS1101 is now at the level of 10%-20% of the hot gas emission, in line with those of a large sample of clusters analyzed by Bonamente et al. in 2002. The ROSAT soft excess emission is detected regardless of calibration uncertainties between Chandra and XMM-Newton. This new analysis of AS1101 indicates that the 1/4 keV band emission is compatible with the presence of warm-hot intergalactic medium (WHIM) filaments connected to the cluster and extending outward into the intergalactic medium; the temperatures we find in this study are typically lower than those of the WHIM probed in other X-ray studies. We also show that the soft excess emission is compatible with a non-thermal origin as the inverse Compton scattering of relativistic electrons off the cosmic microwave background, with pressure less than 1% of the thermal electrons.
Cathodoluminescence Studies of the Inhomogeneities in Sn-doped Ga2O3 Nanowires
2009-01-01
Cathodoluminescence Studies of the Inhomogeneities in Sn-doped Ga2O3 Nanowires S. I. Maximenko, L. Mazeina, Y. N. Picard, J. A. Freitas, Jr., V. M...color imaging and spectroscopy were employed to study the properties of Ga2O3 nanowires grown with different Sn/Ga ratios. The structures grown under...green to red emission correlates with a phase transition of β- Ga2O3 to polycrystalline SnO2. The origin of the green emission band is discussed based
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...
2017-09-28
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Analysis of organic vapors with laser induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir
2015-09-15
In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminishmore » gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.« less
40 CFR 98.54 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...
40 CFR 98.54 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...
40 CFR 98.54 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...
40 CFR 98.54 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...
Fabrication of ZnS nanoparticle chains on a protein template
Hulleman, J.; Kim, S. M.; Tumkur, T.; Rochet, J.-C.; Stach, E.; Stanciu, L.
2011-01-01
In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied. PMID:21804765
NASA Astrophysics Data System (ADS)
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra
2018-04-01
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.
NASA Astrophysics Data System (ADS)
Aparna, N.; Vasa, N. J.; Sarathi, R.
2018-06-01
This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.
Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles
2018-03-01
The online monitoring of dissolved organic matter (DOM) in raw sewage water is expected to better control wastewater treatment processes. Fluorescence spectroscopy offers one possibility for both the online and real-time monitoring of DOM, especially as regards the DOM biodegradability assessment. In this study, three-dimensional fluorescence spectroscopy combined with a parallel factor analysis (PARAFAC) has been investigated as a predictive tool of the soluble biological oxygen demand in 5 days (BOD 5 ) for raw sewage water. Six PARAFAC components were highlighted in 69 raw sewage water samples: C2, C5, and C6 related to humic-like compounds, along with C1, C3, and C4 related to protein-like compounds. Since the PARAFAC methodology is not available for online monitoring, a peak-picking approach based on maximum excitation-emission (Ex-Em) localization of the PARAFAC components identified in this study has been used. A good predictive model of soluble BOD 5 using fluorescence spectroscopy parameters was obtained (r 2 = 0.846, adjusted r 2 = 0.839, p < 0.0001). This model is quite straightforward, easy to automate, and applicable to the operational field of wastewater treatment for online monitoring purposes.
NASA Astrophysics Data System (ADS)
Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.
2016-12-01
Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.
X-ray diagnostics of hohlraum plasma flow
NASA Astrophysics Data System (ADS)
Back, C. A.; Glenzer, S. H.; Landen, O. L.; MacGowan, B. J.; Shepard, T. D.
1997-01-01
In this study we use spectroscopy and x-ray imaging to investigate the macroscopic plasma flow in mm-sized laser-produced hohlraum plasmas. By using multiple diagnostics to triangulate the emission on a single experiment, we can pinpoint the position of dopants placed inside the hohlraum. X-ray emission from the foil has been used in the past to measure electron temperature. Here we analyze the spatial movement of dopant plasmas for comparison to hydrodynamic calculations.
NASA Astrophysics Data System (ADS)
Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi
2018-03-01
We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).
Spectroscopy of an unusual emission line M star
NASA Technical Reports Server (NTRS)
Schneider, Donald P.; Greenstein, Jesse L.; Schmidt, Maarten; Gunn, James E.
1991-01-01
Moderate-resolution spectroscopy of an unusual late-type faint emission-line star, PC 0025 + 0047, is reported. A very strong (greater than 250 A equivalent width) an H-alpha emission line was detected by the present automated line search algorithm. The spectrum was found to have two unresolved emission lines (H-alpha and H-beta) near zero velocity, superposed on the absorption spectrum of a very red M dwarf which has strong K I, and relatively weak bands of TiO. From the weakness of the subordinate lines of Na I (8192 A) and other spectral features, it is inferred that it is definitely a cooler, and probably fainter, analog of LHS 2924. The strength of the emission lines indicates that PC 0025 + 0447 is very young and may be a fading predecessor brown drawf at an estimated M(bol) approaching 14m at a distance of about 60 pc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao
Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found tomore » exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.
2014-11-15
A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less
Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.
2015-09-01
When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.
Remote in-situ laser-induced breakdown spectroscopy using optical fibers
NASA Astrophysics Data System (ADS)
Marquardt, Brian James
The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and that Pb containing paint can be detected even under layers of non-lead containing paint. Experiments were performed to determine the optimal measurement parameters for performing LIBS studies of Department of Energy "waste" glasses. Calibration data for a Al and Ti metals contained in the waste glass is presented. The effects of laser power on plasma temperature, emission intensity and mass of sample ablated are introduced.
Jiang, J S; Pearson, J E; Bader, S D
2011-04-15
Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.; Pearson, J. E.; Bader, S. D.
2011-04-15
Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq{sub 3} with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.
Ross, Matthew; Andersen, Amity; Fox, Zachary W; Zhang, Yu; Hong, Kiryong; Lee, Jae-Hyuk; Cordones, Amy; March, Anne Marie; Doumy, Gilles; Southworth, Stephen H; Marcus, Matthew A; Schoenlein, Robert W; Mukamel, Shaul; Govind, Niranjan; Khalil, Munira
2018-05-17
We present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques. Density functional theory-based quantum mechanics/molecular mechanics molecular dynamics simulations are performed to generate explicit solute-solvent configurations, which serve as inputs for the spectroscopy calculations of the experiments spanning the IR to X-ray wavelengths. The spectroscopy simulations are performed at the same level of theory across this large energy window, which allows for a systematic comparison of the effects of explicit solute-solvent interactions in the vibrational, valence electronic, and core-level spectra of hexacyanoferrate complexes in water. Although the spectroscopy of hexacyanoferrate complexes in solution has been the subject of several studies, most of the previous works have focused on a narrow energy window and have not accounted for explicit solute-solvent interactions in their spectroscopy simulations. In this work, we focus our analysis on identifying how the local solvation environment around the hexacyanoferrate complexes influences the intensity and line shape of specific spectroscopic features in the UV/vis, X-ray absorption, and valence-to-core X-ray emission spectra. The identification of these features and their relationship to solute-solvent interactions is important because hexacyanoferrate complexes serve as model systems for understanding the photochemistry and photophysics of a large class of Fe(II) and Fe(III) complexes in solution.
Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.; ...
2016-08-10
The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\overline{4}$$04 are presented. For this study, the performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.
The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\overline{4}$$04 are presented. For this study, the performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less
β-decay spectroscopy for the r-process nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Shunji; Collaboration: RIBF Decay Collaborations
2014-05-09
Series of decay spectroscopy experiments, utilizing of high-purity Ge detectors and double-sided silicon-strip detectors, have been conducted to harvest the decay properties of very exotic nuclei relevant to the r-process nucleosynthesis at the RIBF. The decay properties such as β-decay half-lives, low-lying states, β-delayed neutron emissions, isomeric states, and possibly Q{sub β} of the very neutron-rich nuclei are to be measured to give significant constraints in the uncertainties of nuclear properties for the r-process nucleosynthesis. Recent results of βγ spectroscopy study using in-flight fission of {sup 238}U-beam will be presented together with our future perspectives.
Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)
NASA Astrophysics Data System (ADS)
Wright, Shelley; IRIS Science Team
2014-07-01
The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.
Eeckhout, Sigrid Griet; Gorges, Bernard; Barthe, Laurent; Pelosi, Orietta; Safonova, Olga; Giuli, Gabriele
2008-09-01
A high-temperature furnace with an induction heater coil has been designed and constructed for in situ X-ray spectroscopic experiments under controlled atmospheric conditions and temperatures up to 3275 K. The multi-purpose chamber design allows working in backscattering and normal fluorescence mode for synchrotron X-ray absorption and emission spectroscopy. The use of the furnace is demonstrated in a study of the in situ formation of Cr oxide between 1823 K and 2023 K at logPO(2) values between -10.0 and -11.3 using X-ray absorption near-edge spectroscopy. The set-up is of particular interest for studying liquid metals, alloys and other electrically conductive materials under extreme conditions.
Continuous distribution of emission states from single CdSe/ZnS quantum dots.
Zhang, Kai; Chang, Hauyee; Fu, Aihua; Alivisatos, A Paul; Yang, Haw
2006-04-01
The photoluminescence dynamics of colloidal CdSe/ZnS/streptavidin quantum dots were studied using time-resolved single-molecule spectroscopy. Statistical tests of the photon-counting data suggested that the simple "on/off" discrete state model is inconsistent with experimental results. Instead, a continuous emission state distribution model was found to be more appropriate. Autocorrelation analysis of lifetime and intensity fluctuations showed a nonlinear correlation between them. These results were consistent with the model that charged quantum dots were also emissive, and that time-dependent charge migration gave rise to the observed photoluminescence dynamics.
NASA Astrophysics Data System (ADS)
Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.
2015-01-01
Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
Hard X-ray imaging spectroscopy of FOXSI microflares
NASA Astrophysics Data System (ADS)
Glesener, Lindsay; Krucker, Sam; Christe, Steven; Buitrago-Casas, Juan Camilo; Ishikawa, Shin-nosuke; Foster, Natalie
2015-04-01
The ability to investigate particle acceleration and hot thermal plasma in solar flares relies on hard X-ray imaging spectroscopy using bremsstrahlung emission from high-energy electrons. Direct focusing of hard X-rays (HXRs) offers the ability to perform cleaner imaging spectroscopy of this emission than has previously been possible. Using direct focusing, spectra for different sources within the same field of view can be obtained easily since each detector segment (pixel or strip) measures the energy of each photon interacting within that segment. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has successfully completed two flights, observing microflares each time. Flare images demonstrate an instrument imaging dynamic range far superior to the indirect methods of previous instruments like the RHESSI spacecraft.In this work, we present imaging spectroscopy of microflares observed by FOXSI in its two flights. Imaging spectroscopy performed on raw FOXSI images reveals the temperature structure of flaring loops, while more advanced techniques such as deconvolution of the point spread function produce even more detailed images.
Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine
NASA Astrophysics Data System (ADS)
Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming
2013-09-01
Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.
Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Campbell, Keri R.; Wozniak, Nicholas R.; Colgan, James P.; Judge, Elizabeth J.; Barefield, James E.; Kilcrease, David P.; Wilkerson, Marianne P.; Czerwinski, Ken R.; Clegg, Samuel M.
2017-08-01
Nuclear forensics goals for characterizing samples of interest include qualitative and quantitative analysis of major and trace elements, isotopic analysis, phase identification, and physical analysis. These samples may include uranium oxides UO2, U3O8, and UO3, which play an important role in the front end of the nuclear fuel cycle, from mining to fuel fabrication. The focus of this study is to compare the ratios of the intensities of uranium and oxygen emission lines which can be used to distinguish between different uranium oxide materials using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements at varying laser powers were made under an argon atmosphere at 585 Torr to ensure the oxygen emission intensity was originating from the sample, and not from the atmosphere. Fifteen uranium emission lines were used to compare experimental results with theoretical calculations in order to determine the plasma conditions. Using a laser energy of 26 mJ, the uranium lines 591.539 and 682.692 nm provide the highest degree of discrimination between the uranium oxides. The study presented here suggests that LIBS is useful for discriminating uranium oxide phases, UO2, U3O8, and UO3.
Laser-induced breakdown spectroscopy for identification and characterization of aluminum
NASA Astrophysics Data System (ADS)
Dimas Prasetya, Oki; Maulana, Trisna; Khumaeni, Ali
2018-05-01
Identification of aluminum is required to evaluate the quality of metallic products in industry. In this study, identification and characterization of aluminum has been carried out by using Laser Induced Breakdown Spectroscopy (LIBS). LIBS can be analyzed elements in metal rapidly and does not require more sample preparation, and is a low-cost compared to other conventional methods. The samples used in this study were pure aluminum plate and Indonesian currency coin. Experimentally, a pulse neodymium yttrium aluminum garnet (Nd:YAG laser, 1064 nm) was irradiated on a metal sample surface at a reduced pressure of air to produce a luminous plasma. The plasma was then detected by optical multichannel analyzer to get emission spectrum. Emission spectrum of neutral and ionic aluminum (Al) lines of Al I (309,28 nm), Al II (359,75 nm), Al I (396,15 nm), Al II (448,98 nm), Al II (561,32 nm), Al II (660,96 nm), Al II (781,23 nm) was clearly detected from the pure aluminum plate. The same spectrum of Al was also detected from the Indonesian currency coin. However, the emission intensity of Al is lower for Indonesian currency coin.
NASA Astrophysics Data System (ADS)
Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor
2015-05-01
We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.
Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption
NASA Technical Reports Server (NTRS)
Ferrante, J.
1976-01-01
Exoelectron emission was observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 6.5x10 0.00001- N/sq m and lower. the studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low energy electron diffraction was used to verify that the surface was annealed. The emission was found to be oxygen arrival rate dependent. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. No emission was observed from clean aluminum during adsorption. Results verify that electron emission occurs from a strain free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.
NASA Astrophysics Data System (ADS)
Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.
1982-01-01
The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.
Metallic transfer between metals in sliding contact examined by auger emission spectroscopy
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1972-01-01
Metallic transfer between polycrystalline metals in sliding contact was examined. Hemispherical riders of iron, nickel, and cobalt were slid on tungsten, tantalum, niobium, and molybdenum disks in ultrahigh vacuum. Auger emission spectroscopy was used to monitor the elemental composition of the disk surfaces. Iron, nickel, and cobalt transferred to tungsten, whereas only cobalt transferred to tantalum, niobium, and molybdenum. The results of this investigation are discussed in terms of the cohesive energy and strain hardening characteristics of the specimen materials.
Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop
NASA Astrophysics Data System (ADS)
Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.
2016-07-01
Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.
Al Hareri, M; Gavey, E L; Regier, J; Ras Ali, Z; Carlos, L D; Ferreira, R A S; Pilkington, M
2016-10-15
The first supramolecular cage formed by three benzo-15-crown-5 macrocycles encapsulating a [Dy(OH2)8](3+) guest cation is reported, with the Dy(iii) centre exhibiting local pseudo square antiprismatic D4d symmetry. The anisotropy barrier extracted from ac susceptibility studies, emission spectroscopy and ab initio calculations reveals that the second excited state Kramers doublet plays a key role in the magnetization dynamics due to the Ising character and near coparallel nature of the ground and first excited Kramers doublets.
Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı
2018-01-01
The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R 2 and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R 2 of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R 2 of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.
Optical and structural behaviors of crosslinked polyvinyl alcohol thin films
NASA Astrophysics Data System (ADS)
Pandit, Subhankar; Kundu, Sarathi
2018-04-01
Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.
Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma
NASA Astrophysics Data System (ADS)
Liu, Jingle; Zhang, X.-C.
2009-12-01
We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.
Ti:sapphire - A theoretical assessment for its spectroscopy
NASA Astrophysics Data System (ADS)
Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.
2017-03-01
This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.
Optical and tunneling microscopy and spectroscopy at the ultimate spatial limit
NASA Astrophysics Data System (ADS)
Chen, Chi
2009-12-01
The combination of optical detection system with a scanning tunneling microscope (STM) leads to the possibility of resolving radiative transition probability with the ultrahigh spatial resolution of STM in real space. This opens an innovative approach toward revealing the correlation between molecular structure, electronic characteristics, and optical properties. This thesis describes a series of experiments that manifests this correlation, including atomic silver chains and single porphine molecules. In atomic silver chains, the number and positions of the emission maxima in the photon images match the nodes in the dI/d V images of "particle-in-a-box" states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions, which provides an understanding of the mechanism of STM induced light emission. From single porphine molecules, orthogonal spatial contrast of two types of vibronic coupling is resolved by both photon spectroscopy and vibronic-mode-selected photon images. Intramolecular transitions from the two orthogonal LUMOs individually couple to different molecular normal modes. This is the first demonstration of the photon emission probability of a single molecule and its direct correlations with the molecular orbitals. This also provides the first real space experimental evidence to separate the tangled effects of molecular conformations and nano-environments on the inhomogeneity of molecular emission. DSB molecules are found to have two conformational isomers and one of them shows surface chirality. All these conformers and enantiomers can be switched to each other by electron injection. Different DSB conformers present distinct manipulation dynamics, which demonstrate how different conformations and their preferred adsorption geometries can have pronounced influence on the molecular mechanics on the surface. Overall, this thesis studies the very fundamental nature of single molecules and artificial nanostructures by integrating all kinds of important functions of STM: topography, spectroscopy, manipulation, and photon emission. Detailed correlations between the emission patterns and orbital structures are revealed by the ultimate spatial resolution of our "STM photon microscopy".
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...
2017-02-10
Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung
2017-02-01
Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad
Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii,more » Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s{sup −1}, and significant C iv blueshifts (≈1000–5500 km s{sup −1}) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum.« less
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma
NASA Astrophysics Data System (ADS)
Yang, LIU; Yue, TONG; Ying, WANG; Dan, ZHANG; Suyu, LI; Yuanfei, JIANG; Anmin, CHEN; Mingxing, JIN
2017-12-01
In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.
Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todorov, Kamen O.; Deming, Drake; Burrows, Adam
We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare themore » planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.« less
Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela
2017-01-01
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnama, K.; Alkhawwam, A.; Jazmati, A. K., E-mail: pscientific5@aec.org.sy
Plasma plume of Al{sub 2}O{sub 3}–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 10{sup 2}, 10{sup 3}, 10{sup 4} and 10{sup 5} Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validitymore » in the plasma.« less
A Spectroscopic Search for AGN Activity in the Reionization Era
NASA Astrophysics Data System (ADS)
Laporte, Nicolas; Nakajima, Kimihiko; Ellis, Richard S.; Zitrin, Adi; Stark, Daniel P.; Mainali, Ramesh; Roberts-Borsani, G. W.
2017-12-01
The ubiquity of Lyman alpha (Lyα) emission in a sample of four bright [O III]-strong star-forming galaxies with redshifts above seven has led to the suggestion that such luminous sources represent a distinct population compared with their fainter, more numerous counterparts. The presence of Lyα emission within the reionization era could indicate that these sources created early ionized bubbles due to their unusually strong radiation, possibly because of the presence of active galactic nuclei. To test this hypothesis, we secured long integration spectra with XSHOOTER on the VLT for three z≃ 7 sources selected to have similar luminosities and prominent excess fluxes in the IRAC 3.6 or 4.5 μm band, usually attributed to strong [O III] emission. We secured additional spectroscopy for one of these galaxies at z = 7.15 using MOSFIRE at the Keck telescope. For the most well-studied source in our sample with the strongest IRAC excess, we detect significant nebular emission from He II and N V indicative of a non-thermal source. For the other two sources at z = 6.81 and z = 6.85, for which no previous optical/near-infrared spectroscopy was available, Lyα is seen in one and C III] emission in the other. Although based on a modest sample, our results further support the hypothesis that the phenomenon of intense [O III] emission is associated preferentially with sources lying in early ionized bubbles. However, even though one of our sources at z = 7.15 suggests the presence of non-thermal radiation, such ionized bubbles may not uniquely arise in this manner. We discuss the unique advantages of extending such challenging diagnostic studies with JWST.
Surface degradation of uranium tetrafluoride
Tobin, J. G.; Duffin, A. M.; Yu, S. -W.; ...
2017-05-01
A detailed analysis of a single crystal of uranium tetrafluoride has been carried out. The techniques include x-ray absorption spectroscopy, as well as x-ray photoelectron spectroscopy and x-ray emission spectroscopy. Evidence will be presented for the presence of a uranyl species, possibly UO 2F 2, as a product of, or participant in the surface degradation.
Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges
NASA Astrophysics Data System (ADS)
Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos
2016-09-01
Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).
Roper, Ian P E; Besley, Nicholas A
2016-03-21
The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.
Overview of diagnostic implementation on Proto-MPEX at ORNL
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Bigelow, T.; Caughman, J. B. O.; Fehling, D.; Goulding, R. H.; Gray, T. K.; Isler, R. C.; Martin, E. H.; Meitner, S.; Rapp, J.; Unterberg, E. A.; Dhaliwal, R. S.; Donovan, D.; Kafle, N.; Ray, H.; Shaw, G. C.; Showers, M.; Mosby, R.; Skeen, C.
2015-11-01
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) recently began operating with an expanded diagnostic set. Approximately 100 sightlines have been established, delivering the plasma light emission to a ``patch panel'' in the diagnostic room for distribution to a variety of instruments: narrow-band filter spectroscopy, Doppler spectroscopy, laser induced breakdown spectroscopy, optical emission spectroscopy, and Thomson scattering. Additional diagnostic systems include: IR camera imaging, in-vessel thermocouples, ex-vessel fluoroptic probes, fast pressure gauges, visible camera imaging, microwave interferometry, a retarding-field energy analyzer, rf-compensated and ``double'' Langmuir probes, and B-dot probes. A data collection and archival system has been initiated using the MDSplus format. This effort capitalizes on a combination of new and legacy diagnostic hardware at ORNL and was accomplished largely through student labor. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Diagnostic techniques in thermal plasma processing, part 2, volume 2
NASA Astrophysics Data System (ADS)
Boulos, M.; Fauchais, P.; Pfender, E.
1986-02-01
Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light.
Study of diatomic molecules. 2: Intensities. [optical emission spectroscopy of ScO
NASA Technical Reports Server (NTRS)
Femenias, J. L.
1978-01-01
The theory of perturbations, giving the diatomic effective Hamiltonian, is used for calculating actual molecular wave functions and intensity factors involved in transitions between states arising from Hund's coupling cases a,b, intermediate a-b, and c tendency. The Herman and Wallis corrections are derived, without any knowledge of the analytical expressions of the wave functions, and generalized to transitions between electronic states with whatever symmetry and multiplicity. A general method for studying perturbed intensities is presented using primarily modern spectroscopic numerical approaches. The method is used in the study of the ScO optical emission spectrum.
The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.
2012-11-01
Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.
Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.
2012-08-15
Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less
High temperature thermochromic polydiacetylenes: Design and colorimetric properties
NASA Astrophysics Data System (ADS)
Huo, Jingpei; Hu, Zhudong; He, Guozhang; Hong, Xiaxiao; Yang, Zhihao; Luo, Shihe; Ye, Xiufang; Li, Yanli; Zhang, Yubo; Zhang, Min; Chen, Hong; Fan, Ting; Zhang, Yuyuan; Xiong, Bangyun; Wang, Zhaoyang; Zhu, Zhibo; Chen, Dongchu
2017-11-01
Three novel polydiacetylenes (PDAs) are synthesized through the self-assembly followed by the topochemical polymerization via controllable electrophoretic deposition. All the samples could undergo a multi-step thermochromic process, turning purple and red successively over a wide range from room temperature to above 250 °C. Resulting PDAs are studied by UV-vis, IR, Raman spectroscopies, and chromoisomerism by naked eye visualization; their stabilities by thermogravimetric method, and emission behavior by fluorescence spectroscopy. To study the mechanism of the thermochromic response, temperature-dependent UV-vis spectra, the results of which successfully highlighted the close relationship between chromatic transitions and the conformational changes.
Sola, Daniel; Paulés, Daniel; Grima, Lorena
2017-01-01
Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. PMID:29211006
Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L
2005-01-01
This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.
NASA Astrophysics Data System (ADS)
Lucena, P.; Doña, A.; Tobaria, L. M.; Laserna, J. J.
2011-01-01
With the objective of detection and identification of explosives, different organic compounds, including aromatic nitrocompounds, RDX, anthracene, 2,4-diaminotoluene (DAT), 4-methyl-3-nitroaniline (MNA) and pentaerythritol (PENT) have been analyzed by laser induced breakdown spectroscopy (LIBS). To avoid the secondary ionization and to discriminate between the spectral contribution due to air from that of the compound in the plasma generated in air, the emission signatures from atomic lines (C at 247.9 nm, H at 656.3 nm, N at 746.8 nm and O at 777.2 nm) and molecular bands (CN at 388.3 nm and C 2 at 516.5 nm) have been investigated in plasmas generated in air and in helium. The different possible pathways leading to the observation of molecular emissions have been studied, together with a discussion of the most useful tools for the explosives discrimination. Moreover, the effect of the laser fluence on the atomic and molecular emissions and their relationship with the oxygen balance of an organic explosive is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goode, S.R.; Angel, S.M.
1997-01-01
'The long-term goal of this project is to develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy, LIBS, with a fiber-optic probe. From images shown in this report it is evident that the temporal and spatial behavior of laser-induced plasmas IS a complex process. However, through the use of spectral imaging, optimal conditions can be determined for collecting the atomic emission signal in these plasmas. By tailoring signal collection to the regions of the plasma that contain the highest emission signal with the least amount of background interference both the detection limits and themore » precision of LIBS measurements could be improved. The optimal regions for both gated and possibly non-gated LIBS measurements have been shown to correspond to the inner regions and outer regions, respectively, in an axial plasma. By using this data fiber-optic LIBS probe designs can be optimized for collecting plasma emission at the optimal regions for improved detection limits and precision in a LIBS measurement.'« less
Synchronous fluorescence spectroscopy for analysis of wine and wine distillates
NASA Astrophysics Data System (ADS)
Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.
2015-01-01
Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of highmore » resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.« less
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P; Schaller, Richard D; Gosztola, David J; Stroscio, Michael A; Dutta, Mitra
2018-04-27
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In 2 O 3 ) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In 2 O 3 nanostructure based device characteristics for potential optoelectronic applications. In 2 O 3 nanowires with cubic crystal structure (c-In 2 O 3 ) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy [Formula: see text] defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of [Formula: see text] defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.
Preparation and characterization of Tb3+ ions doped zincborophosphate glasses for green emission
NASA Astrophysics Data System (ADS)
Bindu, S. Hima; Raju, D. Siva; Krishna, V. Vinay; Raju, Ch. Linga
2017-06-01
The present study reports the preparation of various concentrations of Tb3+ ions doped zincborophosphate glasses and analysis by XRD, FTIR, optical, emission and decay curve spectras. The effect of borate groups on the phosphate was evidenced by FTIR spectroscopy. The JO intensity parameters was calculated using Judd-Offlet theory. The fluroscence spectra of Tb3+ doped zincborophosphate glasses revealed the efficient blue and green emissions due to 5D3 and 5D4 excited levels to 7Fj ground state respectively. The decay curves exhibits single exponential curves for all the Tb3+ ion concentrations. Various radiative and fluorescence parameters are calculated using JO intensity parameters. Based on the results obtained in the present study, the Tb3+ ions doped zincborophosphate glasses behaves as a efficient laser active materials for highintensity emissions in the green region.
Near band edge emission characteristics of sputtered nano-crystalline ZnO films
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.
Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST
NASA Astrophysics Data System (ADS)
Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael R.; Valenti, Jeff; Stevenson, Kevin
2018-04-01
The Transiting Exoplanet Survey Satellite (TESS) is expected to discover dozens of temperate terrestrial planets orbiting M-dwarfs with atmospheres that could be followed up with the James Webb Space Telescope (JWST). Currently, the TRAPPIST-1 system serves as a benchmark for determining the feasibility and resources required to yield atmospheric constraints. We assess these questions and leverage an information content analysis to determine observing strategies for yielding high-precision spectroscopy in transmission and emission. Our goal is to guide observing strategies of temperate terrestrial planets in preparation for the early JWST cycles. First, we explore JWST’s current capabilities and expected spectral precision for targets near the saturation limits of specific modes. In doing so, we highlight the enhanced capabilities of high-efficiency readout patterns that are being considered for implementation in Cycle 2. We propose a partial saturation strategy to increase the achievable precision of JWST's NIRSpec Prism. We show that JWST has the potential to detect the dominant absorbing gas in the atmospheres of temperate terrestrial planets by the 10th transit using transmission spectroscopy techniques in the near-infrared (NIR). We also show that stacking ⪆10 transmission spectroscopy observations is unlikely to yield significant improvements in determining atmospheric composition. For emission spectroscopy, we show that the MIRI Low Resolution Spectroscopy (LRS) is unlikely to provide robust constraints on the atmospheric composition of temperate terrestrial planets. Higher-precision emission spectroscopy at wavelengths longward of those accessible to MIRI LRS, as proposed in the Origins Space Telescope concept, could help improve the constraints on molecular abundances of temperate terrestrial planets orbiting M-dwarfs.
NASA Astrophysics Data System (ADS)
Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick
2018-04-01
Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated watermore » (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.« less
NASA Astrophysics Data System (ADS)
Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan
2015-01-01
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.
Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar
2016-01-01
Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.
2016-06-01
We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.
The nature of unusual luminescence in natural calcite, CaCO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaft, M.; Nagli, L.; Panczer, G.
2008-11-01
The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms,more » accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.« less
Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites
NASA Astrophysics Data System (ADS)
Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.
2018-05-01
The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.
Analytical Chemistry and the Microchip.
ERIC Educational Resources Information Center
Lowry, Robert K.
1986-01-01
Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…
Application of Physics and Chemistry to Archeology: A New Undergraduate Course
ERIC Educational Resources Information Center
Meschel, Susan V.
1976-01-01
Describes a course that covers such topics as the archeological dating processes and methods that enable the identification and authentication of artifacts, including X-ray diffraction, optical emission spectroscopy, infrared spectroscopy, and neutron activation analysis. (MLH)
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Flory, M. A.; Halfen, D. T.
2006-01-01
With the advent of SOFIA, Herschel, and SAFIR, new wavelength regions will become routinely accessible for astronomical spectroscopy, particularly at submm frequencies (0.5-1.1 THz). Molecular emission dominates the spectra of dense interstellar gas at these wavelengths. Because heterodyne detectors are major instruments of these missions, accurate knowledge of transition frequencies is crucial for their success. The Ziurys spectroscopy laboratory has been focusing on the measurement of the pure rotational transitions of astrophysically important molecules in the sub-mm regime. Of particular interest have been metal hydride species and their ions, as well as metal halides and cyanides. A new avenue of study has included metal bearing molecular ions.
NASA Technical Reports Server (NTRS)
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
Collaborative study of the determination of boric acid in caviar by emission spectroscopy.
Franco, V; Holak, W
1975-03-01
Caviar samples were spiked at the 0.1 and 0.2% levels and digested with nitric acid in a closed Teflon-lined digestion vessel to prevent volatility losses. The boron was complexed with 2-ethyl-1,3-hexanediol and extracted into methylisobulty ketone. The emission of the boron oxide band was measured in a nitrous oxidehydrogen flame. The mean recoveries at the 0.1 and 0.2% levels for 6 collaborators were 95.7 and 97.1%, respectively.
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Bell, James F., III
1994-01-01
Careful laboratory studies have shown that the coloring agent in Mars analog Hawaiian palagonitic soils is nanophase iron oxide. We have measured the emissivity of two Mauna Kea palagonitic soils whose transmission spectra exhibit different spectral features and of a thermally-altered volcanic tephra sample that exhibits a wide range of crystallinity and degree of alteration (from black cinders to fully hematitic). Both of these samples may represent analogs for formation mechanisms involving the production of highly-altered secondary weathering products on Mars. The emission spectra of all samples were measured at the TES spectroscopy laboratory at Arizona State University. The data were converted to emissivity using blackbody measurements combined with measurements of each sample at different temperatures.
NASA Astrophysics Data System (ADS)
van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.
2011-08-01
We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.
NASA Astrophysics Data System (ADS)
Shakeel, Hira; Haq, S. U.; Aisha, Ghulam; Nadeem, Ali
2017-06-01
The quantitative analysis of the standard aluminum-silicon alloy has been performed using calibration free laser induced breakdown spectroscopy (CF-LIBS). The plasma was produced using the fundamental harmonic (1064 nm) of the Nd: YAG laser and the emission spectra were recorded at 3.5 μs detector gate delay. The qualitative analysis of the emission spectra confirms the presence of Mg, Al, Si, Ti, Mn, Fe, Ni, Cu, Zn, Sn, and Pb in the alloy. The background subtracted and self-absorption corrected emission spectra were used for the estimation of plasma temperature as 10 100 ± 300 K. The plasma temperature and self-absorption corrected emission lines of each element have been used for the determination of concentration of each species present in the alloy. The use of corrected emission intensities and accurate evaluation of plasma temperature yield reliable quantitative analysis up to a maximum 2.2% deviation from reference sample concentration.
Chalbot, M-C; Nikolich, G; Etyemezian, V; Dubois, D W; King, J; Shafer, D; Gamboa da Costa, G; Hinton, J F; Kavouras, I G
2013-10-01
Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. Copyright © 2013 Elsevier Ltd. All rights reserved.
Incorporation of Pr into LuAG ceramics
NASA Astrophysics Data System (ADS)
Marchewka, M. R.; Chapman, M. G.; Qian, H.; Jacobsohn, L. G.
2017-06-01
An investigation of the effects of Pr in (Lu1-xPrx)3Al5O12 (LuAG:Pr) ceramics was carried out by means of x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) measurements coupled with luminescence measurements. It was found that the Pr concentration that maximizes luminescence emission depends on the thermal processing conditions. While the calcined LuAG:Pr powder showed maximum luminescence emission for Pr concentrations between 0.18 and 0.33 at.%, maximum emission of ceramic bodies sintered at 1500 °C for 20 h was obtained with Pr concentrations between 0.018 and 0.18 at.%. Further, for short sintering times up to about 3 h, luminescence emission intensity is maximum for Pr concentrations around 0.33 at.%. Longer sintering times lead to the formation of PrAlO3 as a secondary phase, concomitant with a reduction of the intensity of luminescence emission.
Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakka, Tetsuo; Institute of Sustainability Science, Kyoto University, Uji, Kyoto 611-0011; Tamura, Ayaka
2012-05-07
We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine themore » role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.« less
Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.
2017-06-01
Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of < 38 pm has been used to record the complex spectra of the SIMFUEL samples. By using spectrum comparison and database matching > 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.
Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com
2015-06-24
Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaja, S.; Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com; Balaji, R.
Cadmium Sulphide (CdS) nanoparticles were reinforced in Poly(ethylene Oxide) (PEO) and Poly(methyl methacrylate) (PMMA) matrices by in situ technique. The presence of CdS in PEO and PMMA matrix was confirmed using X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared spectroscopy (FTIR) analysis disclosed the co-ordination of CdS in the matrices. Thermal analysis of the nanocomposites was carried out using Differential Scanning calorimetric studies (DSC). The optical studies using UV–vis spectroscopy were carried out to find the band gap of the materials and the absorption onset. The CdS particle size in the matrices was found by Effective Mass Approximation (EMA) model usingmore » the band gap values and was confirmed by TEM studies. The surface trapped emissions of the nanocomposites were observed from the photoluminescence (PL) spectra. The distribution of CdS particles in the polymer matrices were presented by Atomic force microscopic studies (AFM).« less
High-resolution PET [Positron Emission Tomography] for Medical Science Studies
DOE R&D Accomplishments Database
Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.
1989-09-01
One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.
Source Tracking of Nitrous Oxide using A Quantum Cascade ...
Nitrous oxide is an important greenhouse gas and ozone depleting substance. Nitrification and denitrification are two major biological pathways that are responsible for soil emissions of N2O. However, source tracking of in-situ or laboratory N2O production is still challenging to soil scientists. The objective of this study was to introduce the use of a new technology, quantum cascade laser (QCL) spectroscopy, which allows for significantly improved accuracy and precision to continuously measure real-time N2O for source tracking. This data provides important emission inventory information to air quality and atmospheric chemistry models. The task demonstrated that QCL spectroscopy can measure the flux of nitrous oxide at ambient and well as elevated concentrations in real time. The fractionation of the nitrous oxide produced by microbial processing of nitrate can be measured and characterized as isotopic signatures related to the nitrifying or denitrifying state of the microbial communities. This has important implications for monitoring trace gases in the atmosphere. The data produced by this system will provide clients including the air quality and climate change communities with needed information on the sources and strengths of N2O emissions for modeling and research into mitigation strategies to reduce overall GHG emissions in agricultural systems.
Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.
We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less
Kumaran, R; Varalakshmi, T; Malar, E J Padma; Ramamurthy, P
2010-09-01
Photophysical studies of photoinduced electron transfer (PET) and non-PET based acridinedione dyes with guanidine hydrochloride (GuHCl) were carried out in water and methanol. Addition of GuHCl to photoinduced electron transfer (PET) based acridinedione dye (ADR 1) results in a fluorescence enhancement, whereas a non-PET based dye (ADR 2) shows no significant change in the fluorescence intensity and lifetime. Addition of GuHCl to ADR 1 dye in methanol results in single exponential decay behaviour, on the contrary a biexponential decay pattern was observed on the addition of GuHCl in water. Absorption and emission spectral studies of ADR 1 dye interaction with GuHCl reveals that the dye molecule is not in the protonated form in aqueous GuHCl solution, and the dye is confined to two distinguishable microenvironment in the aqueous phase. A large variation in the microenvironment around the dye molecule is created on the addition of GuHCl and this was ascertained by time-resolved area normalized emission spectroscopy (TRANES) and time-resolved emission spectroscopy (TRES). The dye molecule prefers to reside in the hydrophobic microenvironment, rather in the hydrophilic aqueous phase is well emphasized by time-resolved fluorescence lifetime studies. The mechanism of fluorescence enhancement of ADR 1 dye by GuHCl is attributed to the suppression of the PET process occurring through space.
Imaging-guided two-photon excitation-emission-matrix measurements of human skin tissues
NASA Astrophysics Data System (ADS)
Yu, Yingqiu; Lee, Anthony M. D.; Wang, Hequn; Tang, Shuo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan
2012-07-01
There are increased interests on using multiphoton imaging and spectroscopy for skin tissue characterization and diagnosis. However, most studies have been done with just a few excitation wavelengths. Our objective is to perform a systematic study of the two-photon fluorescence (TPF) properties of skin fluorophores, normal skin, and diseased skin tissues. A nonlinear excitation-emission-matrix (EEM) spectroscopy system with multiphoton imaging guidance was constructed. A tunable femtosecond laser was used to vary excitation wavelengths from 730 to 920 nm for EEM data acquisition. EEM measurements were performed on excised fresh normal skin tissues, seborrheic keratosis tissue samples, and skin fluorophores including: NADH, FAD, keratin, melanin, collagen, and elastin. We found that in the stratum corneum and upper epidermis of normal skin, the cells have large sizes and the TPF originates from keratin. In the lower epidermis, cells are smaller and TPF is dominated by NADH contributions. In the dermis, TPF is dominated by elastin components. The depth resolved EEM measurements also demonstrated that keratin structure has intruded into the middle sublayers of the epidermal part of the seborrheic keratosis lesion. These results suggest that the imaging guided TPF EEM spectroscopy provides useful information for the development of multiphoton clinical devices for skin disease diagnosis.
Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo
2017-12-04
We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.
Fourier Transform Infrared Spectroscopy Part III. Applications.
ERIC Educational Resources Information Center
Perkins, W. D.
1987-01-01
Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)
Modern applications of terahertz emission spectroscopy
NASA Astrophysics Data System (ADS)
Harrel, Shayne Matthew
Terahertz (THz) emission spectroscopy (TES) is newly developed experimental technique capable of measuring ultrafast dynamics in a variety of systems. Unlike pump-probe spectroscopies where the signals are obtained indirectly, the THz waveform emitted by the dynamical process serves as the signal field. Information about processes involving a time-dependent magnetization, polarization or current is obtained using TES. The detection scheme is polarization sensitive and allows the direction of the dynamical event to be recovered. The role of solvation on intramolecular charge transfer in DMANS (4-(dimethylamino)-4'-nitrostilbene) is studied using TES in three solvents: benzene, toluene, and 1,3-dichlorobenzene. These solvents have similar molecular structures but different polarities and dielectric constants. The charge transfer dynamics are found to depend on the solvent. A secondary feature in the THz emission appearing 4-6 Ps after the main pulse provides evidence that DMANS may undergo a twisted intramolecular charge transfer state (TICT) upon photoexcitation. The ultrafast magnetization dynamics of polycrystalline Ni and single Fe films ranging in thickness from 5 nm to 60 nm are reported using TES. For samples thicker than the visible optical skin depth, (˜10 nm for Ni and ˜27 nm for Fe), the emission is easily interpreted using Lenz's law. For films thinner than visible optical skin depth, the emission patterns are qualitatively different. These results suggest that there are two generation mechanisms at work: one that arises purely from bulk demagnetization in the thick sample limit and another that is the result of difference frequency generation enhanced by the magnetized surface. A comparative study of the magnetization dynamics of a 40 nm Ni and 40 Fe film shows that the magnetization recovers faster in Fe than in Ni. The dependence of optical rectification and shift currents in unbiased GaAs (111) is reported using TES. It is found that the dependence of the emission with respect to linear excitation polarization is well described by theory. The emission with respect to elliptical polarization also agrees well with theory when exciting below and far above the bandgap. However, the THz emission when exciting slightly above the bandgap is strongly influenced by spin-polarized electrons. The magnetic field generated by these spin-polarized electrons is responsible for altering their own trajectories via the self-induced Hall effect. The dependence of THz generation mechanisms in ZnTe (110) on excitation intensity is investigated using TES. Optical rectification is found to be the dominant generation mechanism only at the lowest excitation powers (<5 mW). A model of second harmonic induced shift currents generating THz radiation is unable to explain the emissions at higher excitation powers.
Detection of early caries by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji
2015-07-01
To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.
Research on modified the estimates of NOx emissions combined the OMI and ground-based DOAS technique
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Li*, Ang; Xie, Pinhua; Hu, Zhaokun; Wu, Fengcheng; Xu, Jin
2017-04-01
A new method to calibrate nitrogen dioxide (NO2) lifetimes and emissions from point sources using satellite measurements base on the mobile passive differential optical absorption spectroscopy (DOAS) and multi axis differential optical absorption spectroscopy (MAX-DOAS) is described. It is based on using the Exponentially-Modified Gaussian (EMG) fitting method to correct the line densities along the wind direction by fitting the mobile passive DOAS NO2 vertical column density (VCD). An effective lifetime and emission rate are then determined from the parameters of the fit. The obtained results were then compared with the results acquired by fitting OMI (Ozone Monitoring Instrument) NO2 using the above fitting method, the NOx emission rate was about 195.8mol/s, 160.6mol/s, respectively. The reason why the latter less than the former may be because the low spatial resolution of the satellite.
NASA Astrophysics Data System (ADS)
Hua, Ruinian; Lei, Bingfu; Xie, Demin; Shi, Chunshan
2003-11-01
The complex fluoride LiBaF 3 and LiBaF 3: M( M=Eu, Ce) is solvothermally synthesized at 180°C and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy. In the solvothermal process, the solvents, molar ratios of initial mixtures and reaction temperature play important roles in the formation of products. The excitation and emission spectra of the LiBaF 3: M( M=Eu,Ce) have been measured by fluorescence spectrophotometer. In the LiBaF 3:Eu emission spectra, there is one sharp line emission located at 360 nm arising from f→ f transition of Eu 2+ in the host lattice, and typical doublet 5 d-4 f emission of Ce 3+ in LiBaF 3 powder is shown.
Characteristics of an under-expanded supersonic flow in arcjet plasmas
NASA Astrophysics Data System (ADS)
Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma
2018-06-01
A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.
Strong emission from nano-iron using laser-induced breakdown spectroscopy technique
NASA Astrophysics Data System (ADS)
Rashid, F. F.; ELSherbini, A. M.; Al-Muhamady, A.
2014-06-01
In this paper, we report a strong enhanced emission from laser produced plasma in air from iron oxide nano-material in comparison with the corresponding bulk samples. The enhancement strength differs with different Nd:YAG laser harmonics wavelengths. The analysis showed that such enhancement increased exponentially with the plasma evolution time, while it declines as the laser fluence increased. Experimental data analysis clearly showed that the observed enhancement is mainly associated with the change in the plasma electron density. We claim that this strong enhanced optical emission from laser produced plasma is due to the surface plasmon resonant excitation preferably on nano-oxide materials. Such experimental findings could improve the laser-induced breakdown spectroscopy sensitivity down to extremely low concentrations.
Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi
2015-03-01
Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.
Co/Cr co-doped MgGa{sub 2}O{sub 4} nanoparticles: Microstructure and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiulan, E-mail: xlduan@sdu.edu.cn; Liu, Jian; Yu, Fapeng
2016-01-15
Graphical abstract: The Ga 2p{sub 3/2} spectra consist of two peaks, corresponding to Ga{sup 3+} ions placed at octahedral and tetrahedral sites, respectively. The fraction of tetrahedral Ga{sup 3+} ions (∼1117 eV) increases with increasing doping concentration. - Highlights: • Structural and properties of Co{sup 2+}/Cr{sup 3+}: MgGa{sub 2}O{sub 4} nanoparticles were characterized. • The distribution of cations was studied using XPS. • The inversion degree increased with increasing content of doping ions. • The doping concentration has also effect on absorption and emission properties. • Optical properties of nanoparticles were discussed based on the structural results. - Abstract: MgGa{submore » 2}O{sub 4} nanoparticles co-doped with Co{sup 2+}/Cr{sup 3+} ions were prepared by a citrate sol–gel method. Their microstructure and optical properties were studied using X-ray powder diffraction (XRD), infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), absorption and fluorescence spectroscopy. MgGa{sub 2}O{sub 4} nanoparticles with the size of 10–30 nm were obtained when the precursor was annealed at 800 °C. Results indicated that Ga{sup 3+} and Mg{sup 2+} cations occupied the octahedral sites as well as the tetrahedral sites in samples. The inversion degree of Ga or Mg increased with increasing content of doping ions. Absorption spectra indicated that Co{sup 2+} and Cr{sup 3+} ions entered both the tetrahedral and octahedral sites of spinel structure by substituting Mg{sup 2+} and Ga{sup 3+} ions, respectively. Emission spectra of the co-doped MgGa{sub 2}O{sub 4} showed a broad emission band peaking at 700 and 680 nm, relevant to the emission characteristic of octahedral Cr{sup 3+} and tetrahedral Co{sup 2+} ions.« less
Ma, T.; Chen, H.; Patel, P. K.; ...
2016-08-18
The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. We describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.Published by AIP Publishing
Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R
2016-11-01
The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.
NASA Astrophysics Data System (ADS)
Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.
2016-11-01
The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.
Raman spectroscopic study of acute oxidative stress induced changes in mice skeletal muscles
NASA Astrophysics Data System (ADS)
Sriramoju, Vidyasagar; Alimova, Alexandra; Chakraverty, Rahul; Katz, A.; Gayen, S. K.; Larsson, L.; Savage, H. E.; Alfano, R. R.
2008-02-01
The oxidative stress due to free radicals is implicated in the pathogenesis of tissue damage in diseases such as muscular dystrophy, Alzheimer dementia, diabetes mellitus, and mitochrondrial myopathies. In this study, the acute oxidative stress induced changes in nicotinamide adenine dinucleotides in mouse skeletal muscles are studied in vitro using Raman spectroscopy. Mammalian skeletal muscles are rich in nicotinamide adenine dinucleotides in both reduced (NADH) and oxidized (NAD) states, as they are sites of aerobic and anaerobic respiration. The relative levels of NAD and NADH are altered in certain physiological and pathological conditions of skeletal muscles. In this study, near infrared Raman spectroscopy is used to identify the molecular fingerprints of NAD and NADH in five-week-old mice biceps femoris muscles. A Raman vibrational mode of NADH is identified in fresh skeletal muscle samples suspended in buffered normal saline. In the same samples, when treated with 1% H IIO II for 5 minutes and 15 minutes, the Raman spectrum shows molecular fingerprints specific to NAD and the disappearance of NADH vibrational bands. The NAD bands after 15 minutes were more intense than after 5 minutes. Since NADH fluoresces and NAD does not, fluorescence spectroscopy is used to confirm the results of the Raman measurements. Fluorescence spectra exhibit an emission peak at 460 nm, corresponding to NADH emission wavelength in fresh muscle samples; while the H IIO II treated muscle samples do not exhibit NADH fluorescence. Raman spectroscopy may be used to develop a minimally invasive, in vivo optical biopsy method to measure the relative NAD and NADH levels in muscle tissues. This may help to detect diseases of muscle, including mitochondrial myopathies and muscular dystrophies.
Study on GaN nanostructures: Growth and the suppression of the yellow emission
NASA Astrophysics Data System (ADS)
Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan
2018-07-01
GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.
A HIRES analysis of the FIR emission of supernova remnants
NASA Technical Reports Server (NTRS)
Wang, Zhong
1994-01-01
The high resolution (HiRes) algorithm has been used to analyze the far infrared emission of shocked gas and dust in supernova remnants. In the case of supernova remnant IC 443, we find a very good match between the resolved features in the deconvolved images and the emissions of shocked gas mapped in other wavelengths (lines of H2, CO, HCO+, and HI). Dust emission is also found to be surrounding hot bubbles of supernova remnants which are seen in soft X-ray maps. Optical spectroscopy on the emission of the shocked gas suggests a close correlation between the FIR color and local shock speed, which is a strong function of the ambient (preshock) gas density. These provide a potentially effective way to identify regions of strong shock interaction, and thus facilitate studies of kinematics and energetics in the interstellar medium.
Surface Modification of Polyimide for Improving Adhesion Strength by Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Byun, Tae Joon; Kim, Sung Il; Kim, Youn Joon; Choi, Yoon Suk; Choi, In Sik; Setsuhara, Yuichi; Geon Han, Jeon
2009-08-01
This study examined the effect of an inductively coupled plasma (ICP) treatment using an argon and helium gas mixture on the adhesion between polyimide and a copper film. Optical emission spectroscopy (OES) of the ICP revealed the emission intensity of helium and argon at various intensities with the helium mixing ratio. The treated polyimide surface was analyzed using a contact angle analyzer, Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The contact angle and RMS roughness ranged from 66 to 31° and 2.3 to 4.1 nm, respectively. XPS showed an increase in C-O bonding. The highest peel strength was 0.43 kgf/cm at a 40% of helium mixing ratio, which contained the highest level of activate species. Overall, an ICP treatment of a polyimide surface with a 40% helium gas mixture improves the adhesion strength between copper and polyimide significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freytag, Stefan, E-mail: stefan.freytag@ovgu.de; Feneberg, Martin; Berger, Christoph
2016-07-07
In{sub x}Ga{sub 1–x}N/GaN single and multi quantum well (MQW) structures with x ≈ 0.13 were investigated optically by photoreflectance, photoluminescence excitation spectroscopy, and luminescence. Clear evidence of unintentional indium incorporation into the nominal GaN barrier layers is found. The unintentional In content is found to be around 3%. Inhomogeneous distribution of In atoms occurs within the distinct quantum well (QW) layers, which is commonly described as statistical alloy fluctuation and leads to the characteristic S-shape temperature shift of emission energy. Furthermore, differences in emission energy between the first and the other QWs of a MQW stack are found experimentally. Thismore » effect is discussed with the help of model calculations and is assigned to differences in the confining potential due to unwanted indium incorporation for the upper QWs.« less
Luminescent properties of Ln3+ doped tellurite glasses containing AlF3
NASA Astrophysics Data System (ADS)
Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara
2016-09-01
The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.
Investigations of calcium spectral lines in laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Ching, Sim Yit; Tariq, Usman; Haider, Zuhaib; Tufail, Kashif; Sabri, Salwanie; Imran, Muhammad; Ali, Jalil
2017-03-01
Laser-induced breakdown spectroscopy (LIBS) is a direct and versatile analytical technique that performs the elemental composition analysis based on optical emission produced by laser induced-plasma, with a little or no sample preparation. The performance of the LIBS technique relies on the choice of experimental conditions which must be thoroughly explored and optimized for each application. The main parameters affecting the LIBS performance are the laser energy, laser wavelength, pulse duration, gate delay, geometrical set-up of the focusing and collecting optics. In LIBS quantitative analysis, the gate delay and laser energy are very important parameters that have pronounced impact on the accuracy of the elemental composition information of the materials. The determination of calcium elements in the pelletized samples was investigated and served for the purpose of optimizing the gate delay and laser energy by studying and analyzing the results from emission intensities collected and signal to background ratio (S/B) for the specified wavelengths.
Laser and spectroscopic properties of Sr[sub 5](PO[sub 4])[sub 3]F:Yb
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLoach, L.D.; Payne, S.A.; Smith, L.K.
Sr[sub 5](PO[sub 4])[sub 3]F (S-FAP) has been investigated as a new Yb-doped laser crystal belonging to the apatite structural family. The spectroscopy of the Yb[sup 3+] ion and the laser properties of the medium have been investigated. The maximum absorption cross section of Yb in S-FAP is 8.6 [times] 10[sup [minus]20] cm[sup 2], and the maximum emission cross section is 7.3 [times] 10[sup [minus]20] cm[sup 2]. The measured emission lifetime of Yb[sup 3+] is 1.26 ms. An Yb:S-FAP laser has been demonstrated with a Ti:sapphire laser pump operating at 899 nm. The Yb:S-FAP laser was measured to have slope efficienciesmore » as high as 71%. The spectroscopy and laser studies are reported, as well as certain thermal, mechanical, and optical properties.« less
NASA Astrophysics Data System (ADS)
Papovich, Casey
Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and they re-emit a large fraction of the ionization radiation from ongoing star formation. Preliminary work using archival spectra from Spitzer show that the PAH luminosity scales linearly with the SFR with smaller scatter than "gold standard" SFR tracers, such as the (dust corrected) hydrogen emission. The PAH emission becomes important because they are destroyed by the hard UV radiation in the vicinity of accreting supermassive blackholes. Therefore, this makes the PAH emission extremely powerful: it has the unique ability to measure SFRs in galaxies with active supermassive black holes, where every other SFR indicator is contaminated by emission from the supermassive black hole. This objectives for this proposal are to (1) provide a robust recalibration of the SFR from the mid-IR PAH emission features using a large sample of star-forming galaxies in the Spitzer archive; (2) demonstrate the utility of the PAHs to derive valid SFRs from JWST observations, using archival Spitzer spectroscopy for distant galaxies strongly lensed gravitationally; finally, using a large sample of galaxies with Spitzer spectroscopy spanning a large range of total luminosity and AGN activity (from pure starbursts to quasars) to (3) measure the distribution function of the luminosity of star-formation, AGN, and test how these vary with total luminosity and redshift. Theoretical models make strong predictions for this distribution function. Comparing the data to these predictions allows us to test these models directly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.
2014-09-15
Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×10{sup 9} W/cm{sup 2}. The spatially integrated plasma emission was collected and imaged on tomore » the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, P.R.
Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayyad, M. H.; Saleem, M.; Shah, M.
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sayyad, M. H.; Saleem, M.; Shah, M.; Shaikh, N. M.; Baig, M. A.
2008-05-01
In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated.
Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system
NASA Astrophysics Data System (ADS)
Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.
2004-10-01
Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.
Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W
2006-07-20
Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.
NASA Astrophysics Data System (ADS)
Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue
2004-01-01
The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.
IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon
2016-02-01
We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics maymore » be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.« less
Mid infrared emission spectroscopy of carbon plasma.
Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe
2017-01-05
Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. Copyright © 2016 Elsevier B.V. All rights reserved.
Noninvasive glucose monitoring by optical reflective and thermal emission spectroscopic measurements
NASA Astrophysics Data System (ADS)
Saetchnikov, V. A.; Tcherniavskaia, E. A.; Schiffner, G.
2005-08-01
Noninvasive method for blood glucose monitoring in cutaneous tissue based on reflective spectrometry combined with a thermal emission spectroscopy has been developed. Regression analysis, neural network algorithms and cluster analysis are used for data processing.
40 CFR 63.5545 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... measure organic HAP emissions; and (iv) PS-15 of 40 CFR part 60, appendix B, for CEMS that use Fourier transform infrared spectroscopy to measure organic HAP emissions. (2) You must conduct a performance...
Ultraviolet Spectroscopy of Tidal Disruption Flares
NASA Astrophysics Data System (ADS)
Cenko, Stephen B.
2017-08-01
When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics,TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here I present recent attempts to obtain UV spectra of tidal disruption flares. I describe the UV spectrum of ASASSN-14li, in which we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by 250-400 km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and “N-rich” quasars.
NASA Astrophysics Data System (ADS)
Idris, N.; Lahna, K.; Usmawanda, T. N.; Herman; Ramli, M.; Hedwig, R.; Marpaung, A. M.; Kurniawan, K. H.
2018-04-01
A wide coverage spectral investigation on the muscle of river calm sample has been carried out using laser-induced breakdown spectroscopy for examining the overall profile of the emission spectra from the produced plasma. The basic apparatus of LIBS system used is a Nd-YAG laser and wide coverage optical multichannel analyzer (OMA) system. The river clam samples used is collected from Panga River in Aceh Jaya Regency, Aceh, Indonesia up streaming in a mountain of Gunong Ujeun, which is used as a location of the intensive traditional mining activity. Assuming that heavy metal accumulated in the clam muscle, LIBS experiments were carried out on the muscle of the calm. The sample used was fresh muscle sliced and attached to a copper plate. Plasma was generated by focusing the laser beam on the sample surface under air surrounding gas at 1 atmosphere. It is found that there are only major elements of host organic, namely C, H, O, N and the minor element of salts can be detected from fresh the clam sample when using a high pulse laser energy under air surrounding at high pressure of 1 atmosphere. There is no emission lines from any metal can be detected. Several experimental parameters were explored to study the panoramic dynamic of the emission spectra. It is found that the lower energy and the lower pressure is better for obtaining better emission spectra showing the possibility for determination of the analyte.
Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric
2014-03-01
The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study of the physical discharge properties of a Ar/O2 DC plasma jet
NASA Astrophysics Data System (ADS)
Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.
2018-03-01
In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from {NO }γ( A2 Σ^{+} \\to {X}2 Πr ) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.
NASA Astrophysics Data System (ADS)
Casamayou-Boucau, Yannick; Ryder, Alan G.
2017-09-01
Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.
NASA Technical Reports Server (NTRS)
Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.
A spectroscopic study on the interaction between gold nanoparticles and hemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabagiu, Sorina, E-mail: sgarabagiu@itim-cj.ro
2011-12-15
Highlights: Black-Right-Pointing-Pointer The interaction was studied using UV-vis and fluorescence spectroscopy. Black-Right-Pointing-Pointer Gold nanoparticles quench the fluorescence emission of hemoglobin solution. Black-Right-Pointing-Pointer The binding and thermodynamic constants were calculated. Black-Right-Pointing-Pointer Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV-vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longermore » wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern-Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleddermann, C.B.
The sputter deposition of high-temperature superconducting thin films was studied using optical emission spectroscopy. Argon or oxygen ions generated by a Kaufman ion gun were used to sputter material from a composite target containing yttrium, barium, and copper which had been oxygen annealed. The impact of ions onto the target generates a plume of sputtered material which includes various excited-state atoms and molecules. In these studies, optical emission is detected for all the metallic components of the film as well as for metallic oxides ejected from the target. No emission due to atomic or molecular oxygen was detected, however. Variationsmore » in sputter conditions such as changes in sputter ion energy, oxygen content of the beam, and target temperature are shown to greatly affect the emission intensity, which may correlate to the characteristics of the sputtering and the quality of the films deposited. The results suggest that optical emission from the sputtered material may be useful for real-time monitoring and control of the sputter deposition process.« less
Time-resolved X-ray spectroscopies of chemical systems: New perspectives
Chergui, Majed
2016-01-01
The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon. PMID:27376102
NASA Astrophysics Data System (ADS)
Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.
2016-09-01
Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O III]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O III]λ4363 measurements.
X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser
Kroll, Thomas; Kern, Jan; Kubin, Markus; ...
2016-09-19
X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less
Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor
NASA Astrophysics Data System (ADS)
Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra
2016-12-01
ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.
NASA Astrophysics Data System (ADS)
Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md
2018-01-01
The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.
X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser
Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe
2016-01-01
X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320
Two-colour dip spectroscopy of jet-cooled molecules
NASA Astrophysics Data System (ADS)
Ito, Mitsuo
In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.
NASA Astrophysics Data System (ADS)
Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.
2015-05-01
Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.
NASA Astrophysics Data System (ADS)
Rodríguez-Carvajal, David A.; Meza-Rocha, A. N.; Caldiño, U.; Lozada-Morales, R.; Álvarez, E.; Zayas, Ma. E.
2016-11-01
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with Tesbnd Osbnd Te and Gesbnd Osbnd Ge related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370-420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s-1, respectively.
Infrared and infrared emission spectroscopy of gallium oxide alpha-GaO(OH) nanostructures.
Yang, Jing Jeanne; Zhao, Yanyan; Frost, Ray L
2009-10-01
Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide alpha-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like alpha-GaO(OH) crystals with average length of approximately 2.5 microm and width of 1.5 microm were prepared when the initial molar ratio of Ga to OH was 1:3. beta-Ga(2)O(3) nano and micro-rods were prepared through the calcination of alpha-GaO(OH). The initial morphology of alpha-GaO(OH) is retained in the beta-Ga(2)O(3) nanorods. The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the alpha-GaO(OH) nanotubes and the formation of beta-Ga(2)O(3) nanorods. Bands at around 2903 and 2836 cm(-1) are assigned to the -OH stretching vibration of alpha-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm(-1) are assigned to the Ga-OH deformation modes of alpha-GaO(OH). A significant number of bands are observed in the 620-725 cm(-1) region and are assigned to GaO stretching vibrations.
NASA Astrophysics Data System (ADS)
Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri
2018-03-01
Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.
Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi
2018-05-01
Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.
X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region
NASA Astrophysics Data System (ADS)
Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben
2009-10-01
Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.
Ruoff, Kaspar; Luginbühl, Werner; Künzli, Raphael; Bogdanov, Stefan; Bosset, Jacques Olivier; von der Ohe, Katharina; von der Ohe, Werner; Amado, Renato
2006-09-06
Front-face fluorescence spectroscopy, directly applied on honey samples, was used for the authentication of 11 unifloral and polyfloral honey types (n = 371 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis. Excitation spectra (220-400 nm) were recorded with the emission measured at 420 nm. In addition, emission spectra were recorded between 290 and 500 nm (excitation at 270 nm) as well as between 330 and 550 nm (excitation at 310 nm). A total of four different spectral data sets were considered for data analysis. Chemometric evaluation of the spectra included principal component analysis and linear discriminant analysis; the error rates of the discriminant models were calculated by using Bayes' theorem. They ranged from <0.1% (polyfloral and chestnut honeys) to 9.9% (fir honeydew honey) by using single spectral data sets and from <0.1% (metcalfa honeydew, polyfloral, and chestnut honeys) to 7.5% (lime honey) by combining two data sets. This study indicates that front-face fluorescence spectroscopy is a promising technique for the authentication of the botanical origin of honey and may also be useful for the determination of the geographical origin within the same unifloral honey type.
The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1977-01-01
Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.
2010-05-01
Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.
Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulsemore » in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.« less
Rocket Engine Plume Diagnostics at Stennis Space Center
NASA Technical Reports Server (NTRS)
Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.
2003-01-01
The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.
Langaro, Ana P; Souza, Ana K R; Morassuti, Claudio Y; Lima, Sandro M; Casagrande, Gleison A; Deflon, Victor M; Nunes, Luiz A O; Da Cunha Andrade, Luis H
2016-11-23
An uncommon emissive pseudotetranuclear compound, {[Au 2 (C 3 H 6 NS 2 ) 2 ][Au(C 3 H 6 NS 2 ) 2 ] 2 (PF 6 ) 2 }, was synthesized and characterized in terms of its structure and optical properties. The synthesis produced a crystalline compound composed of four gold atoms with two different oxidation states (Au + and Au 3+ ) in the same crystalline structure. The title complex belonged to a triclinic crystalline system involving the centrosymmetric P1̅ space group. X-ray diffractometry and vibrational spectroscopy (infrared, Raman, and SERS) were used for structural characterization of the new crystal. The vibrational spectroscopy techniques supported the X-ray diffraction results and confirmed the presence of bonds including Au-Au and Au-S. Optical characterization performed using UV-vis spectroscopy showed that under ultraviolet excitation, the emissive crystalline complex presented characteristic broad luminescent bands centered at 420 and 670 nm.
Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.
Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W
2016-09-14
The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honnicke, Marcelo Goncalves; Bianco, Leonardo M.; Ceppi, Sergio A.
The construction and characterization of a focusing X-ray spherical analyzer based on α-quartz 4more » $$\\bar{4}$$04 are presented. The performance of the analyzer was demonstrated by applying it to a high-resolution X-ray spectroscopy study of theKα 1,2emission spectrum of Ni. An analytical representation based on physical grounds was assumed to model the shape of the X-ray emission lines. Satellite structures assigned to 3dspectator hole transitions were resolved and determined as well as their relative contribution to the emission spectrum. The present results on 1s -13d -1shake probabilities support a recently proposed calculation framework based on a multi-configuration atomic model.« less
Laser Induced Breakdown Spectroscopy of Metals
NASA Astrophysics Data System (ADS)
Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo
2015-03-01
Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.
The Evolution of Neuroimaging Research and Developmental Language Disorders.
ERIC Educational Resources Information Center
Lane, Angela B.; Foundas, Anne L.; Leonard, Christiana M.
2001-01-01
This article reviews current neuroimaging literature, including computer tomography, positron emission tomography, single photon emission spectroscopy, and magnetic resonance imaging, on individuals with developmental language disorders. The review suggests a complicated relationship between cortical morphometry and language development that is…
Laser spectroscopy of a halocarbocation in the gas phase: CH2I+.
Tao, Chong; Mukarakate, Calvin; Reid, Scott A
2006-07-26
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.
Seyfert Galaxies in the Infrared
NASA Astrophysics Data System (ADS)
Ruiz-Nishiky, Milagros
1997-10-01
This thesis contains complementary aspects of the Seyfert phenomenon, each of which is analysed to bring a better understanding of present unification theories. Observations of the nuclear regions of various types of Seyfert galaxies were mostly made at infrared wavelengths which allow the study of dusty environments and provide new information on the physical conditions of these objects. For example, near infrared spectroscopy of Seyfert 2 galaxies revealed that there is a subclass of type 2 Seyferts with hot IR excess at ~3μm with broad IR emission lines suggesting that some Seyfert 2s do in fact contain a hidden Seyfert 1 nucleus. Additional spectropolarimetry showed that the scattering screens, postulated in the standard model, are not always present in Seyfert 2s. At mid infrared wavelengths, it was found that the 10 μm nuclear emission of Seyferts with broad emission lines is intrinsically brighter than that of Seyferts with no broad lines. The extended 10μm emission shows that Seyfert 2 galaxies present enhanced star-formation when compared to Seyfert 1s. Both results pose obstacles for present unification ideas and I discuss possible interpretations to these observations. Seyfert galaxies were also observed at radio wavelengths to study their large scale emission of 1-0 CO. Surprisingly, this emission usually related with star formation activity was found to be similar in both types of Seyfert galaxies and therefore does not explain why Seyfert 2 galaxies have enhanced star formation as concluded in the 10μm study. A study of galaxy morphology and companions in this set of Seyferts shows at a significant statistical level that Seyfert 2s present a higher incidence of asymmetric morphologies compared to Seyfert 1s and field galaxies, and therefore are undergoing gravitational perturbations which may induce star formation. Near infrared spectroscopy of a large sample of Seyfert galaxies is analysed to study the excitation mechanisms of (FeII) and H2 lines in the NLR of Seyfert galaxies, a subject which is in great debate at present. Here I present some results indicating that shock excitation is likely, but not always, the dominant mechanism that excites these IR lines.
Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy
NASA Astrophysics Data System (ADS)
Aghababaei Nejad, Mahboobeh; Soltanolkotabi, Mahmood; Eslami Majd, Abdollah
2018-01-01
Polarization emission from aluminum alloy by ns laser-induced breakdown spectroscopy (LIBS) is carefully investigated in air using a non-gated CCD camera at integration time of 100 ms. First, the analysis reveals that the small polarization degree is the same for both continuum and discrete line emission spectra which also increases slowly with wavelength growth; second, laser fluence in the range of 347.81-550.10 J/cm2 has no significant changes in plasma polarization; and third, larger polarization in comparison with polarization introduced by preferential reflection of emission from the target surface (Fresnel reflectivity) is observed. The residual fluctuations of the anisotropic recombining plasma and the dynamic polarization of an ion's core are suggested as the possible main sources for observed polarized radiation in ns-LIBS.
Electrolytic cell-free 57Co deposition for emission Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Zyabkin, Dmitry V.; Procházka, Vít; Miglierini, Marcel; Mašláň, Miroslav
2018-05-01
We have developed a simple, inexpensive and efficient method for an electrochemical preparation of samples for emission Mössbauer spectroscopy (EMS) and Mössbauer sources. The proposed electrolytic deposition procedure does not require any special setup, not even an electrolytic cell. It utilizes solely an electrode with a droplet of electrolyte on its surface and the second electrode sunk into the droplet. Its performance is demonstrated using two examples, a metallic glass and a Cu stripe. We present a detailed description of the deposition procedure and resulting emission Mössbauer spectra for both samples. In the case of a Cu stripe, we have performed EMS measurements at different stages of heat-treatment, which are required for the production of Mössbauer sources with the copper matrix.
Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media
NASA Astrophysics Data System (ADS)
Cerussi, Albert Edward
1999-09-01
In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of ethidium bromide increases by an order of magnitude upon binding to DNA. In this thesis, I demonstrated that the fluorescence photon migration model is capable of accurately determining the somatic cell count (SCC) in a milk sample. Although meant as a demonstration of fluorescence tissue spectroscopy, this specific problem has important implications for the dairy industry's warfare against subclinical mastitis (i.e., mammary gland inflammation), since the SCC is often used as an indication of bovine infection.
Persistence of uranium emission in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaHaye, N. L.; Harilal, S. S., E-mail: hari@purdue.edu; Diwakar, P. K.
2014-04-28
Detection of uranium and other nuclear materials is of the utmost importance for nuclear safeguards and security. Optical emission spectroscopy of laser-ablated U plasmas has been presented as a stand-off, portable analytical method that can yield accurate qualitative and quantitative elemental analysis of a variety of samples. In this study, optimal laser ablation and ambient conditions are explored, as well as the spatio-temporal evolution of the plasma for spectral analysis of excited U species in a glass matrix. Various Ar pressures were explored to investigate the role that plasma collisional effects and confinement have on spectral line emission enhancement andmore » persistence. The plasma-ambient gas interaction was also investigated using spatially resolved spectra and optical time-of-flight measurements. The results indicate that ambient conditions play a very important role in spectral emission intensity as well as the persistence of excited neutral U emission lines, influencing the appropriate spectral acquisition conditions.« less
Emission of positronium in a nanometric PMMA film
NASA Astrophysics Data System (ADS)
Palacio, C. A.; De Baerdemaeker, J.; Van Thourhout, D.; Dauwe, C.
2008-10-01
Positron beam experiments have been performed for the first time on a self-supporting polymethyl metacrylate (PMMA) film of 310 nm-thick made by spin coating. The positronium (Ps) emission from the PMMA surface is studied as a function of the positron implantation energy by using Doppler profile spectroscopy and Compton-to-peak ratio analysis. When the sample and the Ge-detector are perpendicular to the positron beam, the emission of para-positronium ( p-Ps) is detected as a narrow central peak. By rotating the sample 45° with respect to the beam, the emission of p-Ps is detected as a blue-shifted fly-away peak. The bulk Ps fraction, the efficiency for the emission of Ps by picking up an electron from the surface, and the diffusion lengths of positrons (thermal and or epithermal), p-Ps and ortho-positronium ( o-Ps) are obtained.
NASA Astrophysics Data System (ADS)
Hashemi, Hamed; Namazi, Hassan
2018-07-01
A new blue fluorescent surface modified graphene oxide (GO) by 6-(5-bromothiophen-2-yl) benzo[c][1,2,5]selenadiazole-5-carboxylic acid (TB) denoted as (GO-TB) was synthesized. The obtained hybrid was characterized by Scanning Electron Microscope (SEM/EDS); Brunauer-Emmett-Teller (BET); X-Ray Diffraction Spectroscopy (XRD); X-Ray Photoelectron Spectroscopy (XPS); UV-Vis Absorption Spectroscopy, and Fourier Transformed Infrared Spectroscopy (FTIR). The synthesized TB moiety displayed orange emission around 590 nm, while GO-TB exhibited a blue photoluminescence around 431 and 159 nm blue shift of photoluminescence. Doxorubicin immobilized on the hybrid surface up to 93%, and the release behavior in three different pHs was investigated. The release profile indicated a pH-dependent liberation with Fickian diffusion mechanism. The cytotoxicity of the hybrid was studied and the IC50 value for the hybrid was 5.16 µg/ml.
NASA Astrophysics Data System (ADS)
Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.
2018-01-01
In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).
Lif and Raman Spectroscopy in Undergraduate Labs Using Green Diode-Pumped Solid-State Lasers
NASA Astrophysics Data System (ADS)
Gray, Jeffrey A.
2015-06-01
Electronic spectroscopy of molecular iodine vapor has long been studied in undergraduate physical chemistry teaching laboratories, but the effectiveness of emission work has typically been limited by availability of instrumentation. This talk shows how to make inexpensive green diode-pumped solid-state (DPSS) lasers easily tunable for efficient, selective excitation of I2. Miniature fiber-optic spectrometers then enable rotationally resolved fluorescence spectroscopy up to v" = 42 near 900 nm with acquisition times of less than one minute. DPSS lasers are also versatile excitation sources for vibrational Raman spectroscopy, which is another common exercise that has been limited by lack of proper instrumentation in the teaching laboratory. This talk shows how to construct a simple accessory for commercial fluorimeters to record vibrational Raman spectra and depolarization ratios for CCl4 and C2Cl4 as part of a lab exercise featuring molecular symmetry.
NASA Astrophysics Data System (ADS)
Ferreira, Edilene; Ferreira, Ednaldo; Villas-Boas, Paulino; Senesi, Giorgio; Carvalho, Camila; Romano, Renan; Martin-Neto, Ladislau; Milori, Debora
2014-05-01
Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration in soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of Laser-Induced Breakdown Spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. In a LIBS experiment a high-energy laser pulse irradiates the sample and the energy absorbed by the sample causes a local heating of the material that results in its evaporation or sublimation. The high temperature of the ablated material generates a small plasma plume and, as a result of the plasma temperature, the ablated material breaks down into excited atomic and ionic species. During the plasma cooling, the excited species return to their lower energy state emitting electromagnetic radiation at characteristic wavelengths. In a LIBS spectrum the measurement of the characteristic emission wavelengths provides qualitative information about the elemental composition of the sample, whereas the intensities of the signals can be used for quantitative determinations. The LIBS potential for the analysis of organic compounds has been explored recently by using the emission lines of elements that are commonly present in organic compounds, such as the predominant C, H, P, O and N. LIBS elemental emissions were correlated to fluorescence emissions determined by Laser-Induced Fluorescence Spectroscopy (LIFS), which was considered as the reference technique. The HD of SOM determined by LIBS showed a strong correlation to that determined by LIFS, suggesting a great potential of LIBS for this novel application.
Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids
2011-07-01
Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6
NASA Astrophysics Data System (ADS)
Pacold, Joseph I.
Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution having a strong charge-transfer character. A second primary result comes from an an x-ray excited optical luminescence (XEOL) study that demonstrates, for the first time, that the high flux of modern synchrotron light sources can induce high fractional populations of excited states in trivalent lanthanide phosphors. In this work we have identified the leading-order nonlinear-response mechanism by drawing on strong similarities between XEOL and cathodoluminescence. These results establish the groundwork for studies that would allow deeper inquiry into energy-transfer mechanisms through time-resolved x-ray pump/optical-probe spectroscopies, through time-resolved x-ray emission spectroscopy, or through quantifying of higher-order nonlinear effects at further-enhanced fractional excitation levels. The above scientific results are augmented by a supporting effort in instrumental methodology. This includes the development of high-efficiency x-ray emission spectrometers and their use in collaborations to study pressure-induced changes in f-electron physics and to characterize the intermediate states that occur after photoexcitation of the photosystem-II protein.
NASA Astrophysics Data System (ADS)
De Lucia, Frank C.; Gottfried, Jennifer L.
2013-10-01
A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.
Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study.
Battisti, Carla; Tarugi, Patrizla; Dotti, Maria Teresa; De Stefano, Nicola; Vattimo, Angelo; Chierichetti, Francesea; Calandra, Sebastiano; Federico, Antonio
2003-11-01
We report on a patient with adult-onset Niemann-Pick type C (NPC) disease, carrying the mutations P1007 and I1061T in the NPC1 gene, presenting with marked psychiatric changes followed by dystonia and cognitive impairment. Filipin staining, single photon emission computed tomography perfusional, positron emission tomography metabolic, conventional magnetic resonance imaging, and magnetic resonance spectroscopy findings suggested a pathophysiological correlation with phenotype expression. This case expands the clinical and genetic spectrum of the rare adult-onset NPC disease phenotype.
Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma
NASA Astrophysics Data System (ADS)
Parigger, Christian G.; Woods, Alexander C.
2017-03-01
This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.
NASA Astrophysics Data System (ADS)
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by 1H NMR, 13C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.
Temporally resolved plasma spectroscopy for analyzing natural gas components
NASA Astrophysics Data System (ADS)
Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito
2016-09-01
Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.
Investigating temperature effects on extra virgin olive oil using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Saleem, M.; Ahmad, Naveed; Ali, H.; Bilal, M.; Khan, Saranjam; Ullah, Rahat; Ahmed, M.; Mahmood, S.
2017-12-01
The potential of fluorescence spectroscopy has been utilized to study the heating effects on extra virgin olive oil (EVOO). Through a series of experiments, a temperature range from 140 °C - 150 °C has been found where cooking with EVOO is possible without destroying its natural ingredients. Fluorescence emission spectra from all heated and non-heated EVOO samples were recorded using an excitation source at 350 nm, where emission bands in non-heated EVOO at 380, 440, 455, and 525 nm are labelled for vitamin E and a band at 673 nm is assigned for chlorophyll a. The emission band at 525 nm is also responsible for beta carotenoids (vitamin A). As a result of heating, prominent intensity variations have been observed in all spectral bands, but it is particularly affected at 525 nm, indicating the deterioration of vitamin E and beta carotenoids. However, if the temperature of oil can be maintained in the above defined range, then frying food with EVOO is possible by preserving its natural ingredients. The spectral variations resulting from the heating effects have been further highlighted by using principal component analysis for classification purposes.
Rich, Christopher C; Lindberg, Kathryn A; Krummel, Amber T
2017-04-06
We show how heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy can discriminate between the excitonic and monomeric properties of a helical, nanotube molecular aggregate by monitoring the phase of the VSFG emission associated with different polarization configurations. By keeping track of the "phase acrobatics" associated with the added phase of the nonresonant SFG emission of gold as well as that of the double-resonance conditions achieved when the SF frequency is resonant with an electronic exciton transition, we discover that for aggregates of tetra(sulfonatophenyl)porphyrin (TSPP) the PPP-polarized spectra exhibit double-resonance conditions while SSP-polarized spectra exhibit resonance only with the ground-state vibration. Along with observed shifts in the vibrational frequency, intensity differences, and sign flips in the imaginary second-order susceptibility, χ s,Im (2) , we conclude that PPP-polarized HD-VSFG spectra reflect the delocalized, excitonic nature of the molecular aggregate, while the SSP-polarized HD-VSFG spectra measure the localized, monomeric nature of the molecular subunits. It is implied from this study that HD-VSFG spectroscopy can be uniquely utilized to measure the excitonic and monomeric properties associated with molecular assemblies for a single sample.
Optical studies of the X-ray transient XTE J2123-058 - II. Phase-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Hynes, R. I.; Charles, P. A.; Haswell, C. A.; Casares, J.; Zurita, C.; Serra-Ricart, M.
2001-06-01
We present time-resolved spectroscopy of the soft X-ray transient XTEJ2123-058 in outburst. A useful spectral coverage of 3700-6700Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ~9000Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh-Jeans tail of a hot blackbody spectrum. The strongest spectral lines are Heii 4686Å and Ciii/Niii 4640Å (Bowen blend) in emission. Their relative strengths suggest that XTEJ2123-058 was formed in the Galactic plane, not in the halo. Other weak emission lines of Heii and Civ are present, and Balmer lines show a complex structure, blended with Heii. Heii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. Hα shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTEJ2123-058 can be explained by the same models invoked for those systems.
Detecting Circumstellar ``Hydrogen Wall'' Emission Around a Nearby, Sun-like Star
NASA Astrophysics Data System (ADS)
Wood, Brian
1999-07-01
Using the long-slit spectroscopy capabilities of STIS, we propose to try to detect for the first time nebular Lyman- Alpha emission surrounding a Sun-like star produced by the interaction of its stellar wind with the ISM. Such ``hydrogen walls'' have likely been detected in absorption around the Sun and several other nearby stars using GHRS Lyman-Alpha spectra. However, most of these detections are tentative due to the difficulty in separating the H-wall absorption from the interstellar H I absorption. Furthermore, even if one accepts the reality of the detected hot H I absorption components, it is impossible to prove that circumstellar material is in fact responsible. We propose to circumvent these difficulties by detecting a hydrogen wall in emission around 40 Eri A, which is one of the stars for which a tentative H-wall detection already exists. A successful detection of the expected circumstellar emission would validate the previous Lyman-Alpha aborption line studies, a nd the combined spectroscopic and spatial information provided by long-slit spectroscopy would contribute valuable new information on the stellar wind of 40 Eri A and how it interacts with the ISM, especially when compared with models that we will construct of 40 Eri A's ``astrosphere.'' This new information includes a direct measurement of the distance to the stellar bow shock, information that we do not possess for any other nearby star, including the Sun.
NASA Astrophysics Data System (ADS)
Hampton, E. J.; Medling, A. M.; Groves, B.; Kewley, L.; Dopita, M.; Davies, R.; Ho, I.-T.; Kaasinen, M.; Leslie, S.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Allen, J.; Bland-Hawthorn, J.; Brough, S.; Bryant, J. J.; Croom, S.; Goodwin, M.; Green, A.; Konstantantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Owers, M. S.; Richards, S. N.; Shastri, P.
2017-09-01
Integral field spectroscopy (IFS) surveys are changing how we study galaxies and are creating vastly more spectroscopic data available than before. The large number of resulting spectra makes visual inspection of emission line fits an infeasible option. Here, we present a demonstration of an artificial neural network (ANN) that determines the number of Gaussian components needed to describe the complex emission line velocity structures observed in galaxies after being fit with lzifu. We apply our ANN to IFS data for the S7 survey, conducted using the Wide Field Spectrograph on the ANU 2.3 m Telescope, and the SAMI Galaxy Survey, conducted using the SAMI instrument on the 4 m Anglo-Australian Telescope. We use the spectral fitting code lzifu (Ho et al. 2016a) to fit the emission line spectra of individual spaxels from S7 and SAMI data cubes with 1-, 2- and 3-Gaussian components. We demonstrate that using an ANN is comparable to astronomers performing the same visual inspection task of determining the best number of Gaussian components to describe the physical processes in galaxies. The advantage of our ANN is that it is capable of processing the spectra for thousands of galaxies in minutes, as compared to the years this task would take individual astronomers to complete by visual inspection.
Holden, William M.; Hoidn, Oliver R.; Ditter, Alexander S.; ...
2017-07-27
X-ray emission spectroscopy is emerging as an important complement to x-ray absorption fine structure spectroscopy, providing a characterization of the occupied electronic density of states local to the species of interest. Here, we present details of the design and performance of a compact x-ray emission spectrometer that uses a dispersive refocusing Rowland (DRR) circle geometry to achieve excellent performance for the 2-2.5 keV range, i.e., especially for the K-edge emission from sulfur and phosphorous. The DRR approach allows high energy resolution even for unfocused x-ray sources. This property enables high count rates in laboratory studies, approaching those of insertion-device beamlinesmore » at third-generation synchrotrons, despite use of only a low-powered, conventional x-ray tube. The spectrometer, whose overall scale is set by use of a 10-cm diameter Rowland circle and a new small-pixel complementary metal-oxide-semiconductor x-ray camera, is easily portable to synchrotron or x-ray free electron laser beamlines. Photometrics from measurements at the Advanced Light Source show excellent overall instrumental efficiency. In addition, the compact size of this instrument lends itself to future multiplexing to gain large factors in net collection efficiency or its implementation in controlled gas gloveboxes either in the lab or in an endstation.« less
NASA Technical Reports Server (NTRS)
Coulter, D. R.; Liang, R. H.; Di Stefano, S.; Moacanin, J.; Gupta, A.
1982-01-01
Transient emission studies following pulse radiolysis of solid poly(1-vinyl naphthalene) show existence of excited monomers and two excimers. Quenching experiments indicate that excimers are not formed directly by recombination of ions but probably by trapping of migrating monomeric excitation in preformed traps whose density is approximately one in 1000.
Grandhi, G Krishnamurthy; Tomar, Renu; Viswanatha, Ranjani
2012-11-27
Efficiency of the quantum dots based solar cells relies on charge transfer at the interface and hence on the relative alignment of the energy levels between materials. Despite a high demand to obtain size specific band offsets, very few studies exist where meticulous methods like photoelectron spectroscopy are used. However, semiconductor charging during measurements could result in indirect and possibly inaccurate measurements due to shift in valence and conduction band position. Here, in this report, we devise a novel method to study the band offsets by associating an atomic like state with the conduction band and hence obtaining an internal standard. This is achieved by doping copper in semiconductor nanocrystals, leading to the development of a characteristic intragap Cu-related emission feature assigned to the transition from the conduction band to the atomic-like Cu d state. Using this transition we determine the relative band alignment of II-VI semiconductor nanocrystals as a function of size in the below 10 nm size regime. The results are in excellent agreement with the available photoelectron spectroscopy data as well as the theoretical data. We further use this technique to study the excitonic band edge variation as a function of temperature in CdSe nanocrystals. Additionally, surface electronic structure of CdSe nanocrystals have been studied using quantitative measurements of absolute quantum yield and PL decay studies of the Cu related emission and the excitonic emission. The role of TOP and oleic acid as surface passivating ligand molecules has been studied for the first time.
Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.
Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E
2018-01-01
The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.
40-in. OMS Kevlar(Registered Trademark) COPV S/N 007 Stress Rupture Test NDE
NASA Technical Reports Server (NTRS)
Saulsberry, Regor; Greene, Nate; Forth, Scott; Leifeste, Mark; Gallus, Tim; Yoder, Tommy; Keddy, Chris; Mandaras, Eric; Wincheski, Buzz; Williams, Philip;
2010-01-01
The presentation examines pretest nondestructive evaluation (NDE), including external/internal visual inspection, raman spectroscopy, laser shearography, and laser profilometry; real-time NDE including eddy current, acoustic emission (AE), and real-time portable raman spectroscopy; and AE application to carbon/epoxy composite overwrapped pressure vessels.
Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy.
Holden, William M; Seidler, Gerald T; Cheah, Singfoong
2018-05-30
The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33 S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.
Sulfur Speciation in Biochars by Very High Resolution Benchtop Ka X-Ray Emission Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, Singfoong; Holden, William M.; Seidler, Gerald T.
The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given bymore » benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Ka XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.« less
NASA Astrophysics Data System (ADS)
Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.
2012-10-01
Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.
Ruoff, Kaspar; Karoui, Romdhane; Dufour, Eric; Luginbühl, Werner; Bosset, Jacques-Olivier; Bogdanov, Stefan; Amado, Renato
2005-03-09
The potential of front-face fluorescence spectroscopy for the authentication of unifloral and polyfloral honey types (n = 57 samples) previously classified using traditional methods such as chemical, pollen, and sensory analysis was evaluated. Emission spectra were recorded between 280 and 480 nm (excit: 250 nm), 305 and 500 nm (excit: 290 nm), and 380 and 600 nm (excit: 373 nm) directly on honey samples. In addition, excitation spectra (290-440 nm) were recorded with the emission measured at 450 nm. A total of four different spectral data sets were considered for data analysis. After normalization of the spectra, chemometric evaluation of the spectral data was carried out using principal component analysis (PCA) and linear discriminant analysis (LDA). The rate of correct classification ranged from 36% to 100% by using single spectral data sets (250, 290, 373, 450 nm) and from 73% to 100% by combining these four data sets. For alpine polyfloral honey and the unifloral varieties investigated (acacia, alpine rose, honeydew, chestnut, and rape), correct classification ranged from 96% to 100%. This preliminary study indicates that front-face fluorescence spectroscopy is a promising technique for the authentication of the botanical origin of honey. It is nondestructive, rapid, easy to use, and inexpensive. The use of additional excitation wavelengths between 320 and 440 nm could increase the correct classification of the less characteristic fluorescent varieties.
NASA Technical Reports Server (NTRS)
Lan, Guang; Tholl, Hans Dieter; Farley, John W.
1991-01-01
Velocity-modulation spectroscopy is an established technique for performing laser absorption spectroscopy of molecular ions in a discharge. However, such experiments are often plagued by a coherent background signal arising from emission from the discharge or from electronic pickup. Fluctuations in the background can obscure the desired signal. A simple technique using amplitude modulation of the laser and two lock-in amplifiers in series to detect the signal is demonstrated. The background and background fluctuations are thereby eliminated, facilitating the detection of molecular ions.
Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D
2016-10-12
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
NASA Astrophysics Data System (ADS)
Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.
2016-12-01
Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future, examining the tradeoffs and dynamics between methane and carbon dioxide emissions will allow us to further understand the propagation and evolution of these large greenhouse gas emitters.
Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance
NASA Astrophysics Data System (ADS)
Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan
2016-06-01
We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.
Label-free pathological evaluation of grade 3 cancer using Stokes shift spectroscopy
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.
2016-03-01
In this study, Stokes shift spectroscopy (S3) is used for measuring the aggressiveness of malignant tumors. S3 is an optical tool which utilizes the difference between the emission wavelength (λem) and the absorption wavelength (λabs) (the Stokes shift) to give a fixed wavelength shift (Δλs).Our analysis of tumor samples using S3 shows grade 3 (high grade) cancers consistently have increased relative tryptophan content compared to grade 1 or 2 tumors. This technique may be a useful tool in the evaluation of a patient's cancer.
NASA Astrophysics Data System (ADS)
Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas
2011-12-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.
NASA Astrophysics Data System (ADS)
Ksenofontov, M. A.; Bobkova, E. Yu.; Shundalau, M. B.; Ostrovskaya, L. E.; Vasil'eva, V. S.
2017-11-01
The interaction of the functional groups in the polyurethane foam adsorbent Penopurm® with the cations of some 3d-metals upon their extraction from aqueous solutions has been studied by atomic emission spectroscopy, UV/Vis and vibrational IR spectroscopy, and quantum chemical simulation using density functional theory. Penopurm® absorbs 3d-metal cations from aqueous solutions in the pH range 5-7. Some spectral criteria have been found indicating a predominant interaction of Ni2+ ions with various fragments of the polyurethane foam structure.
Raman spectroscopy for the control of the atmospheric bioindicators
NASA Astrophysics Data System (ADS)
Timchenko, E. V.; Timchenko, P. E.; Shamina, L. A.; Zherdeva, L. A.
2015-09-01
Experimental studies of optical parameters of different atmospheric bioindicators (arboreous and terricolous types of plants) have been performed with Raman spectroscopy. The change in the optical parameters has been explored for the objects under direct light exposure, as well as for the objects placed in the shade. The age peculiarities of the bioindicators have also been taken into consideration. It was established that the statistical variability of optical parameters for arboreous bioindicators was from 9% to 15% and for plants from 4% to 8.7%. On the basis of these results dandelion (Taraxacum) was chosen as a bioindicator of atmospheric emissions.
NASA Astrophysics Data System (ADS)
Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.
2017-10-01
At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.
NEAR-INFRARED SPECTROSCOPY OF THE TYPE IIn SN 2010jl: EVIDENCE FOR HIGH VELOCITY EJECTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borish, H. Jacob; Huang, Chenliang; Chevalier, Roger A.
2015-03-01
The Type IIn supernova SN 2010jl was relatively nearby and luminous, allowing detailed studies of the near-infrared (NIR) emission. We present 1-2.4 μm spectroscopy over the age range of 36-565 days from the earliest detection of the supernova. On day 36, the H lines show an unresolved narrow emission component along with a symmetric broad component that can be modeled as the result of electron scattering by a thermal distribution of electrons. Over the next hundreds of days, the broad components of the H lines shift to the blue by 700 km s{sup –1}, as is also observed in optical lines.more » The narrow lines do not show a shift, indicating they originate in a different region. He I λ10830 and λ20587 lines both show an asymmetric broad emission component, with a shoulder on the blue side that varies in prominence and velocity from –5500 km s{sup –1} on day 108 to –4000 km s{sup –1} on day 219. This component may be associated with the higher velocity flow indicated by X-ray observations of the supernova. The absence of the feature in the H lines suggests that this is from a He-rich ejecta flow. The He I λ10830 feature has a narrow P Cygni line, with absorption extending to ∼100 km s{sup –1} and strengthening over the first 200 days, and an emission component which weakens with time. At day 403, the continuum emission becomes dominated by a blackbody spectrum with a temperature of ∼1900 K, suggestive of dust emission.« less
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Yang, Clayton S.-C.; Jin, Feng; Jia, Ken; Brown, EiEi; Hömmerich, Uwe; Jia, Yingqing; Trivedi, Sudhir; Wijewarnasuriya, Priyalal; Decuir, Eric; Samuels, Alan C.
2016-09-01
Recently, a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing ( 1-5 second) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the longwave infrarμed region (LWIR, 5.6 to 10 μm) has been developed. Similar to the conventional Ultraviolet (UV)-Visible (Vis) LIBS, a broad band emission spectrum of condensed phase samples covering the entire 5.6 to 10 μm region can be acquired from just a single laser-induced micro-plasma or averaging a few single laser-induced micro-plasmas. This setup has enabled probing samples "as is" without the need for extensive sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement. A Martian regolith simulant (JSC Mars-1A) was studied with this novel Vis + LWIR LIBS array system. A broad SiO2 vibrational emission feature around 9.5 μm and multiple strong emission features between 6.5 to 8 μm can be clearly identified. The 6.5 to 8 μm features are possibly from biological impurities of the simulant. JSC Mars-1A samples with organic methyl salicylate (MeS, wintergreen oil) and Dimethyl methyl-phosphonate (DMMP) residues were also probed using the LWIR LIBS array system. Both molecular spectral signature around 6.5 μm and 9.5 μm of Martian regolith simulant and MeS and DMMP molecular signature emissions, such as Aromatic CC stretching band at 7.5 μm, C-CH3O asymmetric deformation at 7.6 μm, and P=O stretching band at 7.9 μm, are clearly observed from the LIBS emission spectra in the LWIR region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter
2014-08-10
We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We aremore » able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.« less
Infrared astronomy research and high altitude observations
NASA Technical Reports Server (NTRS)
Jones, B.; Stein, W. A.; Willner, S. P.; Soifer, B. T.
1984-01-01
Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects.
The paper describes a new approach to quantify emissions from area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) technique and computed tomography (CT) technique. In this study, an...
Lithium Oxysilicate Compounds Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apblett, Christopher A.; Coyle, Jaclyn
In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopymore » (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.« less
NASA Astrophysics Data System (ADS)
Hridya, S.; Kavitha, V. S.; Chalana, S. R.; Reshmi Krishnan, R.; Sreeja Sreedharan, R.; Suresh, S.; Nampoori, V. P. N.; Sankararaman, S.; Prabhu, Radhakrishna; Mahadevan Pillai, V. P.
2017-11-01
Barium tungstate films with different Dy3+ doping concentrations, namely 0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%, are deposited on cleaned quartz substrate by radio frequency magnetron sputtering technique and the prepared films are annealed at a temperature of 700°C. The structural, morphological and optical properties of the annealed films are studied using techniques such as x-ray diffraction (XRD), micro-Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and photoluminescence spectroscopy. XRD analysis shows that all the films are well-crystallized in nature with a monoclinic barium tungstate phase. The presence of characteristic modes of the tungstate group in the Raman spectra supports the formation of the barium tungstate phase in the films. Scanning electron microscopic images of the films present a uniform dense distribution of well-defined grains with different sizes. All the doped films present a broad emission in the 390-500 nm region and its intensity increases up to 3 wt.% and thereafter decreases due to usual concentration quenching.
NASA Astrophysics Data System (ADS)
Suliyanti, M. M.; Hidayah, A. N.; Isnaeni
2017-04-01
Preliminary analysis of lithium in Lithium Iron Phosphate (LiFePO4) powder using laser induced plasma spectroscopy at low pressure had been done. Recently, LiFePO4-based batteries are widely used in most electric cars and bikes due to less toxic. However, lithium (Li) element is very difficult to detect since it is a very light element. In this work, we used a Nd:YAG laser (1064 nm wavelength, 5 ns pulse width at 10 Hz repetition rate) that was focused on LiFePO4 sample at low pressure. The main Li peak emission in LiFePO4 powder and sheet can be easily detected using this technique. We report the results of experimental study on Li element emission lines at wavelength 460.18 nm, 610.37 nm and 670.83 nm using 2 mJ and 12 mJ laser irradiation at 5 Torr and 35 Torr air atmosphere. The results of this study showed promising application of laser-induced plasma spectroscopy to detect and analyse Li in various samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Shah, N. P.; Taylor, N.
2016-11-01
This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent andmore » serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Shah, N. P.; Taylor, N.
2016-10-02
This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plas-ma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and servesmore » as the basis for signal tracking. LA-OES signal and per-sistence vary negligibly between the test gases (air and N 2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. In conclusion, investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.« less
NASA Astrophysics Data System (ADS)
Rehan, Imran; Khan, M. Zubair; Ali, Irfan; Rehan, Kamran; Sultana, Sabiha; Shah, Sher
2018-03-01
The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca-I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802-7849 K, and (1.2-3.9) × 1017 cm- 3, respectively, in the studied irradiance range of (1.2-12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.
Polychromatic spectral pattern analysis of ultra-weak photon emissions from a human body.
Kobayashi, Masaki; Iwasa, Torai; Tada, Mika
2016-06-01
Ultra-weak photon emission (UPE), often designated as biophoton emission, is generally observed in a wide range of living organisms, including human beings. This phenomenon is closely associated with reactive oxygen species (ROS) generated during normal metabolic processes and pathological states induced by oxidative stress. Application of UPE extracting the pathophysiological information has long been anticipated because of its potential non-invasiveness, facilitating its diagnostic use. Nevertheless, its weak intensity and UPE mechanism complexity hinder its use for practical applications. Spectroscopy is crucially important for UPE analysis. However, filter-type spectroscopy technique, used as a conventional method for UPE analysis, intrinsically limits its performance because of its monochromatic scheme. To overcome the shortcomings of conventional methods, the authors developed a polychromatic spectroscopy system for UPE spectral pattern analysis. It is based on a highly efficient lens systems and a transmission-type diffraction grating with a highly sensitive, cooled, charge-coupled-device (CCD) camera. Spectral pattern analysis of the human body was done for a fingertip using the developed system. The UPE spectrum covers the spectral range of 450-750nm, with a dominant emission region of 570-670nm. The primary peak is located in the 600-650nm region. Furthermore, application of UPE source exploration was demonstrated with the chemiluminescence spectrum of melanin and coexistence with oxidized linoleic acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W
2013-05-01
Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.
NASA Astrophysics Data System (ADS)
Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi
2001-12-01
The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.
Primout, M.; Babonneau, D.; Jacquet, L.; ...
2015-11-10
We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the N e, T e and T i characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently bymore » the radiation-hydrodynamics transport code FCI2.« less
Booth, Corwin H.; Medling, S. A.; Tobin, J. G.; ...
2016-07-15
Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the L α1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu 2Si 2. By comparing to suitable reference materials such as UF 4, UCd 11, and α-U, we conclude that the 5f orbital in URu 2Si 2 is at least partially delocalized with n f=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring amore » localized f 2 ground state.« less
NASA Astrophysics Data System (ADS)
Karimipour, M.; Izadian, L.; Molaei, M.
2018-02-01
CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.
Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1
NASA Astrophysics Data System (ADS)
Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh
2018-04-01
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.
Transient Infrared Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Jones, Roger W.; McClelland, John F.
1989-12-01
Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a very high sample speed would be required to attain a diffusion time of 100 μs. Accordingly, pulsed-laser TIRES generally produces spectra suffering from less self-absorption than cw-laser TIRES does, but the cw-laser technique is technically much simpler since no synchronization is required.
NASA Astrophysics Data System (ADS)
Yang, A. L.; Song, H. P.; Liang, D. C.; Wei, H. Y.; Liu, X. L.; Jin, P.; Qin, X. B.; Yang, S. Y.; Zhu, Q. S.; Wang, Z. G.
2010-04-01
Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li et al. [Appl. Phys. Lett. 91, 232115 (2007)].
NASA Astrophysics Data System (ADS)
Thorstensen, J. R.; Vennes, S.
1993-12-01
The binary system EUVE J2013+40.0 (= RE 2013+400) was discovered in the EUV-selected sample of white dwarfs identified in the course of the ROSAT Wide Field Camera (WFC) all-sky survey (Pounds et al. 1993, MNRAS, 260, 77). The intense extreme ultraviolet (EUV) emission from the hot white dwarf (DAO type) was also detected in the course of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (Bowyer et al. 1993, ApJ, submitted), and the subsequent optical identification campaign suggested the association of EUVE J2013+40.0 with the Feige 24 class of binary systems (see Vennes & Thorstensen, these proceedings). Such systems consist of a hot H-rich white dwarf (DA/DAO) and a red dwarf companion (dM) and are characterized by strong, narrow, variable Balmer emission. We obtained spectroscopy with 4 Angstroms resolution at the Michigan-Dartmouth-MIT Hiltner 2.4 m, covering the Hα and Hβ range. The Hα emission line velocity and equivalent widths varied with a period of 0.708 +/- 0.003 d; the velocity semiamplitude is 89 +/- 3 km s(-1) . The emission equivalent width reaches maximum strength 0.251 +/- 0.007 cycle after maximum emission-line velocity, that is, when the emission source reaches superior conjunction. This is just as expected if the emission arises from reprocessing of the EUV radiation incident upon the face of the dM star facing the white dwarf, as proposed for Feige 24 by Thorstensen et al. (1978, ApJ, 223, 260). EUVE J2013+40.0 is one of a handful of WD+dM binary systems in which the illumination effect is observed with unambiguous clarity. By comparing Feige 24 and EUVE J2013+40.0, and modelling the white dwarf EUV emission and red dwarf Balmer emission, we constrain the orbital inclinations. Additional spectroscopy of EUVE J2013+40.0 is being scheduled to determine the component masses. These are important input data for the study of the close binary systems which arise from common envelope evolution. This work is supported by a forthcoming NASA Guest Observer grant.
In-vitro bacterial identification using fluorescence spectroscopy with an optical fiber system
NASA Astrophysics Data System (ADS)
Spector, Brian C.; Werkhaven, Jay A.; Smith, Dana; Reinisch, Lou
2000-05-01
Acute otitis media (AOM) remains a source of significant morbidity in children. With the emergence of antibiotic resistant strains of bacteria, tympanocentesis has become an important method of bacterial identification in the setting of treatment failures. Previous studies described a prototype system for the non-invasive fluorescence identification of bacteria in vitro. We demonstrate the addition of an optical fiber to allow for the identification of a specimen distant to the spectrofluorometer. Emission spectra from three bacteria, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus were successfully obtained in vitro. This represents a necessary step prior to the study of in vivo identification of bacteria in AOM using fluorescence spectroscopy.
NASA Astrophysics Data System (ADS)
Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.
In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.
Microspectral investigation of hair of one girl during six years by laser emission analysis
NASA Astrophysics Data System (ADS)
Surmenko, Elena L.; Sokolova, Tatiana N.; Tuchin, Valery V.
2001-10-01
Multiple chemical elements of clinical and nutritional interest were measured in the hair of a girl - cerebral palsy patient. Sixteen samples of hair were cut and investigated to determine time and nutrition trends by using laser and arc emission spectroscopy.
Opto-electrochemical spectroscopy of metals in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, K., E-mail: khaledhabib@usa.net
In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H{sub 2}SO{sub 4}) at room temperature. In the meantime, the real time holographicmore » interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H{sub 2}SO{sub 4} solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.« less
NASA Astrophysics Data System (ADS)
Singh, Jarnail; Verma, Vikram; Kumar, Ravi
2018-04-01
We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).
Ujj, L; Devanathan, S; Meyer, T E; Cusanovich, M A; Tollin, G; Atkinson, G H
1998-07-01
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in =3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.
Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing
NASA Astrophysics Data System (ADS)
Sharma, Manoj; Jain, Tarun; Singh, Sukhvir; Pandey, O. P.
2012-03-01
The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l'Eclairage (CIE) chromaticity coordinates shifts from (0.273, 0.20) and (0.344, 0.275) for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV) range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.
NASA Astrophysics Data System (ADS)
Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.
2017-03-01
The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+ to 4+. The Co intersite (intrasite) 4p-3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.
NASA Astrophysics Data System (ADS)
Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yurii V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgenii L.
2013-02-01
It is important to identify patients with chronic obstructive pulmonary disease (COPD) and lung cancer in the early stages of the disease. The method of laser opto-acoustic gas analysis, in this case, can act as a promising tool for diagnostics. The material for this study were the gas emission samples collected from patients and healthy volunteers - samples of exhaled air, swabs from teeth and cheeks. A set of material was formed three groups: healthy volunteers, patients with COPD, lung cancer patients. The resulting samples were analyzed by means of laser opto-acoustic gas analyzers: with intracavity location detector (ILPA-1), with extracavity location detector (LGA-2). Presentation of the results in an easy to visual form was performed using the method of elastic maps, based on the principal component analysis. The results of analysis show potentialities of usage of laser optoacoustic spectroscopy application to assess the status of patients with chronic obstructive pulmonary disease and lung cancer.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR
NASA Astrophysics Data System (ADS)
Lampert, M.; Zoletnik, S.; Bak, J. G.; Nam, Y. U.; Kstar Team
2018-04-01
Intermittent events in the scrape-off layer (SOL) of magnetically confined plasmas, often called blobs and holes, contribute significantly to the particle and heat loss across the magnetic field lines. In this article, the results of the scrape-off layer and edge turbulence measurements are presented with the two-dimensional Deuterium Beam Emission Spectroscopy system (DBES) at KSTAR (Korea Superconducting Tokamak Advanced Research). The properties of blobs and holes are determined in an L-mode and an H-mode shot with statistical tools and conditional averaging. These results show the capabilities and limitations of the SOL turbulence measurement of a 2D BES system. The results from the BES study were compared with the analysis of probe measurements. It was found that while probes offer a better signal-to-noise ratio and can measure blobs down to 3 mm size, BES can monitor the two-dimensional dynamics of larger events continuously during full discharges, and the measurement is not limited to the SOL on KSTAR.
Spin quenching assisted by a strongly anisotropic compression behavior in MnP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wang, Di; Wang, Yonggang
We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancymore » of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.« less
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
NASA Astrophysics Data System (ADS)
Atutov, S. N.; Galeyev, A. E.; Plekhanov, A. I.; Yakovlev, A. V.
2018-03-01
A sensitive and versatile sensor for the detection of traces of atoms or molecules in air based on the emission spectroscopy of glow discharge in air has been developed and studied. The advantages of this sensor compared to other well-known methods are that it renders the use of ultrahigh vacuum or cryogenic temperatures superfluous. The sensor is insensitive to the presence of water vapor (for example, in exhaled air) because of the absence of strong water lines in the visible spectral range. It has a high spectral selectivity limited only by Doppler broadening of the emission lines. The high selectivity of the sensor combined with a wide spectral range allows the detection of many toxic impurities, which can be present in air. Moreover, the spectral range used covers almost all biomarkers in exhaled air, making the proposed sensor extremely interesting for medical applications. To our knowledge, the proposed method is the first based on a glow discharge in air.
NASA Astrophysics Data System (ADS)
Jasim, Halah A.; Demir, Ali Gökhan; Previtali, Barbara; Taha, Ziad A.
2017-08-01
Laser paint removal was studied with ns-pulsed fiber laser on the combination of 20 μm-thick, white polymeric paint and Al alloy substrate. The response of paint to single pulse ablation was evaluated to measure the ablated zone dimensions. With this information, the effect of overlap, number of passes and pulse repetition rate was evaluated to investigate machining depth. Optical emission spectroscopy was used to investigate the machining behaviour as well as to propose monitoring strategies. The results showed that despite the high transparency of the paint, complete paint removal can be achieved with reduced substrate damage (Sa = 1.3 μm). The emission spectroscopy can be used to identify removal completion as well as the reach of substrate material. The observations were also used to explain a paint removal mechanism based on thermal expansion of the paint and mechanical action provided by the plasma expansion from the substrate material.
Auger electron spectroscopy at high spatial resolution and nA primary beam currents
NASA Technical Reports Server (NTRS)
Todd, G.; Poppa, H.; Moorhead, D.; Bales, M.
1975-01-01
An experimental Auger microprobe system is described which incorporates a field-emission electron gun and total beam currents in the nanoampere range. The distinguishing characteristics of this system include a large multistation UHV specimen chamber, pulse counting and fully digital Auger signal-processing techniques, and digital referencing methods to eliminate the effects of beam instabilities. Some preliminary results obtained with this system are described, and it is concluded that field-emission electron sources can be used for high-resolution Auger electron spectroscopy with primary-beam spots of less than 100 nm and beam currents of the order of 1 nA.
Bragg crystal spectroscopy on the OSO 8 satellite
NASA Technical Reports Server (NTRS)
Long, K. S.; Chanan, G. A.; Helfand, D. J.; Ku, W. H.-M.; Novick, R.
1979-01-01
Results are reported for high-resolution OSO 8 Bragg-crystal spectroscopy of a variety of cosmic X-ray sources in the energy range from 2 to 10 keV. A continuous spectrum of Sco X-1 is examined, and results of a search for narrow line emission due to iron near 6.7 keV are presented for 32 galactic X-ray sources, including Sco X-1, Cyg X-3, and Cen X-3. It is noted that the strongest evidence for iron line emission has been obtained for Cyg X-3 and that evidence for an iron line feature has also been found in the spectrum of Cen X-3.
NASA Astrophysics Data System (ADS)
Saud Oraibi, Nissan
2018-05-01
A standoff laser Induced Break down Spectroscopy (L.I.B.S) technique has been used to characterization the organic material such as NH3(NO)4, a Q-switched Nd:YAG laser (1064 nm wavelength, 9 ns pulse width and 1 Hz repetition rate, 300 mJ is focused to the targets to generate plasma. HR 4000 CG-UV-NIR spectrum analyzer was used to collect the generated plasma emissions, specific signature of each targets material can be obtained by analysis the plasma emission spectrum Peak ratio analysis technique is used for the identification of energetic materials.
Synthesis and Characterization of Manganese Doped Silicon Nanoparticles
Zhang, Xiaoming; Brynda, Marcin; Britt, R. David; Carroll, Elizabeth; Larsen, Delmar S.; Louie, Angelique Y.; Kauzlarich, Susan M.
2008-01-01
Mn doped Si nanoparticles have been synthesized via a low temperature solution route and characterize by X-ray powder diffraction, TEM, optical and emission spectroscopy and by EPR. The particle diameter was 4 nm and the surface was capped by octyl groups. 5% Mn doping resulted in a green emission with slightly lower quantum yield than undoped Si nanoparticles prepared by the same method. Mn2+ doped into the nanoparticle is confirmed by epr hyperfine and the charge carrier dynamics were probed by ultrafast transient absorption spectroscopy. Both techniques are consistent with Mn2+ on or close to the surface of the nanoparticle. PMID:17691792
NASA Astrophysics Data System (ADS)
Starikova, M. K.; Bulanova, A. A.; Bukreeva, E. B.; Karapuzikov, A. A.; Karapuzikov, A. I.; Kistenev, Y. V.; Klementyev, V. M.; Kolker, D. B.; Kuzmin, D. A.; Nikiforova, O. Y.; Ponomarev, Yu. N.; Sherstov, I. V.; Boyko, A. A.
2013-11-01
Pulmonary diseases diagnostics always occupies one of the key positions in medicine practices. A large variety of high technology methods are used today, but none of them cannot be used for early screening of pulmonary diseases. We discuss abilities of methods of IR and terahertz laser spectroscopy for noninvasive express diagnostics of pulmonary diseases on a base of analysis of absorption spectra of patient's gas emission, in particular, exhaled air. Experience in the field of approaches to experimental data analysis and hard-ware realization of gas analyzers for medical applications is also discussed.
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Basic Principles of Spectroscopy
NASA Astrophysics Data System (ADS)
Penner, Michael H.
Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.
Singularities in x-ray spectra of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G.D.
1987-08-01
The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less
A Hydrothermal Route to the Synthesis of CaTiO3 Nanocuboids Using P25 as the Titanium Source
NASA Astrophysics Data System (ADS)
Yan, Yuxiang; Yang, Hua; Zhao, Xinxin; Zhang, Haimin; Jiang, Jinlong
2018-03-01
CaTiO3 nanocuboids (width 0.3-0.5 μm, length 0.8-1.1 μm) have been synthesized by a hydrothermal route using commercial P25 as the titanium source. The as-prepared sample was systematically characterized by means of x-ray powder diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, ultraviolet-visible diffuse reflectance spectroscopy and electrochemical impedance spectroscopy. The photocatalytic activity of the sample was evaluated by degrading rhodamine B under simulated sunlight irradiation. It is demonstrated that CaTiO3 nanocuboids exhibit superior photocatalytic activity when compared with CaTiO3 nanoparticles. By investigating the effect of scavengers on the dye degradation and the yield of hydroxyl (·OH) radicals, it is concluded that ·OH is the dominant reactive species.
Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen
2012-06-21
Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.
Optical diagnosis and theoretical simulation of laser induced lead plasma spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Bofu; Chuan Songchen; Bao Yuanman
2012-01-15
Plasmas generated during incipient laser ablation of lead in air were studied using emission spectroscopy and fast photography by an intensified charge coupled device (ICCD) camera. An improved plasma emission model was introduced, invoking one-dimensional radiative transfer, to describe the observed emission spectra, while taking into account Gaussian intensity distribution of the laser used to form plasma. The effects of different parameters to the fitting results are discussed. The plasma temperature got by Saha-Boltzmann plot method and the electron number density got by line broadening method were compared with the fitting results. We also found that the distribution of plasmamore » temperature is more uniform than that of the electron number density in the radial direction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Takeshi, E-mail: ishiyama@ee.tut.ac.jp; Nakane, Takaya, E-mail: ishiyama@ee.tut.ac.jp; Fujii, Tsutomu, E-mail: ishiyama@ee.tut.ac.jp
Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nmmore » and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.« less
Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy
NASA Astrophysics Data System (ADS)
Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.
2008-12-01
Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the effective charge around the sulfur atom based on the Mulliken population analysis generated by DFT calculations, and then successfully correlated with the observed experimental shifts. In order to check these results using a theoretical framework other than DFT, we also performed calculations using a multiple scattering approach (FEFF8.4). X-ray absorption and emission spectroscopy has been applied to three series of peralkaline rhyolitic obsidians each with different alkali/alumina ratios ((Na2O + K2O)/Al2O3). The occurrence of sulfur was accurately determined by using the energy shift of the S Ka emission lines to make a quantitative analysis. We observe that we can follow the evolution of sulfur as a function of controlled formation conditions with respect to pressure, temperature or oxygen fugacity, and determine whether it is present as sulfate or sulfide. XANES and Kb emission lines also yield detailed information on the local chemistry and structure, and thus help us to understand the geochemical role of S in these systems.
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing
2017-01-01
Here we present a facile aqueous approach to synthesize heterostructured CdSe/CdS QDs with all-inorganic chalcogenide S2- ligands under mild conditions. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and steady-state emission spectroscopy demonstrate that the heterostructured CdSe/CdS QDs with sulfur-rich surface composition are formed by heterogeneous nucleation of Cd2+ and S2- precursors on the CdSe QDs. After adsorption of small Ni(OH)(2) clusters over the surface in situ, the CdSe/CdS-Ni(OH)(2) photocatalyst enables H-2 production efficiently with an internal quantum yield of 52% under visible light irradiation at 455 nm, up to an 8-fold increase ofmore » activity to that of spherical CdSe QDs-Ni(OH)(2) under the same conditions. Femtosecond transient absorption spectroscopy, X-ray transient absorption (XTA) spectroscopy, steady-state and time-resolved emission spectroscopy show that the quasi-type-II band alignment in the CdSe/CdS heterostructure is responsible for the efficiency enhancement of light harvesting and surface/interfacial charge separation in solar energy conversion. The unprecedented results exemplify an easily accessible pattern of aqueous synthesis of all-inorganic heterostructured QDs for advanced photosynthetic H-2 evolution.« less
Plasma emission spectroscopy method of tumor therapy
Fleming, Kevin J.
1997-01-01
Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.
NASA Astrophysics Data System (ADS)
Saito Nogueira, Marcelo; Kurachi, Cristina
2016-03-01
Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.
Near-infrared spectroscopy for burning plasma diagnostic applications.
Soukhanovskii, V A
2008-10-01
Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.
Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy
NASA Astrophysics Data System (ADS)
Ishihara, Tomoko; Tokushima, Takashi; Horikawa, Yuka; Kato, Masaru; Yagi, Ichizo
2017-10-01
We developed a spectro-electrochemical cell for X-ray absorption and X-ray emission spectroscopy, which are element-specific methods to study local electronic structures in the soft X-ray region. In the usual electrochemical measurement setup, the electrode is placed in solution, and the surface/interface region of the electrode is not normally accessible by soft X-rays that have low penetration depth in liquids. To realize soft X-ray observation of electrochemical reactions, a 15-nm-thick Pt layer was deposited on a 150-nm-thick film window with an adhesive 3-nm-thick Ti layer for use as both the working electrode and the separator window between vacuum and a sample liquid under atmospheric pressure. The designed three-electrode electrochemical cell consists of a Pt film on a SiC window, a platinized Pt wire, and a commercial Ag|AgCl electrode as the working, counter, and reference electrodes, respectively. The functionality of the cell was tested by cyclic voltammetry and X-ray absorption and emission spectroscopy. As a demonstration, the electroplating of Pb on the Pt/SiC membrane window was measured by X-ray absorption and real-time monitoring of fluorescence intensity at the O 1s excitation.
Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi
2015-01-01
With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.
Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors
NASA Astrophysics Data System (ADS)
Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.
2018-04-01
Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.
Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.
Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K
2018-01-25
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in
2016-09-15
Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy.more » The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.« less
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor. Copyright © 2011 Elsevier B.V. All rights reserved.
The methods of formaldehyde emission testing of engine: A review
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang
2015-12-01
A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.
2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong
2014-05-01
Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c
NASA Astrophysics Data System (ADS)
Onaka, Takashi; Mori, Tamami; Sakon, Itsuki; Ardaseva, Aleksandra
2016-10-01
We present the results of near-infrared (2.5-5.4 μm) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25 μm, 4.67 μm, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7 μm. The former source is located close to the ultra compact H II region IRAS 14498-5856 and is identified as an embedded massive young stellar object (YSO). The spectrum of the latter source can be interpreted by blueshifted (-3000 ˜ -6000 km s-1) optically thin emission of the fundamental ro-vibrational transitions (v=1{--}0) of CO molecules with temperatures of 12000-3700 K without noticeable H2 and H I emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.