Design of a hybrid emissivity domestic electric oven
NASA Astrophysics Data System (ADS)
Isik, Ozgur; Onbasioglu, Seyhan Uygur
2017-10-01
In this study, the radiative properties of the surfaces of an electric oven were investigated. Using experimental data related to an oven-like enclosure, a novel combination of surface properties was developed. Three different surface emissivity combinations were analysed experimentally: low-emissivity, high emissivity (black-coated), and hybrid emissivity. The term "hybrid emissivity design" here corresponds to an enclosure with some high emissive and some low-emissive surfaces. The experiments were carried out according to the EN 50304 standard. When a brick (load) was placed in the enclosure, the view factors between its surfaces were calculated with the Monte Carlo method. These and the measured surface temperatures were then used to calculate the radiative heat fluxes on the surfaces of the load. The three different models were compared with respect to energy consumption and baking time. The hybrid model performed best, with the highest radiative heat transfer between the surfaces of the enclosure and the load and minimum heat loss from the cavity. Thus, it was the most efficient model with the lowest energy consumption and the shortest baking time. The recent European Union regulation regarding the energy labelling of domestic ovens was used.
Modeling electron emission and surface effects from diamond cathodes
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.
2015-02-01
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Sazonov, D. S.
2017-12-01
A correlation analysis of the model calculations and experimental measurements of wind-speed sensitivity of a rough sea-surface microwave emission at a frequency of 37.5 GHz are presented. The field data used in the research were collected over 3 years in the summer and autumn periods at the oceanographic platform of the Marine Hydrophysical Institute, Russian Academy of Sciences (RAS). A hypothesis about a significant correlation between the model calculations and experimentally measured sea-surface emission ability caused by wind forcing was formulated and tested to reveal this correlation. An evaluation of the discrepancy between the model and experimental data has been performed by an analysis of residuals. Our studies have shown that among the selected models not a single one adequately describes the experimental data.
Modeling electron emission and surface effects from diamond cathodes
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...
2015-02-05
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Schwab, A.; Weiss, A.
1990-08-01
We report the experimental observation of the temperature dependence of the intensity of low-energy positron-annihilation-induced Auger-electron emission spectroscopy (PAES) from Cu(100). These studies show that the mechanism for stimulating Auger electrons is found to compete with positronium (Ps) emission from a surface. The positrons that induce Auger-electron emission therefore originate from the same surface state from which Ps is thermally desorbed. Hence, PAES should have higher surface sensitivity ({approximately}1 A) relative to conventional methods for generating Auger-electron emission from surfaces ({approximately}5--10 A).
Venus Surface Composition Constrained by Observation and Experiment
NASA Astrophysics Data System (ADS)
Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne
2017-11-01
New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus' anomalously radar bright highlands.
NASA Astrophysics Data System (ADS)
Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei
2018-01-01
Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.
1989-03-01
The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.
Third Stokes parameter emission from a periodic water surface
NASA Technical Reports Server (NTRS)
Johnson, J. T.; Kong, J. A.; Shin, R. T.; Staelin, D. H.; Oneill, K.; Lohanick, A.
1991-01-01
An experiment in which the third Stokes parameter thermal emission from a periodic water surface was measured is documented. This parameter is shown to be related to the direction of periodicity of the periodic surface and to approach brightnesses of up to 30 K at X band for the surface used in the experiment. The surface actually analyzed was a 'two-layer' periodic surface; the theory of thermal emission from such a surface is derived and the theoretical results are found to be in good agreement with the experimental measurements. These results further the idea of using the third Stokes parameter emission as an indicator of wind direction over the ocean.
NASA Astrophysics Data System (ADS)
Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming
2018-05-01
An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.
2016-08-01
The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.
Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures
NASA Astrophysics Data System (ADS)
Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.
2018-03-01
Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.
Secondary emission from dust grains: Comparison of experimental and model results
NASA Astrophysics Data System (ADS)
Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.
The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.
Emission and evaporation properties of 75 at.% Re-25 at.% W mixed matrix impregnated cathode
NASA Astrophysics Data System (ADS)
Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; den Engelsen, Daniel; Miao, Naihua
2018-01-01
We present a comprehensive study on the phase, emission performance, surface composition, chemical states and evaporation properties of a 75 at.% Re-25 at.% W (75Re) mixed matrix impregnated cathode by several modern analyzers, including XRD, electron emission test device, in situ AES, XPS and Quartz Crystal Oscillation Instrument (QCOI). On the basis of experimental results, the adsorption energy and charge transfer of the Ba-O dipole adsorbed on cathode surface was investigated by the first-principles density functional theory calculations. The in situ AES analyses indicate that the atomic ratio of Ba:O of the active emission layer on the cathode surface converged to 3:2 for a conventional Ba-W cathode and to about 3:1 for the 75Re cathode. Due to the larger adsorption energy of Ba and Ba-O on 75Re cathode surface, the total evaporation rate of Ba and BaO in the 75Re cathode is much lower than that for the Ba-W cathode, which is agreed favorably with the experimental evaporation data. Our characterizations and calculations suggest that rhenium in the matrix of impregnated cathodes improves the stability of Ba-O dipole on the cathode surface and enhances the emission capability substantially.
Measurement of total hemispherical emissivity of contaminated mirror surfaces
NASA Technical Reports Server (NTRS)
Facey, T. A.; Nonnenmacher, A. L.
1989-01-01
The effects of dust contamination on the total hemispherical emissivity (THE) of a 1.5-inch-diameter Al/MgF2-coated telescope mirror are investigated experimentally. The THE is determined by means of cooling-rate measurements in the temperature range 10-14.5 C in a vacuum of 100 ntorr or better. Photographs and drawings of the experimental setup are provided, and results for 11 dust levels are presented in tables and graphs. It is shown that dust has a significant effect on THE, but the experimental losses are only about half those predicted for perfectly black dust in perfect thermal contact with the mirror surface.
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting
2017-11-07
Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.
2016-03-07
We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
NASA Astrophysics Data System (ADS)
Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-04-01
A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.
Compact blackbody calibration sources for in-flight calibration of spaceborne infrared instruments
NASA Astrophysics Data System (ADS)
Scheiding, S.; Driescher, H.; Walter, I.; Hanbuch, K.; Paul, M.; Hartmann, M.; Scheiding, M.
2017-11-01
High-emissivity blackbodies are mandatory as calibration sources in infrared radiometers. Besides the requirements on the high spectral emissivity and low reflectance, constraints regarding energy consumption, installation space and mass must be considered during instrument design. Cavity radiators provide an outstanding spectral emissivity to the price of installation space and mass of the calibration source. Surface radiation sources are mainly limited by the spectral emissivity of the functional coating and the homogeneity of the temperature distribution. The effective emissivity of a "black" surface can be optimized, by structuring the substrate with the aim to enlarge the ratio of the surface to its projection. Based on the experiences of the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) calibration source MBB3, the results of the surface structuring on the effective emissivity are described analytically and compared to the experimental performance. Different geometries are analyzed and the production methods are discussed. The high-emissivity temperature calibration source features values of 0.99 for wavelength from 5 μm to 10 μm and emissivity larger than 0.95 for the spectral range from 10 μm to 40 μm.
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M
2015-06-01
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasolamprou, Anna C.; Zhang, Lei; Kafesaki, Maria
2015-05-19
We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. Furthermore, the angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.
Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei
2018-06-01
The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.
Experimental study on secondary electron emission characteristics of Cu
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1985-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
Organic plasmon-emitting diodes for detecting refractive index variation.
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-06-28
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10-3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor.
Homogeneous free-form directional backlight for 3D display
NASA Astrophysics Data System (ADS)
Krebs, Peter; Liang, Haowen; Fan, Hang; Zhang, Aiqin; Zhou, Yangui; Chen, Jiayi; Li, Kunyang; Zhou, Jianying
2017-08-01
Realization of a near perfect homogeneous secondary emission source for 3D display is proposed and demonstrated. The light source takes advantage of an array of free-form emission surface with a specially tailored light guiding structure, a light diffuser and Fresnel lens. A seamless and homogeneous directional emission is experimentally obtained which is essential for a high quality naked-eye 3D display.
NASA Astrophysics Data System (ADS)
Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.
2006-10-01
High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Dolgikh, A. V.; Karelin, D. V.
2016-04-01
The results of quantitative assessment and modeling of carbon dioxide emission from urban pedolithosediments (cultural layer) in the central part of Velikii Novgorod are discussed. At the first stages after the exposure of the cultural layer to the surface in archaeological excavations, very high CO2 emission values reaching 10-15 g C/(m2 h) have been determined. These values exceed the normal equilibrium emission from the soil surface by two orders of magnitude. However, they should not be interpreted as indications of the high biological activity of the buried urban sediments. A model based on physical processes shows that the measured emission values can be reliably explained by degassing of the soil water and desorption of gases from the urban sediments. This model suggests the diffusion mechanism of the transfer of carbon dioxide from the cultural layer into the atmosphere; in addition, it includes the equations to describe nonequilibrium interphase interactions (sorption-desorption and dissolution-degassing of CO2) with the first-order kinetics. With the use of statistically reliable data on physical parameters—the effective diffusion coefficient as dependent on the aeration porosity, the effective solubility, the Henry constant for the CO2 sorption, and the kinetic constants of the CO2 desorption and degassing of the soil solution—this model reproduces the experimental data on the dynamics of CO2 emission from the surface of the exposed cultural layer obtained by the static chamber method.
Full-spectrum multiwavelength pyrometry for nongray surfaces
NASA Technical Reports Server (NTRS)
Ng, Daniel; Williams, W. D.
1992-01-01
A full-spectrum (encompassing radiation on both sides of the Wien displacement peak) multiwavelength pyrometer was developed. It measures the surface temperature of arbitrary nongray ceramics by curve fitting a spectrum in this spectral region to a Planck function of temperature T. This function of T is modified by the surface spectral emissivity. The emissivity function was derived experimentally from additional spectra that were obtained by using an auxiliary radiation source and from application of Kirchhoff's law. This emissivity was verified by results that were obtained independently by using electromagnetic and solid-state theories. In the presence of interfering reflected radiation this general pyrometry improves the accuracy of the measured temperature by measuring an additional spectrum that characterizes the interfering radiation source.
Impact of Conifer Forest Litter on Microwave Emission at L-Band
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.
2011-01-01
This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.
NASA Technical Reports Server (NTRS)
Hazelton, R. C.; Yadlowsky, E. J.; Churchill, R. J.; Parker, L. W.; Sellers, B.
1981-01-01
The effect differential charging of spacecraft thermal control surfaces is assessed by studying the dynamics of the charging process. A program to experimentally validate a computer model of the charging process was established. Time resolved measurements of the surface potential were obtained for samples of Kapton and Teflon irradiated with a monoenergetic electron beam. Results indicate that the computer model and experimental measurements agree well and that for Teflon, secondary emission is the governing factor. Experimental data indicate that bulk conductivities play a significant role in the charging of Kapton.
Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions
NASA Astrophysics Data System (ADS)
Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain
2013-01-01
The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1986-01-01
A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.
Factors controlling fluxes of volatile sulfur compounds in Sphagnum peatlands. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Demello, William Zamboni
1992-01-01
Exchange of DMS and OCS between the surface of Sphagnum peatlands and the atmosphere were measured with dynamic (S-free sweep air) and static enclosures. DMS emission rates determined by both methods were comparable. The dynamic method provided positive OCS flux rates (emission) for measurements performed at sites containing Sphagnum. Conversely, data from the static method indicated that OCS was consumed from the atmosphere. Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in a poor fen (Mire 239) at the Experimental Lakes Area, Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen in Barrington, NH, USA). At Mire 239, emissions of VSC's were monitored, before and after acidification, at control and experimental sections within two major physiographic areas of the mire (oligotrophic and minerotrophic). DMS was the predominant VSC released from Mire 239 and varied largely with time and space. Sulfur addition did not affect DMS emissions in a period of hours to a few days. DMS emissions in the experimental oligotrophic area of the mire was approximately 3-fold greater than in the control oligotrophic area, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were not significantly affected by sulfate amendments, while DMS and MSH concentrations increased greatly with time in the top 10 cm of the peat column. The major environmental factors controlling fluxes of DMS in a Sphagnum-dominated peatland were investigated in Sallie's Fen, NH. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Temperature seemed to be the major environmental factor controlling these variabilities. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved DMS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere. Sphagnum mosses did not appear to be a direct source of VSC's, however they increase transport of DMS from the peat surface to the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
NASA Astrophysics Data System (ADS)
Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui
2018-06-01
Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from ‑23 K to 49 K.
NASA Astrophysics Data System (ADS)
Tabuchi, Toru; Yamagata, Shigeki; Tamura, Tetsuo
2003-04-01
There are increasing demands for information to avoid accident in automobile traffic increase. We will discuss that an infrared camera can identify three conditions (dry, aquaplane, frozen) of the road surface. Principles of this method are; 1.We have found 3-color infrared camera can distinguish those conditions using proper data processing 2.The emissivity of the materials on the road surface (conclete, water, ice) differs in three wavelength regions. 3.The sky's temperature is lower than the road's. The emissivity of the road depends on the road surface conditions. Therefore, 3-color infrared camera measure the energy reflected from the sky on the road surface and self radiation of road surface. The road condition can be distinguished by processing the energy pattern measured in three wavelength regions. We were able to collect the experimental results that the emissivity of conclete is differ from water. The infrared camera whose NETD (Noise Equivalent Temperature Difference) at each 3-wavelength is 1.0C or less can distinguish the road conditions by using emissivity difference.
Infrared camera assessment of skin surface temperature--effect of emissivity.
Bernard, V; Staffa, E; Mornstein, V; Bourek, A
2013-11-01
Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian
2017-02-07
CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.
Field emission study of carbon nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Xin
Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.
Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-01-01
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10−3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor. PMID:23812346
Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong
2017-02-08
Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.
A Theoretical and Experimental Study of Emission Spectroscopy of Planetary Surfaces
NASA Astrophysics Data System (ADS)
Henderson, Bradley Gray
1995-01-01
This thesis explores the spectral emissivity of particulate materials on planetary surfaces through theoretical modeling and supporting laboratory and field investigations. In the first part of the thesis, I develop a Monte Carlo ray tracing model to calculate the directional and spectral emissivity and the polarization state of the radiation emitted from a particulate, isothermal surface for emission angles 0^circ-90^ circ and wavelengths 7-16 mu m. The results show that roughness and scattering significantly affect the character of the emitted radiation field and should be taken into account when interpreting the physical properties of a planetary surface from IR spectrophotometry or spectropolarimetry. The remainder of the thesis focuses on understanding near-surface thermal gradients and their effects on emission spectra for different planetary environments. These gradients are formed by radiative cooling in the top few hundred microns of low conductivity particulate materials on planetary surfaces with little or no atmosphere. I model the heat transfer by conduction and radiation in the top few millimeters of a planetary regolith for scattering and non-scattering media. In conjunction with the modeling, I measure emission spectra of fine-grained quartz in an environment chamber designed to simulate the conditions on other planetary surfaces. The results show that significant thermal gradients will form in the near surface of materials on the surface of the Moon and Mercury. Their presence increases spectral contrast and creates emission maxima in the transparent regions of the spectrum. Thermal gradients are shown to be responsible for the observed wavelength shifts of the Christiansen emission peak with variations in thermal conductivity and grain size. The results are also used to analyze recent telescopic spectra of the Moon and Mercury and can explain certain features seen in those data. Thermal gradients are shown to be minor for the surface of Mars and negligible on Earth. I conclude that the spectral effects created by near-surface thermal gradients are predictable and might even provide an extra source of information about the physical nature of a planetary surface, and mid-IR emission spectroscopy should therefore prove to be useful for remote sensing of airless bodies.
USDA-ARS?s Scientific Manuscript database
The effect of water application (e.g., through rainfall or sprinkler system) on emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from pen surfaces of open-lot beef cattle feedlots was evaluated under controlled laboratory conditions. Soil/ma...
Polarization-dependent extraordinary optical transmission from upconversion nanoparticles.
Wang, Peng Hui; Salcedo, Walter J; Pichaandi, Jothirmayanantham; van Veggel, Frank C J M; Brolo, Alexandre G
2015-11-21
Enhanced upconversion (UC) emission was experimentally demonstrated using gold double antenna nanoparticles coupled to nanoslits in gold films. The transmitted red emission from UC ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb(3+)/Er(3+)) nanoparticles (UC NPs) at ∼665 nm (excited with a 980 nm diode laser) was enhanced relative to the green emission at ∼550 nm. The relatively enhanced UC NP emission could be tuned by the different polarization-dependent extraordinary optical transmission modes coupled to the gold nanostructures. Finite-difference time-domain calculations suggest that the preferential enhanced UC emission is related to a combination of different surface plasmon mode excitation coupling to cavity Fabry-Perot interactions. A maximum UC enhancement of 6-fold was measured for nanoslit arrays in the absence of the double antennas. In the presence of the double nanoantennas inside the nanoslits, the UC enhancement was between 2- and 4-fold, depending on the experimental conditions.
NASA Astrophysics Data System (ADS)
Kuznetsov, S. I.; Petrov, A. L.; Shadrin, A. N.
1990-06-01
An experimental investigation was made of the emission of charged particles due to the irradiation of moving steel and graphite targets with cw CO2 laser radiation. The characteristics of the emission current signals were determined for different laser irradiation regimes. The maximum emission current density from the surface of a melt pool ( ~ 1.1 × 10 - 2 A/cm2) and the average temperature of the liquid metal (~ 2040 K) were measured for an incident radiation power density of 550 W and for horizontal and vertical target velocities of respectively ~ 1.5 mm/s and ~ 0.17 mm/s. The authors propose to utilize this phenomenon for monitoring the laser processing of materials.
NASA Astrophysics Data System (ADS)
Zykov, V. M.; Neiman, D. A.
2018-04-01
A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.
Microwave thermal emission from periodic surfaces
NASA Technical Reports Server (NTRS)
Kong, J. A.; Lin, S. L.; Chuang, S. L.
1984-01-01
The emissivity of a periodic surface is calculated from one minus the reflectivity by using the reciprocity principle. The reflectivity consists of the sum of all scattered power as determined from the modal theory which obeys both the principle of reciprocity and the principle of energy conservation. The theoretical results are matched to experimental data obtained from brightness temperature measurements as functions of viewing angle for soil moisture in plowed fields. The threshold phenomenon with regard to the appearing and disappearing of modes in their contributions to the scattered field amplitudes is discussed in connection with the theoretical results. It is shown that this approach for calculating the emissivity greatly reduces computational efforts by requiring substantially smaller matrix sizes.
Electron emission from ferroelectrics - a review
NASA Astrophysics Data System (ADS)
Riege, H.
1994-02-01
The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.
Prata, Ademir A; Santos, Jane M; Timchenko, Victoria; Stuetz, Richard M
2018-03-01
Emission models are useful tools for the study and management of atmospheric emissions from passive liquid surfaces in wastewater treatment plants (WWTPs), which are potential sources of odour nuisance and other environmental impacts. In this work, different theoretical and empirical models for the gas-side (k G ) and liquid-side (k L ) mass transfer coefficients in passive surfaces in WWTPs were critically reviewed and evaluated against experimental data. Wind forcing and the development of the wind-wave field, especially the occurrence of microscale wave breaking, were identified as the most important physical factors affecting mass transfer in these situations. Two approaches performed well in describing the available data for k G for water vapour. One is an empirical correlation whilst the other consists of theoretical models based on the description of the inner part of the turbulent boundary layer over a smooth flat plate. We also fit to the experimental data set a new, alternate equation for k G , whose performance was comparable to existing ones. However, these three approaches do not agree with each other in the whole range of Schmidt numbers typical for compounds found in emissions from WWTPs. As to k L , no model was able to satisfactorily explain the behaviour and the scatter observed in the whole experimental data set. Excluding two suspected biased sources, the WATER9 (US EPA, 1994. Air Emission Models for Waste and Wastewater. North Carolina, USA. EPA-453/R-94-080A) approach produced the best results among the most commonly used k L models, although still with considerably high relative errors. For this same sub-set, we propose a new, alternate approach for estimating k L , which resulted in improved performance, particularly for longer fetches. Two main gaps were found in the literature, the understanding of the evolution of the mass transfer boundary layer over liquid surfaces, and the behaviour of k L for larger fetches, especially in the range from 40 to 60 m. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ion beam microtexturing and enhanced surface diffusion
NASA Technical Reports Server (NTRS)
Robinson, R. S.
1982-01-01
Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.
Dust emission and soil loss due to anthropogenic activities by wind erosion simulations
NASA Astrophysics Data System (ADS)
Katra, Itzhak; Swet, Nitzan; Tanner, Smadar
2017-04-01
Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.
Strong emission from nano-iron using laser-induced breakdown spectroscopy technique
NASA Astrophysics Data System (ADS)
Rashid, F. F.; ELSherbini, A. M.; Al-Muhamady, A.
2014-06-01
In this paper, we report a strong enhanced emission from laser produced plasma in air from iron oxide nano-material in comparison with the corresponding bulk samples. The enhancement strength differs with different Nd:YAG laser harmonics wavelengths. The analysis showed that such enhancement increased exponentially with the plasma evolution time, while it declines as the laser fluence increased. Experimental data analysis clearly showed that the observed enhancement is mainly associated with the change in the plasma electron density. We claim that this strong enhanced optical emission from laser produced plasma is due to the surface plasmon resonant excitation preferably on nano-oxide materials. Such experimental findings could improve the laser-induced breakdown spectroscopy sensitivity down to extremely low concentrations.
Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip
NASA Astrophysics Data System (ADS)
Yanagisawa, Hirofumi; Zadin, Vahur; Kunze, Karsten; Hafner, Christian; Aabloo, Alvo; Kim, Dong Eon; Kling, Matthias F.; Djurabekova, Flyura; Osterwalder, Jürg; Wuensch, Walter
2016-12-01
Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.
Experimental Investigation into the Radar Anomalies on the Surface of Venus
NASA Technical Reports Server (NTRS)
Kohler, E.; Gavin, P.; Chevrier, V.; Johnson, Natasha M.
2012-01-01
Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions.
Measurement of stimulated Hawking emission in an analogue system.
Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A
2011-01-14
Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.
A first-principles model for orificed hollow cathode operation
NASA Technical Reports Server (NTRS)
Salhi, A.; Turchi, P. J.
1992-01-01
A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.
Positively charged particles in dusty plasmas.
Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F
2001-11-01
The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.
Phase-compensated metasurface for a conformal microwave antenna
NASA Astrophysics Data System (ADS)
Germain, Dylan; Seetharamdoo, Divitha; Nawaz Burokur, Shah; de Lustrac, André
2013-09-01
The in-phase radiation from a conformal metamaterial surface is numerically and experimentally reported. The LC-resonant metasurface is composed of a simultaneously capacitive and an inductive grid constituted by copper strips printed on both sides of a dielectric board. The metasurface is designed to fit a curved surface by modifying its local phase. The latter phase-compensated metasurface is used as a reflector in a conformal Fabry-Pérot resonant cavity designed to operate at microwave frequencies. Far-field measurements performed on a fabricated prototype allow showing the good performances of such a phase-compensated metasurface in restoring in-phase emissions from the conformal surface and producing a directive emission in the desired direction.
Effect of focusing flow on stationary spot machining properties in elastic emission machining
2013-01-01
Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution. PMID:23680043
Current status of liquid sheet radiator research
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.; Mcmaster, Matthew S.
1993-01-01
Initial research on the external flow, low mass liquid sheet radiator (LSR), has been concentrated on understanding its fluid mechanics. The surface tension forces acting at the edges of the sheet produce a triangular planform for the radiating surface of width, W, and length, L. It has been experimentally verified that (exp L)/W agrees with the theoretical result, L/W = (We/8)exp 1/2, where We is the Weber number. Instability can cause holes to form in regions of large curvature such as where the edge cylinders join the sheet of thickness, tau. The W/tau limit that will cause hole formation with subsequent destruction of the sheet has yet to be reached experimentally. Although experimental measurements of sheet emissivity have not yet been performed because of limited program scope, calculations of the emissivity and sheet lifetime is determined by evaporation losses were made for two silicon based oils; Dow Corning 705 and Me(sub 2). Emissivities greater than 0.75 are calculated for tau greater than or equal to 200 microns for both oils. Lifetimes for Me(sub 2) are much longer than lifetimes for 705. Therefore, Me(sub 2) is the more attractive working fluid for higher temperatures (T greater than or equal to 400 K).
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
Sensors of vibration and acoustic emission for monitoring of boring with skiving cutters
NASA Astrophysics Data System (ADS)
Shamarin, N. N.; Filippov, A. V.; Podgornyh, O. A.; Filippova, E. O.
2017-01-01
Diagnosing processing system conditions is a key area in automation of modern machinery production. The article presents the results of a preliminary experimental research of the boring process using conventional and skiving cutters under the conditions of the low stiffness processing system. Acoustic emission and vibration sensors are used for cutting process diagnosis. Surface roughness after machining is determined using a laser scanning microscope. As a result, it is found that the use of skiving cutters provides greater stability of the cutting process and lower surface roughness as compared with conventional cutters.
Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue
NASA Astrophysics Data System (ADS)
Trujillo, Blaine; Zagrai, Andrei
2016-04-01
Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.
Development and Experimental Verification of Surface Effects in a Fluidic Model
2006-01-01
FROM A HE PLASMA INSIDE A POLYSTYRENE MICROCHANNEL. 43 FIGURE 30: THE EMISSION SPECTRA FROM A MIXED HEXAFLUOROETHYLENE/HE PLASMA INSIDE THE...MICROCHANNEL 47 FIGURE 35: THE ADSORPTION OF GLUCOSE OXIDASE TO DIFFERENT POLYMER SURFACES WAS SHOWN TO HAVE A SIGNIFICANT EFFECT ON ELECTROOSMOTIC FLOW...approach involves neglecting non-ideal (convective-diffusive) effects 5 by assuming well- mixed protein in contact with an idealized surface. Coupled
NASA Astrophysics Data System (ADS)
Sakiyama, Y.; Graves, D. B.; Stoffels, E.
2008-05-01
We present a comparison of a finite element analysis of the atmospheric pressure RF-excited plasma needle interacting with different surfaces with corresponding experimental observations of light emission spatial profiles. The gas used is helium with 1 ppm nitrogen as an impurity. The needle has a point-to-plane geometry with a radius of 30 µm at the tip and an inter-electrode gap of 1 mm. We employ a fluid model in two-dimensional axisymmetric coordinates. Our simulation results indicate that the plasma structure strongly depends on the electrical properties of the treated surface as well as the discharge mode. In the lower power corona mode with a dielectric surface, the plasma is confined near the needle tip. As a result, particle fluxes to the dielectric surface are relatively low and follow a Gaussian-like radial profile. In the higher power glow mode with a dielectric surface, the particle fluxes to the surface are orders of magnitude higher and the spatial distribution of the particle fluxes becomes radially more uniform due to a uniform ionization layer just above the treated surface. When a conductive plate replaces the dielectric surface in the glow mode, a quite intense ionization spot appears near the surface closest to the needle tip. Consequently, the particle fluxes to the surface peak near the symmetry axis under these conditions. These simulation results are validated by experimental observation of light emission spatial profiles.
DMS emissions from Sphagnum-dominated wetlands
NASA Technical Reports Server (NTRS)
Hines, Mark E.; Demello, William Zamboni; Bayley, Suzanne E.
1992-01-01
The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. Experiments were conducted in wetlands in New Hampshire (NH), and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and GC with flame photometric detection. Emissions of DMS dominated fluxes. In NH, DMS fluxes were greater than 1.6 micromol/m(sup -2)d(sup -1) in early summer, 1989 when temperatures were warm and the water table was approximately 5 cm below the surface. These rates are several-fold faster than average oceanic rates of DMS emission. A rapid drop in the water table resulted in a 6-fold decrease in DMS emissions in late July. In 1990, a new beaver dam kept water levels above the surface and S emissions were much lower than during 1989. The elimination of the beaver and a drop in the water table in August produced a rapid increase in S gas emissions. Emissions of DMS were highest in the most oligotrophic areas. Mire 239 (ELA) was irrigated with sulfuric and nitric acids to simulate acid rain. S emissions were determined before and after an acidification event in control and experimental areas in both minerotrophic and oligotrophic regions. Emissions of DMS were higher in the acidified areas compared to unacidified controls. Emissions were also much higher in the oligotrophic regions compared to the minerotrophic ones. Despite the wide differences in S gas fluxes (20-fold), it was difficult to determine whether acidification or variations in trophic status was not responsible for differences in S gas emissions. DMS emitted into the atmosphere was not derived from the water table but originated in peat in the unsaturated zone.
Disparity of secondary electron emission in ferroelectric domains of YMnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shaobo; Deng, S. Q.; Yuan, Wenjuan
2015-07-20
The applications of multiferroic materials require our understanding about the behaviors of domains with different polarization directions. Taking advantage of the scanning electron microscope, we investigate the polar surface of single crystal YMnO{sub 3} sample in secondary electron (SE) mode. By slowing down the scanning speed of electron beam, the negative surface potential of YMnO{sub 3} can be realized, and the domain contrast can be correspondingly changed. Under this experimental condition, with the help of a homemade Faraday cup, the difference of intrinsic SE emission coefficients of antiparallel domains is measured to be 0.12 and the downward polarization domains showmore » a larger SE emission ability. Our results indicate that the total SE emission of this material can be altered by changing the ratio of the antiparallel domains, which provide an avenue for device design with this kind of materials.« less
Investigation of argon ion sputtering on the secondary electron emission from gold samples
NASA Astrophysics Data System (ADS)
Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai
2016-09-01
Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.
NASA Technical Reports Server (NTRS)
Ramins, P.; Ebihara, B. T.
1986-01-01
Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.
NASA Astrophysics Data System (ADS)
Zhou, Qunfei
First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.
NASA Astrophysics Data System (ADS)
Maynard, Raymond K.
An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface conditions. The emissivity increased from 0.178 at 600 K to 0.235 at 1375 K for Haynes 230 as received sample. The emissivity increased significantly when its surface roughness was increased, or was oxidized in air, or coated with graphite dust, as compared to the as received material. The total hemispherical emissivity of Alloy 617 was measured as a function of temperature. The total emissivity increased from about 0.2 at 600 K to about 0.35 at 1275 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. L.; Jo, H.; Tirawat, R.
Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughenedmore » via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.« less
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Yuzhong; Lu, Rongsheng; Shu, Shuangbao; Lang, Xianli; Yang, Lei
2018-01-01
Molybdenum (Mo) is an important material to construct the first wall for the Experimental Advanced Superconducting Tokamak (EAST). The real-time monitoring of temperature distribution of the first wall based on radiation thermometry is essential to guarantee the stable operation of EAST. So, it is especially important for the acquisition of emissivity property of Mo. In this work, a self-designed emissivity measurement apparatus is developed, and the relationship between the normal infrared spectral band (7.5-13 μm) emissivity of Mo against the temperature and surface roughness of material samples is experimentally investigated under the vacuum condition over the temperature ranging from 100 °C to 500 °C. Moreover, the dependence of spectral band emissivity of Mo exposed to air on the heating-duration time at a given elevated temperature is also studied. The emissivity measurement apparatus is mainly composed of a high temperature furnace and a radiation thermometer as well as a benchmark blackbody furnace. The radiation thermometer is firstly calibrated against the blackbody furnace by means of the multi-temperature methods. And then the temperature of the sample is simultaneously measured by the two highly accurate S-type thermocouples and the radiation thermometer. Finally the emissivity value of the sample is calculated based on the direct radiometric method. The developed emissivity measurement method and experimental results obtained in this work may be helpful to understand the work state the EAST and to use of Mo as an emissivity reference.
Effects of biodiesel on emissions of a bus diesel engine.
Kegl, Breda
2008-03-01
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.
Pyrometer with tracking balancing
NASA Astrophysics Data System (ADS)
Ponomarev, D. B.; Zakharenko, V. A.; Shkaev, A. G.
2018-04-01
Currently, one of the main metrological noncontact temperature measurement challenges is the emissivity uncertainty. This paper describes a pyrometer with emissivity effect diminishing through the use of a measuring scheme with tracking balancing in which the radiation receiver is a null-indicator. In this paper the results of the prototype pyrometer absolute error study in surfaces temperature measurement of aluminum and nickel samples are presented. There is absolute error calculated values comparison considering the emissivity table values with errors on the results of experimental measurements by the proposed method. The practical implementation of the proposed technical solution has allowed two times to reduce the error due to the emissivity uncertainty.
Bagdonienė, Indrė; Baležentienė, Ligita
2013-01-01
Experimental data were applied for the modelling optimal cowshed temperature environment in laboratory test bench by a mass-flow method. The principal factor affecting exponent growth of ammonia emission was increasing air and manure surface temperature. With the manure temperature increasing from 4°C to 30°C, growth in the ammonia emission grew fourfold, that is, from 102 to 430 mg m−2h−1. Especial risk emerges when temperature exceeds 20°C: an increase in temperature of 1°C contributes to the intensity of ammonia emission by 17 mg m−2h−1. The temperatures of air and manure surface as well as those of its layers are important when analysing emission processes from manure. Indeed, it affects the processes occurring on the manure surface, namely, dehydration and crust formation. To reduce ammonia emission from cowshed, it is important to optimize the inner temperature control and to manage air circulation, especially at higher temperatures, preventing the warm ambient air from blowing direct to manure. Decrease in mean annual temperature of 1°C would reduce the annual ammonia emission by some 5.0%. The air temperature range varied between −15°C and 30°C in barns. The highest mean annual temperature (14.6°C) and ammonia emission (218 mg m−2h−1) were observed in the semideep cowshed. PMID:24453912
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
NASA Astrophysics Data System (ADS)
Stangarone, C.; Helbert, J.; Tribaudino, M.; Maturilli, A.; D'Amore, M.; Ferrari, S.; Prencipe, M.
2015-12-01
Spectral signatures of minerals are intimately related to the crystal structure; therefore they may represent a remote sensing model to determine surface composition of planetary bodies, by analysing their spectral reflectance and emission. However, one of the most critical point is data interpretation considering planetary surfaces, as Mercury, where the changes in spectral characteristics are induced by the high temperatures conditions (Helbert et al., 2013). The aim of this work is to interpret the experimental thermal emissivity spectra with an innovative approach: simulating IR spectra of the main mineral families that compose the surface of Mercury, focusing on pyroxenes (Sprague et al., 2002), both at room and high temperature, exploiting the accuracy of ab initio quantum mechanical calculations, by means of CRYSTAL14 code (Dovesi et al., 2014). The simulations will be compared with experimental emissivity measurements of planetary analogue samples at temperature up to 1000K, performed at Planetary Emissivity Laboratory (PEL) by Institute of Planetary Research (DLR, Berlin). Results will be useful to create a theoretical background to interpret HT-IR emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a spectrometer developed by DLR that will be on board of the ESA BepiColombo Mercury Planetary Orbiter (MPO) scheduled for 2017. The goal is to point out the most interesting spectral features for a geological mapping of Mercury and other rocky bodies, simulating the environmental conditions of the inner planets of Solar System. Dovesi R., Saunders V. R., Roetti C., Orlando R., Zicovich-Wilson C. M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D'Arco P., Llunell M., Causà M. & Noël Y. 2014. CRYSTAL14 User's Manual, University of Torino. Sprague, A. L., Emery, J. P., Donaldson, K. L., Russell, R. W., Lynch, D. K., & Mazuk, A. L. (2002). Mercury: Mid-infrared (3-13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics & Planetary Science, 37(9), 1255-1268.
Polarized electroluminescence from edge-emission organic light emitting devices
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.
2011-01-01
We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.
Light emission from compound eye with conformal fluorescent coating
NASA Astrophysics Data System (ADS)
Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2015-03-01
Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
NASA Astrophysics Data System (ADS)
Pozzi, G.; Benson, P. M.; Guerin-Marthe, S.; De Paola, N.; Nielsen, S. B.; Bowen, L.; Tomas, R.; Holdsworth, R.
2017-12-01
Our recent experimental and microstructural studies in carbonate nanograin gouges have suggested that the activation of grain boundary sliding mechanisms in a slip zone (SZ) of finite thickness ( 30 microns), at high temperatures (T ≥ 800 °C) and strain rates, can weaken faults and facilitate earthquake propagation. However, neither mechanical data alone or microstructural analysis of post-mortem experimental samples allow a continuous monitoring of the evolution of the deformation mechanisms through the weakening history of the gouges. Here, we present results from experiments performed on a rotary shear apparatus at normal load of 25 MPa and slip rates of up to 1 ms-1, which have been monitored for acoustic emissions. This has been achieved by modifying a hollow cylinder sample assembly (titanium-vanadium alloy) to contain a radial array of 6 piezoelectric sensors. Acoustic emissions fully support a 4-stage evolution of friction. In particular, high frequencies recorded during initial cataclasis and shear localization, when friction coefficient is within Byerlee's range (> 0.6), gradually fade out at the onset of weakening and through the transient stage of friction decay to low (rate-dependent) steady state friction values. During this stage only low-frequency events (< 0.83 MHz) show appreciable intensity. Acoustic emissions strongly support our model of weakening in carbonate gauges, where brittle processes (strong emission of AEs) predate the onset of thermally activated, diffusion-accommodated viscous flow in a thin SZ. Furthermore, discrete emissions with high frequency content are recorded after the stop of the machine supporting the hypothesis that free, shiny surfaces (e.g. mirror surfaces) are formed in the latest stages of the experiments by thermal cracking along pre-existing anisotropies (the PSZ boundaries). This evidence further supports our interpretation of dynamic weakening due to viscous flow in a SZ of finite thickness, ruling out frictional sliding along the mirror surfaces.
NASA Astrophysics Data System (ADS)
Liang, Yijun; Qu, Dandan; Deng, Hu
2013-08-01
A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.
Polarimetric thermal emission from periodic water surfaces
NASA Technical Reports Server (NTRS)
Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.
1993-01-01
Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko
2013-03-01
In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.
Low thermal emissivity surfaces using AgNW thin films
NASA Astrophysics Data System (ADS)
Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.
2017-12-01
The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.
NASA Astrophysics Data System (ADS)
Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas
2018-05-01
Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.
NASA Astrophysics Data System (ADS)
Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.
2016-02-01
Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Morgan, Dane; LaCour, Matthew; Golby, Ken; Shiffler, Don; Booske, John H.
2010-02-01
CsI coated C fiber cathodes are promising electron emitters utilized in field emission applications. Ab initio calculations, in conjunction with experimental investigations on CsI-spray coated C fiber cathodes, were performed in order to better understand the origin of the low turn-on E-field obtained, as compared to uncoated C fibers. One possible mechanism for lowering the turn-on E-field is surface dipole layers reducing the work function. Ab initio modeling revealed that surface monolayers of Cs, CsI, Cs2O, and CsO are all capable of producing low work function C fiber cathodes (1 eV<Φ<1.5 eV), yielding a reduction in the turn-on E-field by as much as ten times, when compared to the bare fiber. Although a CsI-containing aqueous solution is spray deposited on the C fiber surface, energy dispersive x-ray spectroscopy and scanning auger microscopy measurements show coabsorption of Cs and I into the fiber interior and Cs and O on the fiber surface, with no surface I. It is therefore proposed that a cesium oxide (CsxOy) surface coating is responsible, at least in part, for the low turn E-field and superior emission characteristics of this type of fiber cathode. This CsxOy layer could be formed during preconditioning heating. CsxOy surface layers cannot only lower the fiber work function by the formation of surface dipoles (if they are thin enough) but may also enhance surface emission through their ability to emit secondary electrons due to a process of grazing electron impact. These multiple electron emission processes may explain the reported 10-100 fold reduction in the turn-on E-field of coated C fibers.
Zhang, Rongxiao; Glaser, Adam K.; Andreozzi, Jacqueline; Jiang, Shudong; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.
2017-01-01
This study’s goal was to determine how Cherenkov radiation emission observed in radiotherapy is affected by predictable factors expected in patient imaging. Factors such as tissue optical properties, radiation beam properties, thickness of tissues, entrance/exit geometry, curved surface effects, curvature and imaging angles were investigated through Monte Carlo simulations. The largest physical cause of variation of the correlation factor between of Cherenkov emission and dose was the entrance/exit geometry (~50%). The largest human tissue effect was from different optical properties (~45%). Beyond these, clinical beam energy varies the correlation factor significantly (~20% for x-ray beams), followed by curved surfaces (~15% for x-ray beams and ~8% for electron beams), and finally, the effect of field size (~5% for x-ray beams). Other investigated factors which caused variations less than 5% were tissue thicknesses and source to surface distance. The effect of non-Lambertian emission was negligible for imaging angles smaller than 60 degrees. The spectrum of Cherenkov emission tends to blue-shift along the curved surface. A simple normalization approach based on the reflectance image was experimentally validated by imaging a range of tissue phantoms, as a first order correction for different tissue optical properties. PMID:27507213
ATMOSPHERIC AEROSOLS FROM BIOGENIC HYDROCARBON OXIDATION
Our review of published research on SQT emissions revealed a high variability of methods used by different researchers. Given that SQT have rather low vapor pressures, they tend to easily adhere (‘stick’) to surfaces used in experimental systems. Also, due to their...
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
NASA Astrophysics Data System (ADS)
Kawerk, Elie; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; Kavčič, Matjaž; Céolin, Denis; Khoury, Antonio; Simon, Marc
2014-10-01
We report a theoretical and experimental study of the high resolution resonant Kα X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the Kα emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
NASA Astrophysics Data System (ADS)
Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.
2018-03-01
Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.
Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine.
Pandian, Amith Kishore; Ramakrishnan, Ramesh Bapu Bathey; Devarajan, Yuvarajan
2017-10-01
Biodiesels derived from the mahua seeds are established as a promising alternative for the diesel fuel owing to its non-edible nature and improved properties. TiO 2 nanoparticle in powder form is added to neat mahua oil biodiesel (BD100) to examine its effect on emission characteristics. TiO 2 nanoparticle is chosen as an additive owing to its catalytic effect, higher surface energy, and larger surface to volume ratio. TiO 2 nanoparticle with an average size of 60 nm was synthesized by sol-gel route. TiO 2 nanoparticles are added with mahua biodiesel (BD100) at 100 and 200 ppm. Mahua oil biodiesel doped with 100 and 200 ppm of TiO 2 nanoparticles are referred as BD100T100 and BD100T200. A constant speed diesel engine is employed for the experimental trail. Engine is fueled with diesel, BD100, BD100T100, and BD100T200, respectively. Experimental result confirmed that the modified fuels (BD100T200 and BD100T100) showed a significant reduction in all the emissions. Further, the addition of TiO 2 nanoparticle (200 ppm) to mahua biodiesel gave respective reduction of 9.3, 5.8, 6.6, and 2.7% in carbon monoxide, hydrocarbon, nitrogen oxide, and smoke emissions when compared to neat mahua biodiesel.
Secondary Electron Emission Spectroscopy of Diamond Surfaces
NASA Technical Reports Server (NTRS)
Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.
1999-01-01
This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.
NASA Astrophysics Data System (ADS)
Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping
2018-01-01
A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.
NASA Astrophysics Data System (ADS)
Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.
2017-11-01
Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.
A model for the microwave emissivity of the ocean's surface as a function of wind speed
NASA Technical Reports Server (NTRS)
Wilheit, T. T.
1979-01-01
A quanitative model is presented which describes the ocean surface as a ensemble of flat facets with a normal distribution of slopes. The variance of the slope distribution is linearly related to frequency up to 35 GHz and constant at higher frequencies. These facets are partially covered with an absorbing nonpolarized foam layer. Experimental evidence is presented for this model.
Recombination reactions of 5-eV O(3P) atoms on a MgF2 surface
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1990-01-01
A source of hyperthermal, ground-state, impurity-free, atomic oxygen of an energy variable in the range 2-100 eV has been developed. Experimental results are presented of emission spectra in the wavelength range 250-850 nm produced by collisions of 5-eV O(3P) atoms with adsorbed NO and CO molecules on a MgF2 surface.
Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces
NASA Astrophysics Data System (ADS)
Ambrosio, M. J.; Thumm, U.
2018-04-01
Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.
Impact of surface ozone interactions on indoor air chemistry: A modeling study.
Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N
2017-09-01
An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun
2012-11-01
The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.
NASA Astrophysics Data System (ADS)
Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan
2013-06-01
The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.
Characterization of boron coated vitreous carbon foam for neutron detection
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.
2013-11-01
Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.
NASA Astrophysics Data System (ADS)
Elansky, N.; Postylyakov, O.; Verevkin, Y.; Volobuev, L.; Ponomarev, N.
2017-11-01
By the present a large amount of data has been accumulated on direct measurements of the pollution and thermodynamic state of the atmosphere in the Moscow region, which was obtained at stations of Roshydromet, Mosecomonitoring, A.M.Obukhov Institute of Atmospheric Physics (OIAP), M.V. Lomonosov Moscow State University, NPO Typhoon, what allows estimating pollution emissions based on measurements and correcting existing emission inventories, which are evaluated mainly on indirect data connected with population density, fuel consumption, etc. Within the framework of the project, the whole volume of data on the concentration of ground contaminants CO, NOx, SO2, CH4, obtained at regularly operated Moscow Ecological Monitoring stations and at OIAP stations from 2005 to 2014, was systematized. Observation data on pollution concentrations are supplemented by measurements of their integral content in the atmospheric boundary layer, obtained by differential spectroscopy methods (MAX DOAS, ZDOAS) at stationary stations and by passing Moscow with DOAS-equipped car. The paper present preliminary estimates of pollution emissions in the Moscow region, obtained on the basis of the collected array of experimental data. The estimations of pollutant emissions from Moscow were obtained experimentally in a few ways: (1) on the basis of network observations of surface concentrations, (2) on the basis of measurements in the atmospheric layer 0-348 m at Ostankino TV tower, (3) on the basis of the integral pollutant (NO2) content in ABL obtained by DOAS technique from stationary stations, and (4) using a car with DOAS equipment traveling over the closed route around Moscow (for NO2). All experimental approaches yielded close values of pollution emissions for Moscow. Trends in emissions of CO, NOx, and CH4 are negative, and the trend of SO2 emission is positive from 2005 to 2014.
2D surface temperature measurement of plasma facing components with modulated active pyrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiel, S.; Loarer, T.; Pocheau, C.
2014-10-01
In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~more » 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawerk, Elie, E-mail: eliekawerk@hotmail.com, E-mail: ekawerk@units.it; Sorbonne Universités, UPMC Université Paris 06, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris; Laboratoire de Physique Appliquée, Faculté des Sciences II, Université Libanaise, 90656 Jdeidet el Metn, Liban
2014-10-14
We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.
Emission Depth Distribution Function of Al 2s Photoelectrons in Al2O3
NASA Astrophysics Data System (ADS)
Hucek, S.; Zemek, J.; Jablonski, A.; Tilinin, I. S.
The escape probability of Al 2s photoelectrons leaving an aluminum oxide sample (Al2O3) has been studied as a function of depth of origin. It has been found that the escape probability (the so-called emission depth distribution function - DDF) depends strongly on the photoelectron emission direction with respect to that of the incident X-ray beam. In particular, in the emission direction close to that of photon propagation, the DDF differs substantially from the simple Beer-Lambert law and exhibits a nonmonotonic behavior with a maximum in the near-surface region at a depth of about 10 Å. Experimental results are in good agreement with theoretical predictions based on Monte Carlo simulations of the electron transport and with analytical solution of the linearized Boltzmann kinetic equation with appropriate boundary conditions. Both theoretical approaches take into account multiple elastic scattering of photoelectrons on their way out of the sample. It is shown that the commonly used straight line approximation (SLA), which neglects elastic scattering effects, fails to describe adequately experimental data at emission directions close to minima of the differential photoelectric cross section.
SOA formation potential of emissions from soil and leaf litter.
Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M
2014-01-21
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.
Time- and space-resolved light emission and spectroscopic research of the flashover plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.
2015-02-21
The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV,more » respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.
2007-02-01
Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.
Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels
NASA Technical Reports Server (NTRS)
Hamstad, M. A.; Patterson, R. G.
1977-01-01
We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.
Selective oxidation of dual phase steel after annealing at different dew points
NASA Astrophysics Data System (ADS)
Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo
2011-04-01
Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.
Volume versus surface-mediated recombination in anatase TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Cavigli, Lucia; Bogani, Franco; Vinattieri, Anna; Faso, Valentina; Baldi, Giovanni
2009-09-01
We present an experimental study of the radiative recombination dynamics in size-controlled anatase TiO2 nanoparticles in the range 20-130 nm. From time-integrated photoluminescence spectra and picosecond time-resolved experiments as a function of the nanoparticle size, excitation density, and temperature, we show that photoluminescence comes out from a bulk and a surface radiative recombination. The spectral shift and the different time dynamics provide a clear distinction between them. Moreover, the intrinsic nature of the emission is also proven, providing a quantitative evaluation of volume and surface contributions.
Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike
Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flatmore » samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.« less
NASA Astrophysics Data System (ADS)
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
Nie, Kui-Ying; Tu, Xuecou; Li, Jing; Chen, Xuanhu; Ren, Fang-Fang; Zhang, Guo-Gang; Kang, Lin; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong
2018-06-14
The ability to manipulate light-matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core-shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core-shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light-matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.
NASA Astrophysics Data System (ADS)
Figueroa-Navedo, Amanda; Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.
2013-05-01
Terrorists conceal highly energetic materials (HEM) as Improvised Explosive Devices (IED) in various types of materials such as PVC, wood, Teflon, aluminum, acrylic, carton and rubber to disguise them from detection equipment used by military and security agency personnel. Infrared emissions (IREs) of substrates, with and without HEM, were measured to generate models for detection and discrimination. Multivariable analysis techniques such as principal component analysis (PCA), soft independent modeling by class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and neural networks (NN) were employed to generate models, in which the emission of IR light from heated samples was stimulated using a CO2 laser giving rise to laser induced thermal emission (LITE) of HEMs. Traces of a specific target threat chemical explosive: PETN in surface concentrations of 10 to 300 ug/cm2 were studied on the surfaces mentioned. Custom built experimental setup used a CO2 laser as a heating source positioned with a telescope, where a minimal loss in reflective optics was reported, for the Mid-IR at a distance of 4 m and 32 scans at 10 s. SVM-DA resulted in the best statistical technique for a discrimination performance of 97%. PLS-DA accurately predicted over 94% and NN 88%.
Adsorption of Phthalates on Impervious Indoor Surfaces.
Wu, Yaoxing; Eichler, Clara M A; Leng, Weinan; Cox, Steven S; Marr, Linsey C; Little, John C
2017-03-07
Sorption of semivolatile organic compounds (SVOCs) onto interior surfaces, often referred to as the "sink effect", and their subsequent re-emission significantly affect the fate and transport of indoor SVOCs and the resulting human exposure. Unfortunately, experimental challenges and the large number of SVOC/surface combinations have impeded progress in understanding sorption of SVOCs on indoor surfaces. An experimental approach based on a diffusion model was thus developed to determine the surface/air partition coefficient K of di-2-ethylhexyl phthalate (DEHP) on typical impervious surfaces including aluminum, steel, glass, and acrylic. The results indicate that surface roughness plays an important role in the adsorption process. Although larger data sets are needed, the ability to predict K could be greatly improved by establishing the nature of the relationship between surface roughness and K for clean indoor surfaces. Furthermore, different surfaces exhibit nearly identical K values after being exposed to kitchen grime with values that are close to those reported for the octanol/air partition coefficient. This strongly supports the idea that interactions between gas-phase DEHP and soiled surfaces have been reduced to interactions with an organic film. Collectively, the results provide an improved understanding of equilibrium partitioning of SVOCs on impervious surfaces.
NASA Astrophysics Data System (ADS)
Ćınar, K.; Yıldırım, N.; Coşkun, C.; Turut, A.
2009-10-01
To obtain detailed information about the conduction process of the Ag/p-GaN Schottky diodes (SDs) fabricated by us, we measured the I-V characteristics over the temperature range of 80-360 K by the steps of 20 K. The slope of the linear portion of the forward bias I-V plot and nkT =E0 of the device remained almost unchanged as independent of temperature with an average of 25.71±0.90 V-1 and 41.44±1.38 meV, respectively. Therefore, it can be said that the experimental I-V data quite well obey the field emission model rather than the thermionic emission or thermionic field emission model. The study is a very good experimental example for the FE model. Furthermore, the reverse bias saturation current ranges from 8.34×10-8 A at 80 K to 2.10×10-7 A at 360 K, indicating that the charge transport mechanism in the Ag/p-GaN SD is tunneling due to the weak temperature dependence of the saturation current. The possible origin of high experimental characteristic tunneling energy of E00=39 meV, which is ten times larger than possible theoretical value of 3.89 meV, is attributed to the accumulation of a large amount of defect states near the GaN surface or to the deep level defect band induced by high doping or to any mechanism which enhances the electric field and the state density at the semiconductor surface.
From Red Cells to Soft Porous Lubrication
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Gacka, Thomas; Nathan, Rungun; Crawford, Robert; Vucbmss Team
2014-11-01
Biological scientists have wondered, since the motion of red cells was first observed in capillaries, how the highly flexible red cell can move with so little friction in tightly fitting microvessels without being damaged or undergoing hemolysis. Theoretical studies (Feng and Weinbaum, 2000, JFM; Wu et al., 2004, PRL) attributed this frictionless motion to the dramatically enhanced hydrodynamic lifting force generated inside the soft, porous, endothelial surface layer (ESL) covering the inner surfaces of our capillaries, as a red blood cell glides over it. Herein we report the first experimental examination of this concept. The results conclusively demonstrate that significant fraction of the overall lifting force generated in a soft porous layer as a planing surface glides over it, is contributed by the pore fluid pressure, and thus frictional loss is reduced significantly. Moreover, the experimental predictions showed excellent agreement with the experimental data. This finding has the potential of dramatically changing existing lubrication approaches, and can result in substantial savings in energy consumption and thus reduction in greenhouse gas emissions.
Direct, experimental evidence of the Fermi surface in YBa2Cu3O(7-x)
NASA Astrophysics Data System (ADS)
Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Howell, R. H.; Sterne, P. A.; Solal, F. R.; Fluss, M. J.
1991-04-01
We report new measurements of the electron positron momentum spectra of YBa2Cu3O(7-x) performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D(sub 2) symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e., the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Shibata, T.; Ohta, M.; Yasumoto, M.; Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.; Sawada, K.; Fantz, U.
2014-02-01
To control the H0 atom production profile in the H- ion sources is one of the important issues for the efficient and uniform surface H- production. The purpose of this study is to construct a collisional radiative (CR) model to calculate the effective production rate of H0 atoms from H2 molecules in the model geometry of the radio-frequency (RF) H- ion source for Linac4 accelerator. In order to validate the CR model by comparison with the experimental results from the optical emission spectroscopy, it is also necessary for the model to calculate Balmer photon emission rate in the source. As a basic test of the model, the time evolutions of H0 production and the Balmer Hα photon emission rate are calculated for given electron energy distribution functions in the Linac4 RF H- ion source. Reasonable test results are obtained and basis for the detailed comparisons with experimental results have been established.
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.
2018-06-01
We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.
NASA Astrophysics Data System (ADS)
Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc
2018-03-01
We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.
NASA Astrophysics Data System (ADS)
Yuan, Guanghui; Zhang, Lei; Liang, Jiening; Cao, Xianjie; Guo, Qi; Yang, Zhaohong
2017-11-01
To assess the impacts of initial soil moisture (SMOIS) and the vegetation fraction (Fg) on the diurnal temperature range (DTR) in arid and semiarid regions in China, three simulations using the weather research and forecasting (WRF) model are conducted by modifying the SMOIS, surface emissivity and Fg. SMOIS affects the daily maximum temperature (Tmax) and daily minimum temperature (Tmin) by altering the distribution of available energy between sensible and latent heat fluxes during the day and by altering the surface emissivity at night. Reduced soil wetness can increase both the Tmax and Tmin, but the effect on the DTR is determined by the relative strength of the effects on Tmax and Tmin. Observational data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) and the Shapotou Desert Research and Experimental Station (SPD) suggest that the magnitude of the SMOIS effect on the distribution of available energy during the day is larger than that on surface emissivity at night. In other words, SMOIS has a negative effect on the DTR. Changes in Fg modify the surface radiation and the energy budget. Due to the depth of the daytime convective boundary layer, the temperature in daytime is affected less than in nighttime by the radiation and energy budget. Increases in surface emissivity and decreases in soil heating resulting from increased Fg mainly decrease Tmin, thereby increasing the DTR. The effects of SMOIS and Fg on both Tmax and Tmin are the same, but the effects on DTR are the opposite.
Formation of ZnS nanostructures by a simple way of thermal evaporation
NASA Astrophysics Data System (ADS)
Yuan, H. J.; Xie, S. S.; Liu, D. F.; Yan, X. Q.; Zhou, Z. P.; Ci, L. J.; Wang, J. X.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.
2003-11-01
The mass synthesis of ZnS nanobelts, nanowires, and nanoparticles has been achieved by a simple method of thermal evaporation of ZnS powders onto silicon substrates in the presence of Au catalyst. The temperature of the substrates and the concentration of ZnS vapor were the critical experimental parameters for the formation of different morphologies of ZnS nanostructures. Scanning electron microscopy and transmission electron microscopy show that the diameters of as-prepared nanowires were 30-70 nm. The UV emission at 374 nm is probably related to the exciton emission, while the mechanism of blue emission at 443 nm is probably mainly due to the presence of various surface states.
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
Nizzetto, Luca; Lohmann, Rainer; Gioia, Rosalinda; Dachs, Jordi; Jones, Kevin C
2010-09-15
Decreasing environmental concentrations of some persistent organic pollutants (POPs) have been observed at local or regional scales in continental areas after the implementation of international measures to curb primary emissions. A decline in primary atmospheric emissions can result in re-emissions of pollutants from the environmental capacitors (or secondary sources) such as soils and oceans. This may be part of the reason why concentrations of some POPs such as polychlorinated biphenyls (PCBs) have not declined significantly in the open oceanic areas, although re-emission of POPs from open ocean water has barely been documented. In contrast, results from this study show that several polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) have undergone a marked decline (2-3 orders of magnitude for some homologues) over a major portion of the remote oligotrophic Atlantic Ocean. The decline appears to be faster than that observed over continental areas, implicating an important role of oceanic geochemical controls on levels and cycling of some POPs. For several lower chlorinated PCDD/Fs, we observed re-emission from surface water back to the atmosphere. An assessment of the effectiveness of the main sink processes highlights the role of degradation in surface waters as potentially key to explaining the different behavior between PCDD/Fs and PCBs and controlling their overall residence time in the ocean/atmosphere system. This study provides experimental evidence that the ocean has a buffering capacity - dependent on individual chemicals - which moderates the rate at which the system will respond to an underlying change in continental emissions.
2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum
NASA Astrophysics Data System (ADS)
Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang
2018-04-01
With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.
NASA Astrophysics Data System (ADS)
Shimoni, M.; Haelterman, R.; Lodewyckx, P.
2016-05-01
Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.
The thermally stimulated discharge of ion-irradiated oxide films
NASA Astrophysics Data System (ADS)
Wang, Qiuru; Zeng, Huizhong; Zhang, Wanli
2018-01-01
The ion irradiation technique is utilized to modify the surface structure of amorphous insulating oxide films. While introducing defects, a number of surface charges are injected into the films and captured in the traps during ion irradiation. The variation of surface morphology and the enhancement of emission spectrum corresponding to vacancy defects are respectively verified by atomic force microscopy and photoluminescence measurements. The surface charges trapped in the shallow traps are easy to release caused by thermal excitation, and discharge is observed during heating. Based on the thermally stimulated discharge measurements, the trap parameters of oxide films, such as activation energy and relaxation time, are calculated from experimental data.
Prymaczek, A; Cwierzona, M; Grzelak, J; Kowalska, D; Nyk, M; Mackowski, S; Piatkowski, D
2018-06-27
In this paper, we demonstrate remote activation and detection of the 2-photon up-conversion luminescence via surface plasmon polaritons propagating in a long silver nanowire. The hybrid nanostructure was assembled by locally depositing a submicron droplet of nanocrystal-containing colloidal solution on one of the ends of the metallic nanowire. When - using a classic confocal microscope - the second end of the nanowire, without the nanocrystals, is illuminated with infrared laser light, we observe strong emission from the same end. Therefore, it indicates that surface plasmon polaritons activated with infrared light at the second end of the nanowire propagate along it and can excite nanocrystals in the droplet at the opposite end. Subsequently, the excited nanocrystals up-convert the energy and by launching surface plasmon polaritons can guide the up-converted luminescence back to the starting point. The emergence of this effect is much more pronounced for a laser polarized along the nanowire. The spectral and temporal character of this emission reveals strong interactions between surface plasmon polaritons and electronic states of the nanocrystals. The details of local and non-local aspects of the effects of remote excitation and guiding of energy in a silver nanowire are elucidated using a unique experimental setup, based on two microscope objectives for spatial separation and control of both excitation and emission beams.
Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System
NASA Astrophysics Data System (ADS)
Louksha, O. I.; Trofimov, P. A.
2018-04-01
New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.
Plasma-material interaction in electrothermal and electromagnetic launchers
NASA Astrophysics Data System (ADS)
Bourham, M. A.; Gilligan, J. G.; Hankins, O. E.
1993-07-01
Various material surfaces have been exposed to high heat fluxes from 2 to 80 GW/sq m over 100 microsec duration using the electrothermal launcher, SIRENS. The vapor shield is effective in reducing the heat to the ablating surface, and the energy transmission factor through the vapor shield decreases as the incident heat flux increases. Results show good agreement with code predictions. Visible light emission spectra have been observed both in-bore and from the muzzle flash of the barrel, and from the flash of the source. Measurements of visible emission from the source indicate time averaged temperatures of 1 to 3 eV, and about 1 to 2 eV along the axis of the device, which agree with the theory and experimental measurements of the average heat flux and plasma conductivity.
Space-filling, multifractal, localized thermal spikes in Si, Ge and ZnO
NASA Astrophysics Data System (ADS)
Ahmad, Shoaib; Abbas, Muhammad Sabtain; Yousuf, Muhammad; Javeed, Sumera; Zeeshan, Sumaira; Yaqub, Kashif
2018-04-01
The mechanism responsible for the emission of clusters from heavy ion irradiated solids is proposed to be thermal spikes. Collision cascade-based theories describe atomic sputtering but cannot explain the consistently observed experimental evidence for significant cluster emission. Statistical thermodynamic arguments for thermal spikes are employed here for qualitative and quantitative estimation of the thermal spike-induced cluster emission from Si, Ge and ZnO. The evolving cascades and spikes in elemental and molecular semiconducting solids are shown to have fractal characteristics. Power law potential is used to calculate the fractal dimension. With the loss of recoiling particles' energy the successive branching ratios get smaller. The fractal dimension is shown to be dependent upon the exponent of the power law interatomic potential D = 1/2m. Each irradiating ion has the probability of initiating a space-filling, multifractal thermal spike that may sublime a localized region near the surface by emitting clusters in relative ratios that depend upon the energies of formation of respective surface vacancies.
SOA formation potential of emissions from soil and leaf litter
Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...
2013-12-13
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less
NASA Technical Reports Server (NTRS)
Owan, D. A.
1981-01-01
A visible emission spectroscopic method was developed. The amounts of excited singlet and triplet oxygen molecules produced by recombination on the Space Shuttle Orbiter thermal protective tiles at elevated temperatures are determined. Rate constants and energetics of the extremely exothermic reaction are evaluated in terms of a chemical and mathematical model. Implications for potential contribution to Shuttle surface reentry heating fluxes are outlined.
Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.
When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less
Enhanced stability of Janus nanoparticles by covalent cross-linking of surface ligands.
Song, Yang; Klivansky, Liana M; Liu, Yi; Chen, Shaowei
2011-12-06
A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV-vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. © 2011 American Chemical Society
Riva, C; Orzi, V; Carozzi, M; Acutis, M; Boccasile, G; Lonati, S; Tambone, F; D'Imporzano, G; Adani, F
2016-03-15
Anaerobic digestion produces a biologically stable and high-value fertilizer product, the digestate, which can be used as an alternative to mineral fertilizers on crops. However, misuse of digestate can lead to annoyance for the public (odours) and to environmental problems such as nitrate leaching and ammonia emissions into the air. Full field experimental data are needed to support the use of digestate in agriculture, promoting its correct management. In this work, short-term experiments were performed to substitute mineral N fertilizers (urea) with digestate and products derived from it to the crop silage maize. Digestate and the liquid fraction of digestate were applied to soil at pre-sowing and as topdressing fertilizers in comparison with urea, both by surface application and subsurface injection during the cropping seasons 2012 and 2013. After each fertilizer application, both odours and ammonia emissions were measured, giving data about digestate and derived products' impacts. The AD products could substitute for urea without reducing crop yields, apart from the surface application of AD-derived fertilizers. Digestate and derived products, because of high biological stability acquired during the AD, had greatly reduced olfactometry impact, above all when they were injected into soils (82-88% less odours than the untreated biomass, i.e. cattle slurry). Ammonia emission data indicated, as expected, that the correct use of digestate and derived products required their injection into the soil avoiding, ammonia volatilization into the air and preserving fertilizer value. Sub-surface injection allowed ammonia emissions to be reduced by 69% and 77% compared with surface application during the 2012 and 2013 campaigns. Copyright © 2015 Elsevier B.V. All rights reserved.
A phased antenna array for surface plasmons
Dikken, Dirk Jan W.; Korterik, Jeroen P.; Segerink, Frans B.; Herek, Jennifer L.; Prangsma, Jord C.
2016-01-01
Surface plasmon polaritons are electromagnetic waves that propagate tightly bound to metal surfaces. The concentration of the electromagnetic field at the surface as well as the short wavelength of surface plasmons enable sensitive detection methods and miniaturization of optics. We present an optical frequency plasmonic analog to the phased antenna array as it is well known in radar technology and radio astronomy. Individual holes in a thick gold film act as dipolar emitters of surface plasmon polaritons whose phase is controlled individually using a digital spatial light modulator. We show experimentally, using a phase sensitive near-field microscope, that this optical system allows accurate directional emission of surface waves. This compact and flexible method allows for dynamically shaping the propagation of plasmons and holds promise for nanophotonic applications employing propagating surface plasmons. PMID:27121099
Theoretical and experimental models of the diffuse radar backscatter from Mars
NASA Technical Reports Server (NTRS)
England, A. W.
1995-01-01
The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.
Photo-assisted electron emission from illuminated monolayer graphene
NASA Astrophysics Data System (ADS)
Upadhyay Kahaly, M.; Misra, Shikha; Mishra, S. K.
2017-05-01
We establish a formalism to address co-existing and complementing thermionic and photoelectric emission from a monolayer graphene sheet illuminated via monochromatic laser radiation and operating at a finite temperature. Taking into account the two dimensional Fermi-Dirac statistics as is applicable for a graphene sheet, the electron energy redistribution due to thermal agitation via laser irradiation, and Fowler's approach of the electron emission, along with Born's approximation to evaluate the tunneling probability, the expressions for the photoelectric and thermionic emission flux have been derived. The cumulative emission flux is observed to be sensitive to the parametric tuning of the laser and material specifications. Based on the parametric analysis, the photoemission flux is noticed to dominate over its coexisting counterpart thermionic emission flux for smaller values of the material work function, surface temperature, and laser wavelength; the analytical estimates are in reasonably good agreement with the recent experimental observations [Massicotte et al., Nat. Commun. 7, 12174 (2016)]. The results evince the efficient utilization of a graphene layer as a photo-thermionic emitter.
Acoustic Emission during Intermittent Creep in an Aluminum-Magnesium Alloy
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.
2018-01-01
The use of high-speed methods to measure deformation, load, and the dynamics of deformation bands, as well as the correlation between the intermittent creep characteristics of the AlMg6 aluminum-magnesium alloy and the parameters of the acoustic emission signals, has been studied experimentally. It has been established that the emergence and rapid expansion of the primary deformation band, which generates a characteristic acoustic emission signal in the frequency range of 10-1000 Hz, is a trigger for the development of a deformation step in the creep curve. The results confirm the accuracy of the mechanism of generating an acoustic signal associated with the emergence of a dislocation band on the external surface of the specimen.
NASA Astrophysics Data System (ADS)
Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.
1987-04-01
An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).
NASA Astrophysics Data System (ADS)
Lix, Kelsi; Algar, W. Russ
2016-09-01
Semiconducting polymer dots (Pdots) are rapidly emerging fluorescent probes for bioanalysis. Pdots have extraordinarily strong absorption and bright emission compared to other commonly used fluorescent probes, making them very attractive for applications involving Förster resonance energy transfer (FRET). Here, we investigated two FRET systems with green-emitting poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) Pdots as donors and two different Cyanine 5 (Cy5) dyes as acceptors. A hydrophilic sulfo-Cy5 dye was directly conjugated to the Pdot surface using carbodiimide chemistry, and a hydrophobic Cy5 dye was observed to spontaneously partition into the core of the Pdot. FRET was observed to depend on the acceptor dye concentration with both systems, and was characterized using a combination of fluorescence emission spectra, excitation spectra, and lifetime measurements. Much stronger quenching of Pdot emission and FRET-sensitized acceptor dye emission were observed for the hydrophobic Cy5 system, and these trends were attributed to reduced donor-acceptor distances in comparison to the hydrophilic sulfo-Cy5 system. Current limitations in the experimental format are discussed. The results show that Pdots are effective FRET donors for acceptor dyes located both within and at the surface of Pdots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotarev, V V; Leshko, A Yu; Pikhtin, N A
2014-10-31
We have studied the spectral characteristics of multimode semiconductor lasers with high-order surface diffraction gratings based on asymmetric separate-confinement heterostructures grown by metalorganic vapour phase epitaxy (λ = 1070 nm). Experimental data demonstrate that, in the temperature range ±50 °C, the laser emission spectrum is ∼5 Å in width and contains a fine structure of longitudinal and transverse modes. A high-order (m = 15) surface diffraction grating is shown to ensure a temperature stability of the lasing spectrum dλ/dT = 0.9 Å K{sup -1} in this temperature range. From analysis of the fine structure of the lasing spectrum, we havemore » evaluated the mode spacing and, thus, experimentally determined the effective length of the Bragg diffraction grating, which was ∼400 μm in our samples. (lasers)« less
In-situ plasma processing to increase the accelerating gradients of SRF cavities
Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...
2015-12-31
A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.; Kan, Q.; Chen, H. D.
2010-12-01
We have observed a strongly polarized edge-emission from an organic light emitting device (OLED) with a silicon anode and a stacked Sm/Au (or Ag) cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.
Scaling results for the liquid sheet radiator
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.
1989-01-01
Surface tension forces at the edges of a thin liquid (approx 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = 23.5 cm, length = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is low temperature (300-400 K) candidate for a liquid sheet radiator (LSR), is greater than 0.8 for sheet thicknesses greater than 100 micrometers.
Characterization of the IXV Thermal Protection System in High Enthalphy Plasma Flow
NASA Astrophysics Data System (ADS)
Panerai, F.; Helber, B.; Sakraker, I.; Chazot, O.; Pichon, T.; Barreteau, R.; Tribot, J. P.; Vallee, J. J.; Mareschi, V.; Ferrarella, D.; Rufolo, G.; Mancuso, S.
2011-05-01
An experimental campaign dedicated to the characterization of Intermediate eXperimental Vehicle thermal protection system is performed in the Plasmatron wind tunnel at the von Karman Institute for Fluid Dynamics. Emissivity and catalycity properties for representative ceramic specimens are determined under a wide set of operating conditions in order to reproduce the reentry flight trajectory. Intrusive measurements for flow characterization are used together with optical infrared techniques that provide diagnostic of the test articles surface. Experimental data are postprocessed by means of numerical simulations that allow flow enthalpy rebuilding and characterization of the chemical environment for the different conditions investigated.
NASA Astrophysics Data System (ADS)
Li, H.; Yang, Y.; Yongming, D.; Cao, B.; Qinhuo, L.
2017-12-01
Land surface temperature (LST) is a key parameter for hydrological, meteorological, climatological and environmental studies. During the past decades, many efforts have been devoted to the establishment of methodology for retrieving the LST from remote sensing data and significant progress has been achieved. Many operational LST products have been generated using different remote sensing data. MODIS LST product (MOD11) is one of the most commonly used LST products, which is produced using a generalized split-window algorithm. Many validation studies have showed that MOD11 LST product agrees well with ground measurements over vegetated and inland water surfaces, however, large negative biases of up to 5 K are present over arid regions. In addition, land surface emissivity of MOD11 are estimated by assigning fixed emissivities according to a land cover classification dataset, which may introduce large errors to the LST product due to misclassification of the land cover. Therefore, a new MODIS LSE&E product (MOD21) is developed based on the temperature emissivity separation (TES) algorithm, and the water vapor scaling (WVS) method has also been incorporated into the MODIS TES algorithm for improving the accuracy of the atmospheric correction. The MOD21 product will be released with MODIS collection 6 Tier-2 land products in 2017. Due to the MOD21 products are not available right now, the MODTES algorithm was implemented including the TES and WVS methods as detailed in the MOD21 Algorithm Theoretical Basis Document. The MOD21 and MOD11 C6 LST products are validated using ground measurements and ASTER LST products collected in an arid area of Northwest China during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment. In addition, lab emissivity spectra of four sand dunes in the Northwest China are also used to validate the MOD21 and MOD11 emissivity products.
NASA Astrophysics Data System (ADS)
Tian, Rui; Yan, Dongpeng; Li, Chunyang; Xu, Simin; Liang, Ruizheng; Guo, Lingyan; Wei, Min; Evans, David G.; Duan, Xue
2016-05-01
Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling.Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01624c
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.
Multi-spectral temperature measurement method for gas turbine blade
NASA Astrophysics Data System (ADS)
Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong
2016-02-01
One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.
Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas
2013-11-13
Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range.
Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang
2018-02-14
Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.
NASA Astrophysics Data System (ADS)
Bouet, Christel; Siour, Guillaume; Poulet, David; Bergametti, Gilles; Laurent, Benoit; Brocheton, Fabien; Forêt, Gilles; Xu, Yiwen; Marticorena, Béatrice
2017-04-01
Modelling of the mineral dust cycle is still a challenging issue both at the global and regional scales: during the last decade, several exercises of model intercomparison highlighted the wide variability of the existing dust models to estimate dust emission fluxes and atmospheric load at both scales. For instance, within the framework of the international AEROCOM Project (http://aerocom.met.no/), 15 different global dust models provide a range of possible dust emission fluxes from 400 to 2200 Tg yr-1 for North Africa and from 26 to 526 Tg yr-1 for the Middle East, i.e. still a factor of 5 and 20 respectively (Huneeus et al., 2011). Whatever the scale, a critical aspect for any dust model is the sensitivity to the meteorological fields used to compute dust emission fluxes (external forcing or simulated by the coupled meteorological or climatic model). Indeed, the intensity of dust emission varies as a power 3 of the surface wind speed, and the number of dust emission events is the number of times the surface wind speed exceeds the wind erosion threshold. As a result, the simulations of dust emissions are extremely sensitive to the way the surface wind speeds are accounted for both in global and regional models. In this context, the aim of the DRUMS (DeseRt dUst Modeling: performance and Sensitivity evaluation) project was to investigate the sensitivity of a regional dust model (CHIMERE) to this parameter. This sensitivity study was conducted for 3 years from 2006 to 2008 over the North of Africa (45°N-0°N; 45°W-55°E), where dust emissions are the most intense. Emission fluxes can be simulated there with the most relevant data set of surface properties controlling dust emissions and accounting for the heterogeneity of land surfaces (surface roughness, soil size distribution and texture) of desert regions (Laurent et al., 2008). Meteorological products (forecasts and re-analysis) provided by the most recognized international meteorological centres (US NCEP and ECMWF), and thus the most widely used for the simulations of the mineral dust cycle, were tested. In addition, the benefit provided by the use of the WRF model to downscale the meteorological forcing was evaluated. The estimation of the performance of the CHIMERE model forced by the different meteorological fields was conducted using a unique validation data set compiled during the project by analysing and evaluating (i) the large number of experimental data resulting from the AMMA (African Monsoon Multidisciplinary Analysis) field campaigns, (ii) long-term aerosol monitoring over West Africa (Sahelian Dust Transect) and downwind the Sahara/Sahel region (AERONET), and (iii) recent satellite aerosol products (SeaWIFS AOD). This dataset allowed to validate the main characteristics of the dust cycle (emission, transport, and deposit).
Thermal Infrared Spectra of a Suite of Forsterite Samples and Ab-initio Modelling of theirs Spectra
NASA Astrophysics Data System (ADS)
Maturilli, A.; Stangarone, C.; Helbert, J.; Tribaudino, M.; Prencipe, M.
2017-12-01
Forsterite is the dominating component in olivine, a major constituent in ultrafemic rocks, as well as planetary bodies. Messenger X-ray spectrometer has shown that Mg-rich silicate minerals, such as enstatite and forsterite, dominate Mercury's surface (Weider et al 2012). A careful and detailed acquaintance with the forsterite spectral features and their dependence wrt environmental conditions on Mercury is needed to interpret the remote sensing data from previous and forthcoming missions. We propose an experimental vs calculation approach to reproduce and describe the spectral features of forsterite. TIR emissivity measurements are performed by the Planetary Spectroscopy Laboratory (PSL) of DLR. PSL offers the unique capability to measure the emissivity of samples at temperature up to 1000K under vacuum conditions. TIR emissivity and reflectance measurements are performed on 11 olivine samples having a different composition within the forsterite-fayalite series. When available, the sample has been measured in 2 different grain sizes (<25µm and 125-250µm ranges). Emissivity measurements are taken for temperatures from 300K to 900K step 100K in the 1-100µm spectral range. Modelling is based on ab initio calculation techniques, which allow reproducing properties of crystals, at any P/T condition, with the least possible amount of a priori empirical information. Spectra are calculated evaluating vibrational frequencies at different volume cell, here 0K, 300K and 1000K (extreme situations), taking into account zero point effects. The aim of this work is to study experimentally the effects of temperature, composition and grain sizes on emissivity band minima shifts. The outcomes will benefit the modelling of emissivity spectra with ab initio methods, already successfully enabling to foresee the bands shift due to temperature and composition, but not taking into account band shape due to grain size variations. Considering the chameleon-like effects of Mercury surface already observed (Helbert et al. 2013), this study wants to point out the main spectral features due to the composition and temperature. Our results are used to create a theoretical background to interpret the high temperature infrared emissivity spectra from MERTIS onboard the ESA BepiColombo mission to Mercury (Helbert et al. 2010).
Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang
2008-12-01
In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.
Simulation Experiment and Acoustic Emission Study on Coal and Gas Outburst
NASA Astrophysics Data System (ADS)
Li, Hui; Feng, Zengchao; Zhao, Dong; Duan, Dong
2017-08-01
A coal and gas outburst is an extreme hazard in underground mining. The present paper conducts a laboratory simulation of a coal and gas outburst combined with acoustic emission analysis. The experiment uses a three-dimensional stress loading system and a PCI-2 acoustic emission monitoring system. Furthermore, the development of a coal and gas outburst is numerically studied. The results demonstrate that the deformation and failure of a coal sample containing methane under three-dimensional stress involves four stages: initial compression, elastic deformation, plastic deformation and failure. The development of internal microscale fractures within a coal sample containing methane is reflected by the distribution of acoustic emission events. We observed that the deformation and failure zone for a coal sample under three-dimensional stress has an ellipsoid shape. Primary acoustic emission events are generated at the weak structural surface that compresses with ease due to the external ellipsoid-shaped stress. The number of events gradually increases until an outburst occurs. A mathematical model of the internal gas pressure and bulk stress is established through an analysis of the internal gas pressure and bulk stress of a coal sample, and it is useful for reproducing experimental results. The occurrence of a coal and gas outburst depends not only on the in situ stress, gas pressure and physical and mechanical characteristics of the coal mass but also on the free weak surface of the outburst outlet of the coal mass. It is more difficult for an outburst to occur from a stronger free surface.
Modelling the ArH+ emission from the Crab nebula
NASA Astrophysics Data System (ADS)
Priestley, F. D.; Barlow, M. J.; Viti, S.
2017-12-01
We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, P.; Liu, G. Z.; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparentmore » peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.« less
Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia
D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva
2006-01-01
As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...
Excitation of surface electromagnetic waves in a graphene-based Bragg grating
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc. PMID:23071901
Excitation of surface electromagnetic waves in a graphene-based Bragg grating.
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting
2012-01-01
Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.
NASA Astrophysics Data System (ADS)
Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern
2017-04-01
Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.
Study of positron annihilation with core electrons at the clean and oxygen covered Ag(001) surface
NASA Astrophysics Data System (ADS)
Joglekar, P.; Shastry, K.; Olenga, A.; Fazleev, N. G.; Weiss, A. H.
2013-03-01
In this paper we present measurements of the energy spectrum of electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission from a clean and oxygen covered Ag (100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak was observed at ~ 40 eV corresponding to the N23VV Auger transition in agreement with previous PAES studies. Experimental results were investigated theoretically by calculations of positron states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the clean and oxygen covered Ag(100) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Ag(100) has been performed on the basis of density functional theory and using DMOl3 code. The computed positron binding energy, positron surface state wave function, and positron annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data. This work was supported in part by the National Science Foundation Grant # DMR-0907679.
NASA Astrophysics Data System (ADS)
Kalceff, Marion Anne Stevens
The properties of the clean Tungsten (001) surfaces (both (1 x 1) and reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) phases) and the effects of the common absorbates Hydrogen and Oxygen have been investigated using the techniques of Low Energy Electron Diffraction, Auger Electron Spectroscopy and Characteristic Electron Energy Loss Spectroscopy. The origins of features observed in Characteristic Energy Loss Spectra, very low energy (<10 eV) Secondary Electron Emission spectra and low energy (<40 eV) Auger spectra, are deduced and compared with recent relevant independently obtained theoretical data and with other, sometimes conflicting, analyses. The use of these spectroscopies as monitors of surface cleanliness is evaluated. In particular a previously unreported emission, observed during Oxygen adsorption, is attributed to an Auger transition involving the Oxygen 2s and 2p adsorbate levels. Experimental conventional LEED and improved resolution very low energy intensity versus energy spectra are compared with Dynamical spectra, calculated using the program package of M. A. Van Hove and S. Y. Tong or calculated by R. O. Jones using a previously determined saturated image barrier, within a spin dependent scattering model, respectively. Structural information about the clean (1 x 1), clean reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) and Hydrogen saturated (1 x 1)-H surfaces have been obtained via visual comparison or R factor (E. Zanazzi and F. Jona) analysis of the conventional data. The conventional methods of LEED Intensity data collection are assessed and procedures to improve experimental reproducibility are proposed. From the analysis of the improved resolution data, and with reference to the corresponding set of very low energy electron reflection data also obtained for comparison, conclusions are made about the origins of fine structure observed in the experimental profiles and about the W(001) surface order before and after the temperature dependent reconstruction and during Hydrogen adsorption. Further information about the clean W(001)-(SQRT.(2 x SQRT.(2)R45(DEGREES) surface, including the clean surface transition temperature, the mode of reconstruction, and structural information is determined from the analyses of the LEED intensity pattern and temperature dependence. In particular it is found that the reconstruction involves both vertical and horizontal components of atomic displacement and is dependent upon the surface topography and defect structure. All results are evaluated in comparison with other relevant independent experimental or theoretical analyses, where possible.
Electron emission and beam generation using ferroelectric cathodes
NASA Astrophysics Data System (ADS)
Flechtner, Donald D.
1999-06-01
In 1989, researchers at CERN published the discovery of significant electron emission (1-100 A/cm2) from Lead-Lanthanum-Zirconate- Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50-500,000 V with anode cathode gaps of.5-6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages >=200 kV, a typical Child-Langmuir V3/2 dependence was observed. Additional experiments have demonstrated repetition rates of up to 50 Hz with current densities of >=20 A/cm2. These results have been used in the ongoing design and construction of the electron gun for a 500 kV pulse modulator capable of repetitive operation at 1 Hz. The electron gun uses a PZT 55/45 (Pb(Zr.55,Ti.45 )O3) cathode to produce a <=400 A electron beam focused by a converging magnetic field. Studies of the emission process itself indicate the initial electrons are produced by field emission from the metallic grid applied to the front surface of the cathode. The field emission is induced by the application of a fast rising 1-3 kV, 150 ns pulse to the rear electrode of the 1 mm thick ferroelectric. Field emission can lead to explosive emission from microprotrusions and metal-ferroelectric-vacuum triple points forming a diffuse plasma on the surface of the sample. Under long pulse experiments (1-5 μs), plasma velocities of ~2 cm/μs were measured from gap closure rates. Results from an ion Faraday cup experiment showed ion velocities of 1-2 cm/μs. Experimental evidence indicates the electron emission is dependent on the field emission initiated by the voltage applied to rear surface of the ferroelectric; however, for current pulse durations on the order of microseconds, the surface plasma expansion into the gap can dominate current flow.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.
Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J
2015-03-01
Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong
2014-03-14
Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.
Overbias light emission due to higher-order quantum noise in a tunnel junction.
Xu, F; Holmqvist, C; Belzig, W
2014-08-08
Understanding tunneling from an atomically sharp tip to a metallic surface requires us to account for interactions on a nanoscopic scale. Inelastic tunneling of electrons generates emission of photons, whose energies intuitively should be limited by the applied bias voltage. However, experiments [G. Schull et al., Phys. Rev. Lett. 102, 057401 (2009) indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission characterized by overbias energies. We propose a model of this observation in analogy to the dynamical Coulomb blockade, originally developed for treating the electronic environment in mesoscopic circuits. We explain the experimental finding quantitatively by the correlated tunneling of two electrons interacting with a LRC circuit modeling the local plasmon-polariton mode. To explain the overbias emission, the non-Gaussian statistics of the tunneling dynamics of the electrons is essential.
Underestimated role of the secondary electron emission in the space
NASA Astrophysics Data System (ADS)
Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor
2016-07-01
Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of the lunar surface and the dust grains levitating above it, and it is shown that the SEE is more important for isolated dust grains than for the lunar surface covered by them.
Traveling waves and inertial instability in the northern hemisphere of Mars
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Freund, F.
Earth-atmosphere interactions during and prior to major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole -type electronic charge carriers in rocks subjected to transie nt stress prior to large earthquakes [Freund, 2002]. If such charge carriers are activated in a stressed rock volume, it should lead to: (1) injection of currents into the surrounding rocks, (2) low frequency electromagnetic emission during propagation of the charge carriers, (3) changes in ground potentials when charge carrier clouds intersect the surface, (4) ion emission and corona discharges with attendant light emission from high points at the surface of the Earth, and possibly (5) an enhanced emission in the 8-12 μm region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999, Freund at al, 2002]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard NASA's TERRA satellite launched in 12/1999, we have begun analyzing surface emissivity, sea, and land surface temperatures. Specifically, we look for correlations between atmospheric dynamics and solid Earth processes prior to the M=7.7, Jan. 26, 2001 Gujarat earthquake in India. With TERRA/MODIS covering the entire Earth every 1- 2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern apparently related to pre-seismic activity. We also find evidence for changes in the aerosol content and in atmospheric instability parameters, possibly due to ion emission and to changes in the ground potential. [Freund, F.: Charge generation and propagation in rocks, J. Geodynamics 33, 545-572, 2002; Geng, N., Deng, M., and Cui, Ch., Simulated experimental studies on earthquake prediction by using infrared and microwave remote sensing, Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, M. Hayakawa, ed., Terra Scientific Publ., p. xxx-xxx, 1999; Freund, F., Jhabvala, M., La, A., Shu, P., Tsay, S.C., Ouzounov, D., and Fei, Y.W., Mid-infrared luminescence observed during rock deformation, AGU Spring Meeting 2002, Tectonics Session T22B-03.
CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection
NASA Astrophysics Data System (ADS)
gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi
2014-05-01
The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to design adapted detection and monitoring strategies of early leakage in commercial CO2 storage. The presence of soils with different compactions at surface influences the CO2 dispersion. The inclusion of soils with different permeability, porosity and liquid saturation results in preferential pathways. The formation of preferential pathways in the soil and hot spots on the surface has commonly been observed in natural systems where deep CO2 fluxes interact with shallow aquifers. Increase of ambient temperature increases CO2 fluxes intensity whereas rainfall decreases CO2 emission in gas phase and trap it as aqueous species in the porous media of the soil. A good accuracy has been obtained for surface CO2 fluxes location and intensity between experimental and modelling results taking into account the selected equation of state, the soil characteristics and the operational conditions. Phenomena of compaction and preferential pathways located only in the first centimetres of the soil can explain the heterogeneity of CO2 fluxes in the 16 m2 surface area of PISCO2 experimental platform.
Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng
2017-07-25
Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.
NASA Astrophysics Data System (ADS)
Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.
2016-06-01
Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C.
Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.
2016-01-01
Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C. PMID:27263653
Yates, S R
2009-01-01
An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.
2006-02-01
Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.
Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej
2018-02-01
The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic
NASA Astrophysics Data System (ADS)
Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel
2016-04-01
The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.
NASA Astrophysics Data System (ADS)
Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.
2017-12-01
Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to spectra measured under terrestrial conditions. Experimental studies such as this one will enhance interpretation of current and future planetary remote sensing data sets. This work is the beginning of an effort to develop a comprehensive spectral library of materials relevant to airless bodies and future missions such as OSIRIS-REx and Hayabusa 2.
Experimental and theoretical study of Rayleigh-Lamb wave propagation
NASA Technical Reports Server (NTRS)
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
Low power arcjet system spacecraft impacts
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.
1993-01-01
Application of electrothermal arcjets on communications satellites requires assessment of integration concerns identified by the user community. Perceived risks include plume contamination of spacecraft materials, induced arcing or electrostatic discharges between differentially charged spacecraft surfaces, and conducted and radiated electromagnetic interference (EMI) for both steady state and transient conditions. A Space Act agreement between Martin Marietta Astro Space, the Rocket Research Company, and NASA's Lewis Research Center was established to experimentally examine these issues. Spacecraft materials were exposed to an arcjet plume for 40 hours, representing 40 weeks of actual spacecraft life, and contamination was characterized by changes in surface properties. With the exception of the change in emittance of one sample, all measurable changes in surface properties resulted in acceptable end of life characteristics. Charged spacecraft samples were benignly and consistently reduced to ground potential during exposure to the powered arcjet plume, suggesting that the arcjet could act as a charge control device on spacecraft. Steady state EMI signatures obtained using two different power processing units were similar to emissions measured in a previous test. Emissions measured in UHF, S, C, Ku and Ka bands obtained a null result which verified previous work in the UHF, S, and C bands. Characteristics of conducted and radiated transient emissions appear within standard spacecraft susceptibility criteria.
Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions
Yu, Jingjing; Liu, Chang; Yuan, Kang; Lu, Zunming; Cheng, Yahui; Li, Lanlan; Jin, Peng; Meng, Fanbin; Liu, Hui
2018-01-01
In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emission spectra centering at 445 nm, and the fingerprint emissions relevant to the impurity levels formed by some groups related to C and N elements, including C-C/C=C (intrinsic C), C-N (graphitic N), N-containing heterocycles (pyridine N) and C=O groups, are located around 305 nm, 355 nm, 410 nm, and 500 nm, respectively. Those fine luminescence features could be ascribed to the electron transition among various trapping states within the band structure caused by different chemical bonds in carbon cores, or functional groups attached to the CDs’ surfaces. According to the theoretical calculations and experimental results, a scheme of the band structure has been proposed to describe the positions of those trapping states within the band gap. Additionally, it has also been observed that the emission of CDs is sensitive to the concentration of Fe3+ ions with a linear relation in the range of Fe3+ concentration from 12.5 to 250 μM. PMID:29649110
Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.
2016-01-01
The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357
Comparison of the predictions of two road dust emission models with the measurements of a mobile van
NASA Astrophysics Data System (ADS)
Kauhaniemi, M.; Stojiljkovic, A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Kupiainen, K.; Kangas, L.; Aarnio, M. A.; Omstedt, G.; Denby, B. R.; Kukkonen, J.
2014-02-01
The predictions of two road dust suspension emission models were compared with the on-site mobile measurements of suspension emission factors. Such a quantitative comparison has not previously been reported in the reviewed literature. The models used were the Nordic collaboration model NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and the Swedish-Finnish FORE model (Forecasting Of Road dust Emissions). These models describe particulate matter generated by the wear of road surface due to traction control methods and processes that control the suspension of road dust particles into the air. An experimental measurement campaign was conducted using a mobile laboratory called SNIFFER, along two selected road segments in central Helsinki in 2007 and 2008. The suspended PM10 concentration was measured behind the left rear tyre and the street background PM10 concentration in front of the van. Both models reproduced the measured seasonal variation of suspension emission factors fairly well during both years at both measurement sites. However, both models substantially under-predicted the measured emission values. The results indicate that road dust emission models can be directly compared with mobile measurements; however, more extensive and versatile measurement campaigns will be needed in the future.
Penetration length-dependent hot electrons in the field emission from ZnO nanowires
NASA Astrophysics Data System (ADS)
Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun
2018-01-01
In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.
NASA Astrophysics Data System (ADS)
Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah
2018-05-01
Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.
Flexible random lasers with tunable lasing emissions.
Lee, Ya-Ju; Chou, Chun-Yang; Yang, Zu-Po; Nguyen, Thi Bich Hanh; Yao, Yung-Chi; Yeh, Ting-Wei; Tsai, Meng-Tsan; Kuo, Hao-Chun
2018-04-19
In this study, we experimentally demonstrated a flexible random laser fabricated on a polyethylene terephthalate (PET) substrate with a high degree of tunability in lasing emissions. Random lasing oscillation arises mainly from the resonance coupling between the emitted photons of gain medium (Rhodamine 6G, R6G) and the localized surface plasmon (LSP) of silver nanoprisms (Ag NPRs), which increases the effective cross-section for multiple light scattering, thus stimulating the lasing emissions. More importantly, it was found that the random lasing wavelength is blue-shifted monolithically with the increase in bending strains exerted on the PET substrate, and a maximum shift of ∼15 nm was achieved in the lasing wavelength, when a 50% bending strain was exerted on the PET substrate. Such observation is highly repeatable and reversible, and this validates that we can control the lasing wavelength by simply bending the flexible substrate decorated with the Ag NPRs. The scattering spectrum of the Ag NPRs was obtained using a dark-field microscope to understand the mechanism for the dependence of the wavelength shift on the exerted bending strains. As a result, we believe that the experimental demonstration of tunable lasing emissions based on the revealed structure is expected to open up a new application field of random lasers.
NASA Astrophysics Data System (ADS)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.
2016-01-01
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.
2016-01-14
The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, themore » theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.« less
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
NASA Technical Reports Server (NTRS)
Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.
1975-01-01
A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.
Scaling results for the Liquid Sheet Radiator (LSR)
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.
1989-01-01
Surface tension forces at the edges of a thin liquid (approx. 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = W = 23.5 cm, length = L approx. = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is a low temperature (300 to 400K) candidate for a liquid sheet radiator (LSR), is greater than .8 for sheet thicknesses greater than 100 micrometers.
Out-of-focal plane imaging by leakage radiation microscopy
NASA Astrophysics Data System (ADS)
Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wen, Xiaolei; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-09-01
Leakage radiation microscopy (LRM) is used to investigate the optical properties of surfaces. The front-focal plane (FFP) image with LRM reveals the structural features on the surfaces. A back-focal plane (BFP) image with LRM reveals the angular distribution of the radiation. Herein, we experimentally demonstrate that the out-of-focal plane (OFP) images present a link between the FFP and BFP images and provide optical information that cannot be resolved by either FFP or BFP images. The OFP image provides a link between the spatial location of the emission and the angular distribution from the same location, and thus information about the film’s discontinuity, nonuniformity or variable thickness can be uncovered. The use of OFP imaging will extend the scope and applications of the LRM and coupled emission imaging, which are powerful tools in nanophotonics and high throughput fluorescence screening.
Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence
Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy
2011-01-01
Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765
Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.
2004-01-01
Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.
A study of scandia and rhenium doped tungsten matrix dispenser cathode
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling
2007-10-01
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.
Surface Emissivity Maps for Use in Satellite Retrievals of Longwave Radiation
NASA Technical Reports Server (NTRS)
Wilber, Anne C.; Kratz, David P.; Gupta, Shashi K.
1999-01-01
Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.
NASA Technical Reports Server (NTRS)
Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.
1985-01-01
Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.
Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu
2006-01-01
The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
NASA Astrophysics Data System (ADS)
Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.
2017-06-01
Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.
The introduction of spurious models in a hole-coupled Fabry-Perot open resonator
NASA Technical Reports Server (NTRS)
Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert
1992-01-01
A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.
Equilibrium magnetic states in individual hemispherical permalloy caps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streubel, Robert; Schmidt, Oliver G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz
2012-09-24
The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800 nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations.
NASA Astrophysics Data System (ADS)
Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.
2018-04-01
This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in order to scale the emission rates of these compounds measured with the flux hood to field conditions of higher winds.
Hyper-cooling in the nocturnal boundary layer: the Ramdas paradox
NASA Astrophysics Data System (ADS)
Mukund, V.; Ponnulakshmi, V. K.; Singh, D. K.; Subramanian, G.; Sreenivas, K. R.
2010-12-01
Characterizing the interaction between turbulence and radiative processes is necessary for understanding the nocturnal atmospheric boundary layer. The subtle nature of the interaction is exemplified in a phenomenon called the 'Ramdas paradox' or the 'lifted temperature minimum' (LTM), involving preferential cooling near the Earth's surface. The prevailing explanation for the LTM (the VSN model, Vasudeva Murthy et al (1993 Phil. Trans. R. Soc. A 344 183-206)) invokes radiative exchange in a homogeneous nocturnal atmosphere to predict a large cooling of the near-surface air layers. It is shown here that the cooling predicted by the VSN model is spurious, and that any preferential cooling can occur only in a heterogeneous atmosphere. The underlying error is fundamental, and occurs to varying degrees in a wide class of radiative models, in a flux-emissivity formulation, the VSN model being a prominent example. We, for the first time, propose the correct flux-emissivity formulation that eliminates spurious cooling. Results from field observations and laboratory experiments presented here, however, show that the near-surface radiative cooling is real; near-surface cooling rates can be orders of magnitude higher than values elsewhere in the boundary layer. The results presented include the dependence of the LTM on turbulence, the surface emissivity and the thermal inertia of the ground. It is proposed that aerosols provide the heterogeneity needed for the preferential cooling mechanism. Turbulence, by determining the aerosol concentration distribution over the relevant length scales, plays a key role in the phenomenon. Experimental evidence is presented to support this hypothesis.
True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.
Hernandez, D; Netchaieff, A; Stein, A
2009-09-01
In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces.
Surface temperature determination in surface analytic systems by infrared optical pyrometry
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Jones, William R., Jr.; Pepper, Stephen V.
1988-01-01
An IR pyrometric technique for measuring the surface temperatures of metal specimens in an ultrahigh-vacuum analytic chamber is described and demonstrated. The experimental setup comprises a commercial IR microscope with a long-working-distance right-angle objective (focal spot diameter 1 mm at 53 cm), a metal-coated glass vacuum chamber with a Ta-mesh-covered quartz viewport, an Mo specimen stub with an internal heating element, and a Ta disk test specimen with a flat side coated with a high-emissivity graphite film. The results of an initial calibration test are presented graphically and briefly characterized. The measurement error at 450 C is found to be less than 10 C.
Hydrogen transport behavior of beryllium
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.; Macaulay-Newcombe, R. G.
1992-12-01
Beryllium is being evaluated for use as a plasma-facing material in the International Thermonuclear Experimental Reactor (ITER). One concern in the evaluation is the retention and permeation of tritium implanted into the plasma-facing surface. We performed laboratory-scale studies to investigate mechanisms that influence hydrogen transport and retention in beryllium foil specimens of rolled powder metallurgy product and rolled ingot cast beryllium. Specimen characterization was accomplished using scanning electron microscopy, Auger electron spectroscopy, and Rutherford backscattering spectrometry (RBS) techniques. Hydrogen transport was investigated using ion-beam permeation experiments and nuclear reaction analysis (NRA). Results indicate that trapping plays a significant role in permeation, re-emission, and retention, and that surface processes at both upstream and downstream surfaces are also important.
Sun, Shichang; Bao, Zhiyuan; Li, Ruoyu; Sun, Dezhi; Geng, Haihong; Huang, Xiaofei; Lin, Junhao; Zhang, Peixin; Ma, Rui; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin
2017-11-01
In order to make a better understanding of the characteristics of N 2 O emission in A/O wastewater treatment plant, full-scale and pilot-scale experiments were carried out and a back propagation artificial neural network model based on the experimental data was constructed to make a precise prediction of N 2 O emission. Results showed that, N 2 O flux from different units followed a descending order: aerated grit tank>oxic zone≫anoxic zone>final clarifier>primary clarifier, but 99.4% of the total emission of N 2 O (1.60% of N-load) was monitored from the oxic zone due to its big surface area. A proper DO control could reduce N 2 O emission down to 0.21% of N-load in A/O process, and a two-hidden-layers back propagation model with an optimized structure of 4:3:9:1 could achieve a good simulation of N 2 O emission, which provided a new method for the prediction of N 2 O emission during wastewater treatment. Copyright © 2017. Published by Elsevier Ltd.
Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances
NASA Technical Reports Server (NTRS)
Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.
2007-01-01
Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.
Research of thermionic converter collector properties in model experiments with surface control
NASA Astrophysics Data System (ADS)
Agafonov, Valerii R.; Vizgalov, Anatolii V.; Iarygin, Valerii I.
Consideration was given to a possible scheme of phenomena on electrodes leading to changes in emission properties (EP) of a thermionic converter (TEC) collector. It was based on technology and materials typical of the TOPAZ-type reactor-converter (TRC). The element composition (EC), near-surface layer (NSL) structure, and work function (WF) of a collector made from niobium-based polycrystal alloy were studied within this scheme experimentally. The influence of any media except for the interelectrode gap (IEG) medium was excluded when investigating the effect of thermovacuum treatment (TVT) as well as the influence of carbon monoxide, hydrogen, and methane on the NSL characteristics. Experimental data and analytical estimates of the impact of fission products of the nuclear fuel on collector EP are presented. The calculation of possible TRC electrical power decrease was also carried out.
HIGH FIELD Q-SLOPE AND THE BAKING EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performancesmore » have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance
Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong
2013-01-01
We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Charles; Kaganovich, Igor D.
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
Swanson, Charles; Kaganovich, Igor D.
2017-07-24
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
NASA Astrophysics Data System (ADS)
Swanson, Charles; Kaganovich, Igor D.
2017-07-01
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.
Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation
NASA Astrophysics Data System (ADS)
Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth
2017-05-01
Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.
Space charge influence on the angle of conical spikes developing on a liquid-metal anode.
Boltachev, G Sh; Zubarev, N M; Zubareva, O V
2008-05-01
The influence of the space charge of ions emitted from the surface of a conical spike on its shape has been studied. The problem of the calculation of the spatial distributions of the electric field, ion velocity field, and the space charge density near the cone tip has been reduced to the analysis of a system of ordinary differential equations. As a result of numerical solution of these equations, the criterion for the balance of the capillary and electrostatic forces on the conic surface of a liquid-metal anode has been determined. It has allowed us to relate the electrical current flowing through the system, the applied potential difference, and the cone angle. We have compared the results of our calculations with available experimental data concerning emission from the surface of pure liquid gallium, indium, tin, and some liquid alloys, such as Au+Si , Co+Ge , and Au+Ge . On the basis of the proposed model, explanations have been given for a number of specific features of the emissive behavior of different systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis
The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed atmore » understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
G. Ciovati; Myneni, G.; Stevie, F.; ...
2010-02-22
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati; Myneni, G.; Stevie, F.
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios
Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than optimal work functions of ˜2 eV. We hypothesize that scandium enables the barium-oxygen surface monolayer kinetics to access a more thermodynamically stable phase with reported work functions as low as ˜1.3 eV.
NASA Technical Reports Server (NTRS)
Dhawan, R.; Gunther, M. F.; Claus, R. O.
1991-01-01
Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.
Review of the Frontier Workshop and Q-slope results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati
Over the last few years, significant progress has been made to produce field emission free niobium surfaces. Nowadays, the major limitation towards achieving the critical field in radio-frequency (rf) superconducting cavities made of bulk niobium of high purity is represented by the so-called ''high field Q-slope'' or ''Q-drop''. This phenomenon is characterized by a sharp decrease of the cavity quality factor, in absence of field emission, starting at a peak surface magnetic field of the order of 100 mT. It has been observed that these losses are usually reduced by a low-temperature ''in-situ'' baking, typically at 100-120 C for 24-48more » h. Several models have been proposed to explain the high field Q-slope and many experiments have been conducted in different laboratories to validate such models. A three-day workshop was held in Argonne in September 2004 to present and discuss experimental and theoretical results on the present limitations of superconducting rf cavities. In this paper, we will focus on the high field Q-slope by reviewing the results presented at the workshop along with other experimental data. In order to explain the Q-drop and the baking effect we will discuss an improved version of the oxygen diffusion model.« less
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Variable Emissivity Through MEMS Technology
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)
2000-01-01
This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.
Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling
NASA Technical Reports Server (NTRS)
Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah
2014-01-01
Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.
A Novel Approach for Determining Source-Receptor Relationships of Aerosols in Model Simulations
NASA Astrophysics Data System (ADS)
Ma, P.; Gattiker, J.; Liu, X.; Rasch, P. J.
2013-12-01
The climate modeling community usually performs sensitivity studies in the 'one-factor-at-a-time' fashion. However, owing to the a-priori unknown complexity and nonlinearity of the climate system and simulation response, it is computationally expensive to systematically identify the cause-and-effect of multiple factors in climate models. In this study, we use a Gaussian Process emulator, based on a small number of Community Atmosphere Model Version 5.1 (CAM5) simulations (constrained by meteorological reanalyses) using a Latin Hypercube experimental design, to demonstrate that it is possible to characterize model behavior accurately and very efficiently without any modifications to the model itself. We use the emulator to characterize the source-receptor relationships of black carbon (BC), focusing specifically on describing the constituent burden and surface deposition rates from emissions in various regions. Our results show that the emulator is capable of quantifying the contribution of aerosol burden and surface deposition from different source regions, finding that most of current Arctic BC comes from remote sources. We also demonstrate that the sensitivity of the BC burdens to emission perturbations differs for various source regions. For example, the emission growth in Africa where dry convections are strong results in a moderate increase of BC burden over the globe while the same emission growth in the Arctic leads to a significant increase of local BC burdens and surface deposition rates. These results provide insights into the dynamical, physical, and chemical processes of the climate model, and the conclusions may have policy implications for making cost-effective global and regional pollution management strategies.
Comparison of the predictions of two road dust emission models with the measurements of a mobile van
NASA Astrophysics Data System (ADS)
Kauhaniemi, M.; Stojiljkovic, A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Kupiainen, K.; Kangas, L.; Aarnio, M. A.; Omstedt, G.; Denby, B. R.; Kukkonen, J.
2014-09-01
The predictions of two road dust suspension emission models were compared with the on-site mobile measurements of suspension emission factors. Such a quantitative comparison has not previously been reported in the reviewed literature. The models used were the Nordic collaboration model NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and the Swedish-Finnish FORE model (Forecasting Of Road dust Emissions). These models describe particulate matter generated by the wear of road surface due to traction control methods and processes that control the suspension of road dust particles into the air. An experimental measurement campaign was conducted using a mobile laboratory called SNIFFER, along two selected road segments in central Helsinki in 2007 and 2008. The suspended PM10 concentration was measured behind the left rear tyre and the street background PM10 concentration in front of the van. Both models reproduced the measured seasonal variation of suspension emission factors fairly well during both years at both measurement sites. However, both models substantially under-predicted the measured emission values. The article illustrates the challenges in conducting road suspension measurements in densely trafficked urban conditions, and the numerous requirements for input data that are needed for accurately applying road suspension emission models.
Radio detection of extensive air showers at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Berat, C.
2013-08-01
The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km2. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R&D efforts at the Pierre Auger Observatory will be reported.
Isoprene emissions over Asia 1979-2012 : impact of climate and land use changes
NASA Astrophysics Data System (ADS)
Stavrakou, Trissevgeni; Müller, Jean-Francois; Bauwens, Maite; Guenther, Alex; De Smedt, Isabelle; Van Roozendael, Michel
2014-05-01
Due to the scarcity of observational contraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. This study aims at improving upon current bottom-up estimates, and investigate the temporal evolution of isoprene fluxes in Asia over 1979-2012. For that, we use the MEGAN model and incorporate (i) changes in land use, including the rapid expansion of oil palms, (ii) meteorological variability, (iii) long-term changes in solar radiation constrained by surface network measurements, and (iv) recent experimental evidence that South Asian forests are much weaker isoprene emitters than previously assumed. These effects lead to a significant reduction of the total isoprene fluxes over the studied domain compared to the standard simulation. The bottom-up emissions are evaluated using satellite-based emission estimates derived from inverse modelling constrained by GOME-2/MetOp-A formaldehyde columns through 2007-2012. The top-down estimates support our assumptions and confirm the lower isoprene emission rate in tropical forests of Indonesia and Malaysia.
Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.
Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang
2017-11-10
Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.
Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure
NASA Astrophysics Data System (ADS)
Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong
2018-03-01
Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.
NASA Astrophysics Data System (ADS)
Liu, Yongqiang; Mamtimin, Ali; He, Qing
2014-05-01
Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM
Effect of organic materials used in the synthesis on the emission from CdSe quantum dots
NASA Astrophysics Data System (ADS)
Lee, Jae-Won; Yang, Ho-Soon; Hong, K. S.; Kim, S. M.
2013-12-01
Quantum-dot nanocrystals have particular optical properties due to the quantum confinement effect and the surface effect. This study focuses on the effect of surface conditions on the emission from quantum dots. The quantum dots prepared with 1-hexadecylamine (HDA) in the synthesis show strong emission while the quantum dots prepared without HDA show weak emission, as well as emission from surface energy traps. The comparison of the X-ray patterns of these two sets of quantum dots reveals that HDA forms a layer on the surface of quantum dot during the synthesis. This surface passivation with a layer of HDA reduces surface energy traps, therefore the emission from surface trap levels is suppressed in the quantum dots synthesized with HDA.
A repetitive S-band long-pulse relativistic backward-wave oscillator.
Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong
2011-08-01
This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.
NASA Astrophysics Data System (ADS)
Iuchi, Tohru; Furukawa, Tohru
2004-12-01
This article describes some considerations for designing a practical radiation thermometry system for a glossy metal moving through a high temperature furnace, such as a continuous annealing furnace. In order to accomplish this task, two problems must be solved. The emissivity compensation of an object must be calculated and the furnace's background radiation noise must be eliminated. The authors have proposed a method that uses the radiance's polarized directional properties to simultaneously measure the emissivity and temperature to solve the first problem and a technique using a pseudo-blackbody installed in the furnace to solve the second problem. During heating, there is a one-to-one correspondence between the emissivity and the ratio of p- and s-polarized radiances for metals. This characteristic has successfully led to the development of a method for simultaneously measuring the emissivity and temperature of metals regardless of a potential large change in emissivity. Introducing a pseudo-blackbody radiator into a furnace removes the background radiation noise. Moreover, the blackbody radiator supplies a constant reference radiance. This reference plays an important role in maintaining the principle of emissivity-compensated radiation thermometry inside the furnace. Experimental results have simultaneously measured the emissivity and temperature of stainless steel at 1300 K with errors of 12% and 0.96%, respectively. These values were attained even though the s-polarized emissivities change from 0.25 to 0.75 at a wavelength of 0.9 μm. These errors can be achieved by designing the apparatus to have a solid angle, the aperture of the pseudo-blackbody subtended by a measuring point of the specimen, of more than 0.02π steradians. The accuracy of this method is heavily dependent upon the specimen's surface roughness. The maximum surface roughness that allows for the successful utilization of this method is Ra=0.12 μm.
Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.
NASA Technical Reports Server (NTRS)
Hite, Gerald E.
1987-01-01
The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.
Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing
2017-01-01
Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510
Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing
2017-03-22
Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.
2012-01-01
A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.
Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar
2018-05-01
Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.
Kang, Nam-Seok; Li, Lin-Jie
2014-01-01
PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474
Surface analysis of space telescope material specimens
NASA Technical Reports Server (NTRS)
Fromhold, A. T.; Daneshvar, K.
1985-01-01
Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.
Density-matrix approach for the electroluminescence of molecules in a scanning tunneling microscope.
Tian, Guangjun; Liu, Ji-Cai; Luo, Yi
2011-04-29
The electroluminescence (EL) of molecules confined inside a nanocavity in the scanning tunneling microscope possesses many intriguing but unexplained features. We present here a general theoretical approach based on the density-matrix formalism to describe the EL from molecules near a metal surface induced by both electron tunneling and localized surface plasmon excitations simultaneously. It reveals the underlying physical mechanism for the external bias dependent EL. The important role played by the localized surface plasmon on the EL is highlighted. Calculations for porphyrin derivatives have reproduced corresponding experimental spectra and nicely explained the observed unusual large variation of emission spectral profiles. This general theoretical approach can find many applications in the design of molecular electronic and photonic devices.
Nardi, Marco; Verucchi, Roberto; Corradi, Claudio; Pola, Marco; Casarin, Maurizio; Vittadini, Andrea; Iannotta, Salvatore
2010-01-28
Porphyrins and their metal complexes are particularly well suitable for applications in photoelectronics, sensing, energy production, because of their chemical, electronic and optical properties. The understanding of the electronic properties of the pristine molecule is of great relevance for the study and application of the wide class of these compounds. This is notably important for the recently achieved in-vacuo synthesis of organo-metallic thin films directly from the pure free base organic-inorganic precursors in the vapor phase, and its interpretation by means of surface electron spectroscopies. We report on a combined experimental and theoretical study of the physical/chemical properties of tetraphenylporphyrin, H(2)TPP, deposited on the SiO(2)/Si(100) native oxide surface by supersonic molecular beam deposition (SuMBD). Valence states and 1s core level emissions of carbon and nitrogen have been investigated with surface photoelectron spectroscopies by using synchrotron radiation light. The interpretation of the spectra has been guided by density functional numerical experiments on the gas-phase molecule. Non-relativistic calculations were carried out for the valence states, whereas a two component relativistic approach in the zeroth-order regular approximation was used to investigate the core levels. The good agreement between theoretical and experimental analysis results in a comprehensive overview of the chemical properties of the H(2)TPP molecule, highly improving reliability in the interpretation of experimental photoemission spectra.
Aircraft mass budgeting to measure CO2 emissions of Rome, Italy.
Gioli, Beniamino; Carfora, Maria F; Magliulo, Vincenzo; Metallo, Maria C; Poli, Attilio A; Toscano, Piero; Miglietta, Franco
2014-04-01
Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.
Acoustic emission based damage localization in composites structures using Bayesian identification
NASA Astrophysics Data System (ADS)
Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.
2017-05-01
Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying operational loads and would be investigated in future studies.
Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F
2015-08-28
A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.
Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands
NASA Technical Reports Server (NTRS)
Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.
1992-01-01
Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.
VUV Emission of Microwave Driven Argon Plasma Source
NASA Astrophysics Data System (ADS)
Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos
2013-09-01
An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P.; Hong, Y.; Turk, J.
2016-12-01
The overland precipitation retrievals from satellite passive microwave (PMW) sensors such as the Global Precipitation Mission (GPM) microwave imager (GMI) are impacted by the land surface emissivity. The estimation of PMW emissivity faces challenges because it is highly variable under the influence of surface properties such as soil moisture, surface roughness and vegetation. This study proposes an improved quantitative understanding of the relationship between the emissivity and surface parameters. Surface parameter information is obtained through (i) in-situ measurements from the International Soil Moisture Network and (ii) satellite measurements from the Soil Moisture Active and Passive mission (SMAP) which provides global scale soil moisture estimates. The variation of emissivity is quantified with soil moisture, surface temperature and vegetation at various frequencies/polarization and over different types of land surfaces to sheds light into the processes governing the emission of the land. This analysis is used to estimate the emissivity under rainy conditions. The framework built with in-situ measurements serves as a benchmark for satellite-based analyses, which paves a way toward global scale emissivity estimates using SMAP.
Active radiometer for self-calibrated furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.
1996-01-01
Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.
All is not lost: deriving a top-down mass budget of plastic at sea
NASA Astrophysics Data System (ADS)
Koelmans, Albert A.; Kooi, Merel; Lavender Law, Kara; van Sebille, Erik
2017-11-01
Understanding the global mass inventory is one of the main challenges in present research on plastic marine debris. Especially the fragmentation and vertical transport processes of oceanic plastic are poorly understood. However, whereas fragmentation rates are unknown, information on plastic emissions, concentrations of plastics in the ocean surface layer (OSL) and fragmentation mechanisms is available. Here, we apply a systems engineering analytical approach and propose a tentative ‘whole ocean’ mass balance model that combines emission data, surface area-normalized plastic fragmentation rates, estimated concentrations in the OSL, and removal from the OSL by sinking. We simulate known plastic abundances in the OSL and calculate an average whole ocean apparent surface area-normalized plastic fragmentation rate constant, given representative radii for macroplastic and microplastic. Simulations show that 99.8% of the plastic that had entered the ocean since 1950 had settled below the OSL by 2016, with an additional 9.4 million tons settling per year. In 2016, the model predicts that of the 0.309 million tons in the OSL, an estimated 83.7% was macroplastic, 13.8% microplastic, and 2.5% was < 0.335 mm ‘nanoplastic’. A zero future emission simulation shows that almost all plastic in the OSL would be removed within three years, implying a fast response time of surface plastic abundance to changes in inputs. The model complements current spatially explicit models, points to future experiments that would inform critical model parameters, and allows for further validation when more experimental and field data become available.
NASA Astrophysics Data System (ADS)
Zaidi, Anwer Arif
1997-10-01
2195 Al-Li alloy apparently offers significantly higher strength to weight ratio than the 2219 aluminum alloy. It was discovered that 2195 Al-Li has a greater tendency to crack, generates peculiar kind of porosity, and is vulnerable to deleterious microparticulate emission during welding than its 2219 predecessor. An experimental investigation has been carried to characterize these weld imperfections in 2195 Al-Li alloy. This work presents a scientific account of an analytical study and of the clues it has provided towards an understanding of the weld imperfections in 2195 Al-Li welds. The study begins with the observation of peculiar pore formation in 2195 welds, which occurs not as in the case of 2219 welds upon solidification, but in a thermal ageing process subsequent to solidification. An apparent reaction (DTA) between the fusion zone dendritic surface and nitrogen gas implies a porous fusion zone. Tiny surface melting sites, designated as Blisters, due to its resemblance to skin blisters, testify to the conjunction of outgassing and melting effects and suggest that porosity formation in the solid phase depends upon local melting as well as outgassing. The absence of a dark magnesium rich substance, designated as smut in the immediate vicinity of a crack opening next to a weld repair bead implies either an umbrella of gas emission keeping off a condensate evaporated under the welding arc or, possibly an expulsion of atomized, liquified metal from the crack itself in the form of microparticulate emission. These microparticulate emission from VPPA welds takes various forms herein labeled as smut, snow, and Lava. It is attributed to a gas generating reaction taking place at molten grain boundaries or crack surfaces. The reaction could only be release of hydrogen displaced from lithium hydrides by a coming influx of dissolved nitrogen. There appears to be a close link between porosity, cracking and microparticulate emission. Observations of melting on the surface of repair and E-stop cracks suggest interdendritic melting as the main factor responsible for cracking during welding. Heating in nitrogen reveals a weight loss (TGA) characteristic of an outgassing process before the weight gain thought to be associated with a nitrogen reaction takes over; hence the outgassing process, whatever it is, is thought to be independent of the nitrogen reaction. If the nitrogen contribution to porosity generation is then assigned to the promotion of local melting, the fusion zone fracture of laser weld beads subject to residual stress and heated under nitrogen atmosphere, but not under vacuum nor helium, is explicable. If this has been accomplished, cracking during welding is understood, and control procedures should be implicit in the understanding. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Robertson, T. F.
1986-01-01
Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.
Experimental measurement of cooling tower emissions using image processing of sensitive papers
NASA Astrophysics Data System (ADS)
Ruiz, J.; Kaiser, A. S.; Ballesta, M.; Gil, A.; Lucas, M.
2013-04-01
Cooling tower emissions are harmful for several reasons such as air polluting, wetting, icing and solid particle deposition, but mainly due to human health hazards (i.e. Legionella). There are several methods for measuring drift drops. This paper is focussed on the sensitive paper technique, which is suitable in low drift scenarios and real conditions. The lack of an automatic classification method motivated the development of a digital image process algorithm for the Sensitive Paper method. This paper presents a detailed description of this method, in which, drop-like elements are identified by means of the Canny edge detector combined with some morphological operations. Afterwards, the application of a J48 decision tree is proposed as one of the most relevant contributions. This classification method allows us to discern between stains whose origin is a drop and stains whose origin is not a drop. The method is applied to a real case and results are presented in terms of drift and PM10 emissions. This involves the calculation of the main features of the droplet distribution at the cooling tower exit surface in terms of drop size distribution data, cumulative mass distribution curve and characteristic drop diameters. The Log-normal and the Rosin-Rammler distribution functions have been fitted to the experimental data collected in the tests and it can been concluded that the first one is the most suitable for experimental data among the functions tested (whereas the second one is less suitable). Realistic PM10 calculations include the measurement of drift emissions and Total Dissolved Solids as well as the size and number of drops. Results are compared to the method proposed by the U.S. Environmental Protection Agency assessing its overestimation. Drift emissions have found to be 0.0517% of the recirculating water, which is over the Spanish standards limit (0.05%).
Effect of bioactive glass-containing resin composite on dentin remineralization.
Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su
2018-05-25
The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.
Understanding the bursty electron cyclotron emission during a sawtooth crash in the HT-7 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Erzhong, E-mail: rzhonglee@ipp.ac.cn; Hu, Liqun; Chen, Kaiyun
2014-01-15
Bursts in electron cyclotron emission (ECE) were observed during sawtooth crashes in HT-7 in discharges with ion cyclotron resonance heating injected near the q = 1 rational surface (q is the safety factor). The local ECE measurement indicated that the bursty radiation is only observed on channels near but a little away outward from the q = 1 magnetic surface. In conjunction with the soft x-ray tomography analysis, it was determined that, for the first time, only a compression process survives in the later stage of fast magnetic reconnection but before prompt heat transport. The compression enhanced the electron radiation temperature, the increased amplitudemore » of which agreed well with the estimation according to a kinetic compression theory model [R. J. Hastie and T. C. Hender, Nucl. Fusion 28, 585 (1988)]. This paper presents the experimental evidence that there indeed exists a transient compression phase which results in the bursty ECE radiation during a sawtooth crash.« less
Theoretical analysis of field emission from a metal diamond cold cathode emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, P.; Cutler, P.H.; Miskovsky, N.M.
Recently, Geis {ital et al.} [J. Vac. Sci. Technol. B {bold 14}, 2060 (1996)] proposed a cold cathode emitter based on a Spindt-type design using a diamond film doped by substitutional nitrogen. The device is characterized by high field emission currents at very low power. Two properties, the rough surface of the metallic injector and the negative electron affinity of the (111) surface of the diamond are essential for its operation. We present a first consistent quantitative theory of the operation of a Geis{endash}Spindt diamond field emitter. Its essential features are predicated on nearly {ital zero-field conditions} in the diamondmore » beyond the depletion layer, {ital quasiballistic transport} in the conduction band, and applicability of a modified {ital Fowler{endash}Nordheim equation} to the transmission of electrons through the Schottky barrier at the metal-diamond interface. Calculated results are in good qualitative and quantitative agreement with the experimental results of Geis {ital et al.} {copyright} {ital 1997 American Vacuum Society.}« less
NASA Astrophysics Data System (ADS)
Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang
2017-03-01
The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.
Emissive and reflective properties of curved displays in relation to image quality
NASA Astrophysics Data System (ADS)
Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne
2016-03-01
Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.
2015-12-01
This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.
Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
Kemp, A J; Divol, L
2012-11-09
We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.
Study of the normal emissivity of molybdenum during thermal oxidation process
NASA Astrophysics Data System (ADS)
Xu, Yihan; Li, Longfei; Yu, Kun; Liu, Yufang
2018-04-01
The infrared normal spectral emissivity of the oxidized molybdenum was measured during thermal oxidation process, and the integral emissivity was calculated from the data of spectral emissivity. It is found that the surface oxidation has a remarkable effect on the spectral emissivity of molybdenum, and the spectral emissivity curves become more fluctuant with the increase in oxidation time. The integral emissivity grows exponentially with the oxidation time at 773 K, remains almost constant at 823 K, and fluctuates at 873 and 923 K. The X-ray fluorescence spectrometer, the X-ray diffraction, and the scanning electron microscopy were employed to analyze the changes in surface composition and surface morphology. The results show that the most probable reason for the variation of integral emissivity is the change in surface roughness caused by the variation in the size and shape of oxide particle on specimen surface.
Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng
2015-01-01
Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.
1999-01-01
To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model
NASA Astrophysics Data System (ADS)
Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.
2017-12-01
We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface temperatures and sea-ice trends. This reduction of persistent high-latitude model biases suggests that the current unrealistic representation of surface emissivity in model component radiation routines may be an important contributing factor to cold-pole biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator
Shi, Liping; Iwan, Bianca; Ripault, Quentin; ...
2018-02-02
Here, we experimentally demonstrate the use of subwavelength optical nanoantennas to assist a direct nanoscale ablation using the ultralow fluence of a Ti:sapphire oscillator through the excitation of surface plasmon waves. The mechanism is attributed to nonthermal transient unbonding and electrostatic ablation, which is triggered by the surface plasmon-enhanced field electron emission and acceleration in vacuum. We show that the electron-driven ablation appears for both nanoscale metallic as well as dielectric materials. While the observed surface plasmon-enhanced local ablation may limit the applications of nanostructured surfaces in extreme nonlinear nanophotonics, it, nevertheless, also provides a method for nanomachining, manipulation, andmore » modification of nanoscale materials. Lastly, collateral thermal damage to the antenna structure can be suitably avoided, and nonlinear conversion processes can be stabilized by a dielectric overcoating of the antenna.« less
Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands
NASA Technical Reports Server (NTRS)
French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)
2002-01-01
Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.
Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data
NASA Technical Reports Server (NTRS)
Bandfield, J. L.; Smith, M. D.
2001-01-01
Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.
On the relationship between land surface infrared emissivity and soil moisture
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2018-01-01
The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.
NASA Astrophysics Data System (ADS)
Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; Hu, Peng; Wang, Changhao; Wang, Ruzhi; Miao, Naihua
2018-05-01
The Scandia doped thermionic cathodes have received great attention owing to their high electron emission density in past two decades. Here, Scandia doped Re3W matrix scandate (RS) cathodes are fabricated by using Sc2O3 doped Re3W powders that prepared by spray drying method. The micromorphology, surface composition and chemical states of RS cathode are investigated with various modern technologies. It reveals that the reduction temperature of RS powders is dramatically increased by Sc2O3. On the surface of RS cathode, a certain amount of Sc2O3 nanoparticles and barium salt submicron particles are observed. According to the in situ Auger electron spectroscopy analysis, the concentration ratio of Ba:Sc:O is determined to be 2.9:1.1:2.7. The X-ray photoelectron spectroscopy data indicates that low oxidation state of Sc is clearly observed in scandate cathodes. The high atomic ratio of Ba on RS cathode surface is suggested due to the high adsorption of Re3W to Ba. Moreover, RS cathode shows better adsorption to Sc by comparison with conventional tungsten matrix scandate cathode. For RS cathode, the main depletion of Sc is suggested to -OSc desorbing from RS cathode surface. RS cathode is expected to be an impressive thermionic cathode with good emission properties and ion anti-bombarding insensitivity.
Brittleness Effect on Rock Fatigue Damage Evolution
NASA Astrophysics Data System (ADS)
Nejati, Hamid Reza; Ghazvinian, Abdolhadi
2014-09-01
The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.
NASA Astrophysics Data System (ADS)
Colorado, Andres
This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including: ignition; lean blowoff; and variable air to fuel ratio. Some remarkable results of this dissertation include: • At a fixed fire rate (117kW) the addition of hydrogen to NG raises the emission of NO x for the reactions stabilized with the LSB. Under the same conditions, the addition of H2 to NG will reduce the emission levels of the reactions stabilized with the SSCB. • It was found experimentally that nitrous oxide (N2O) is emitted during ignition and blowoff events. • Ammonia (NH3) is also emitted during ignition and blowoff events. • It was found experimentally that at high concentrations of hydrogen in NG (H2>70%), reactions aerodynamically stabilized with the LSB will emit significant amounts of N2O.
Active radiometer for self-calibrated furnace temperature measurements
Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.
1996-11-12
A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.
NASA Astrophysics Data System (ADS)
Guha, Puspendu; Ghosh, Arnab; Thapa, Ranjit; Mathan Kumar, E.; Kirishwaran, Sabari; Singh, Ranveer; Satyam, Parlapalli V.
2017-10-01
We report a simple single step growth of α-MoO3 structures and energetically suitable site specific Ag nanoparticle (NP) decorated α-MoO3 structures on varied substrates, having almost similar morphologies and oxygen vacancies. We elucidate possible growth mechanisms in light of experimental findings and density functional theory (DFT) calculations. We experimentally establish and verified by DFT calculations that the MoO3(010) surface is a weakly interacting and stable surface compared to other orientations. From DFT study, the binding energy is found to be higher for (100) and (001) surfaces (˜-0.98 eV), compared to the (010) surface (˜-0.15 eV) and thus it is likely that Ag NP formation is not favorable on the MoO3(010) surface. The Ag decorated MoO3 (Ag-MoO3) nanostructured sample shows enhanced field emission properties with an approimately 2.1 times lower turn-on voltage of 1.67 V μm-1 and one order higher field enhancement factor (β) of 8.6 × 104 compared to the MoO3 sample without Ag incorporation. From Kelvin probe force microscopy measurements, the average local work function (Φ) is found to be approximately 0.47 eV smaller for the Ag-MoO3 sample (˜5.70 ± 0.05 eV) compared to the MoO3 sample (˜6.17 ± 0.05 eV) and the reduction in Φ can be attributed to the shifting Fermi level of MoO3 toward vacuum via electron injection from Ag NPs to MoO3. The presence of oxygen vacancies together with Ag NPs lead to the highest β and lowest turn-on field among the reported values under the MoO3 emitter category.
NASA Astrophysics Data System (ADS)
Jablonski, A.
2018-01-01
Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean escape depth and effective attenuation length were approximated with accurate predictive formulas. The predicted effective attenuation lengths were compared with published values; major discrepancies observed can be ascribed to a possibility of discontinuous structure of the deposited overlayer.
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Microwave remote sensing and its application to soil moisture detection
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2015-12-01
Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.
NASA Astrophysics Data System (ADS)
Misson, Gloria; Incerti, Guido; Alberti, Giorgio; Delle Vedove, Gemini; Pirelli, Tiziana; Peressotti, Alessandro
2017-04-01
Carbon stock in coastal seagrass ecosystems is estimated to be 4.2-8.4 Pg C. While covering less than 0.2% of the ocean floor, seagrasses store about 10% of the carbon buried in the oceans each year. However, such a potential contribution is reduced by the annual loss of seagrasses globally (-1.5% per year) mainly because of anthropogenic coastal development and climate change. Like many terrestrial higher plants, marine seagrasses lose their old leaves during annual or inter-annual senescence, and a significant proportion of these residues is transported in surface waters and washed up on shores by surf, tides and winds. This beach-cast seagrass wrack provides important ecosystem services, such as reducing wave impact, protecting beaches from erosion, providing habitat to bird and invertebrate species that colonize shorelines, and being a primary food resource for beach detritivores. However, accumulation of seagrass wrack on beaches, following degradation of meadows, can negatively impact tourism. Therefore, wrack piles are frequently collected and disposed of in landfills or biomass waste facilities, and the adoption of these management practices implies substantial environmental and economic costs. On the other hand, wrack piles might be a significant source of greenhouse emissions (GHGs). Recent studies reported CO2 emission rates and suggested possible mitigation options, such as energy conversion and biochar production through pyrolysis. Even though quantitative estimates of both seagrass coastal distribution and residues disposal to seashores are partially available, at least at regional level, the assessment of their contribution to global GHGs emissions is still lacking, due to a knowledge gap about the effects of peculiar environmental conditions of beach ecosystems on seagrass decay rates. In this framework, we propose an experimental model to assess seagrass wrack decomposition dynamics in both controlled conditions and experimental fields in North-East Italy, with focus on CO2 and CH4 emissions, as a function of temperature, salinity, water supply and physical properties of the wrack piles. After presenting preliminary results, we highlight problems and perspectives concerning the assessment of beach-cast wrack contribution to the global GHGs emissions.
Numerical research of reburning-process of burning of coal-dust torch
NASA Astrophysics Data System (ADS)
Trinchenko, Alexey; Paramonov, Aleksandr; Kadyrov, Marsel; Koryabkin, Aleksey
2017-10-01
This work is dedicated to numerical research of ecological indicators of technological method of decrease in emissions of nitrogen oxides at combustion of solid fuel in coal-dust torch to improve the energy efficiency of steam boilers. The technology of step burning with additional input in zone of the maximum concentration of pollutant of strongly crushed fuel for formation of molecular nitrogen on surface of the burning carbon particles is considered. Results of modeling and numerical researches of technology, their analysis and comparison with the experimental data of the reconstructed boiler are given. Results of work show that input of secondary fuel allows to reduce emissions of nitrogen oxides by boiler installation without prejudice to its economic indicators.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu
2010-09-01
Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.
An ultralight and thin metasurface for radar-infrared bi-stealth applications
NASA Astrophysics Data System (ADS)
Zhang, C.; Yang, J.; Yuan, W.; Zhao, J.; Dai, J. Y.; Guo, T. C.; Liang, J.; Xu, G. Y.; Cheng, Q.; Cui, T. J.
2017-11-01
We present a thin metasurface with large microwave absorptivity and low infrared emissivity simultaneously. By properly tuning the resonance peaks and impedance of the meta-atom, broadband microwave absorptivity greater than 90% from 8.2 to 16.0 GHz is achieved. In the meantime, owing to large coverage of periodic metal patches on the top surface, low infrared emissivity is exhibited in the infrared region (IR) of 8 µm-14 µm. The excellent agreement between numerical simulation and experimental result demonstrates the good performance of the proposed metasurface. Due to the usage of polymethacrylimide (PMI) and polyethylene terephthalate (PET) as the substrate, the metasurface is especially advantageous for the light weight, making it a favorite in real engineering applications.
Slow positrons in single-crystal samples of Al and Al-AlxOy
NASA Astrophysics Data System (ADS)
Lynn, K. G.; Lutz, H.
1980-11-01
Well-characterized Al(111) and Al(100) samples were studied with monoenergetic positrons before and after exposure to oxygen. Both positronium-formation and positron-emission curves were obtained for various incident positron energies at sample temperatures ranging from 160-900 K. The orthopositronium decay signal provides a unique signature that the positron has emerged from the surface region of a clean metal. In the clean Al crystals part of the positronium formed near the surface is found to be associated with a temperature-activated process described as the thermally activated detrapping of a positron from a surface state. A simple positron diffusion model, including surface and vacancy trapping, is fitted to the positronium data and an estimate of the binding energy of the positron in this trap is made. The positron diffusion constant is found to have a negative temperature dependence before the onset of positron trapping at thermally generated monovacancies (>500 K), in reasonable agreement with theoretical predictions. The depth of the positron surface state is reduced or positronium is formed in the chemisorbed layer as oxygen is adsorbed on both Al sample surfaces, thus increasing the positronium fraction and decreasing the positron emission. At higher oxygen exposures [>500 L (1 L = 10-6 torr sec)] positron or positronium traps are generated in the overlayer and the positronium fraction is reduced. The amorphous-to-crystalline surface transition of AlxOy on Al is observed between 650 and 800 K by the change in the positronium fraction and is interpreted as the removal of trapping centers in the metal-oxide overlayer. At the higher temperatures and incident energies vacancy trapping is observed by the decrease in the positron diffusion length in both the clean and the underlying Al of the oxygen-exposed samples. Similar vacancy formation enthalpies for Al are extracted in both the clean and oxygen-covered samples by a simple model and are in good agreement with those measured by other experimental methods. This technique provides a new experimental means for the study of interfaces and thin films and the vacancy-type defects associated with them.
NASA Astrophysics Data System (ADS)
Samolov, Ana; Popovic, Svetozar; Vuskovic, Leposava; Basovic, Milos; Cuckov, Filip; Raitses, Yevgeny; Kaganovich, Igor
2013-09-01
Electron-induced Secondary Electron Emission (SEE) is important in many gas discharge applications such as Hall thrusters, surface and multipactor discharges. Often they present the inhibiting phenomena in designing and operating of these systems, examples being the Superconducting Radio Frequency (SRF) accelerator cavities. The multipactor discharges depend on the resonant field configuration and on the SEE from the cavity surface. SEE is proportional to the energy dissipated by the primary electrons near the surface. Our analysis of energy spectra of secondary electrons indicates that the fraction of dissipated energy of primary electrons in solid reaches the maximum at the primary energies that produce the maximum yield. The better understanding of this mechanism is crucial for successful modeling of the multipactor discharge and design of vacuum electronic devices. We have developed an experimental set up to measure energy distribution of SEE from Nb coupons under different incident angles, since Nb is used for manufacturing of SRF accelerating cavities. Samples are placed in carousel target manifolds which are manipulated by robotic arm providing multiple degrees of freedom of a whole target system. Work supported by JSA/DOE contract No. DE-AC05-06OR23177.
Two-dimensional simulation of high-power laser-surface interaction
NASA Astrophysics Data System (ADS)
Goldman, S. Robert; Wilke, Mark D.; Green, Ray E.; Busch, George E.; Johnson, Randall P.
1998-09-01
For laser intensities in the range of 108 - 109 W/cm2, and pulse lengths of order 10 microseconds or longer, we have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of our treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. We will present an analysis of some relatively well diagnosed experiments which have been useful in developing our modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence our simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range.
NASA Astrophysics Data System (ADS)
Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.
2010-12-01
Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.
He, Ruo; Su, Yao; Kong, Jiaoyan
2015-09-15
Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. Copyright © 2015 Elsevier B.V. All rights reserved.
Correlation of CVD Diamond Electron Emission with Film Properties
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.
1996-03-01
Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.
Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces
NASA Astrophysics Data System (ADS)
Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.
2010-03-01
There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.
On the effect of surface emissivity on temperature retrievals. [for meteorology
NASA Technical Reports Server (NTRS)
Kornfield, J.; Susskind, J.
1977-01-01
The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.
Magliulo, Vincenzo; Alterio, Giovanni; Peressotti, Alessandro
2004-05-01
Micrometeorological methods for measuring fluxes of gases between the land surface and the atmosphere are non-invasive: in fact, they do not interfere with natural processes of gas exchange. The Micrometeorological Mass Difference (MMD) approach can be used for many environmental monitoring purposes, such as to measure methane and carbon dioxide emission from landfills, methane production by grazing animals, trace gas emission from waste products and from agricultural soils, photosynthesis, and transpiration of plant canopies. The purpose of this study is to adapt the MMD technique, originally developed in Australia, to monitor CO2 and trace gases exchange rate at the plot level. Comparison of different treatments in replicated experiments requires plots of few rather than tens of meters. The tests reported here were performed on a square area (4 m x 4 m) in the meteorological field of the experimental farm of CNR-ISAFOM located in Vitulazio, province of Caserta, Italy (40 degrees 07' N, 14 degrees 50' E, 25 m above sea level) and consisted of the release of pure CO2 at different rates (1.7, 1.3, 0.6 L min(-1)) from a single source on the ground in the center of the experimental area and the consequent measurement of the environmental variables (wind speed and direction, CO2 concentration) at different times at four heights (up to 1.2 m) in order to compute the mass balance according to MMD technique. Measured flow rates well accounted for the mass of CO2 released. A flow underestimation occurred when wind speed dropped below 1.5 m s(-1), in accord with the previous findings obtained in Australia: this happened because anemometers can stall at low speeds, and their measurements are unreliable and because of significant loss of mass from the top of the apparatus. The experimental results were compared with outputs of Computational Fluid Dynamic (CFD) simulations. The commercial CFD package Fluent was used to evaluate performances and sources of errors. According to the experimental and numerical results, the MMD apparatus in our present configuration is suitable to be used for the monitoring of trace gas emissions of experimental plots. Advantages and limits of the present approach are discussed.
Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption
NASA Technical Reports Server (NTRS)
Ferrante, J.
1976-01-01
Exoelectron emission was observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 6.5x10 0.00001- N/sq m and lower. the studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low energy electron diffraction was used to verify that the surface was annealed. The emission was found to be oxygen arrival rate dependent. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. No emission was observed from clean aluminum during adsorption. Results verify that electron emission occurs from a strain free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.
The surface emissions trap: a new approach in indoor air purification.
Markowicz, Pawel; Larsson, Lennart
2012-11-01
A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.
Theoretical study of the potential energy surfaces and dynamics of CaNC/CaCN
NASA Astrophysics Data System (ADS)
Nanbu, Shinkoh; Minamino, Satoshi; Aoyagi, Mutsumi
1997-05-01
Potential energy surfaces for the ground and two low-lying electronically excited states of CaNC/CaCN, are calculated using the ab initio molecular orbital (MO) configuration interaction (CI) method. The absorption and emission spectra of the system are computed by performing time-dependent quantum dynamical calculations on these surfaces. The most stable geometries for the two lowest lying 12Σ+ and 12Π electronic states correspond to the calcium isocyanide (CaNC) structure. These two states are characterized by ionic bonding and the potential energy curves along the bending coordinate are relatively isotropic. The result of our wave packet dynamics shows that the characteristics of the experimental spectra observed by the laser-induced fluorescence spectroscopy can be explained by the Renner-Teller splitting.
NASA Astrophysics Data System (ADS)
Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.
2014-09-01
By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.
Experimental and theoretical study to explain the morphology of CaMoO4 crystals
NASA Astrophysics Data System (ADS)
Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.
2018-03-01
CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...
Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends.
Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, BeemKumar
2017-05-01
The present work is intended to investigate the emission characteristics of neat cashew nut shell methyl ester (CNSME100) by adding pentanol at two different proportions and compared with the baseline diesel. CNSME100 is prepared by the conventional transesterification process. CNSME100 is chosen due to its non-edible nature. Pentanol is chosen as an additive because of its higher inbuilt oxygen content and surface to volume ratio which reduces the drawbacks of neat CNSME100. Emission characteristics were carried out in single cylinder naturally aspirated CI engine fuelled with neat cashew nut shell methyl ester (CNSME), cashew nut shell methyl ester and pentanol by 10% volume (CNSME90P10), cashew nut shell methyl ester and pentanol by 20% volume (CNSME80P20), and diesel. This work also aims to investigate the feasibility of operating an engine fuelled with neat methyl ester and alcohol blends. Experimental results showed that by blending higher alcohol to neat cashew nut shell methyl ester reduces the emissions significantly. It is also found that the emission from neat methyl ester and pentanol blends is lesser than diesel at all loads.
Study of VOCs transport and storage in porous media and assemblies
NASA Astrophysics Data System (ADS)
Xu, Jing
Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Li, Y.; Liu, C.
2015-08-15
This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration ofmore » their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.« less
NASA Astrophysics Data System (ADS)
Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P. V.; van der Meulen, H. P.
2018-03-01
We report on experimental studies of the effects induced by surface acoustic waves on the optical emission dynamics of GaN/InGaN nanowire quantum dots. We employ stroboscopic optical excitation with either time-integrated or time-resolved photoluminescence detection. In the absence of the acoustic wave, the emission spectra reveal signatures originated from the recombination of neutral exciton and biexciton confined in the probed nanowire quantum dot. When the nanowire is perturbed by the propagating acoustic wave, the embedded quantum dot is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling. Depending on the recombination lifetime of the involved optical transitions, we can resolve acoustically driven radiative processes over time scales defined by the acoustic cycle. At high acoustic amplitudes, we also observe distortions in the transmitted acoustic waveform, which are reflected in the time-dependent spectral response of our sensor quantum dot. In addition, the correlated intensity oscillations observed during temporal decay of the exciton and biexciton emission suggest an effect of the acoustic piezoelectric fields on the quantum dot charge population. The present results are relevant for the dynamic spectral and temporal control of photon emission in III-nitride semiconductor heterostructures.
Radiation Modeling for the Reentry of the Hayabusa Sample Return Capsule
NASA Technical Reports Server (NTRS)
Winter, Michael W.; McDaniel, Ryan D.; Chen, Yih-Kang; Liu, Yen; Saunders, David; Jenniskens, Petrus
2011-01-01
Predicted shock-layer emission signatures of the Japanese Hayabusa capsule during its reentry are presented for comparison with flight measurements made during an airborne observation mission using NASA s DC-8 Airborne Laboratory. For each altitude, lines of sight were extracted from flow field solutions computed using an inhouse high-fidelity CFD code, DPLR, at 11 points along the flight trajectory of the capsule. These lines of sight were used as inputs for the line-by-line radiation code NEQAIR, and emission spectra of the air plasma were computed in the wavelength range from 300 nm to 1600 nm, a range which covers all of the different experiments onboard the DC-8. In addition, the computed flow field solutions were post-processed with the material thermal response code FIAT, and the resulting surface temperatures of the heat shield were used to generate thermal emission spectra based on Planck radiation. Both spectra were summed and integrated over the flow field. The resulting emission at each trajectory point was propagated to the DC-8 position and transformed into incident irradiance. Comparisons with experimental data are shown.
Synchronization of Large Josephson-Junction Arrays by Traveling Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Galin, M. A.; Borodianskyi, E. A.; Kurin, V. V.; Shereshevskiy, I. A.; Vdovicheva, N. K.; Krasnov, V. M.; Klushin, A. M.
2018-05-01
Mutual synchronization of many Josephson junctions is required for superradiant enhancement of the emission power. However, the larger the junction array is, the more difficult is the synchronization, especially when the array size becomes much larger than the emitted wavelength. Here, we study experimentally Josephson emission from such larger-than-the-wavelength Nb /NbSi /Nb junction arrays. For one of the arrays we observe a clear superradiant enhancement of emission above a threshold number of active junctions. The arrays exhibit strong geometrical resonances, seen as steps in current-voltage characteristics. However, radiation patterns of the arrays have forward-backward asymmetry, which is inconsistent with the solely geometrical resonance (standing-wave) mechanism of synchronization. We argue that the asymmetry provides evidence for an alternative mechanism of synchronization mediated by unidirectional traveling-wave propagation along the array (such as a surface plasmon). In this case, emission occurs predominantly in the direction of propagation of the traveling wave. Our conclusions are supported by numerical modeling of Josephson traveling-wave antenna. We argue that such a nonresonant mechanism of synchronization opens a possibility for phase locking of very large arrays of oscillators.
NASA Astrophysics Data System (ADS)
Wang, Lin-zhi; Wang, Sen; Wu, Jiao-jiao
2017-11-01
Effects of laser energy density (LED) on densities and surface roughness of AlSi10Mg samples processed by selective laser melting were studied. The densification behaviors of the SLM manufactured AlSi10Mg samples at different LEDs were characterized by a solid densitometer, an industrial X-ray and CT detection system. A field emission scanning electron microscope, an automatic optical measuring system, and a surface profiler were used for measurements of surface roughness. The results show that relatively high density can be obtained with the point distance of 80-105 μm and the exposure time of 140-160 μs. The LED has an important influence on the surface morphology of the forming part, too high LED may lead to balling effect, while too low LED tends to produce defects, such as porosity and microcrack, and then affect surface roughness and porosities of the parts finally.
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-05-01
In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaemin; Lee, Junmyung; Lee, Hyun Woo
The anti-adhesive characteristics of a plasma-modified silicon mold surface for nanoimprint lithography are presented. Both CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} plasma were used to form an anti-adhesive layer on silicon mold surfaces. The gas mixing ratios of CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} were experimentally changed between 0% and 80% to optimize the plasma conditions to obtain a low surface energy of the silicon mold. The plasma characteristics were examined by optical emission spectroscopy (OES). In order to investigate the changes in surface energy and surface chemistry of the anti-adhesive layer during repeated demolding cycles,more » contact angle measurements and X-ray photoelectron spectroscopy (XPS) were performed on the plasma-modified silicon mold surface. Simultaneously, the surface morphology of the demolded resists was evaluated by field-emission scanning electron microscope (FE-SEM) in order to examine the effect of the anti-adhesive layers on the duplicated patterns of the resists. It was observed that the anti-adhesive layer formed by CHF{sub 3}/O{sub 2} plasma treatment was worn out more easily during repeated demolding cycles than the film formed by C{sub 4}F{sub 8}/O{sub 2} plasma treatment, because CHF{sub 3}/O{sub 2} gas plasma formed a thinner plasma-polymerized film over the same plasma treatment time.« less
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.
2000-01-01
We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.
Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P
2018-01-01
Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.
An experimental investigation of electric flashover across solid insulators in vacuum
NASA Technical Reports Server (NTRS)
Vonbaeyer, H. C.
1984-01-01
The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.
INVESTIGATION INTO THE MECHANISMS OF TISSUE ATOMIZATION BY HIGH INTENSITY FOCUSED ULTRASOUND
Simon, Julianna C.; Sapozhnikov, Oleg A.; Wang, Yak-Nam; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.
2014-01-01
Ultrasonic atomization, or the emission of a fog of droplets, was recently proposed to explain tissue fractionation in boiling histotripsy. However, even though liquid atomization has been studied extensively, the mechanisms of tissue atomization remain unclear. In this paper, high-speed photography and overpressure were used to evaluate the role of bubbles in tissue atomization. As the static pressure increased, the degree of fractionation decreased, and the ex vivo tissue became thermally denatured. The effect of surface wetness on atomization was also evaluated in vivo and in tissue-mimicking gels where surface wetness was found to enhance atomization by forming surface instabilities that augment cavitation. In addition, experimental results indicated that wetting collagenous tissues, such as the liver capsule, allowed atomization to breach such barriers. These results highlight the importance of bubbles and surface instabilities in atomization and could be used to enhance boiling histotripsy for transition to clinical use. PMID:25662182
Derived Land Surface Emissivity From Suomi NPP CrIS
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2012-01-01
Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.
Exposure-Relevant Ozone Chemistry in Occupied Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Beverly Kaye
2009-04-01
Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, andmore » ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m -3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and byproduct yield) were explored. In Chapter 5, the reaction of ozone with permethrin, a residual insecticide used in aircraft cabins, to form phosgene is investigated. A derivatization technique was developed to detect phosgene at low levels, and chamber experiments were conducted with permethrin-coated cabin materials. It was determined that phosgene formation, if it occurs in the aircraft cabin, is not likely to exceed the relevant, health-based phosgene exposure guidelines.« less
NASA Technical Reports Server (NTRS)
Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)
2001-01-01
Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.
Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F
2016-01-11
Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.
Vibrational pumping and heating under SERS conditions: fact or myth?
Le Ru, E C; Etchegoin, P G
2006-01-01
We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.
Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations
NASA Astrophysics Data System (ADS)
Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael
2017-09-01
Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta
2015-03-07
We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less
NASA Astrophysics Data System (ADS)
Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro
2015-03-01
We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.
The effect of wet film thickness on VOC emissions from a finishing varnish.
Lee, Shun-Cheng; Kwok, Ngai-Hong; Guo, Hai; Hung, Wing-Tat
2003-01-20
Finishing varnishes, a typical type of oil-based varnishes, are widely used to shine metal, wood trim and cabinet surfaces in Hong Kong. The influence of wet film thickness on volatile organic compound (VOC) emissions from a finishing varnish was studied in an environmental test chamber. The varnish was applied on an aluminium foil with three different wet film thickness (35.2, 69.9 and 107.3 microm). The experimental conditions were 25.0 degrees C, 50.0% relative humidity (RH) with an air exchange rate of 0.5 h(-1). The concentrations of the major VOCs were monitored for the first 10 h. The air samples were collected by canisters and analysed by gas chromatography/mass selective detector (GC/MSD). Six major VOCs including toluene, chlorobenzene, ethylbenzene, m,p-xylene, o-xylene and 1,3,5-trimethylbenzene were identified and quantified. Marked differences were observed for three different film thicknesses. VOC concentrations increased rapidly during the first few hours and then decreased as the emission rates declined. The thicker the wet film, the higher the VOC emissions. A model expression included an exponentially decreasing emission rate of varnish film. The concentration and time data measured in the chamber were used to determine the parameters of empirical emission rate model. The present work confirmed that the film thickness of varnish influenced markedly the concentrations and emissions of VOCs. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
Back-streaming ion emission and beam focusing on high power linear induction accelerator
NASA Astrophysics Data System (ADS)
Zhu, Jun; Chen, Nan; Yu, Haijun; Jiang, Xiaoguo; Wang, Yuan; Dai, Wenhua; Gao, Feng; Wang, Minhong; Li, Jin; Shi, Jinshui
2011-08-01
Ions released from target surfaces by impact of a high intensity and current electron beam can be accelerated and trapped in the beam potential, and further destroy the beam focus. By solving the 2D Poisson equation, we found that the charge neutralization factor of the ions to the beam under space charge limited condition is 1/3, which is large enough to disrupt the spot size. Therefore, the ion emission at the target in a single-pulse beam/target system must be source limited. Experimental results on the time-resolved beam profile measurement have also proven that. A new focus scheme is proposed in this paper to focus the beam to a small spot size with the existence of back-streaming ions. We found that the focal spot will move upstream as the charge neutralization factor increases. By comparing the theoretical and experimental focal length of the Dragon-I accelerator (20 MeV, 2.5 kA, 60 ns flattop), we found that the average neutralization factor is about 5% in the beam/target system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
Hirakawa, Yuko; Jimbo, Ryo; Shibata, Yasuaki; Watanabe, Ikuya; Wennerberg, Ann; Sawase, Takashi
2013-08-01
The purpose of this study was to investigate the effect of photo-induced hydrophilic titanium dioxide (TiO₂) on serum fibronectin (sFN) attachment, and further to evaluate initial osseointegration responses in the dog mandibles. To apply the anatase TiO₂ film, plasma source ion implantation (PSII) method followed by annealing was employed for the titanium disks and implants, which were then illuminated with UV-A for 24 h for the experimental groups. Non-deposited titanium disks and implants were prepared for the control group. Surface characterization was performed using the interferometer and contact angle analyzer. The attachments of sFN were evaluated using fluorescence emission analysis. Thereafter both groups of implants were placed in the mandible of six beagle dogs. Bone response was investigated with histological and histomorphometrical analyses after periods of 2 and 4 weeks. The experimental groups exhibited strong hydrophilicity under UV-A illumination and showed significant improvement in sFN attachment. And further, the experimental implants enhanced the bone formation with the bone-to-implant contact of 42.7% after 2 weeks of healing (control: 28.4%). The combined applications of plasma fibronectin and PSII to produce hydrophilic titanium surfaces could accelerate early osseointegration. © 2012 John Wiley & Sons A/S.
Quantification of surface emissions: An historical perspective from GEIA
NASA Astrophysics Data System (ADS)
Granier, C.; Denier Van Der Gon, H.; Doumbia, E. H. T.; Frost, G. J.; Guenther, A. B.; Hassler, B.; Janssens-Maenhout, G. G. A.; Lasslop, G.; Melamed, M. L.; Middleton, P.; Sindelarova, K.; Tarrason, L.; van Marle, M.; W Kaiser, J.; van der Werf, G.
2015-12-01
Assessments of the composition of the atmosphere and its evolution require accurate knowledge of the surface emissions of atmospheric compounds. The first community development of global surface emissions started in 1990, when GEIA was established as a component of the International Global Atmospheric Chemistry (IGAC) project. At that time, GEIA meant "Global Emissions Inventory Activity". Since its inception, GEIA has brought together people to understand emissions from anthropogenic, biomass burning and natural sources. The first goal of GEIA was to establish a "best" inventory for the base year 1985 at 1x1 degree resolution. Since then many inventories have been developed by various groups at the global and regional scale at different temporal and spatial resolutions. GEIA, which now means the "Global Emissions Initiative", has evolved into assessing, harmonizing and distributing emissions datasets. We will review the main achievements of GEIA, and show how the development and evaluation of surface emissions has evolved during the last 25 years. We will discuss the use of surface, in-situ and remote sensing observations to evaluate and improve the quantification of emissions. We will highlight the main uncertainties currently limiting emissions datasets, such as the spatial and temporal evolution of emissions at different resolutions, the quantification of emerging emission sources (such as oil/gas extraction and distribution, biofuels, etc.), the speciation of the emissions of volatile organic compounds and of particulate matter, the capacity building necessary for organizing the development of regional emissions across the world, emissions from shipping, etc. We will present the ECCAD (Emissions of Atmospheric Compounds and Compilation of Ancillary Data) database, developed as part of GEIA to facilitate the access and evaluation of emission inventories.
NASA Astrophysics Data System (ADS)
Grant, Robert F.; Neftel, Albrecht; Calanca, Pierluigi
2016-06-01
Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (θ) and temperature (Ts) is greatest. To determine whether temporal variability in θ and Ts of surface litter and near-surface soil could explain this in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and θ and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors on an hourly timescale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2-5 days) with maximum N2O effluxes that varied from < 1 mg
Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
NASA Technical Reports Server (NTRS)
Ng, Daniel L. P. (Inventor)
1994-01-01
A method and apparatus for detecting the temperature of gray and non-gray bodies in the presence of interfering radiation are presented. A gray body has a constant emissivity less than 1 and a non-gray body has an emissivity which varies with wavelength. The emissivity and reflectivity of the surface is determined over a range of wavelengths. Spectra are also measured of the extraneous interference radiation source and the surface of the object to be measured in the presence of the extraneous interference radiation source. An auxiliary radiation source is used to determine the reflectivity of the surface and also the emissivity. The measured spectrum of the surfaces in the presence of the extraneous interference radiation source is set equal to the emissivity of the surface multiplied by a Planck function containing a temperature term T plus the surface reflectivity multiplied by the spectrum of the extraneous interference radiation source. The equation is then solved for T to determine the temperature of the surface.
Kim, Sumin
2010-04-15
This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmugge, T.; Hulley, G.; Hook, S.
2009-04-01
The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region can be determined. The TES algorithm has been validated with field measurements using a multi-spectral radiometer having similar bands to ASTER. The ASTER data have now been used to produce a seasonal gridded database of the emissivity for North America and the results compared to laboratory measured emissivities of in-situ rock/sand samples collected at ten validation sites in the Western USA during 2008. The directional hemispherical reflectance of the in-situ samples are measured in the laboratory using a Nicolet Fourier Transform Interferometer (FTIR), converted to emissivity using Kirchoff's law, and convolving to the appropriate sensor spectral response functions. This ASTER database, termed the North American ASTER Land Surface Emissivity Database (NAALSED), was validated using the laboratory results from these ten sites to within 0.015 (1.5%) in emissivity. MODIS has 3 channels in this waveband with 1km spatial resolution and almost daily global coverage. The MODIS data are composited to 5 km resolution and day night pairs of observations are used to derive the emissivities. These results have been validated using the ASTER emissivities over selected test areas.
Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo
2016-01-01
Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.
Atmospheric particulate emissions from dry abrasive blasting using coal slag.
Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya
2006-08-01
Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.
Directional emissivity from two-dimensional infrared waveguide arrays
NASA Astrophysics Data System (ADS)
Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.
2015-09-01
Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.
Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita
2018-06-01
The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control treatment. The experimental research results reveal the reduction of CO 2 emissions in shallow tillage to approximately 20.14% (and that in deep tillage to approximately 19.16%) when works were performed by different biological preparation usage scenarios. This experimental research demonstrates the efficient use of the special adaptation of a new biotechnological method for the reduction of the energy consumption and CO 2 gas emissions of agricultural machinery. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jiang, Jonathan H.; Livesey, Nathaniel J.; Su, Hui; Neary, Lori; McConnell, John C.; Richards, Nigel A. D.
2007-01-01
Two years of observations of upper tropospheric (UT) carbon monoxide (CO) from the Aura Microwave Limb Sounder are analyzed; in combination with the CO surface emission climatology and data from the NCEP analyses. It is shown that spatial distribution, temporal variation and long-range transport of UT CO are closely related to the surface emissions, deep-convection and horizontal winds. Over the Asian monsoon region, surface emission of CO peaks in boreal spring due to high biomass burning in addition to anthropogenic emission. However, the UT CO peaks in summer when convection is strongest and surface emission of CO is dominated by anthropogenic source. The long-range transport of CO from Southeast Asia across the Pacific to North America, which occurs most frequently during boreal summer, is thus a clear imprint of Asian anthropogenic pollution influencing global air quality.
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
Sodium D-line emission from Io - Comparison of observed and theoretical line profiles
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.
1978-01-01
High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.
Acoustics and hydrodynamics of a drop impact on a water surface
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Prokhorov, V. E.
2017-01-01
Hydrodynamic and acoustic processes associated with a drop impact on a water surface were studied experimentally. Acoustic signals were detected underwater (with a hydrophone) and in air (with a microphone), the flow pattern was recorded with a high-speed camera, and the surface perturbation was monitored with a laser detector. The dimensionless parameters of flows (Reynolds, Froude, and Weber numbers) induced by the impact varied with fall height within the ranges of 5000 < Re < 20000, 20 < Fr < 350, and 70 < We < 1000. The sequence of acoustic signals incorporated an impact pulse at the moment of contact between a drop and the surface and a series of acoustic packets attributable to the resonance emission of gas cavities. The top of the impact pulse, which was detected clearly in the entire fall height range, had a complex structure with short high-frequency and longer low-frequency oscillations. The total number and the parameters of emitted acoustic packets depended to a considerable extent on the fall height. The cases of lacking, one-time, and repeated emission of packets were noted in a series of experiments performed at a constant fall height. The analysis of video data showed that the signal variability was induced by considerable differences in the scenarios of water entry of a drop, which assumed an ovoid shape at the end trajectory segment, in the mentioned experiments.
NASA Astrophysics Data System (ADS)
Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel
2013-06-01
This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Liquid droplet radiator performance studies
NASA Astrophysics Data System (ADS)
Mattick, A. T.; Hertzberg, A.
1984-10-01
By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid-droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The light-weight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat-transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few several liquid metals and a silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of the silicon fluid indicates that an LDR using this fluid at temperatures of 275-335 K would be about 10 times lighter than the lightest solid-surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 and 975 K, experimental determination of liquid-metal emissivities is needed for a conclusive assessment.
Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.
Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata
2017-11-08
Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.
Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft
NASA Astrophysics Data System (ADS)
Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki
2017-07-01
The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting temperature of 50°C in the thermal images obtained by TIR. If the spatial distribution of the temperature is caused by the variation of the thermal emissivity, including the effects of the surface roughness, the difference of the thermal emissivity Δ ɛ is estimated to be approximately 0.08, as calculated by the Stefan-Boltzmann raw. Otherwise, if the distribution of temperature is caused by the variation of the thermal inertia, the difference of the thermal inertia Δ Γ is calculated to be approximately 150 J m^{-2} s^{0.5} K^{-1}, based on a simulation using a 20-layer model of the heat balance equation. The imaging performance of TIR based on the results of the meteorite experiments indicates that TIR can resolve the spatial distribution of thermal emissivity and thermal inertia of the asteroid surface within accuracies of Δ ɛ \\cong 0.02 and Δ Γ \\cong 20 J m^{-2} s^{0.5} K^{-1}, respectively. However, the effects of the thermal emissivity and thermal inertia will degenerate in thermal images of TIR. Therefore, TIR will observe the same areas of the asteroid surface numerous times ({>}10 times, in order to ensure statistical significance), which allows us to determine both the parameters of the surface thermal emissivity and the thermal inertia by least-squares fitting to a thermal model of Ryugu.
Simulation of the single-vibronic-level emission spectrum of HPS.
Mok, Daniel K W; Lee, Edmond P F; Chau, Foo-tim; Dyke, John M
2014-05-21
We have computed the potential energy surfaces of the X¹A' and ùA" states of HPS using the explicitly correlated multi-reference configuration interaction (MRCI-F12) method, and Franck-Condon factors between the two states, which include anharmonicity and Duschinsky rotation, with the aim of testing the assignment of the recently reported single-vibronic-level (SVL) emission spectrum of HPS [R. Grimminger, D. J. Clouthier, R. Tarroni, Z. Wang, and T. J. Sears, J. Chem. Phys. 139, 174306 (2013)]. These are the highest level calculations on these states yet reported. It is concluded that our spectral simulation supports the assignments of the molecular carrier, the electronic states involved and the vibrational structure of the experimental laser induced fluorescence, and SVL emission spectra proposed by Grimminger et al. [J. Chem. Phys. 139, 174306 (2013)]. However, there remain questions unanswered regarding the relative electronic energies of the two states and the geometry of the excited state of HPS.
Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China
NASA Astrophysics Data System (ADS)
Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin
2016-09-01
Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in this study shows natural emissions are primarily from grassland and dry cropland. Such an emission pattern may alter the current understanding of Hg emission outflow from China as reported by Lin et al. (2010b) because a substantial natural Hg emission occurs in West China.
40 CFR 63.3890 - What emission limits must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products... surface coating operations meet the applicability criteria of more than one of the subcategory emission.... (1) If the general use or magnet wire surface coating operations subject to only one of the emission...
Metamorphic quantum dots: Quite different nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seravalli, L.; Frigeri, P.; Nasi, L.
In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less
Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.
Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L
2014-12-01
The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Tan, J.; Petersen, W. A.; Unkrich, C. C.; Demaria, E. M.; Hazenberg, P.; Lakshmi, V.
2017-12-01
Precipitation profiles from the GPM Core Observatory Dual-frequency Precipitation Radar (DPR) form part of the a priori database used in GPM Goddard Profiling (GPROF) algorithm passive microwave radiometer retrievals of rainfall. The GPROF retrievals are in turn used as high quality precipitation estimates in gridded products such as IMERG. Due to the variability in and high surface emissivity of land surfaces, GPROF performs precipitation retrievals as a function of surface classes. As such, different surface types may possess different error characteristics, especially over arid regions where high quality ground measurements are often lacking. Importantly, the emissive properties of land also result in GPROF rainfall estimates being driven primarily by the higher frequency radiometer channels (e.g., > 89 GHz) where precipitation signals are most sensitive to coupling between the ice-phase and rainfall production. In this study, we evaluate the rainfall estimates from the Ku channel of the DPR as well as GPROF estimates from various passive microwave sensors. Our evaluation is conducted at the level of individual satellite pixels (5 to 15 km in diameter), against a dense network of weighing rain gauges (90 in 150 km2) in the USDA-ARS Walnut Gulch Experimental Watershed and Long-Term Agroecosystem Research (LTAR) site in southeastern Arizona. The multiple gauges in each satellite pixel and precise accumulation about the overpass time allow a spatially and temporally representative comparison between the satellite estimates and ground reference. Over Walnut Gulch, both the Ku and GPROF estimates are challenged to delineate between rain and no-rain. Probabilities of detection are relatively high, but false alarm ratios are also high. The rain intensities possess a negative bias across nearly all sensors. It is likely that storm types, arid conditions and the highly variable precipitation regime present a challenge to both rainfall retrieval algorithms. An array of ground-based sensors is being deployed during the 2017 monsoon season to better understand possible reasons for this discrepancy.
NASA Astrophysics Data System (ADS)
Cho, Kyu-Gong
2000-12-01
In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.
Elastic wave generated by granular impact on rough and erodible surfaces
NASA Astrophysics Data System (ADS)
Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime
2018-01-01
The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.
Highlighting non-uniform temperatures close to liquid/solid surfaces
NASA Astrophysics Data System (ADS)
Noirez, L.; Baroni, P.; Bardeau, J. F.
2017-05-01
The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.
NASA Astrophysics Data System (ADS)
Löhle, S.; Hermann, T.; Zander, F.
2018-06-01
A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material Zuram, the Airbus material Asterm and the carbon preform Calcarb were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
NASA Astrophysics Data System (ADS)
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; Stavitski, Eli; Sadowski, Jerzy T.; Vescovo, Elio; Walter, Andrew; Attenkofer, Klaus; Stacchiola, Darío J.; Liu, Mingzhao
2017-12-01
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices such as ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of the reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering
Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...
2017-12-04
Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Heng
Thermal diffusivity of materials is of interest in nuclear applications at temperatures in excess of 2000°C. Commercial laser flash apparatus (LFA) that heats samples with a furnace typically do not reach these elevated temperatures nor are they easily adapted to a glove-box or hot cell environment. In this research, we performed work on an experimental technique using single laser surface heating, i.e. heating the disk sample only at its front surface with the continuous wave (CW) laser, to allow measurement of thermal diffusivity at very high temperatures within a small chamber. Thermal diffusivity is measured using a separate pulsed lasermore » on the front side and IR detector on the rear side. The new way of heating provides easy operation in comparison to other heating methods. The measurement of sample reference temperature is needed for the measured thermal diffusivity. A theoretical model was developed to describe transient heat transfer across the sample due to the laser pulse, starting from the steady state temperature of the sample heated by the CW laser. The experimental setup was established with a 500W CW laser and maximum 50 Joule pulse laser irradiated at the front surface of the sample. The induced temperature rise at the rear surface, along with the steady-state temperature at the front surface, was recorded for the determination of thermal diffusivity and the sample temperature. Three samples were tested in vacuum over a wide temperature range of 500°C to 2100°C, including graphite, Inconel 600 and tungsten. The latter two samples were coated with sprayed graphite on their front surfaces in order to achieve surface absorption/emission needs, i.e. high absorptivity of the front surface against relatively low emissivity of the rear surface. Thermal diffusivity of graphite determined by our system are within a 5% difference of the commercial LFA data at temperatures below 1300°C and agree well with its trend at higher temperatures. Good agreement would also exist for Inconel 600 and tungsten. Despite large uncertainty of measuringthe sample temperature, the uncertainties of thermal diffusivity are less than 6% for all samples at elevated temperatures. The results indicate that single laser surface heating could be convenient and practical for the application of the LFA measurements without extra uncertainty, as temperature dependence of thermal diffusivity is usually negligible in the sample. Moreover, it is concluded that unequal surface treatment, i.e., high absorption on the front side and low emission on the rear side, greatly improves the measurement in serval aspects: less power requirement of the CW laser, less uncertainty of measured thermal diffusivity, and more uniform temperature distribution in the sample. The result of this research can be used as a general guideline for the design of this type of measurement system for nuclear applications. It can also be used directly to design and build a system similar to the one implemented in this project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang
2015-05-15
Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less
Radiative decay engineering 3. Surface plasmon-coupled directional emission
Lakowicz, Joseph R.
2009-01-01
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679
Surface nanotexturing of tantalum by laser ablation in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmina, E V; Simakin, Aleksandr V; Shafeev, Georgii A
2009-01-31
Surface nanotexturing of tantalum by ablation with short laser pulses in water has been studied experimentally using three ablation sources: a neodymium laser with a pulse duration of 350 ps, an excimer laser (248 nm) with a pulse duration of 5 ps and a Ti:sapphire laser with a pulse duration of 180 fs. The morphology of the nanotextured surfaces has been examined using a nanoprofilometer and field emission scanning electron microscope. The results demonstrate that the average size of the hillocks produced on the target surface depends on the laser energy density and is {approx}200 nm at an energy densitymore » approaching the laser-melting threshold of tantalum and a pulse duration of 350 ps. Their surface density reaches 10{sup 6} cm{sup -2}. At a pulse duration of 5 ps, the average hillock size is 60-70 nm. Nanotexturing is accompanied by changes in the absorption spectrum of the tantalum surface in the UV and visible spectral regions. The possible mechanisms of surface nanotexturing and potential applications of this effect are discussed. (nanostructures)« less
X-ray microanalysis of porous materials using Monte Carlo simulations.
Poirier, Dominique; Gauvin, Raynald
2011-01-01
Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.
Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale
NASA Astrophysics Data System (ADS)
Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.
2015-12-01
Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.
Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.
Gao, Suduan; Trout, Thomas J
2006-01-01
High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.
Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M
2015-12-28
Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen
2005-05-01
We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic emission events. The average individual transducer area in the 2004 device was increased to 6.97 mm2 as compared to 2.51 mm2 in the 2002 device. In this paper, we report the new experimental results on the characterization of the 2004 device and compare them with analytical results. We show improvements in sensitivity as measured by capacitance and as measured by pencil lead break experiments. Improvement in damping is also evaluated by admittance measurement in atmosphere. Pencil lead break experiments also show that transducers can operate in atmospheric pressure. Finally, we apply the device to acoustic emission experiments on crack propagation in a steel beam specimen, precracked in fatigue, in a four-point bending test.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
Prakash, Rangasamy; Krishnaraj, Vijayan; Zitoune, Redouane; Sheikh-Ahmad, Jamal
2016-01-01
Carbon fiber reinforced polymers (CFRPs) have found wide-ranging applications in numerous industrial fields such as aerospace, automotive, and shipping industries due to their excellent mechanical properties that lead to enhanced functional performance. In this paper, an experimental study on edge trimming of CFRP was done with various cutting conditions and different geometry of tools such as helical-, fluted-, and burr-type tools. The investigation involves the measurement of cutting forces for the different machining conditions and its effect on the surface quality of the trimmed edges. The modern cutting tools (router tools or burr tools) selected for machining CFRPs, have complex geometries in cutting edges and surfaces, and therefore a traditional method of direct tool wear evaluation is not applicable. An acoustic emission (AE) sensing was employed for on-line monitoring of the performance of router tools to determine the relationship between AE signal and length of machining for different kinds of geometry of tools. The investigation showed that the router tool with a flat cutting edge has better performance by generating lower cutting force and better surface finish with no delamination on trimmed edges. The mathematical modeling for the prediction of cutting forces was also done using Artificial Neural Network and Regression Analysis. PMID:28773919
Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.
Tartakovsky, Dmitry; Stern, Eli; Broday, David M
2016-06-15
To date, phosphate surface mining suffers from lack of reliable emission factors. Due to complete absence of data to derive emissions factors, we developed a methodology for estimating them indirectly by studying a range of possible emission factors for surface phosphate mining operations and comparing AERMOD calculated concentrations to concentrations measured around the mine. We applied this approach for the Khneifiss phosphate mine, Syria, and the Al-Hassa and Al-Abyad phosphate mines, Jordan. The work accounts for numerous model unknowns and parameter uncertainties by applying prudent assumptions concerning the parameter values. Our results suggest that the net mining operations (bulldozing, grading and dragline) contribute rather little to ambient TSP concentrations in comparison to phosphate processing and transport. Based on our results, the common practice of deriving the emission rates for phosphate mining operations from the US EPA emission factors for surface coal mining or from the default emission factor of the EEA seems to be reasonable. Yet, since multiple factors affect dispersion from surface phosphate mines, a range of emission factors, rather than only a single value, was found to satisfy the model performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Bourlier, Christophe
2005-07-10
The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.
NASA Astrophysics Data System (ADS)
Fairchild, A. J.; Chirayath, V. A.; Gladen, R. W.; Chrysler, M. D.; Koymen, A. R.; Weiss, A. H.
2017-01-01
In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed.
Ye, Liu; Ni, Bing-Jie; Law, Yingyu; Byers, Craig; Yuan, Zhiguo
2014-01-01
The quantification of nitrous oxide (N2O) emissions from open-surface wastewater treatment systems with surface aerators is difficult as emissions from the surface aerator zone cannot be easily captured by floating hoods. In this study, we propose and demonstrate a novel methodology to estimate N2O emissions from such systems through determination of the N2O transfer coefficient (kLa) induced by surface aerators based on oxygen balance for the entire system. The methodology is demonstrated through its application to a full-scale open oxidation ditch wastewater treatment plant with surface aerators. The estimated kLa profile based on a month-long measurement campaign for oxygen balance, intensive monitoring of dissolved N2O profiles along the oxidation ditch over a period of four days, together with mathematical modelling, enabled to determine the N2O emission factor from this treatment plant (0.52 ± 0.16%). Majority of the N2O emission was found to occur in the surface aerator zone, which would be missed if the gas hood method was applied alone. Copyright © 2013 Elsevier Ltd. All rights reserved.
3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.
Zhu, Q; Kato, S; Murakami, S; Ito, K
2007-06-01
This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.
Directional Thermal Emission and Absorption from Surface Microstructures in Metalized Plastics
2013-09-01
conductive surfaces for directional emission is presented. First, key accomplishments in exploiting surface plasmons for coherent thermal emission from...than as an absorbing coating . In the 2005 design proposed by Lee et al., thermally excited surface waves at a silicon carbide to photonic crystal stack...sufficiently to significantly effect the film durability and thermal conductivity , the profile of the cavity begins to change shape. Although a case
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie
2016-09-01
Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders.
Comprehensive overview of the Point-by-Point model of prompt emission in fission
NASA Astrophysics Data System (ADS)
Tudora, A.; Hambsch, F.-J.
2017-08-01
The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for 252Cf(SF) and 235 ( n, f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν (A,TKE) and γ-ray energy E_{γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A ( e.g., ν(A), E_{γ}(A), < ɛ > (A) etc.), as a function of TKE ( e.g., ν (TKE), E_{γ}(TKE)) up to the prompt neutron distribution P (ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning nuclei and incident energies for which the experimental information is completely missing. The PbP treatment can also provide input parameters of the improved Los Alamos model with non-equal residual temperature distributions recently reported by Madland and Kahler, especially for fissioning nuclei without any experimental information concerning the prompt emission.
Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.
Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei
2016-02-10
Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.
Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.
We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less
NASA Astrophysics Data System (ADS)
Lei, Dangyuan
2016-09-01
In the first part of this talk, I will show our experimental investigation on the linear and nonlinear optical properties of metal film-coupled nanosphere monomers and dimers both with nanometric gaps. We have developed a new methodology - polarization resolved spectral decomposition and color decoding to "visualizing" unambiguously the spectral and radiation properties of the complex plasmonic gap modes in these hybrid nanostructures. Single-particle spectroscopic measurements indicate that these hybrid nanostructures can simultaneously enhance several nonlinear optical processes, such as second harmonic generation, two-photon absorption induced luminescence, and hyper-Raman scattering. In the second part, I will show how the polarization state of the emissions from sub-10 nm upconversion nanocrystals (UCNCs) can be modulated when they form a hybrid complex with a gold nanorod (GNR). Our single-particle scattering experiments expose how an interplay between excitation polarization and GNR orientation gives rise to an extraordinary polarized nature of the upconversion emissions from an individual hybrid nanostructure. We support our results by numerical simulations and, using Förster resonance energy transfer theory, we uncover how an overlap between the UCNC emission and GNR extinction bands as well as the mutual orientation between emission and plasmonic dipoles jointly determine the polarization state of the UC emissions.
NASA Astrophysics Data System (ADS)
Grant, Robert; Neftel, Albrecht; Calanca, Pierluigi
2016-04-01
Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (q) and temperature (Ts) is greatest. To determine whether temporal variability in q and Ts of surface litter and near-surface soil could explain that in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and q and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors at an hourly time-scale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2 - 5 days) with maximum N2O effluxes that varied from < 1 mg N m-2 h-1 in early spring and autumn to > 3 mg N m-2 h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0 - 2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth, and by O2 limitation from wetting relative to O2 demand from respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O emissions was not simply related to surface and near-surface q and Ts. Modelled N2O emissions were found to be sensitive to defoliation intensity and timing (relative to that of fertilization) which controlled plant N uptake and soil q and Ts prior to and during emission events. In a model sensitivity study, reducing LAI remaining after defoliation to one-half that under current practice and delaying harvesting by 5 days raised N2O emissions by as much as 80% during subsequent events and by an average of 43% annually. The global warming potential from annual N2O emissions in this intensively managed grassland largely offset those from net C uptake in both modelled and field experiments. However model results indicated that this offset could be adversely affected by suboptimal harvest intensity and timing.
Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.
2017-12-01
The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.
Multi-wavelength emissivity measurement of stainless steel substrate
NASA Astrophysics Data System (ADS)
Zhang, Y. F. F.; Dai, J. M. M.; Zhang, L.; Pan, W. D. D.
2013-01-01
The emissivity is a key parameter to measure the surface temperature of materials in the radiation thermometry. In this paper, the surface emissivity of metallic substrates is measured by the multi-wavelength emissivity measurement apparatus developed by the Harbin Institute of Technology (HIT). The measuring principle of this apparatus is based on the energy comparison. Several radiation thermometers, whose emissivity coefficients corrected by the measured emissivity from this apparatus, are used to measure the surface temperature of stainless steel substrates. The temperature values measured by means of radiation thermometry are compared to those measured by means of contact thermometry. The relative error between the two means is less than 2% at temperatures from 700K to 1300K, it suggests that the emissivity of stainless steel substrate measured by the multi-wavelength emissivity measurement apparatus are accurate and reliable. Emissivity measurements performed with this apparatus present an uncertainty of 5.9% (cover factor=2).
Mukherjee, A; Lal, R; Zimmerman, A R
2014-07-15
Short and long-term impacts of biochar on soil properties under field conditions are poorly understood. In addition, there is a lack of field reports of the impacts of biochar on soil physical properties, gaseous emissions and C stability, particularly in comparison with other amendments. Thus, three amendments - biochar produced from oak at 650°C, humic acid (HA) and water treatment residual - (WTR) were added to a scalped silty-loam soil @ 0.5% (w/w) in triplicated plots under soybean. Over the 4-month active growing season, all amendments significantly increased soil pH, but the effect of biochar was the greatest. Biochar significantly increased soil-C by 7%, increased sub-nanopore surface area by 15% and reduced soil bulk density by 13% compared to control. However, only WTR amendment significantly increased soil nanopore surface area by 23% relative to the control. While total cumulative CH4 and CO2 emissions were not significantly affected by any amendment, cumulative N2O emission was significantly decreased in the biochar-amended soil (by 92%) compared to control over the growing period. Considering both the total gas emissions and the C removed from the atmosphere as crop growth and C added to the soil, WTR and HA resulted in net soil C losses and biochar as a soil C gain. However, all amendments reduced the global warming potential (GWP) of the soil and biochar addition even produced a net negative GWP effect. The short observation period, low application rate and high intra-treatment variation resulted in fewer significant effects of the amendments on the physicochemical properties of the soils than one might expect indicating further possible experimentation altering these variables. However, there was clear evidence of amendment-soil interaction processes affecting both soil properties and gaseous emissions, particularly for biochar, that might lead to greater changes with additional field emplacement time. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Quintana, César; Ramos, Gonzalo; Moral, Andoni; Rodriguez, Jose Antonio; Pérez, Carlos; Hutchinson, Ian; INGLEY, Richard; Rull, Fernando
2016-10-01
Raman Laser Spectrometer (RLS) is one of the Pasteur payload instruments located at the Rover of the ExoMars mission and within the ESA's Aurora Exploration Programme. RLS will explore the Mars surface composition through the Raman spectroscopy technique. The instrument is divided into several units: a laser for Raman emission stimulation, an internal optical head (iOH) for sample excitation and for Raman emission recovering, a spectrometer with a CCD located at its output (SPU), the optical harness (OH) for the units connection, from the laser to the excitation path of the iOH and from the iOH reception path to the spectrometer, and the corresponding electronics for the CCD operation.Due to the variability of the samples to be analyzed on Mars, a radiometry prediction for the instrument performance results to be of the critical importance. In such a framework, and taking into account the SNR (signal to noise ratio) required for the achievement of successful results from the scientific point of view (a proper information about the Mars surface composition), a radiometric model has been developed to provide the requirements for the different units, i.e. the laser irradiance, the iOH, OH, and SPU throughputs, and the samples that will be possible to be analyzed in terms of its Raman emission and the relationship of the Raman signal with respect to fluorescence emission, among others.The radiometric model fundamentals (calculations and approximations), as well as the first results obtained during the bread board characterization campaign are here reported on.
Far-infrared surface emissivity and climate.
Feldman, Daniel R; Collins, William D; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong
2014-11-18
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8-2.0 W m(-2) difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m(-2), and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.
Far-infrared surface emissivity and climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Daniel R.; Collins, William D.; Pincus, Robert
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less
Far-infrared surface emissivity and climate
Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong
2014-01-01
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m−2 difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m−2, and 15%, respectively, after only 25 y of integration. Additionally, the calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change. PMID:25368189
Far-infrared surface emissivity and climate
Feldman, Daniel R.; Collins, William D.; Pincus, Robert; ...
2014-11-03
Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less
Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.
Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J
2001-11-26
The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.
Analysis of longwave radiation for the Earth-atmosphere system
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.
1983-01-01
Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.
Emission dynamics of hybrid plasmonic gold/organic GaN nanorods
NASA Astrophysics Data System (ADS)
Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.
2017-12-01
We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.
Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.
Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P
2017-12-15
We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.
NASA Astrophysics Data System (ADS)
Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.
2016-10-01
Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.
Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.
2009-12-01
Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed plots. The total amount of dust measured during the initial (no abrader added) run on GFF for the one pass and ten pass plots was almost twice and three times, respectively, that observed on the undisturbed plots. The ten pass treatment generated about 75% more PM10 dust, as measured by the GRIMM particle monitor, than the undisturbed plots during the 30 minute abrader run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Surface Impoundments § 63.7905 What emissions limitations or work practice...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Surface Impoundments § 63.7905 What emissions limitations or work practice...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Surface Impoundments § 63.7905 What emissions limitations or work practice...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Surface Impoundments § 63.7905 What emissions limitations or work practice...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS... Pollutants: Site Remediation Surface Impoundments § 63.7905 What emissions limitations or work practice...
Directional Emissivity Effects on Martian Surface Brightness Temperatures
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.
2001-11-01
The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.
Solano, Jesús Ramírez; Baños, Alejandro Trejo; Durán, Álvaro Miranda; Quiroz, Eliel Carvajal; Irisson, Miguel Cruz
2017-09-26
In the development of quantum computing and communications, improvements in materials capable of single photon emission are of great importance. Advances in single photon emission have been achieved experimentally by introducing nitrogen-vacancy (N-V) centers on diamond nanostructures. However, theoretical modeling of the anisotropic effects on the electronic properties of these materials is almost nonexistent. In this study, the electronic band structure and density of states of diamond nanowires with N-V defects were analyzed through first principles approach using the density functional theory and the supercell scheme. The nanowires were modeled on two growth directions [001] and [111]. All surface dangling bonds were passivated with hydrogen (H) atoms. The results show that the N-V introduces multiple trap states within the energy band gap of the diamond nanowire. The energy difference between these states is influenced by the growth direction of the nanowires, which could contribute to the emission of photons with different wavelengths. The presence of these trap states could reduce the recombination rate between the conduction and the valence band, thus favoring the single photon emission. Graphical abstract Diamond nanowires with nitrogen-vacancy centerᅟ.
NASA Astrophysics Data System (ADS)
Idris, Nasrullah; Pardede, Marincan; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On
2018-05-01
We report the result of an experimental study that shows the remarkable benefits of generating a micro shock wave plasma by low energy (800 μJ) nanosecond (ns) Nd:YAG laser irradiation on a solid target in open air and the efficient detection of the induced plasma emission. The very low irradiation power density of 0.8 MW/cm2 produced by the slightly defocused laser beam gives the additional advantage of rather wide crater size of 400 μm on the sample surface, thus enabling average analysis and reducing the ion production responsible for the undesirable emission background as well as the Stark broadening effect, and thus leading to largely improved spectral quality. This is corroborated by the result of spectra measured from a number of metal samples which display the sharp emission lines with low background. Specifically, its application to Cr analysis of a series of low alloy steel samples with different Cr concentrations is shown to yield a linear calibration line of adequate dynamical range and an estimated detection limit of about 10 ppm.
NASA Astrophysics Data System (ADS)
Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.
2013-06-01
Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
Mechanism of Prism-Coupled Scanning Tunneling Microscope Light Emission
NASA Astrophysics Data System (ADS)
Iida, Wataru; Ahamed, Jamal U.; Katano, Satoshi; Uehara, Yoichi
2011-09-01
We have investigated the mechanism of scanning tunneling microscope light emission (STM-LE) in a prism-coupled configuration using finite difference time domain analysis. In this configuration, the sample is a metallic thin film evaporated on the bottom surface of a hemispherical glass prism. STM light emitted into the prism (prism-side emission) through the metallic film is measured. Since both localized surface plasmons (LSP) and surface plasmon polaritons (SPP) contribute to prism-side emission, this emission is stronger than that in conventional STM-LE measured from the sample surface side, which is radiated by LSP alone. We show that the spatial resolution of prism-side emission is determined not by the propagation length of SPP, but by the lateral size of LSP, similarly to conventional (i.e., tip side) STM-LE. Thus, we conclude that, by using the prism-coupled configuration, the signal level of STM-LE improves without the loss of spatial resolution attained in tip side emission.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Orient, O. J.; Murad, E.
1990-01-01
Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative ions and neutral atoms are generated. The energy range is variable, and atom and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and ion glows in the wavelength range 250 to 850 nm (for O(-)) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.; Murad, E.
1990-01-01
Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative ions and neutral atoms are generated. The energy range is variable, and atom and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and ion glows in the wavelength range 250 to 850 nm (for O/-/) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.
Coupling of individual quantum emitters to channel plasmons.
Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain
2015-08-07
Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.
Importing super-resolution imaging into nanoscale puzzles of materials dynamics
NASA Astrophysics Data System (ADS)
King, John; Tsang, Chi Hang Boyce; Wilson, William; Granick, Steve
2014-03-01
A limitation of the exciting recent advances in sub-diffraction microscopy is that they focus on imaging rather than dynamical changes. We are engaged in extending this technique beyond the usual biological applications to address materials problems instead. To this end, we employ stimulated emission depletion (STED) microscopy, which relies on selectively turning off fluorescence emitters through stimulated emission, allowing only a small subset of emitters to be detected, such that the excitation spot size can be downsized to tens of nanometers. By coupling the STED excitation scheme to fluorescence correlation spectroscopy (FCS), diffusive processes are studied with nanoscale resolution. Here, we demonstrate the benefits of such experimental capabilities in a diverse range of complex systems, ranging from the diffusion of nano-objects in crowded 3D environments to the study of polymer diffusion on 2D surfaces.
NASA Technical Reports Server (NTRS)
Weaver, C.; Kiemle, C.; Kawa, S. R.; Aalto, T.; Necki, J.; Steinbacher, M.; Arduini, J.; Apadula, F.; Berkhout, H.; Hatakka, J.
2014-01-01
We investigate the sensitivity of future spaceborne lidar measurements to changes in surface methane emissions. We use surface methane observations from nine European ground stations and a Lagrangian transport model to infer surface methane emissions for 2010. Our inversion shows the strongest emissions from the Netherlands, the coal mines in Upper Silesia, Poland, and wetlands in southern Finland. The simulated methane surface concentrations capture at least half of the daily variability in the observations, suggesting that the transport model is correctly simulating the regional transport pathways over Europe. With this tool we can test whether proposed methane lidar instruments will be sensitive to changes in surface emissions. We show that future lidar instruments should be able to detect a 50% reduction in methane emissions from the Netherlands and Germany, at least during summer.
Radio emission of sea surface at centimeter wavelengths and is fluctuations
NASA Technical Reports Server (NTRS)
Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.
1981-01-01
The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.
NASA Technical Reports Server (NTRS)
Peters-Lidar, Christa D.; Tian, Yudong; Kenneth, Tian; Harrison, Kenneth; Kumar, Sujay
2011-01-01
Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization Working Group. Specifically, we will demonstrate the performance of the Land Information System (LIS; http://lis.gsfc.nasa.gov; Peters-Lidard et aI., 2007; Kumar et al., 2006) coupled to the Joint Center for Satellite Data Assimilation (JCSDA's) Community Radiative Transfer Model (CRTM; Weng, 2007; van Deist, 2009). The land surface is characterized by complex physical/chemical constituents and creates temporally and spatially heterogeneous surface properties in response to microwave radiation scattering. The uncertainties in surface microwave emission (both surface radiative temperature and emissivity) and very low polarization ratio are linked to difficulties in rainfall detection using low-frequency passive microwave sensors (e.g.,Kummerow et al. 2001). Therefore, addressing these issues is of utmost importance for the GPM mission. There are many approaches to parameterizing land surface emission and radiative transfer, some of which have been customized for snow (e.g., the Helsinki University of Technology or HUT radiative transfer model;) and soil moisture (e.g., the Land Surface Microwave Emission Model or LSMEM).
NASA Astrophysics Data System (ADS)
Wei, Chih Chung; Un, Leng-Wai; Yen, Ta-Jen
2017-05-01
One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.
Self-calibrated active pyrometer for furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1998-01-01
Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.
Low Work Function Csl Coatings for Enhanced Field Emission Properties
2011-04-01
CsI is an insulator band gap=6.2 eV Ref. 6 that would be expected to impede, rather than to enhance, electron tunneling. Vlahos et al.7...minimal WF. Vlahos et al.10 later carried out ex situ experimental char- acterization of the surfaces of CsI-coated cathodes after use in a FE device...Jenkin, J. Liesegang, and R. C. G. Leckey, Phys. Rev. B 11, 5179 1975. 7V. Vlahos , J. H. Booske, and D. Morgan, Appl. Phys. Lett. 91, 144102 2007. 8A
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
Emission of dimers from a free surface of heated water
NASA Astrophysics Data System (ADS)
Bochkarev, A. A.; Polyakova, V. I.
2014-09-01
The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
Temperature and thermal emissivity of the surface of Neptune's satellite Triton
NASA Technical Reports Server (NTRS)
Nelson, Robert M.; Smythe, William D.; Wallis, Brad D.; Horn, Linda J.; Lane, Arthur L.; Mayo, Marvin J.
1990-01-01
Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the about 100-micron scale as might be expected given the active renewal processes which appear to dominate Triton's surface.
Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang
2015-01-01
The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199
Friction properties of biological functional materials: PVDF membranes.
Chen, Long; Di, Changan; Chen, Xuguang; Li, Zhengzhi; Luo, Jia
2017-01-02
Touch is produced by sensations that include approaching, sliding, pressing, and temperature. This concept has become a target of research in biotechnology, especially in the field of bionic biology. This study measured sliding and pressing with traditional tactile sensors in order to improve a machine operator's judgment of surface roughness. Based on the theory of acoustic emission, this study combined polyvinylidene fluoride (PVDF) with a sonic transducer to produce tactile sensors that can detect surface roughness. Friction between PVDF films and experimental materials generated tiny acoustic signals that were transferred into electrical signals through a sonic transducer. The characteristics of the acoustic signals for the various materials were then analyzed. The results suggest that this device can effectively distinguish among different objects based on roughness. Tactile sensors designed using this principle and structure function very similarly to the human body in recognizing the surface of an object.
NASA Astrophysics Data System (ADS)
Löhle, S.; Hermann, T.; Zander, F.
2017-12-01
A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.
Numerical simulation of an experimental analogue of a planetary magnetosphere
NASA Astrophysics Data System (ADS)
Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn
2015-12-01
Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.
Plasma interaction with emmissive surface with Debye-scale grooves
NASA Astrophysics Data System (ADS)
Schweigert, Irina; Burton, Thomas S.; Thompson, Gregory B.; Langendorf, Samuel; Walker, Mitchell L. R.; Keidar, Michael
2018-04-01
The sheath development over emissive grooved surface in dc discharge plasma controlled by an electron beam is studied in the experiment and in 2D kinetic simulations. Grooved hexagonal boron nitride surfaces with different aspect ratios, designed to mimic the erosion channels, were exposed to an argon plasma. The characteristic size of the grooves (1 mm and 5 mm) is about of the Debye length. The secondary electrons emission from the grooved surfaces is provided by the bombardment with energetic electrons originated from the heated powered cathode. The transition between a developed and a collapsed sheaths near emissive surface takes place with an increase of the beam electron energy. For grooved emissive surfaces, the sheath transition happens at essentially higher voltage compared to the planar one. This phenomenon is analyzed in the terms of the electron energy distribution function.
Global modelling of Cryptosporidium in surface water
NASA Astrophysics Data System (ADS)
Vermeulen, Lucie; Hofstra, Nynke
2016-04-01
Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and Conclusions GloWPa-Crypto is the first global model that can be used to analyse dynamics in surface water pathogen concentrations worldwide. Global human Cryptosporidium emissions are estimated at 1 x 10^17 oocysts/ year for the year 2010.We estimated future emissions for SSP1 and SSP3. Preliminary results show that for SSP1human emissions are approximately halved by 2050. The SSP3 human emissions are 1.5 times higher than the 2010 emissions due to increased population growth and urbanisation. Livestock Cryptosporidium emissions are expected to increase under both SSP1 and SSP3, as meat consumption continues to rise. We conclude that population growth, urbanization, changes in sanitation systems and treatment, and changes in livestock consumption and production systems are important processes that determine future Cryptosporidium emissions to surface water. References Hofstra N, Bouwman A F, Beusen A H W and Medema G J 2013 Exploring global Cryptosporidium emissions to surface water Sci. Total Environ. 442 10-9 Kiulia N M, Hofstra N, Vermeulen L C, Obara M A, Medema G J and Rose J B 2015 Global occurrence and emission of rotaviruses to surface waters Pathogens 4 229-55 Vermeulen L C, De Kraker J, Hofstra N, Kroeze C and Medema G J 2015 Modelling the impact of sanitation, population and urbanization estimates on human emissions of Cryptosporidium to surface waters - a case study for Bangladesh and India Environ. Res. Lett. 10
NASA Technical Reports Server (NTRS)
Lee, S. L.
1974-01-01
Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.
Stability of peatland carbon to rising temperatures
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...
2016-12-13
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Stability of peatland carbon to rising temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao
2016-09-27
Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.
Spectral identification/elimination of molecular species in spacecraft glow
NASA Technical Reports Server (NTRS)
Green, B. D.; Marinelli, W. J.; Rawlins, W. T.
1985-01-01
Computer models of molecular electronic and vibrational emission intensities were developed. Known radiative emission rates (Einstein coefficients) permit the determination of relative excited state densities from spectral intensities. These codes were applied to the published spectra of glow above shuttle surface and to the Spacelab 1 results of Torr and Torr. The theoretical high-resolution spectra were convolved with the appropriate instrumental slit functions to allow accurate comparison with data. The published spacelab spectrum is complex but N2+ Meinel emission can be clearly identified in the ram spectrum. M2 First Positive emission does not correlate well with observed features, nor does the CN Red System. Spectral overlay comparisons are presented. The spectrum of glow above shuttle surfaces, in contrast to the ISO data, is not highly structured. Diatomic molecular emission was matched to the observed spectral shape. Source excitation mechanisms such as (oxygen atom)-(surface species) reaction product chemiluminescence, surface recombination, or resonance fluorescent re-emission will be discussed for each tentative assignment. These assignments are the necessary first analytical step toward mechanism identification. Different glow mechanisms will occur above surfaces under different orbital conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatomi, T.; Kuwayama, T.; Takai, Y.
2009-11-15
The application of ion scattering spectroscopy (ISS) to the in situ measurement of the surface potential developed on an insulator surface under positive ion irradiation was investigated. The ISS spectra measured for a MgO film of 600 nm thickness on a Si substrate by the irradiation of 950 eV He{sup +} ions revealed that the surface is positively charged by approximately 180 V. For accurate measurement of the surface potential, a correction to take into account the angular deflection of primary ions induced by the high surface potential is required. The dependence of the surface potential on the sample temperaturemore » revealed that no charging is induced above 700 deg. C, indicating that accumulated charges can be removed by heating to 700 deg. C. From the measurement of the ion-induced secondary electron yield using a collector electrode located in front of the sample surface, the surface potential and ion-induced secondary electron yield were found to be strongly affected by the experimental setup. Secondary electrons produced by the impact of slow positive secondary ions, the maximum energy of which corresponds to the surface potential, play an important role when the bias voltage applied to the collector electrode is positively high for the present experimental setup. The surface potential developed on the surface of MgO films of 600 and 200 nm thickness was measured in situ, revealing that the amount of accumulated charges and the time required to attain the steady state of charging are slightly dependent on the beam current of primary ions and strongly dependent on the thickness of the MgO film. The present results confirmed that the application of ISS has high potential for investigating charging phenomena and the secondary electron emission from insulator surfaces under positive ion irradiation.« less
Real versus Simulated Mobile Phone Exposures in Experimental Studies
Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.
2015-01-01
We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs) emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets. PMID:26346766
Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia
NASA Astrophysics Data System (ADS)
Amnuaylojaroen, T.; Barth, M. C.; Emmons, L. K.; Carmichael, G. R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S.
2014-12-01
In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using Model for Ozone and Related Chemical Tracers (MOZART) gas-phase chemistry and Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass-burning emissions are from the Fire Inventory from the National Center for Atmospheric Research (NCAR) (FINNv1) model. WRF-Chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict the NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass-burning emissions add more variability. The different anthropogenic emissions differ by up to 30% in CO emissions, but O3 and CO mixing ratios averaged over the land areas of the model domain differ by ~4.5% and ~8%, respectively, among the simulations. Biomass-burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass-burning period to the December period with low biomass-burning emissions. The simulations show that none of the anthropogenic emission inventories are better than the others for predicting O3 surface mixing ratios. However, the simulations with different anthropogenic emission inventories do differ in their predictions of CO surface mixing ratios producing variations of ~30% for March and 10-20% for December at Thai surface monitoring sites.
The effect of target materials on the propagation of atmospheric-pressure plasma jets
NASA Astrophysics Data System (ADS)
Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping
2018-05-01
The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.
Initiation and propagation of mixed mode fractures in granite and sandstone
NASA Astrophysics Data System (ADS)
Rück, Marc; Rahner, Roman; Sone, Hiroki; Dresen, Georg
2017-10-01
We investigate mixed mode fracture initiation and propagation in experimentally deformed granite and sandstone. We performed a series of asymmetric loading tests to induce fractures in cylindrical specimens at confining pressures up to 20 MPa. Loading was controlled using acoustic emission (AE) feedback control, which allows studying quasi-static fracture propagation for several hours. Location of acoustic emissions reveals distinct differences in spatial-temporal fracture evolution between granite and sandstone samples. Before reaching peak stress in experiments performed on granite, axial fractures initiate first at the edge of the indenter and then propagate through the entire sample. Secondary inclined fractures develop during softening of the sample. In sandstone, inclined shear fractures nucleate at peak stress and propagate through the specimen. AE source type analysis shows complex fracturing in both materials with pore collapse contributing significantly to fracture growth in sandstone samples. We compare the experimental results with numerical models to analyze stress distribution and energy release rate per unit crack surface area in the samples at different stages during fracture growth. We thereby show that for both rock types the energy release rate increases approximately linearly during fracture propagation. The study illuminates how different material properties modify fracture initiation direction under similar loading conditions.
Fatigue and fracture assessment of cracks in steel elements using acoustic emission
NASA Astrophysics Data System (ADS)
Nemati, Navid; Metrovich, Brian; Nanni, Antonio
2011-04-01
Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.
NASA Astrophysics Data System (ADS)
Sánchez, Claudia; Vidal, Valérie; Melo, Francisco
2015-08-01
We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it; Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it; Dini, F., E-mail: fdiniprotisti@gmail.com
2013-08-15
Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters thatmore » we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is different from bare soil. ► Light enhances mercury emissions and is the main parameter driving the process. ► The presence of wild vegetation covering the soil reduces mercury emission. ► Vegetative covers could be a solution to reduce atmospheric mercury pollution.« less
Reducing CH4 emission from rice paddy fields by altering water management
NASA Astrophysics Data System (ADS)
Sudo, S.; Itoh, M.
2010-12-01
Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were observed at a later stage of cultivation season (around the end of August). Adjusting of Nakaboshi periods did not make effective performance in such cases. In most of cases, emission increase of N2O was not found during prolonged Nakaboshi period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Azam; Zhao, Zhenling; Xie, Jinlin, E-mail: jlxie@ustc.edu.cn
The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may bemore » related to heat transport suppression caused by a decrease in electron heat diffusivity.« less
Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields.
Kar, S; Robinson, A P L; Carroll, D C; Lundh, O; Markey, K; McKenna, P; Norreys, P; Zepf, M
2009-02-06
Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak, Phys. Plasmas 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.
Optical and tunneling microscopy and spectroscopy at the ultimate spatial limit
NASA Astrophysics Data System (ADS)
Chen, Chi
2009-12-01
The combination of optical detection system with a scanning tunneling microscope (STM) leads to the possibility of resolving radiative transition probability with the ultrahigh spatial resolution of STM in real space. This opens an innovative approach toward revealing the correlation between molecular structure, electronic characteristics, and optical properties. This thesis describes a series of experiments that manifests this correlation, including atomic silver chains and single porphine molecules. In atomic silver chains, the number and positions of the emission maxima in the photon images match the nodes in the dI/d V images of "particle-in-a-box" states. This surprising correlation between the emission maxima and nodes in the density of states is a manifestation of Fermi's golden rule in real space for radiative transitions, which provides an understanding of the mechanism of STM induced light emission. From single porphine molecules, orthogonal spatial contrast of two types of vibronic coupling is resolved by both photon spectroscopy and vibronic-mode-selected photon images. Intramolecular transitions from the two orthogonal LUMOs individually couple to different molecular normal modes. This is the first demonstration of the photon emission probability of a single molecule and its direct correlations with the molecular orbitals. This also provides the first real space experimental evidence to separate the tangled effects of molecular conformations and nano-environments on the inhomogeneity of molecular emission. DSB molecules are found to have two conformational isomers and one of them shows surface chirality. All these conformers and enantiomers can be switched to each other by electron injection. Different DSB conformers present distinct manipulation dynamics, which demonstrate how different conformations and their preferred adsorption geometries can have pronounced influence on the molecular mechanics on the surface. Overall, this thesis studies the very fundamental nature of single molecules and artificial nanostructures by integrating all kinds of important functions of STM: topography, spectroscopy, manipulation, and photon emission. Detailed correlations between the emission patterns and orbital structures are revealed by the ultimate spatial resolution of our "STM photon microscopy".
Emissivity measurements of shocked tin using a multi-wavelength integrating sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifter, A; Holtkamp, D B; Iverson, A J
Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less
Quiet Clean Short-haul Experimental Engine (QCSEE) clean combustor test report
NASA Technical Reports Server (NTRS)
1975-01-01
A component pressure test was conducted on a F101 PFRT combustor to evaluate the emissions levels of this combustor design at selected under the wing and over the wing operating conditions for the quiet clean short haul experimental engine (QCSEE). Emissions reduction techniques were evaluated which included compressor discharge bleed and sector burning in the combustor. The results of this test were utilized to compare the expected QCSEE emissions levels with the emission goals of the QCSEE engine program.
A 3D Model for Gas Transfer, Storage and Resulting Displacement in a Permeable Volcanic Edifice
NASA Astrophysics Data System (ADS)
Collinson, Amy; Neuberg, Jurgen
2014-05-01
The total volume of gas in a magma, dissolved and subsequently exsolved, greatly influences the degree of explosiveness of a volcanic system. There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. Whilst gas release is evident from surface gas emission measurements, gas storage is also thought to play an important role, as evidenced by large gas emissions after some large dome collapse events, suggesting gas may be stored in large volumes at shallow depths within the dome and edifice. Consequently, it is essential to understand degassing, to appreciate how much gas may be stored and where, and under what conditions it may be transferred or emitted to the atmosphere. We use previous experimental data on permeabilities to create 3D numerical models to investigate gas transport and storage in a permeable volcanic edifice. We combine the continuity equation, Darcy's law and the ideal gas law to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas velocity. In addition, we use the momentum equation to investigate how the presence of gas and variations in permeability influence the rate and degree of deformation in the volcanic edifice. Hence this provides two important surface constraints: gas emissions and surface displacement. Geometries are created to simulate the topography of actual volcanoes and the pressure and permeabilities incorporated into the model as boundary and domain conditions, respectively. This method is applied to investigate a variety of volcanological phenomena affecting gas, for example regions of high permeability due to fractures, or low permeability due to sealing.
Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J
2011-04-13
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.
Attribution of Trends and Variability in Surface Ozone over the United States
NASA Technical Reports Server (NTRS)
Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie
2013-01-01
Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.
Huang, Yang; Yasarer, Lindsey M W; Li, Zhe; Sturm, Belinda S M; Zhang, Zengyu; Guo, Jinsong; Shen, Yu
2017-05-01
Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river-reservoir continuum will create distinctive patterns in water surface GHG emissions. A one-year field survey was carried out in the Pengxi River-reservoir continuum, a part of the Three Gorges Reservoir (TGR) immediately after the TGR reached its maximum water level. The annual average water surface CO 2 and CH 4 emissions at the riverine background sampling sites were 6.23 ± 0.93 and 0.025 ± 0.006 mmol h -1 m -2 , respectively. The CO 2 emissions were higher than those in the downstream reservoirs. The development of phytoplankton controlled the downstream decrease in water surface CO 2 emissions. The presence of thermal stratification in the permanent backwater area supported extensive phytoplankton blooms, resulting in a carbon sink during several months of the year. The CH 4 emissions were mainly impacted by water temperature and dissolved organic carbon. The greatest water surface CH 4 emission was detected in the fluctuating backwater area, likely due to a shallower water column and abundant organic matter. The Pengxi River backwater area did not show significant increase in water surface GHG emissions reported in tropical reservoirs. In evaluating the net GHG emissions by the impoundment of TGR, the net change in the carbon budget and the contribution of nitrogen and phosphorus should be taken into consideration in this eutrophic river-reservoir continuum.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don
2008-11-01
CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.
Surface spectral emissivity derived from MODIS data
NASA Astrophysics Data System (ADS)
Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.
2003-04-01
Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.
Programmable thermal emissivity structures based on bioinspired self-shape materials
NASA Astrophysics Data System (ADS)
Athanasopoulos, N.; Siakavellas, N. J.
2015-12-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.
Programmable thermal emissivity structures based on bioinspired self-shape materials
Athanasopoulos, N.; Siakavellas, N. J.
2015-01-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable – and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28. PMID:26635316
Modeling and measurement of microwave emission and backscattering from bare soil surfaces
NASA Technical Reports Server (NTRS)
Saatchi, S.; Wegmuller, U.
1992-01-01
A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.
Automotive Fuel Economy and Emissions Experimental Data
DOT National Transportation Integrated Search
1979-02-01
The purpose of this effort was to generate experimental data to support an assessment of the relationship between automobile fuel economy and emission control systems. Tests were made at both the engine and vehicle levels. Detailed investigations wer...
NASA Astrophysics Data System (ADS)
Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves
2018-05-01
Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro
2016-04-01
In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1994-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L
2012-07-17
Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.
NASA Astrophysics Data System (ADS)
Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze
2018-01-01
Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.
NASA Technical Reports Server (NTRS)
Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.
1998-01-01
NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.
Trypanosoma vivax Adhesion to Red Blood Cells in Experimentally Infected Sheep
Boada-Sucre, Alpidio A.; Rossi Spadafora, Marcello Salvatore; Tavares-Marques, Lucinda M.; Finol, Héctor J.; Reyna-Bello, Armando
2016-01-01
Trypanosomosis, a globally occurring parasitic disease, poses as a major obstacle to livestock production in tropical and subtropical regions resulting in tangible economic losses. In Latin America including Venezuela, trypanosomosis of ruminants is mainly caused by Trypanosoma vivax. Biologically active substances produced from trypanosomes, as well as host-trypanosome cellular interactions, contribute to the pathogenesis of anemia in an infection. The aim of this study was to examine with a scanning electron microscope the cellular interactions and alterations in ovine red blood cells (RBC) experimentally infected with T. vivax. Ovine infection resulted in changes of RBC shape as well as the formation of surface holes or vesicles. A frequent observation was the adhesion to the ovine RBC by the trypanosome's free flagellum, cell body, or attached flagellum in a process mediated by the filopodia emission from the trypanosome surface. The observed RBC alterations are caused by mechanical and biochemical damage from host-parasite interactions occurring in the bloodstream. The altered erythrocytes are prone to mononuclear phagocytic removal contributing to the hematocrit decrease during infection. PMID:27293960
Trypanosoma vivax Adhesion to Red Blood Cells in Experimentally Infected Sheep.
Boada-Sucre, Alpidio A; Rossi Spadafora, Marcello Salvatore; Tavares-Marques, Lucinda M; Finol, Héctor J; Reyna-Bello, Armando
2016-01-01
Trypanosomosis, a globally occurring parasitic disease, poses as a major obstacle to livestock production in tropical and subtropical regions resulting in tangible economic losses. In Latin America including Venezuela, trypanosomosis of ruminants is mainly caused by Trypanosoma vivax. Biologically active substances produced from trypanosomes, as well as host-trypanosome cellular interactions, contribute to the pathogenesis of anemia in an infection. The aim of this study was to examine with a scanning electron microscope the cellular interactions and alterations in ovine red blood cells (RBC) experimentally infected with T. vivax. Ovine infection resulted in changes of RBC shape as well as the formation of surface holes or vesicles. A frequent observation was the adhesion to the ovine RBC by the trypanosome's free flagellum, cell body, or attached flagellum in a process mediated by the filopodia emission from the trypanosome surface. The observed RBC alterations are caused by mechanical and biochemical damage from host-parasite interactions occurring in the bloodstream. The altered erythrocytes are prone to mononuclear phagocytic removal contributing to the hematocrit decrease during infection.