Science.gov

Sample records for emission tomography pet

  1. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  2. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  4. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  5. Positron emission tomography (PET) advances in neurological applications

    NASA Astrophysics Data System (ADS)

    Sossi, V.

    2003-09-01

    Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in vivo neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. Such research is made possible by the wealth of radiotracers available for PET, by the fact that metabolic and kinetic parameters of particular processes can be extracted from PET data and by the continuous development of imaging techniques. In recent years great advancements have been made in the areas of PET instrumentation, data quantification and image reconstruction that allow for more detailed and accurate biological information to be extracted from PET data. It is now possible to quantitatively compare data obtained either with different tracers or with the same tracer under different scanning conditions. These sophisticated imaging approaches enable detailed investigation of disease mechanisms and system response to disease and/or therapy.

  6. [Positron emission tomography (PET) in malignant ovarian tumors].

    PubMed

    Fularz, Maciej; Adamiak, Paulina; Czepczyński, Rafał; Jarzabek-Bielecka, Grazyna; Kedzia, Witold; Ruchała, Marek

    2013-08-01

    Accessibility of positron emission tomography integrated with computed tomography (PET/CT) has improved significantly in recent years. PET/CT with the use of 18F-deoxyglucose (FDG) is widely used in patients with ovarian malignancies at different stages of the management. FDG PET/CT shows high diagnostic accuracy in the differentiation of benign and malignant ovarian lesions with the exception of borderline tumors that may cause false negative results. Moreover FDG PET/CT is used in some centers for preoperative staging and determining the prognosis of ovarian cancer However further studies including larger groups of patients are needed to confirm the applicability of FDG PET/CT in case of the two abovementioned indications. Until now, the best documented indication for FDG PET/ CT in patients with ovarian cancer has been the detection of recurrence, especially in subjects with elevated CA 125 marker and negative results of other imaging techniques. This review focuses on the applicability of PET with the use of FDG in ovarian malignancies and points out to the limitations of this method.

  7. Positron Emission Tomography (PET) in Oncology

    PubMed Central

    Gallamini, Andrea; Zwarthoed, Colette; Borra, Anna

    2014-01-01

    Since its introduction in the early nineties as a promising functional imaging technique in the management of neoplastic disorders, FDG-PET, and subsequently FDG-PET/CT, has become a cornerstone in several oncologic procedures such as tumor staging and restaging, treatment efficacy assessment during or after treatment end and radiotherapy planning. Moreover, the continuous technological progress of image generation and the introduction of sophisticated software to use PET scan as a biomarker paved the way to calculate new prognostic markers such as the metabolic tumor volume (MTV) and the total amount of tumor glycolysis (TLG). FDG-PET/CT proved more sensitive than contrast-enhanced CT scan in staging of several type of lymphoma or in detecting widespread tumor dissemination in several solid cancers, such as breast, lung, colon, ovary and head and neck carcinoma. As a consequence the stage of patients was upgraded, with a change of treatment in 10%–15% of them. One of the most evident advantages of FDG-PET was its ability to detect, very early during treatment, significant changes in glucose metabolism or even complete shutoff of the neoplastic cell metabolism as a surrogate of tumor chemosensitivity assessment. This could enable clinicians to detect much earlier the effectiveness of a given antineoplastic treatment, as compared to the traditional radiological detection of tumor shrinkage, which usually takes time and occurs much later. PMID:25268160

  8. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  9. Positron Emission Tomography imaging with the SmartPET system

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Harkness, L. J.; Nolan, P. J.; Oxley, D. C.; Scraggs, D. P.; Mather, A. R.; Lazarus, I.; Simpson, J.

    2009-07-01

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  10. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  11. High-resolution PET (positron emission tomography) for medical science studies

    SciTech Connect

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. )

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  12. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  13. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  14. Positron Emission Tomography (PET) Evaluation After Initial Chemotherapy and Radiation Therapy Predicts Local Control in Rhabdomyosarcoma

    SciTech Connect

    Dharmarajan, Kavita V.; Wexler, Leonard H.; Gavane, Somali; Fox, Josef J.; Schoder, Heiko; Tom, Ashlyn K.; Price, Alison N.; Meyers, Paul A.; Wolden, Suzanne L.

    2012-11-15

    Purpose: 18-fluorodeoxyglucose positron emission tomography (PET) is already an integral part of staging in rhabdomyosarcoma. We investigated whether primary-site treatment response characterized by serial PET imaging at specific time points can be correlated with local control. Patients and Methods: We retrospectively examined 94 patients with rhabdomyosarcoma who received initial chemotherapy 15 weeks (median) before radiotherapy and underwent baseline, preradiation, and postradiation PET. Baseline PET standardized uptake values (SUVmax) and the presence or absence of abnormal uptake (termed PET-positive or PET-negative) both before and after radiation were examined for the primary site. Local relapse-free survival (LRFS) was calculated according to baseline SUVmax, PET-positive status, and PET-negative status by the Kaplan-Meier method, and comparisons were tested with the log-rank test. Results: The median patient age was 11 years. With 3-year median follow-up, LRFS was improved among postradiation PET-negative vs PET-positive patients: 94% vs 75%, P=.02. By contrast, on baseline PET, LRFS was not significantly different for primary-site SUVmax {<=}7 vs >7 (median), although the findings suggested a trend toward improved LRFS: 96% for SUVmax {<=}7 vs 79% for SUVmax >7, P=.08. Preradiation PET also suggested a statistically insignificant trend toward improved LRFS for PET-negative (97%) vs PET-positive (81%) patients (P=.06). Conclusion: Negative postradiation PET predicted improved LRFS. Notably, 77% of patients with persistent postradiation uptake did not experience local failure, suggesting that these patients could be closely followed up rather than immediately referred for intervention. Negative baseline and preradiation PET findings suggested statistically insignificant trends toward improved LRFS. Additional study may further understanding of relationships between PET findings at these time points and outcome in rhabdomyosarcoma.

  15. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET).

    PubMed

    Apostolova, Ivayla; Wedel, Florian; Brenner, Winfried

    2016-01-01

    Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches. PMID:27557539

  16. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  17. Prediction of positron emission tomography/computed tomography (PET/CT) positivity in patients with high-risk primary melanoma

    PubMed Central

    Danielsen, Maria; Kjaer, Andreas; Wu, Max; Martineau, Lea; Nosrati, Mehdi; Leong, Stanley PL; Sagebiel, Richard W; III, James R Miller; Kashani-Sabet, Mohammed

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool to identify occult melanoma metastasis. To date, it is controversial which patients with primary cutaneous melanoma should have staging PET/CT. In this retrospective analysis of more than 800 consecutive patients with cutaneous melanoma, we sought to identify factors predictive of PET/CT positivity in the setting of newly-diagnosed high-risk primary melanoma to determine those patients most appropriate to undergo a PET/CT scan as part of their diagnostic work up. 167 patients with newly-diagnosed high-risk primary cutaneous melanoma underwent a PET/CT scan performed as part of their initial staging. Clinical and histologic factors were evaluated as possible predictors of melanoma metastasis identified on PET/CT scanning using both univariate and multivariate logistic regression. In all, 32 patients (19.2%) had a positive PET/CT finding of metastatic melanoma. In more than half of these patients (56.3%), PET/CT scanning identified disease that was not detectable on clinical examination. Mitotic rate, tumor thickness, lymphadenopathy, and bleeding were significantly predictive of PET/CT positivity. A combinatorial index constructed from these factors revealed a significant association between number of high-risk factors observed and prevalence of PET/CT positivity, which increased from 5.8% (with the presence of 0-2 factors) to 100.0%, when all four factors were present. These results indicate that combining clinical and histologic prognostic factors enables the identification of patients with a higher likelihood of a positive PET/CT scan. PMID:27766186

  18. [Inflammatory activity in Takayasu arteritis. Detection through positron emission tomography (PET)].

    PubMed

    Alexánderson, Erick; Soto, María Elena; Ricalde, Alejandro; Meave, Aloha; Reyes, Pedro

    2005-01-01

    Takayasu arteritis (TA) is a chronic disease that affects mainly the aorta. Its etiology is still unknown, nevertheless it predominates in women and initiates primarily in the youth. This disease seems to have two different stages, an early stage that is characterized by an inflammatory process and a later stage characterized by vascular occlusion. Unitl now, diagnosis and classification of TA are made clinically, based on ACR; criteria and imaging studies as computed tomography and aorta angiographies. Currently, new imaging, non invasive studies, such as magnetic resonance (MRI) and positron emission tomography (PET) are being used. PET technique could be helpful in the diagnosis and detection of inflammatory activity in patients with TA because of its capacity to detect increased metabolism. We present the case of a female patient with TA diagnosis, which demonstrated clinical inflammatory activity that was corroborated by laboratory studies, MRI and PET. PMID:15909745

  19. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    SciTech Connect

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  20. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  1. Positron Emission Tomography (PET) for Imaging Body Chemistry

    SciTech Connect

    Krohn, Ken

    2001-04-25

    PET is a nuclear medicine technology for imaging chemical processes as they are occurring in the human body. This distinguishes it from conventional radiographic and NMR imaging, which depict anatomic changes that generally occur secondary to chemical changes. As our knowledge about human genomics and molecular biology increases and as we develop new approaches to therapy based on this biochemical information, it becomes increasingly important to be able to image important chemical processes occurring in vivo. Methods exist for imaging metabolic rates for energy utilization, cellular proliferation, and protein synthesis. The sending and receiving function of neurotransmitters can be imaged to test for mismatch in their communication function. Gene transfection can be imaged with PET reporters. All of these approaches allow the physician to better select the appropriate treatment for an individual patient, rather than basing treatment on historical experience for a population of similar patients. The technology for PET requires synthesis of positron emitting radioactive molecules, most commonly labeled with C-11 (20.4m) and F-18 (109.8 m) which are made on site with an accelerator. FNAL was involved in developing new RFQ technology for making PET isotopes. The technology also requires better imaging technology, including scintillators, and more robust algorithms for image reconstruction and data analysis.

  2. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers

    PubMed Central

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  3. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  4. Positron Emission Tomography (PET): Towards Time of Flight

    SciTech Connect

    Karp, Joel

    2004-09-29

    PET is a powerful imaging tool that is being used to study cancer, using a variety of tracers to measure physiological processes including glucose metabolism, cell proliferation, and hypoxia in tumor cells. As the utilization of PET has grown in the last several years, it has become clear that improved lesion detection and quantification are critical goals for cancer studies. Although physical performance of the current generation of PET scanners has improved recently, there are limitations especially for heavy patients where attenuation and scatter effects are increased. We are investigating new scintillation detectors, scanner designs, and image processing algorithms in order to overcome these limitations and improve performance. In particular, we are studying scanner designs that would incorporate scintillators with improved energy and timing resolution. Improved energy resolution helps to reduce scattered radiation, and improved timing resolution makes it feasible to incorporate the time-of-flight information between the two coincident gamma rays into the image reconstruction algorithm, a technique that improves signal-to-noise. Results of recent experiments and computer simulations will be shown to demonstrate these potential improvements.

  5. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products.

    PubMed

    Dolovich, Myrna B; Bailey, Dale L

    2012-12-01

    The topical distribution of inhaled therapies in the lung can be viewed using radionuclides and imaging. Positron emission tomography (PET) is a three-dimensional functional imaging technique providing quantitatively accurate localization of the quantity and distribution of an inhaled or injected PET radiotracer in the lung. A series of transaxial slices through the lungs are obtained, comparable to an X-ray computed tomography (CT) scan. Subsequent reformatting allows coronal and sagittal images of the distribution of radioactivity to be viewed. This article describes procedures for administering [(18)F]-fluorodeoxyglucose aerosol to human subjects for the purpose of determining dose and distribution following inhalation from an aerosol drug delivery device (ADDD). The advantages of using direct-labeled PET drugs in the ADDD are discussed with reference to the literature. The methods for designing the inhalation system, determining proper radiation shielding, calibration, and validation of administered radioactivity, scanner setup, and data handling procedures are described. Obtaining an X-ray CT or radionuclide transmission scan to provide accurate geometry of the lung and also correct for tissue attenuation of the PET radiotracer is discussed. Protocols for producing accurate images, including factors that need to be incorporated into the data calibration, are described, as well as a proposed standard method for partitioning the lung into regions of interest. Alternate methods are described for more detailed assessments. Radiation dosimetry/risk calculations for the procedures are appended, as well as a sample data collection form and spreadsheet for calculations. This article should provide guidance for those interested in using PET to determine quantity and distribution of inhaled therapeutics. PMID:23215847

  6. Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)

    PubMed Central

    Spanoudaki, Virginia Ch.; Levin⋆, Craig S.

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482

  7. Initial characterization of a position-sensitive photodiode/BGO detector for PET (positron emission tomography)

    SciTech Connect

    Derenzo, S.E.; Moses, W.W.; Jackson, H.G.; Turko, B.T.; Cahoon, J.L.; Geyer, A.B.; Vuletich, T.

    1988-11-01

    We present initial results of a position-sensitive photodiode/BGO detector for high resolution, multi-layer positron emission tomography (PET). Position sensitivity is achieved by dividing the 3 mm /times/ 20 mm rectangular photosensitive area along the diagonal to form two triangular segments. Each segment was individually connected to a low-noise amplifier. The photodiodes and crystals were cooled to /minus/100/degree/C to reduce dark current and increase the BGO signal. With an amplifier peaking time of 17 ..mu..sec, the sum of the signals (511 keV photopeak) was 3200 electrons with a full width at half maximum (fwhm) of 750 electrons. The ratio of one signal to the sum determined the depth of interaction with a resolution of 11 mm fwhm. 27 refs., 7 figs.

  8. [Positron emission tomography (PET): a useful tool for the assessment of cardiac metabolism].

    PubMed

    Alexánderson, Erick; Gómez-Martín, Diana; Benito, Israel; Ruíz-Ramírez, Leonel; Ricalde, Alejandro; Meave, Aloha

    2004-01-01

    Under normal conditions, myocardial metabolism is based on the oxidation of fatty acids and in a lesser extent carbohydrates. Cardiac function depends upon an adequate supplement of adenosine triphosphate (ATP) by these substrates. However, the main source of energy is susceptible to change upon a various physiologic (exercise) as well as pathologic (ischemia-reperfusion) conditions. Recently, carnitine has gained attention as a modulator of fatty acids and carbohydrates metabolism by means of modifying intramitochondrial Acetyl-CoA/CoA ratio. Disturbances in fatty acids and carbohydrates metabolism in the myocardium have been associated with cardiovascular diseases (chronic ischemic disease, ventricular hypertrophy and dilated cardiomyopathy). The evaluation of cardiac metabolism attains great value regarding diagnosis, treatment and prognosis of these diseases. Currently, positron emission tomography (PET) is one of the preferred methods to evaluate cardiac energy metabolism in clinical practice. In PET images the tracers most commonly used are 11C-palmitate, 11C-acetate y 18Fluoro-2-deoxyglucose (FDG), the first two are employed to assess fatty acids oxidation and FDG is used to evaluate carbohydrates metabolism. PMID:15559875

  9. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET)

    PubMed Central

    2015-01-01

    Positron emission tomography (PET) has become widely established in oncology. Subsequently, a whole new “toolbox” of tracers have become available to look at different aspects of cancer cell function and dysfunction, including cell protein production, DNA synthesis, hypoxia and angiogenesis. In the past 5 years, these tools have been used increasingly to look at the other great killer of the developed world: cardiovascular disease. For example, inflammation of the unstable plaque can be imaged with 18-fludeoxyglucose (18F-FDG), and this uptake can be quantified to show the effect that statins have in reducing inflammation and explains how these drugs can reduce the risk of stroke. 18F-FDG has also become established in diagnosing and monitoring large-vessel vasculitis and has now entered routine practice. Other agents such as gallium-68 (68Ga) octreotide have been shown to identify vascular inflammation possibly more specifically than 18F-FDG. Hypoxia within the plaque can be imaged with 18F-fluoromisonidazole and resulting angiogenesis with 18F-RGD peptides. Active calcification such as that found in unstable atheromatous plaques can be imaged with 18F-NaF. PET imaging enables us to understand the mechanisms by which cardiovascular disease, including atheroma, leads to morbidity and death and thus increases the chance of finding new and effective treatments. PMID:26110339

  10. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  11. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip.

    PubMed

    Chen, Supin; Javed, Muhammad Rashed; Kim, Hee-Kwon; Lei, Jack; Lazari, Mark; Shah, Gaurav J; van Dam, R Michael; Keng, Pei-Yuin; Kim, Chang-Jin C J

    2014-03-01

    Radiotracer synthesis is an ideal application for microfluidics because only nanogram quantities are needed for positron emission tomography (PET) imaging. Thousands of radiotracers have been developed in research settings but only a few are readily available, severely limiting the biological problems that can be studied in vivo via PET. We report the development of an electrowetting-on-dielectric (EWOD) digital microfluidic chip that can synthesize a variety of (18)F-labeled tracers targeting a range of biological processes by confirming complete syntheses of four radiotracers: a sugar, a DNA nucleoside, a protein labelling compound, and a neurotransmitter. The chip employs concentric multifunctional electrodes that are used for heating, temperature sensing, and EWOD actuation. All of the key synthesis steps for each of the four (18)F-labeled tracers are demonstrated and characterized with the chip: concentration of fluoride ion, solvent exchange, and chemical reactions. The obtained fluorination efficiencies of 90-95% are comparable to, or greater than, those achieved by conventional approaches.

  12. Evaluation and optimization of occupational eye lens dosimetry during positron emission tomography (PET) procedures.

    PubMed

    Guiu-Souto, Jacobo; Sánchez-García, Manuel; Vázquez-Vázquez, Rubén; Otero, Carlos; Luna, Victor; Mosquera, Javier; Busto, Ramón Lobato; Aguiar, Pablo; Ruibal, Álvaro; Pardo-Montero, Juan; Pombar-Cameán, Miguel

    2016-06-01

    The last recommendations of the International Commission on Radiological Protection for eye lens dose suggest an important reduction on the radiation limits associated with early and late tissue reactions. The aim of this work is to quantify and optimize the eye lens dose associated to nurse staff during positron emission tomography (PET) procedures. PET is one of the most important diagnostic methods of oncological and neurological cancer disease involving an important number of workers exposed to the high energy isotope F-18. We characterize the relevant stages as preparation and administration of monodose syringes in terms of occupational dose. A direct reading silicon dosimeter was used to measure the lens dose to staff. The highest dose of radiation was observed during preparation of the fluorodesoxyglucose (FDG) syringes. By optimizing a suitable vials' distribution of FDG we find an important reduction in occupational doses. Extrapolation of our data to other clinical scenarios indicates that, depending on the work load and/or syringes activity, safety limits of the dose might be exceeded.

  13. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  14. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET).

    PubMed

    Shokeen, Monica; Anderson, Carolyn J

    2009-07-21

    Molecular imaging has evolved over the past several years into an important tool for diagnosing, understanding, and monitoring disease. Molecular imaging has distinguished itself as an interdisciplinary field, with contributions from chemistry, biology, physics, and medicine. The cross-disciplinary impetus has led to significant achievements, such as the development of more sensitive imaging instruments and robust, safer radiopharmaceuticals, thereby providing more choices to fit personalized medical needs. Molecular imaging is making steadfast progress in the field of cancer research among others. Cancer is a challenging disease, characterized by heterogeneity, uncontrolled cell division, and the ability of cancer cells to invade other tissues. Researchers are addressing these challenges by aggressively identifying and studying key cancer-specific biomarkers such as growth factor receptors, protein kinases, cell adhesion molecules, and proteases, as well as cancer-related biological processes such as hypoxia, apoptosis, and angiogenesis. Positron emission tomography (PET) is widely used by clinicians in the United States as a diagnostic molecular imaging tool. Small-animal PET systems that can image rodents and generate reconstructed images in a noninvasive manner (with a resolution as low as 1 mm) have been developed and are used frequently, facilitating radiopharmaceutical development and drug discovery. Currently, [(18)F]-labeled 2-fluorodeoxyglucose (FDG) is the only PET radiotracer used for routine clinical evaluation (primarily for oncological imaging). There is now increasing interest in nontraditional positron-emitting radionuclides, particularly those of the transition metals, for imaging with PET because of increased production and availability. Copper-based radionuclides are currently being extensively evaluated because they offer a varying range of half-lives and positron energies. For example, the half-life (12.7 h) and decay properties (beta(+), 0

  15. A New Positron Emission Tomography (PET) Radioligand for Imaging Sigma-1 Receptors in Living Subjects

    PubMed Central

    Zavaleta, Cristina L.; Nielsen, Carsten H.; Mesangeau, Christophe; Vuppala, Pradeep K.; Chan, Carmel; Avery, Bonnie A.; Fishback, James A.; Matsumoto, Rae R.; Gambhir, Sanjiv S.; McCurdy, Christopher R.; Chin, Frederick T.

    2014-01-01

    Sigma-1 receptor (S1R) radioligands have the potential to detect and monitor various neurological diseases. Herein we report the synthesis, radiofluorination and evaluation of a new S1R ligand 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one ([18F]FTC-146, [18F]13). [18F]13 was synthesized by nucleophilic fluorination, affording a product with >99% radiochemical purity (RCP) and specific activity (SA) of 2.6 ± 1.2 Ci/Amol (n = 13) at end of synthesis (EOS). Positron emission tomography (PET) and ex vivo autoradiography studies of [18F]13 in mice showed high uptake of the radioligand in S1R rich regions of the brain. Pre treatment with 1 mg/kg haloperidol (2), non radioactive 13, or BD1047 (18) reduced the binding of [18F]13 in the brain at 60 min by 80%, 82% and 81% respectively, suggesting that [18F]13 accumulation in mouse brain represents specific binding to S1Rs. These results indicate that [18F]13 is a promising candidate radiotracer for further evaluation as a tool for studying S1Rs in living subjects. PMID:22853801

  16. Value of Positron Emission Tomography/Computed Tomography (PET-CT) in Suspected Non-small Cell Lung Cancer Recurrence and Impact on Patient Management

    PubMed Central

    Beslic, Nermina; Sadija, Amera; Ceric, Timur; Milardovic, Renata; Ceric, Sejla; Cavaljuga, Semra

    2016-01-01

    Introduction: Positron emission tomography/computed tomography (PET-CT) is very sensitive for diagnosis of recurrent NSCLC and has a significant impact on change of management. Preliminary data suggest superiority of PET-CT comparing to CT alone for lung cancer restaging. Materials and methods: This is a retrospective study which aim is to validate usage of PET-CT in suspected non-small cell lung carcinoma recurrence and its impact on further patient management. Total number of 31 patients with non-small cell lung carcinoma and uncertain diagnosis of recurrent disease or its extent after routine clinical and CT work-up were enrolled in this study. Discussion: We found in our study that PET-CT diagnosed recurrent disease in 65% of patients who were previously presented with an indeterminante CT. In 85% of patients there were change in further management. Conclusion: We suggest that PET should be performed on patients who have suspected relapse after potentially curative treatment, particularly if active treatment is being considered. PET-CT improved the diagnosis of recurrent NSCLC and this resulted in a significant impact and change in further patient management. PMID:27708496

  17. Positron Emission Tomography.

    PubMed

    Lameka, Katherine; Farwell, Michael D; Ichise, Masanori

    2016-01-01

    Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors. PMID:27432667

  18. Positron Emission Tomography (PET) Quantification of GABAA Receptors in the Brain of Fragile X Patients

    PubMed Central

    Van der Aa, Nathalie; Goffin, Karolien; Koole, Michel; Porke, Kathleen; Van De Velde, Marc; Rooms, Liesbeth; Van Paesschen, Wim; Van Esch, Hilde; Van Laere, Koen; Kooy, R. Frank

    2015-01-01

    Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS), a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET) and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome. PMID:26222316

  19. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives.

    PubMed

    Jodłowska, Elżbieta; Czepczyński, Rafał; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  20. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences. PMID:27647983

  1. The application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part II. Diagnosis after treatment initiation, future perspectives

    PubMed Central

    Jodłowska, Elżbieta; Czarnywojtek, Agata; Rewers, Amanda; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Similarly to the applications described in the first part of this publication, positron emission tomography with computed tomography (PET/CT) is also gaining importance in monitoring a tumour's response to therapy and diagnosing breast cancer recurrences. This is additionally caused by the fact that many new techniques (dual-time point imaging, positron emission tomography with magnetic resonance PET/MR, PET/CT mammography) and radiotracers (16α-18F-fluoro-17β-estradiol, 18F-fluorothymidine) are under investigation. The highest sensitivity and specificity when monitoring response to treatment is achieved when the PET/CT scan is made after one or two chemotherapy courses. Response to anti-hormonal treatment can also be monitored, also when new radiotracers, such as FES, are used. When monitoring breast cancer recurrences during follow-up, PET/CT has higher sensitivity than conventional imaging modalities, making it possible to monitor the whole body simultaneously. New techniques and radiotracers enhance the sensitivity and specificity of PET and this is why, despite relatively high costs, it might become more widespread in monitoring response to treatment and breast cancer recurrences.

  2. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    SciTech Connect

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  3. A Practical One-Pot Synthesis of Positron Emission Tomography (PET) Tracers via Nickel-Mediated Radiofluorination.

    PubMed

    Zlatopolskiy, Boris D; Zischler, Johannes; Urusova, Elizaveta A; Endepols, Heike; Kordys, Elena; Frauendorf, Holm; Mottaghy, Felix M; Neumaier, Bernd

    2015-08-01

    Invited for this months cover picture is the group of Professor Bernd Neumaier at the Institute of Radiochemistry and Experimental Molecular Imaging at the University Clinic of Cologne. The cover picture shows the differences in brain metabolism of a healthy young and a healthy old subject, as well as a patient suffering from Parkinsons disease (left to right) uncovered by 6-[(18)F]FDOPA-positron emission tomography (PET). Morbus Parkinson occurs when nerve cells that produce dopamine begin to die. The shortage of dopamine leads to movement problems in affected individuals. 6-[(18)F]FDOPA is extensively used to evaluate the progression of Parkinsons disease. Bold stick projections of this PET tracer, as well as a neuronal network, are seen in the background. Unfortunately, conventional procedures to produce 6-[(18)F]FDOPA are cumbersome. Thus, several recent developments aim at the simplification of this radiosynthesis. In our work, we studied the applicability of the recently reported Ni-mediated radiofluorination approach for daily routine production of 6-[(18)F]FDOPA. For more details, see the Full Paper on p. 457 ff. PMID:26478831

  4. Evaluation of cancer detection with whole-body positron emission tomography (PET) and 2-[F-18]fluoro-2-deoxy-D-glucose

    NASA Astrophysics Data System (ADS)

    Hoh, Carl K.; Hawkins, Randall A.; Glaspy, John A.; Dahlbom, Magnus; Tse, Nielson Y.; Hoffman, Edward T.; Schiepers, Christiaan; Choi, Yong; Rege, Sheila; Nitzsche, Egbert U.; Maddahi, Jamshid; Phelps, Michael E.

    1993-08-01

    Until recently, positron emission tomography (PET) has been acquired and displayed in a standard transaxial image format. The development of whole body PET has allowed biochemical and physiologic imaging of the entire body, expanding the limited axial field of view of the conventional PET scanner. In this study, the application of whole body PET studies with 2-[F-18]fluoro-2-deoxy-D-glucose (FDG) for tumor imaging was evaluated. Whole body PET studies were positive (presence of focal FDG uptake relative to surrounding tissue activity) in 61 of 70 patients (87%) with biopsy confirmed malignant tumors. PET images failed to reveal focal hypermetabolism in 9 of the 70 patients. Of the 17 patients with benign biopsies lesions, 13 patients had whole body PET studies without focal areas of FDG uptake. Because of the high glycolytic rate of malignant tissue, the whole body PET FDG technique has promise in the detection of a wide variety of both primary and metastatic malignancies. The presence of FDG uptake in benign inflammatory conditions may limit the specificity of the technique. The true positive rates for the characterization of known lesions was 87% in this series, and the PET FDG method is promising both in determining both the nature of a localized lesion, and in defining the systemic extent of malignant disease.

  5. Conflicting or complementary role of computed tomography (CT) and positron emission tomography (PET)/CT in the assessment of thymic cancer and thymoma: our experience and literature review

    PubMed Central

    Scagliori, Elena; Evangelista, Laura; Panunzio, Annalori; Calabrese, Fiorella; Nannini, Nazarena; Polverosi, Roberta; Pomerri, Fabio

    2015-01-01

    Background To evaluate the role of computed tomography (CT) and positron emission tomography (PET)/CT in patients with thymic cancer and thymoma at initial staging. Methods We retrospectively reviewed CT and PET/CT scans of 26 patients with a thymic cancer (n = 9) or thymoma (n = 17). Chest CT findings documented were qualitative and quantitative. Both qualitative and semiquantitative data were recovered by PET/CT. The comparisons among histological entities, outcome, and qualitative data from CT and PET/CT were made by non-parametric analysis. Results PET/CT resulted positive in 15/17 patients with thymoma. CT was available in 5/9 (56%) patients with thymic cancer and in 3/17 with thymoma. All quantitative CT parameters were significantly higher in patients with thymic cancer than thymoma (maximum axial diameter: 45 vs. 20 mm, maximum longitudinal diameter: 69 vs. 21 mm and volume: 77.91 vs. 4.52 mL; all P < 0.05). Conversely, only metabolic tumor volume (MTV) and total lesion glycolysis were significantly different in patients with thymic cancer than thymoma (126.53 vs. 6.03 cm3 and 246.05 vs. 20.32, respectively; both P < 0.05). After a median follow-up time of 17.45 months, four recurrences of disease occurred: three in patients with thymic cancer and one with a type B2 thymoma. CT volume in patients with recurrent disease was 102.19 mL versus a median value of 62.5 mL in six disease-free patients. MTV was higher in the recurrent than disease-free patient subset (143.3 vs. 81.13 cm3), although not statistically significant (P = 0.075). Conclusion Our preliminary results demonstrated that both morphological and metabolic volume could be useful from a diagnostic and prognostic point of view in thymic cancer and thymoma patients. A large multi-center clinical trial experience for confirming the findings of this study seems mandatory. PMID:26273398

  6. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  7. Using 18F Fluorodeoxyglucose Positron Emission Tomography (FDG PET) to Monitor Clinical Outcomes in Patients Treated with Neoadjuvant Chemo-Radiotherapy for Locally Advanced Pancreatic Cancer

    PubMed Central

    Choi, Minsig; Heilbrun, Lance K.; Venkatramanamoorthy, Raghu; Lawhorn-Crews, Jawana M.; Zalupski, Mark M.; Shields, Anthony F.

    2013-01-01

    BACKGROUND Pancreatic cancer ranks as the fourth leading cause of cancer death in the United States with five year survival ranging from 1-5%. Positron emission tomography (PET) is a metabolic imaging system that is widely used for the initial staging of cancer and detecting residual disease after treatment. There are limited data, however, on the use of this molecular imaging technique to assess early tumor response after treatment in pancreatic cancer. METHODS The objective of the study was to explore the relationship of early treatment response using the 18 F- fluorodeoxyglucose (FDG) PET with surgical outcome and overall survival in patients with locally advanced pancreatic cancer. FDG-PET measurements of maximum standardized uptake value (SUV) and kinetic parameters were compared to the clinical outcome. RESULTS Twenty patients were enrolled in the study evaluating neoadjuvant induction chemotherapy followed by concurrent chemoradiotherapy (chemo-RT) for locally advanced pancreatic cancer. All twenty patients had pre-study PET scans and a total of fifty PET scans were performed. Among patients who were PET responders (≥50% decrease in SUV after cycle 1), 100% (2/2) had complete surgical resection. Only 6% (1/16) had surgical resection in the PET non-responders (<50% decrease). Two patients did not have the second PET scan due to clinical progression or treatment toxicity. Mean survival was 23.2 months for PET responders and 11.3 months for non-responders (p=0.234). Similar differences in survival were also noted when response was measured using Patlak analysis. CONCLUSION FDG-PET can aid in monitoring the clinical outcome of patients with locally advanced pancreatic cancer treated with neoadjuvant chemo-RT. FDG-PET may be used to aid patients who could have complete surgical resection as well as prognosticate patients’ survival. PMID:19806035

  8. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE PAGESBeta

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; et al

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  9. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    SciTech Connect

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; DeJesus, Onofre T.

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modeling of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.

  10. Final Report Summary: Radiation dosimetry of Cu-64-labeled radiotherapy agents using PET [Positron Emission Tomography

    SciTech Connect

    Anderson, Carolyn J.; Cutler, P.D.

    2002-09-01

    This project began in 1996, and was completed in July 2001. The overall goals were to compare various methods of dosimetry of PET imaging agents, as well as develop more optimal methods. One of the major accomplishments of this grant was the human PET imaging studies of a positron-emitting radiopharmaceutical for somatostatin-receptor imaging, and subsequent dosimetry calculations resulting from this study. In addition, we collaborated with Darrell Fisher and Edmund Hui to develop a MIRD-hamster program for calculating hamster organ and tumor dosimetry in hamster models. Progress was made towards a point kernel approach to more accurately determining absorbed doses to normal organs, as well as towards co-registration of PET and MRI images. This report focuses on the progress made in the last 15 months of the grant, which in general is a summary of the progress over the 5 years the project was ongoing.

  11. A Practical One-Pot Synthesis of Positron Emission Tomography (PET) Tracers via Nickel-Mediated Radiofluorination

    PubMed Central

    Zlatopolskiy, Boris D; Zischler, Johannes; Urusova, Elizaveta A; Endepols, Heike; Kordys, Elena; Frauendorf, Holm; Mottaghy, Felix M; Neumaier, Bernd

    2015-01-01

    Recently a novel method for the preparation of 18F-labeled arenes via oxidative [18F]fluorination of easily accessible and sufficiently stable nickel complexes with [18F]fluoride under exceptionally mild reaction conditions was published. The suitability of this procedure for the routine preparation of clinically relevant positron emission tomography (PET) tracers, 6-[18F]fluorodopamine (6-[18F]FDA), 6-[18F]fluoro-l-DOPA (6-[18F]FDOPA) and 6-[18F]fluoro-m-tyrosine (6-[18F]FMT), was evaluated. The originally published base-free method was inoperative. However, a “low base” protocol afforded protected radiolabeled intermediates in radiochemical conversions (RCCs) of 5–18 %. The subsequent deprotection step proceeded almost quantitatively (>95 %). The simple one-pot two-step procedure allowed the preparation of clinical doses of 6-[18F]FDA and 6-[18F]FDOPA within 50 min (12 and 7 % radiochemical yield, respectively). In an unilateral rat model of Parkinsons disease, 6-[18F]FDOPA with high specific activity (175 GBq μmol−1) prepared using the described nickel-mediated radiofluorination was compared to 6-[18F]FDOPA with low specific activity (30 MBq μmol−1) produced via conventional electrophilic radiofluorination. Unexpectedly both tracer variants displayed very similar in vivo properties with respect to signal-to-noise ratio and brain distribution, and consequently, the quality of the obtained PET images was almost identical. PMID:26478840

  12. 3D image reconstruction for PET by multi-slice rebinning and axial filtering. [Positron Emission Tomography (PET)

    SciTech Connect

    Lewitt, R.M. Pennsylvania Univ., Philadelphia, PA . Dept. of Radiology); Muehllehner, G. ); Karp, J.S. . Dept. of Radiology)

    1991-01-01

    Two different approaches are used at present to reconstruct from 3D coincidence data in PET. We refer to these approaches as the single-slice rebinning approach and the fully-3D approach. The single-slice rebinning approach involves geometrical approximations, but it requires the least possible amount of computation. Fully-3D reconstruction algorithms, both iterative and non-iterative, do not make such approximations, but require much more computation. Multi-slice rebinning with axial filtering is a new approach which attempts to achieve the geometrical accuracy of the fully-3D approach with the simplicity and modest amount of computation of the single-slice rebinning approach. The first step (multi-slice rebinning) involves rebinning of coincidence lines into a stack of 2D sinograms, where multiple sinograms are incremented for each oblique coincidence line. This operation is followed by an axial filtering operation, either before or after slice-by-slice reconstruction, to reduce the blurring in the axial direction. Tests with simulated and experimental data indicate that the new method has better geometrical accuracy than single-slice rebinning, at the cost of only a modest increase in computation. 11 refs.

  13. Application of positron emission tomography (PET/CT) in diagnosis of breast cancer. Part I. Diagnosis of breast cancer prior to treatment

    PubMed Central

    Jodłowska, Elżbieta; Wyszomirska, Anna; Jarząbek, Grażyna; Kędzia, Witold; Ruchała, Marek

    2016-01-01

    Positron emission tomography with computed tomography (PET/CT) is gaining popularity as a method for overall staging assessment of breast cancer. Currently, it is not a part of the routine workup before the beginning of treatment, because of insufficient sensitivity for the detection of small tumors (due to its limited spatial resolution), the heterogeneity of radiotracer uptake by the primary tumor, and unsatisfactory sensitivity in detection of lymph node metastases (particularly when they are small). Nevertheless, it should be considered when there is a high risk of metastases, because then initial PET/CT examination allows for accurate staging and may change the treatment algorithm in up to almost 50% of stage III patients, due to detection of distant and lymph node metastases throughout the whole body. Despite the discussed limitations of PET/CT, there is ongoing research concerning the recommendations for the examination prior to treatment. For a particular group of patients with high risk of metastases, PET/CT may be expected to become a part of the routine workup as the most appropriate staging method. PMID:27095933

  14. Increased activation of the human cerebellum during pitch discrimination: a positron emission tomography (PET) study.

    PubMed

    Petacchi, Augusto; Kaernbach, Christian; Ratnam, Rama; Bower, James M

    2011-12-01

    Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum.

  15. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  16. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  17. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    SciTech Connect

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-11-15

    Purpose: {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV{sub CT}) and on fused PET/CT images (GTV{sub PETCT}). The mean percentage volume change (PVC) between GTV{sub CT} and GTV{sub PETCT} for the radiation oncologists and the PVC between GTV{sub CT} and GTV{sub PETCT} for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV{sub CT} and GTV{sub PETCT} in a single measurement. Results: For all patients, a significant difference in PVC from GTV{sub CT} to GTV{sub PETCT} exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV{sub CT} and GTV{sub FUSED} for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV{sub CT} to GTV{sub PETCT} were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  18. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971.

    PubMed

    Zanotti-Fregonara, Paolo; Zhang, Yi; Jenko, Kimberly J; Gladding, Robert L; Zoghbi, Sami S; Fujita, Masahiro; Sbardella, Gianluca; Castellano, Sabrina; Taliani, Sabrina; Martini, Claudia; Innis, Robert B; Da Settimo, Federico; Pike, Victor W

    2014-10-15

    The imaging of translocator 18 kDa protein (TSPO) in living human brain with radioligands by positron emission tomography (PET) has become an important means for the study of neuroinflammatory conditions occurring in several neuropsychiatric disorders. The widely used prototypical PET radioligand [(11)C](R)-PK 11195 ([(11)C](R)-1; [N-methyl-(11)C](R)-N-sec-butyl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide) gives a low PET signal and is difficult to quantify, whereas later generation radioligands have binding sensitivity to a human single nucleotide polymorphism (SNP) rs6971, which imposes limitations on their utility for comparative quantitative PET studies of normal and diseased subjects. Recently, azaisosteres of 1 have been developed with improved drug-like properties, including enhanced TSPO affinity accompanied by moderated lipophilicity. Here we selected three of these new ligands (7-9) for labeling with carbon-11 and for evaluation in monkey as candidate PET radioligands for imaging brain TSPO. Each radioligand was readily prepared by (11)C-methylation of an N-desmethyl precursor and was found to give a high proportion of TSPO-specific binding in monkey brain. One of these radioligands, [(11)C]7, the direct 4-azaisostere of 1, presents many radioligand properties that are superior to those reported for [(11)C]1, including higher affinity, lower lipophilicity, and stable quantifiable PET signal. Importantly, 7 was also found to show very low sensitivity to the human SNP rs6971 in vitro. Therefore, [(11)C]7 now warrants evaluation in human subjects with PET to assess its utility for imaging TSPO in human brain, irrespective of subject genotype.

  19. External ultrasonography of the neck does not add diagnostic value to integrated positron emission tomography-computed tomography (PET-CT) scanning in the diagnosis of cervical lymph node metastases in patients with esophageal carcinoma.

    PubMed

    Blom, R L G M; Vliegen, R F A; Schreurs, W M J; Belgers, H J; Stohr, I; Oostenbrug, L E; Sosef, M N

    2012-08-01

    One of the objectives of preoperative imaging in esophageal cancer patients is the detection of cervical lymph node metastases. Traditionally, external ultrasonography of the neck has been combined with computed tomography (CT) in order to improve the detection of cervical metastases. In general, integrated positron emission tomography-computed tomography (PET-CT) has been shown to be superior to CT or PET regarding staging and therefore may limit the role of external ultrasonography of the neck. The objective of this study was to determine the additional value of external ultrasonography of the neck to PET-CT. This study included all patients referred our center for treatment of esophageal carcinoma. Diagnostic staging was performed to determine treatment plan. Cervical lymph nodes were evaluated by external ultrasonography of the neck and PET-CT. In case of suspect lymph nodes on external ultrasonography or PET-CT, fine needle aspiration (FNA) was performed. Between 2008 and 2010, 170 out of 195 referred patients underwent both external ultrasonography of the neck and PET-CT. Of all patients, 84% were diagnosed with a tumor at or below the distal esophagus. In 140 of 170 patients, the cervical region was not suspect; no FNA was performed. Seven out of 170 patients had suspect nodes on both PET-CT and external ultrasonography. Five out of seven patients had cytologically confirmed malignant lymph nodes, one of seven had benign nodes, in one patient FNA was not performed; exclusion from esophagectomy was based on intra-abdominal metastases. In one out of 170 patients, PET-CT showed suspect nodes combined with a negative external ultrasonography; cytology of these nodes was benign. Twenty-two out of 170 patients had a negative PET-CT with suspect nodes on external ultrasonography. In 18 of 22 patients, cervical lymph nodes were cytologically confirmed benign; in four patients, FNA was not possible or inconclusive. At a median postoperative follow-up of 15 months

  20. Synthesis of 2-[(18)F]Fluoro-2-deoxyisosorbide 5-mononitrate and Assessment of Its in vivo Biodistribution as Determined by Dynamic Positron Emission Tomography (PET).

    PubMed

    Santschi, Nico; Wagner, Stefan; Daniliuc, Constantin; Hermann, Sven; Schäfers, Michael; Gilmour, Ryan

    2015-10-01

    Herein we disclose the synthesis of 2-fluoro-2-deoxyisosorbide 5-mononitrate (2F-IS-5MN), a fluorinated analogue of the commonly prescribed vasodilator isosorbide 5-mononitrate (IS-5MN). X-ray structural data for IS-5MN and its C2-epimeric congener IM-5MN are presented together with structural data for 2F-IS-5MN. Radioisotope labeling of 2F-IS-5MN has, for the first time, allowed observation of the in vivo biodistribution of this organic nitrate by means of dynamic positron emission tomography (PET) in wild-type mice.

  1. Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for brain histamine subtype-3 receptors based on a nonimidazole 2-aminoethylbenzofuran chemotype

    PubMed Central

    Bao, Xiaofeng; Lu, Shuiyu; Liow, Jeih-San; Zoghbi, Sami S.; Jenko, Kimberly J.; Clark, David T.; Gladding, Robert L.; Innis, Robert B.; Pike, Victor W.

    2012-01-01

    A known chemotype of H3 receptor ligand was explored for development of a radioligand for imaging brain histamine subtype 3 (H3) receptors in vivo with positron emission tomography (PET), namely non-imidazole 2-aminoethylbenzofurans, represented by the compound (R)-(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)(4-fluorophenyl)methanone (9). Compound 9 was labeled with fluorine-18 (t1/2= 109.7 min) in high specific activity by treating the prepared nitro analog (12) with cyclotron-produced [18F]fluoride ion. [18F]9 was studied with PET in mouse and in monkey after intravenous injection. [18F]9 showed favorable properties as a candidate PET radioligand, including moderately high brain uptake with a high proportion of H3 receptor-specific signal in the absence of radiodefluorination. The nitro compound 12 was found to have even higher H3 receptor affinity, indicating the potential of this chemotype for the development of further promising PET radioligands. PMID:22313227

  2. Cardiac Positron Emission Tomography

    PubMed Central

    Geltman, Edward M.

    1985-01-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. ImagesFigure 5.Figure 6.Figure 7.Figure 8.Figure 9. PMID:3879048

  3. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements.

    PubMed

    Raylman, Raymond R; Majewski, Stan; Smith, Mark F; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E; Kinahan, Paul E; Champley, Kyle

    2008-02-01

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm(3) LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm(3). Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 +/- 0.09 mm (radial), 2.04 +/- 0.08 mm (tangential) and 1.84 +/- 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 +/- 0.08 mm (radial), 2.16 +/- 0.07 mm (tangential) and 1.87 +/- 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps microCi(-1) ml(-1) (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  4. 18F-FLT Positron Emission Tomography (PET) is a Pharmacodynamic Marker for EWS-FLI1 Activity and Ewing Sarcoma

    PubMed Central

    Osgood, Christy L.; Tantawy, Mohammed N.; Maloney, Nichole; Madaj, Zachary B.; Peck, Anderson; Boguslawski, Elissa; Jess, Jennifer; Buck, Jason; Winn, Mary E.; Manning, H. Charles; Grohar, Patrick J.

    2016-01-01

    Ewing sarcoma is a bone and soft-tissue tumor that depends on the activity of the EWS-FLI1 transcription factor for cell survival. Although a number of compounds have been shown to inhibit EWS-FLI1 in vitro, a clinical EWS-FLI1-directed therapy has not been achieved. One problem plaguing drug development efforts is the lack of a suitable, non-invasive, pharmacodynamic marker of EWS-FLI1 activity. Here we show that 18F-FLT PET (18F- 3′-deoxy-3′-fluorothymidine positron emission tomography) reflects EWS-FLI1 activity in Ewing sarcoma cells both in vitro and in vivo. 18F-FLT is transported into the cell by ENT1 and ENT2, where it is phosphorylated by TK1 and trapped intracellularly. In this report, we show that silencing of EWS-FLI1 with either siRNA or small-molecule EWS-FLI1 inhibitors suppressed the expression of ENT1, ENT2, and TK1 and thus decreased 18F-FLT PET activity. This effect was not through a generalized loss in viability or metabolic suppression, as there was no suppression of 18F-FDG PET activity and no suppression with chemotherapy. These results provide the basis for the clinical translation of 18F-FLT as a companion biomarker of EWS-FLI1 activity and a novel diagnostic imaging approach for Ewing sarcoma. PMID:27671553

  5. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner

    DOE PAGESBeta

    Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; Schueller, Michael J.; Ferrieri, Richard A.; Babst, Benjamin A.

    2015-11-09

    Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity

  6. In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner

    SciTech Connect

    Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; Schueller, Michael J.; Ferrieri, Richard A.; Babst, Benjamin A.

    2015-11-09

    Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scanner to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in

  7. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Smith, Mark F.; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O.; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E.; Kinahan, Paul E.; Champley, Kyle

    2008-02-01

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 × 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 × 72 array of 2 × 2 × 15 mm3 LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 × 15 × 15 cm3. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 ± 0.09 mm (radial), 2.04 ± 0.08 mm (tangential) and 1.84 ± 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 ± 0.08 mm (radial), 2.16 ± 0.07 mm (tangential) and 1.87 ± 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps µCi-1 ml-1 (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  8. Synthesis and Biological Evaluation of Two Agents for Imaging Estrogen Receptor β by Positron Emission Tomography: Challenges in PET Imaging of a Low Abundance Target

    PubMed Central

    HakLee, Jae; Peters, Olaf; Lehmann, Lutz; Dence, Carmen S.; Sharp, Terry L.; Carlson, Kathryn E.; Zhou, Dong; Jeyakumar, M.; Welch, Michael J.; Katzenellenbogen, John A.

    2012-01-01

    Introduction Independent measurement of the levels of both the estrogen receptors, ERα and ERβ, in breast cancer could improve prediction of benefit from endocrine therapies. While ERα levels can be measured by positron emission tomography (PET) using 16α-[18F]fluoroestradiol (FES), no effective agent for imaging ERβ by PET has yet been reported. Methods We have prepared the fluorine-18 labeled form of 8β-(2-fluoroethyl)estradiol(8BFEE2), an analog of an ERβ-selective steroidal estrogen, 8β-vinylestradiol; efficient incorporation of fluorine-18 was achieved, but required very vigorous conditions. We have examined the biodistribution of this compound, as well as ofBr-041, an analog of a known non-steroidal ERβ-selective ligand (ERB-041), labeled with bromine-76. Studies were done in immature female rodents, with various pharmacological and endocrine perturbations to assess ERβ selectivity of uptake. Results Little evidence of ERβ-mediated uptake was observedwith either [18F]8BFEE2 or [76Br]Br-041. Attempts to increase the ERβ content of target tissues were not effective and failed to improve biodistribution selectivity. Conclusions Because on an absolute level, ERβ levels are low in all target tissues, these studies have highlighted the need to develop improved in vivo models for evaluating ERβ-selective radiopharmaceuticals for use in PET imaging. Genetically engineered breast cancer cells that are being developed to express either ERα or ERβ in a regulated manner, grown as xenografts in immune-compromised mice, could prove useful for future studies to develop ER subtype-selective radiopharmaceuticals. PMID:22749433

  9. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  10. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with human Positron Emission Tomography (PET) studies

    PubMed Central

    Terbeck, Sylvia; Akkus, Funda; Chesterman, Laurence P.; Hasler, Gregor

    2015-01-01

    In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches—from basic neurobiological approaches to human studies—might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems. PMID:25852460

  11. The serotonin-dopamine interaction measured with positron emission tomography (PET) and C-11 raclopride in normal human subjects

    SciTech Connect

    Smith, G.S.; Dewey, S.L.; Logan, J.

    1994-05-01

    Our previous studies have shown that the interaction between serotonin and dopamine can be measured with C-11 raclopride and PET in the baboon brain. A series of studies was undertaken to extend dim findings to the normal human brain. PET studies were conducted in male control subjects (n=8) using the CTI 931 tomograph. Two C-11 raclopride scans were performed, prior to and 180 minutes following administration of the selective serotonin releasing agent, fenfluramine (60mg/PO). The neuroendocrine response to fenfluramine challenge is commonly used in psychiatric research as an index of serotonin activity. The C-11 raclopride data were analyzed with the distribution volume method. For the group of subjects, an increase was observed in the striatum to cerebellum ratio (specific to non-specific binding ratio), in excess of the test-retest variability of the ligand. Variability in response was observed across subjects. These results are consistent with our previous findings in the baboon that citalopram administration increased C-11 raclopride binding, consistent with a decrease in endogenous dopamine. In vivo microdialysis studies in freely moving rats confirmed that citalopram produces a time-dependent decrease in extracellular dopamine levels, consistent with the PET results. In vivo PET studies of the serotonin-dopamine interaction are relevant to the evaluation of etiologic and therapeutic mechanisms in schizophrenia and affective disorder.

  12. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings. PMID:27623144

  13. [The advantage of Positron Emission Tomography combined with Computer Tomography (PET-CT) in the diagnosis of lung cancer (experience with 408 patients)].

    PubMed

    Zsiray, Miklós; Markóczy, Zsolt; Magyar, Melinda; Lengyel, Zsolt; Fekésházy, Attila; Borbély, Katalin

    2009-03-01

    The authors analyzed the results of PET-CT scans made with oncological indications among 408 patients. One hundred and fifty-four PET-CTs were done to characterize pulmonary foci, after which in 59 cases lung surgery was performed. The method's sensitivity in respect to malignancy was 100%, specificity was 56%. Staging of affected lymph nodes resulted in 17 mediastinoscopies and 54 thoracotomies. In the former indications PET-CT-positive lymph nodes always need cytologic/histologic verification. M-staging done with PET-CT was performed in 141 cases, mediastinal restaging of patients having received neoadjuvant chemotherapy was done in 24 cases. The latter indications we consider superfluous because of the diagnostic inaccuracy of PET-CT. In 175 cases we analyzed the frequently determining factor of the PET-CT scan in the indication of lung surgery. The authors wish to share their experience for the better use of this method and to accelerate the inclusion of PET-CT into the diagnostic protocol.

  14. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  15. Positron Emission Tomography (PET) Imaging of Prostate Cancer with a Gastrin Releasing Peptide Receptor Antagonist - from Mice to Men

    PubMed Central

    Wieser, Gesche; Mansi, Rosalba; Grosu, Anca L.; Schultze-Seemann, Wolfgang; Dumont-Walter, Rebecca A.; Meyer, Philipp T.; Maecke, Helmut R.; Reubi, Jean Claude; Weber, Wolfgang A.

    2014-01-01

    Ex vivo studies have shown that the gastrin releasing peptide receptor (GRPr) is overexpressed on almost all primary prostate cancers, making it a promising target for prostate cancer imaging and targeted radiotherapy. Methods: Biodistribution, dosimetry and tumor uptake of the GRPr antagonist 64Cu-CB-TE2A-AR06 [(64Cu-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane)-PEG4-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-LeuNH2] were studied by PET/CT in four patients with newly diagnosed prostate cancer (T1c-T2b, Gleason 6-7). Results: No adverse events were observed after injection of 64Cu-CB-TE2A-AR06. Three of four tumors were visualized with high contrast [tumor-to-prostate ratio > 4 at 4 hours (h) post injection (p.i.)], one small tumor (T1c, < 5% tumor on biopsy specimens) showed moderate contrast (tumor-to-prostate ratio at 4 h: 1.9). Radioactivity was cleared by the kidneys and only the pancreas demonstrated significant accumulation of radioactivity, which rapidly decreased over time. Conclusion: 64Cu-CB-TE2A-AR06 shows very favorable characteristics for imaging prostate cancer. Future studies evaluating 64Cu-CB-TE2A-AR06 PET/CT for prostate cancer detection, staging, active surveillance, and radiation treatment planning are necessary. PMID:24578724

  16. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... HUMAN SERVICES Food and Drug Administration Guidance on Investigational New Drug Applications for... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs in submitting investigational new drug applications (INDs)....

  17. Imaging Tumor Metabolism Using Positron Emission Tomography

    PubMed Central

    Lewis, David Y.; Soloviev, Dmitry; Brindle, Kevin M.

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabelled PET substrates can be traced at sub-physiological concentrations, allowing non-invasive imaging of metabolism and intra-tumoral heterogeneity in systems ranging from advanced cancer models to cancer patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of tumor metabolism, including carbohydrate, amino acid and fatty acid metabolism. In this review we will briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism will be considered alongside new technical developments, such as combined PET/MRI machines, that could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  18. Radiofluorination of a Pre-formed Gallium(III) Aza-macrocyclic Complex: Towards Next-Generation Positron Emission Tomography (PET) Imaging Agents

    PubMed Central

    Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian

    2015-01-01

    As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of GaIII for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl−/F− exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, 1H and 19F{1H} NMR spectroscopy and ESI+ MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free 18F−, leading to 60–70 % 18F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98–99 % radiochemical purity. The [Ga18F(L)] is stable for at least 90 minutes in 10 % EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET. PMID:25652736

  19. Radiofluorination of a pre-formed gallium(III) aza-macrocyclic complex: towards next-generation positron emission tomography (PET) imaging agents.

    PubMed

    Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian

    2015-03-16

    As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of Ga(III) for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl(-)/F(-) exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, (1)H and (19)F{(1)H} NMR spectroscopy and ESI(+) MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free (18)F(-), leading to 60-70% (18)F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98-99% radiochemical purity. The [Ga(18)F(L)] is stable for at least 90 minutes in 10% EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET.

  20. Radiofluorination of a pre-formed gallium(III) aza-macrocyclic complex: towards next-generation positron emission tomography (PET) imaging agents.

    PubMed

    Bhalla, Rajiv; Levason, William; Luthra, Sajinder K; McRobbie, Graeme; Sanderson, George; Reid, Gillian

    2015-03-16

    As part of a study to investigate the factors influencing the development of new, more effective metal-complex-based positron emission tomography (PET) imaging agents, the distorted octahedral complex, [GaCl(L)]⋅2 H2O has been prepared by reaction of 1-benzyl-1,4,7-triazacyclononane-4,7-dicarboxylic acid hydrochloride (H2L⋅HCl) with Ga(NO3)3⋅9 H2O, which is a convenient source of Ga(III) for reactions in water. Spectroscopic and crystallographic data for [GaCl(L)]⋅2 H2O are described, together with the crystal structure of [GaCl(L)]⋅MeCN. Fluorination of this complex by Cl(-)/F(-) exchange was achieved in high yield by treatment with KF in water at room temperature over 90 minutes, although the reaction was complete in approximately 30 minutes if heated to 80 °C, giving [GaF(L)]⋅2 H2O in good yield. The same complex was obtained by hydrothermal synthesis from GaF3⋅3 H2O and Li2L, and has been characterised by single-crystal X-ray analysis, IR, (1)H and (19)F{(1)H} NMR spectroscopy and ESI(+) MS. Radiofluorination of the pre-formed [GaCl(L)]⋅2 H2O has been demonstrated on a 210 nanomolar scale in aqueous NaOAc at pH 4 by using carrier-free (18)F(-), leading to 60-70% (18)F-incorporation after heating to 80 °C for 30 minutes. The resulting radioproduct was purified easily by using a solid-phase extraction (SPE) cartridge, leading to 98-99% radiochemical purity. The [Ga(18)F(L)] is stable for at least 90 minutes in 10% EtOH/NaOAc solution at pH 6, but defluorinates over this time scale at pH of approximately 7.5 in phosphate buffered saline (PBS) or human serum albumin (HSA). The subtle role of the Group 13 metal ion and co-ligand donor set in influencing the pH dependence of this system is discussed in the context of developing potential new imaging agents for PET. PMID:25652736

  1. [Positron emission tomography/computed tomography in follow-up programmes for patients with colorectal cancer].

    PubMed

    Hansen, Anne Fogh; Jensen, Mads Radmer; Nordholm-Carstensen, Andreas

    2016-09-12

    The current follow-up programmes for patients with colorectal cancer (CRC) after curative surgery do not include 18F-fluorodeoxyglucose-positron emission tomography (PET). Several small studies on selected patient populations indicate a high sensitivity of PET/computed tomography (CT) on visualizing relapse in patients with CRC after curative surgery. Therefore, PET/CT could probably be valuable in patients with unexplained increase in carcinoembryonic antigen level or a clinical suspicion of relapse, but PET/CT is not recommended as a standard in follow-up after CRC. PMID:27649583

  2. Synthesis and biological evaluation of fluorine-18-labeled estrogens and progestins as positron emission tomography (PET) imaging agents

    SciTech Connect

    VanBrocklin, H.F.

    1990-01-01

    Seven new estrogen receptor-based radiopharmaceuticals, 16[alpha]-[[sup 18]F]-fluoro-17[alpha]-ethynyl-estradiol, (FEES), 15, 11[beta]-methoxy-FEES, 16, 11[beta]-ethyl-FEES, 17, 16[beta]-[[sup 18]F]-fluoroestradiol, (16[beta]-FES), 19, 11[beta]-methoxy-16[beta]-FES, 20, 16[beta]-[[sup 18]F]-fluoro-17[alpha]-ethynyl-estradiol, (16[beta]FEES), 21, and 11[beta]-methoxy-16[beta]-FEES, 22, have been prepared and evaluated as potential PET imaging agents for estrogen receptor-rich breast tumors. Radiolabeling was achieved by nucleophilic displacement of the appropriate 16[beta]- or 16[alpha]-trifluoromethanesulfonate(triflate)-estrone-3-triflate derivative with nBu[sub 4]N[sup 18]F. Subsequent hydride reduction or nucleophilic attack by lithium-trimethylsilylacetylide followed by HPLC purification yielded the FES or FEES analogs, respectively. These compounds can be prepared in 90-120 minutes from [sup 18]F-fluoride with radiochemical yields of 1-40% (decay corrected) and effective specific activities ranging from 50-4,000 Ci/mmol. The relative binding affinities (RBA) ranged from 0.5 to 309. Biological distribution was performed in 25 day old Sprague-Dawley female rats. Uterine uptake ranged from 5-16 percent of the injected dose. These fluorestrogens were highly selective in vivo as evidenced by the high uterus-to-blood (range 10-170) and uterus-to-muscle (range 25-80) ratios. The FEES analogs, 15,16, and 17, had the highest uterus to blood ratios ever seen amongst estrogen radiopharmaceuticals; 154, 145 and 169, respectively. The dose to critical clearance organs (liver and kidneys) was less than 3% of the injected dose per gram of tissue. Metabolic defluorination did not occur with these compounds. These new analogs exhibited an array of desirable characteristics for the optimal PET imaging of estrogen receptor-positive human mammary tumors.

  3. The influence of tumor oxygenation on 18F-FDG (Fluorine-18 Deoxyglucose) uptake: A mouse study using positron emission tomography (PET)

    PubMed Central

    Chan, Linda W; Hapdey, Sebastien; English, Sean; Seidel, Jurgen; Carson, Joann; Sowers, Anastasia L; Krishna, Murali C; Green, Michael V; Mitchell, James B; Bacharach, Stephen L

    2006-01-01

    Background This study investigated whether changing a tumor's oxygenation would alter tumor metabolism, and thus uptake of 18F-FDG (fluorine-18 deoxyglucose), a marker for glucose metabolism using positron emission tomography (PET). Results Tumor-bearing mice (squamous cell carcinoma) maintained at 37°C were studied while breathing either normal air or carbogen (95% O2, 5% CO2), known to significantly oxygenate tumors. Tumor activity was measured within an automatically determined volume of interest (VOI). Activity was corrected for the arterial input function as estimated from image and blood-derived data. Tumor FDG uptake was initially evaluated for tumor-bearing animals breathing only air (2 animals) or only carbogen (2 animals). Subsequently, 5 animals were studied using two sequential 18F-FDG injections administered to the same tumor-bearing mouse, 60 min apart; the first injection on one gas (air or carbogen) and the second on the other gas. When examining the entire tumor VOI, there was no significant difference of 18F-FDG uptake between mice breathing either air or carbogen (i.e. air/carbogen ratio near unity). However, when only the highest 18F-FDG uptake regions of the tumor were considered (small VOIs), there was a modest (21%), but significant increase in the air/carbogen ratio suggesting that in these potentially most hypoxic regions of the tumor, 18F-FDG uptake and hence glucose metabolism, may be reduced by increasing tumor oxygenation. Conclusion Tumor 18F-FDG uptake may be reduced by increases in tumor oxygenation and thus may provide a means to further enhance 18F-FDG functional imaging. PMID:16722588

  4. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    SciTech Connect

    Llacer, J.; Veklerov, E.; Nolan, D. ); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. )

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  5. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  6. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  7. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Krishnan, Vijayan; Mohanan, Vyshakh; Shibu, Deepu; Shinto, Ajit Sugunan

    2015-01-01

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis. PMID:25589818

  8. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Krishnan, Vijayan; Mohanan, Vyshakh; Shibu, Deepu; Shinto, Ajit Sugunan

    2015-01-01

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis.

  9. Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography

    PubMed Central

    Elumogo, Comfort O.; Kochenderfer, James N.; Civelek, A. Cahid

    2016-01-01

    Pigmented villonodular synovitis (PVNS) is a benign joint disease best characterized on magnetic resonance imaging (MRI). The role of fluorine 18 fluorodeoxyglucose (18F-FDG) position emission tomography-computed tomography (PET-CT) in the diagnosis or characterization remains unclear. PVNS displays as a focal FDG avid lesion, which can masquerade as a metastatic lesion, on PET-CET. We present a case of PVNS found on surveillance imaging of a lymphoma patient. PMID:27190776

  10. Detection of lung cancer in patients with pneumoconiosis by fluorodeoxyglucose-positron emission tomography/computed tomography: four cases.

    PubMed

    Yu, Hua; Zhang, Hua; Wang, Yanli; Cui, Xinjian; Han, Jiankui

    2013-01-01

    We report 4 cases of lung cancer in patients with pneumoconiosis detected by F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), which could differentiate lung cancer and pneumoconiosis. FDG-PET/CT may be useful in cancer screening for patients with pneumoconiosis.

  11. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  12. Positron emission tomography features of hidradenitis suppurativa

    PubMed Central

    Simpson, R C; Dyer, M J S; Entwisle, J; Harman, K E

    2011-01-01

    A 35-year-old male with classical Hodgkin's lymphoma (nodular sclerosing, grade 1 histology, clinical stage 2A) underwent a positron emission tomography (PET) scan to assess response to treatment. Half body CT PET imaging was obtained using a Siemens Biograph scanner from eyes to thighs. 405 MBq of 18-fluorodeoxyglucose (FDG) was injected with acquisition starting at 60 min. There was unexpected intense focal uptake in the superficial subcutaneous tissues of the abdomen, pelvis and lateral chest wall with overlying skin thickening seen on the CT component. This was initially of concern, but the patient was known to have a history of hidradenitis suppurativa (HS). On further examination, the radiological abnormalities corresponded to the clinical sites of involvement. To the best of our knowledge, this is the first documentation of the appearance of HS on PET scan. PMID:21750134

  13. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  14. Clinical experience with the first combined positron emission tomography/computed tomography scanner in Australia.

    PubMed

    Lau, W F Eddie; Binns, David S; Ware, Robert E; Ramdave, Shakher; Cachin, Florent; Pitman, Alexander G; Hicks, Rodney J

    2005-02-21

    Metabolic imaging with fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is increasing rapidly worldwide because of superior accuracy compared with conventional non-invasive techniques used for evaluating cancer. Limited anatomical information from FDG-PET images alone dictates that complementary use with structural imaging is required to optimise benefit. Recently, combined positron emission tomography/computed tomography (PET/CT) scanners have overtaken standalone PET scanners as the most commonly purchased PET devices. We describe our experience of over 5500 scans performed since the first PET/CT scanner in Australia was commissioned at the Peter MacCallum Cancer Centre (PMCC), Melbourne, in January 2002. Clinical indications for PET/CT scans performed at PMCC largely reflect current Medicare reimbursement policy. Advantages of PET/CT include greater patient comfort and higher throughput, greater diagnostic certainty and accuracy, improved biopsy methods, and better treatment planning. We believe PET/CT will underpin more effective and efficient imaging paradigms for many common tumours, and lead to a decrease in imaging costs. PMID:15720173

  15. Positron emission tomography study on pancreatic somatostatin receptors in normal and diabetic rats with {sup 68}Ga-DOTA-octreotide: A potential PET tracer for beta cell mass measurement

    SciTech Connect

    Sako, Takeo; Hasegawa, Koki; Nishimura, Mie; Kanayama, Yousuke; Wada, Yasuhiro; Hayashinaka, Emi; Cui, Yilong; Kataoka, Yosky; Senda, Michio; Watanabe, Yasuyoshi

    2013-12-06

    Highlights: •PET images showed high uptake of {sup 68}Ga-DOTA-octreotide in the normal pancreas. •{sup 68}Ga-DOTA-octreotide specifically binds to somatostatin receptors in the pancreas. •The pancreatic uptake of {sup 68}Ga-DOTA-octreotide was decreased in the diabetic rats. •{sup 68}Ga-DOTA-octreotide could be a candidate PET probe to measure the beta cell mass. -- Abstract: Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, and the loss or dysfunction of pancreatic beta cells has been reported before the appearance of clinical symptoms and hyperglycemia. To evaluate beta cell mass (BCM) for improving the detection and treatment of DM at earlier stages, we focused on somatostatin receptors that are highly expressed in the pancreatic beta cells, and developed a positron emission tomography (PET) probe derived from octreotide, a metabolically stable somatostatin analog. Octreotide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a chelating agent, and labeled with {sup 68}Gallium ({sup 68}Ga). After intravenous injection of {sup 68}Ga-DOTA-octreotide, a 90-min emission scan of the abdomen was performed in normal and DM model rats. The PET studies showed that {sup 68}Ga-DOTA-octreotide radioactivity was highly accumulated in the pancreas of normal rats and that the pancreatic accumulation was significantly reduced in the rats administered with an excess amount of unlabeled octreotide or after treatment with streptozotocin, which was used for the chemical induction of DM in rats. These results were in good agreement with the ex vivo biodistribution data. These results indicated that the pancreatic accumulation of {sup 68}Ga-DOTA-octreotide represented specific binding to the somatostatin receptors and reflected BCM. Therefore, PET imaging with {sup 68}Ga-DOTA-octreotide could be a potential tool for evaluating BCM.

  16. Positron emission tomography imaging of prostate cancer

    PubMed Central

    Hong, Hao; Zhang, Yin; Sun, Jiangtao; Cai, Weibo

    2009-01-01

    Prostate cancer (PCa) is the second leading cause of cancer death among men in the United States. Positron emission tomography (PET), a non-invasive, sensitive, and quantitative imaging technique, can facilitate personalized management of PCa patients. There are two critical needs for PET imaging of PCa, early detection of primary lesions and accurate imaging of PCa bone metastasis, the predominant cause of death in PCa. Since the most widely used PET tracer in the clinic, 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG), does not meet these needs, a wide variety of PET tracers have been developed for PCa imaging which span an enormous size range from small molecules to intact antibodies. In this review, we will first summarize small molecule-based PET tracers for PCa imaging, which measure certain biological events such as cell membrane metabolism, fatty acid synthesis, and receptor expression. Next, we will discuss radiolabeled amino acid derivatives (e.g. methionine, leucine, tryptophan, and cysteine analogs), which are primarily based on the increased amino acid transport of PCa cells. Peptide-based tracers for PET imaging of PCa, mostly based on the bombesin peptide and its derivatives which bind to the gastrin-releasing peptide receptor, will then be presented in detail. We will also cover radiolabeled antibodies and antibody fragments (e.g. diabodies and minibodies) for PET imaging of PCa, targeting integrin αvβ3, EphA2, the epidermal growth factor receptor, or the prostate stem cell antigen. Lastly, we will identify future directions for the development of novel PET tracers for PCa imaging, which may eventually lead to personalized management of PCa patients. PMID:19946787

  17. Positron emission tomography provides molecular imaging of biological processes

    PubMed Central

    Phelps, Michael E.

    2000-01-01

    Diseases are biological processes, and molecular imaging with positron emission tomography (PET) is sensitive to and informative of these processes. This is illustrated by detection of biological abnormalities in neurological disorders with no computed tomography or MRI anatomic changes, as well as even before symptoms are expressed. PET whole body imaging in cancer provides the means to (i) identify early disease, (ii) differentiate benign from malignant lesions, (iii) examine all organs for metastases, and (iv) determine therapeutic effectiveness. Diagnostic accuracy of PET is 8–43% higher than conventional procedures and changes treatment in 20–40% of the patients, depending on the clinical question, in lung and colorectal cancers, melanoma, and lymphoma, with similar findings in breast, ovarian, head and neck, and renal cancers. A microPET scanner for mice, in concert with human PET systems, provides a novel technology for molecular imaging assays of metabolism and signal transduction to gene expression, from mice to patients: e.g., PET reporter gene assays are used to trace the location and temporal level of expression of therapeutic and endogenous genes. PET probes and drugs are being developed together—in low mass amounts, as molecular imaging probes to image the function of targets without disturbing them, and in mass amounts to modify the target's function as a drug. Molecular imaging by PET, optical technologies, magnetic resonance imaging, single photon emission tomography, and other technologies are assisting in moving research findings from in vitro biology to in vivo integrative mammalian biology of disease. PMID:10922074

  18. Level Set Method for Positron Emission Tomography

    PubMed Central

    Chan, Tony F.; Li, Hongwei; Lysaker, Marius; Tai, Xue-Cheng

    2007-01-01

    In positron emission tomography (PET), a radioactive compound is injected into the body to promote a tissue-dependent emission rate. Expectation maximization (EM) reconstruction algorithms are iterative techniques which estimate the concentration coefficients that provide the best fitted solution, for example, a maximum likelihood estimate. In this paper, we combine the EM algorithm with a level set approach. The level set method is used to capture the coarse scale information and the discontinuities of the concentration coefficients. An intrinsic advantage of the level set formulation is that anatomical information can be efficiently incorporated and used in an easy and natural way. We utilize a multiple level set formulation to represent the geometry of the objects in the scene. The proposed algorithm can be applied to any PET configuration, without major modifications. PMID:18354724

  19. [Assessing myocardial perfusion with positron emission tomography].

    PubMed

    vom Dahl, J

    2001-11-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to two indications: 1) The detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well-validated perfusion tracers, such as N-13 ammonia, Rb-82 rubidium chloride, or O-15 labeled water. 2) Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with high specificity, PET is today the best-validated available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows one to use PET perfusion imaging to detect subtle changes in the perfusion reserve for the detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial collaterals and, thus, imaging of several coronary distribution territories in one noninvasive

  20. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. The Members of the PET-Lung Tumor Study Group.

    PubMed

    Scott, W J; Schwabe, J L; Gupta, N C; Dewan, N A; Reeb, S D; Sugimoto, J T

    1994-09-01

    Positron emission tomography detects increased glucose uptake in malignant tissue using the glucose analogue [2-18F]fluoro-2-deoxy-D-glucose. We reviewed the scans obtained in 62 patients with lung tumors. All had undergone computed tomography and had tissue-based diagnoses: 22 had adenocarcinomas, 12 had squamous cell carcinomas, 13 had other malignancies, 1 had organizing pneumonia, 1 had a hamartoma, and 13 had granulomas. Positron emission tomography with [2-18F]fluoro-2-deoxy-D-glucose identified 44 of 47 malignancies. Two of three false-negative findings were tumors that were 1 cm2 or less and the other was a bronchioloalveolar carcinoma. All three false-positive findings were granulomas. The sensitivity and specificity of the technique were 93.6% and 80%, respectively, and the positive and negative predictive values were 93.6% and 80%, respectively. The differential uptake ratio was determined in all 62 patients. The mean differential uptake ratio (+/- the standard error of the mean) for malignant tumors was 6.4 +/- 0.56 and that for benign tumors was 1.14 +/- 0.26 (p < 0.0001, t test). Twenty-five of the patients had N2 lymph nodes evaluated pathologically. Positron emission tomography with [2-18F]fluoro-2-deoxy-D-glucose identified negative N2 nodes in 19 of 22 patients (86%) with negative nodes and positive N2 nodes in 2 of 3 patients (66%) with positive nodes, including one instance missed by computed tomography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7944691

  1. Positron Emission Tomography Imaging of Atherosclerosis

    PubMed Central

    Orbay, Hakan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2013-01-01

    Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients. PMID:24312158

  2. Assessment of patient selection criteria for quantitative imaging with respiratory-gated positron emission tomography.

    PubMed

    Bowen, Stephen R; Pierce, Larry A; Alessio, Adam M; Liu, Chi; Wollenweber, Scott D; Stearns, Charles W; Kinahan, Paul E

    2014-07-01

    The objective of this investigation was to propose techniques for determining which patients are likely to benefit from quantitative respiratory-gated imaging by correlating respiratory patterns to changes in positron emission tomography (PET) metrics. Twenty-six lung and liver cancer patients underwent PET/computed tomography exams with recorded chest/abdominal displacements. Static and adaptive amplitude-gated [[Formula: see text

  3. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  4. Studies of the brain cannabinoid system using positron emission tomography

    SciTech Connect

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  5. Positron Emission Tomography: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  6. Positron emission tomography

    SciTech Connect

    Cohen, R.M.; Semple, W.E.; Gross, M.

    1986-03-01

    PET is a unique tool for the direct in vivo evaluation of physiologic processes within discrete areas of the brain. Thus far, its application to the study of schizophrenia has served to confirm the subtleties of this illness. However, PET does promise to increase our knowledge of the neurochemical anatomy of the normal and abnormal mind with respect to goal-directed behavior.22 references.

  7. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  8. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  9. Positron emission tomography and radiation oncology

    NASA Astrophysics Data System (ADS)

    Fullerton, PhD, Gary D.; Fox, MD, Peter; Phillips, MD, William T.

    2001-10-01

    Medical physics research is providing new avenues for addressing the fundamental problem of radiation therapy-how to provide a tumor-killing dose while reducing the dose to a non-lethal level for critical organs in adjacent portions of the patient anatomy. This talk reviews the revolutionary impact of Positron Emission Tomography on the practice of radiation oncology. The concepts of PET imaging and the development of "tumor" imaging methods using 18F-DG flouro-deoxyglucose are presented to provide the foundation for contemporary research and application to therapy. PET imaging influences radiation therapy decisions in multiple ways. Imaging of occult but viable tumor metastases eliminates misguided therapy attempts. The ability to distinguish viable tumor from scar tissue and necroses allows reduction of treatment portals and more selective treatments. Much research remains before the clinical benefits of these advances are fully realized.

  10. Clinical positron emission tomography/magnetic resonance imaging applications.

    PubMed

    von Schulthess, Gustav K; Kuhn, Felix Pierre; Kaufmann, Philipp; Veit-Haibach, Patrick

    2013-01-01

    Although clinical positron emission tomography (PET)/computed tomography (CT) applications were obvious and have completely replaced PET in oncology, clinical applications of PET/magnetic resonance (MR) are currently not clearly defined. This is due to the lack of clinical data, which is mainly because PET/MR technology is not clinically mature at this point. Open issues are technical and concern ease of obtaining PET attenuation correction maps, dealing with, for example, MR surface coil metal in the PET field-of-view and appropriate workflows leading to a cost-effective examination. All issues can be circumvented by using a shuttle-connected PET/CT-MR system, but the penalty is that simultaneous PET and MR imaging are not possible and potential motion between examinations may occur. Clinically, some systems installed worldwide start to have a reasonable bulk of clinical data. Preliminary results suggest that in oncology, PET/MR may have advantages over PET/CT in head and neck imaging. In liver imaging, more PET-positive lesions are seen on MR than on CT, but that does not mean that PET/MR is superior to PET/CT. Possibly in some settings where a contrast-enhanced PET/CT is needed to be diagnostic, PET/MR can be done without contrast media. Although PET/CT has virtually no role in brain imaging, this may be an important domain for PET/MR, particularly in dementia imaging. The role of PET/MR in the heart is as yet undefined, and much research will have to be done to elucidate this role. At this point, it is also not clear where the simultaneity afforded by a fully integrated PET/MR is really needed. Sequential data acquisition even on separate systems and consecutive software image fusion may well be appropriate. With the increasing installed base of systems, clinical data will be forthcoming and define more clearly where there is clinical value in PET/MR at an affordable price. PMID:23178084

  11. Clinical usefulness of post-operative 18F-fluorodeoxyglucose positron emission tomography-computed tomography in canine hemangiosarcoma

    PubMed Central

    Lee, Gahyun; Kwon, Seong Young; Son, Kyuyeol; Park, Seungjo; Lee, Ju-hwan; Cho, Kyoung-Oh; Min, Jung-Joon

    2016-01-01

    This report describes the usefulness of positron emission tomography-computed tomography (PET-CT) for evaluating recurrent or residual tumors following surgery. CT and 18F-fluorodeoxyglucose PET-CT were pre- and post-operatively applied to multiple masses in a dog with hemangiosarcoma. The distinction between the left subcutaneous mass and the peritoneum was clarified on pre-operative CT examination, and malignancy was suspected based on PET-CT. A recurrent or residual tumor in the left subcutaneous region was suspected on post-operative PET-CT, and confirmed through histopathologic examination. PMID:26645332

  12. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings suggesting…

  13. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  14. Regulation of the compounding of positron emission tomography drugs.

    PubMed

    Hung, J C

    2001-01-15

    Controversial aspects of the regulatory framework for compounding drug products used in positron emission tomography (PET) are discussed. The Food and Drug Administration Modernization Act of 1997 (FDAMA), which amends the Federal Food, Drug, and Cosmetic Act (FFDCA), required that FDA establish approval (new drug application [NDA] and abbreviated new drug application [ANDA]) procedures and current good manufacturing practice (CGMP) requirements for PET drugs; this seems to conflict with differentiation between manufacturing and compounding in FFDCA. Compounding by pharmacists is implied in the FDAMA section on PET, but specific mention of "pharmacist" needs to be included. Congress apparently did not intend for compounded PET drugs to be regulated differently from other drugs. Although FDA has waived NDA and ANDA fees for three PET radiopharmaceuticals, revision of FDAMA to exempt PET drug products from regulations placed on manufacturing is needed. Without relief from the current regulations, many academic PET centers are likely to close; this would violate FDAMA's stated intent of making PET available to patients at reasonable cost. Also problematic is FDAMA's prohibition of compounding "regularly or in inordinate amounts" a product that is commercially available; the common PET radiopharmaceutical fludeoxyglucose F 18 injection, for example, is commercially available. A sensible alternative to NDA or ANDA and CGMP requirements would be the enforcement of USP standards for PET drugs by state boards of pharmacy.

  15. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Fernø, M. A.; Gauteplass, J.; Hauge, L. P.; Abell, G. E.; Adamsen, T. C. H.; Graue, A.

    2015-09-01

    Here we show for the first time the combined positron emission tomography (PET) and computed tomography (CT) imaging of flow processes within porous rocks to quantify the development in local fluid saturations. The coupling between local rock structure and displacement fronts is demonstrated in exploratory experiments using this novel approach. We also compare quantification of 3-D temporal and spatial water saturations in two similar CO2 storage tests in sandstone imaged separately with PET and CT. The applicability of each visualization technique is evaluated for a range of displacement processes, and the favorable implementation of combining PET/CT for laboratory core analysis is discussed. We learn that the signal-to-noise ratio (SNR) is over an order of magnitude higher for PET compared with CT for the studied processes.

  16. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  17. Metabotropic Glutamate Receptor Type 5 (mGluR5) Cortical Abnormalities in Focal Cortical Dysplasia Identified In Vivo With [11C]ABP688 Positron-Emission Tomography (PET) Imaging

    PubMed Central

    DuBois, Jonathan M.; Rousset, Olivier G.; Guiot, Marie-Christine; Hall, Jeffery A.; Reader, Andrew J.; Soucy, Jean-Paul; Rosa-Neto, Pedro; Kobayashi, Eliane

    2016-01-01

    Metabotropic glutamate receptor type 5 (mGluR5) abnormalities have been described in tissue resected from epilepsy patients with focal cortical dysplasia (FCD). To determine if these abnormalities could be identified in vivo, we investigated mGluR5 availability in 10 patients with focal epilepsy and an MRI diagnosis of FCD using positron-emission tomography (PET) and the radioligand [11C]ABP688. Partial volume corrected [11C]ABP688 binding potentials (BPND) were computed using the cerebellum as a reference region. Each patient was compared to homotopic cortical regions in 33 healthy controls using region-of-interest (ROI) and vertex-wise analyses. Reduced [11C]ABP688 BPND in the FCD was seen in 7/10 patients with combined ROI and vertex-wise analyses. Reduced FCD BPND was found in 4/5 operated patients (mean follow-up: 63 months; Engel I), of whom surgical specimens revealed FCD type IIb or IIa, with most balloon cells showing negative or weak mGluR5 immunoreactivity as compared to their respective neuropil and normal neurons at the border of resections. [11C]ABP688 PET shows for the first time in vivo evidence of reduced mGluR5 availability in FCD, indicating focal glutamatergic alterations in malformations of cortical development, which cannot be otherwise clearly demonstrated through resected tissue analyses. PMID:27578494

  18. Motion management in positron emission tomography/computed tomography for radiation treatment planning.

    PubMed

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gilardi, Maria Carla

    2012-09-01

    Hybrid positron emission tomography (PET)/computed tomography (CT) scanners combine, in a unique gantry, 2 of the most important diagnostic imaging systems, a CT and a PET tomograph, enabling anatomical (CT) and functional (PET) studies to be performed in a single study session. Furthermore, as the 2 scanners use the same spatial coordinate system, the reconstructed CT and PET images are spatially co-registered, allowing an accurate localization of the functional signal over the corresponding anatomical structure. This peculiarity of the hybrid PET/CT system results in improved tumor characterization for oncological applications, and more recently, it was found to be also useful for target volume definition (TVD) and treatment planning in radiotherapy (RT) applications. In fact, the use of combined PET/CT information has been shown to improve the RT treatment plan when compared with that obtained by a CT alone. A limiting factor to the accuracy of TVD by PET/CT is organ and tumor motion, which is mainly due to patient respiration. In fact, respiratory motion has a degrading effect on PET/CT image quality, and this is also critical for TVD, as it can lead to possible tumor missing or undertreatment. Thus, the management of respiratory motion is becoming an increasingly essential component in RT treatment planning; indeed, it has been recognized that the use of personalized motion information can improve TVD and, consequently, permit increased tumor dosage while sparing surrounding healthy tissues and organs at risk. This review describes the methods used for motion management in PET/CT for radiation treatment planning. The article covers the following: (1) problems caused by organ and lesion motion owing to respiration, and the artifacts generated on CT, PET, and PET/CT images; (2) data acquisition and processing techniques used to manage respiratory motion in PET/CT studies; and (3) the use of personalized motion information for TVD and radiation treatment planning.

  19. PET-Computed Tomography in Veterinary Medicine.

    PubMed

    Randall, Elissa K

    2016-05-01

    PET/CT is an advanced imaging modality that is becoming more commonly used in veterinary medicine. It is most commonly used to image patients with cancer, and the most frequently used radiopharmaceutical is F-18 FDG. F-18 FDG is a glucose analog that highlights areas of increased glucose metabolism on the PET images. CT images provide excellent anatomic depiction and aid in interpretation of the PET data. Many types of cancer are hypermetabolic on PET/CT scans, but normal structures and areas of inflammation are also hypermetabolic, so knowledge of normal imaging and cytologic or histopathologic evaluation of lesions is essential.

  20. PET/Computed Tomography in Renal, Bladder, and Testicular Cancer.

    PubMed

    Bouchelouche, Kirsten; Choyke, Peter L

    2015-07-01

    Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/computed tomography (CT) is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in urooncology. In both bladder and renal cancers, there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with limited renal excretion. Thus, new tracers are being introduced. This review focuses on the clinical role of FDG and other PET agents in renal, bladder, and testicular cancers.

  1. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  2. Improving 18F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies

    PubMed Central

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-18F-fluoro-D-glucose (18F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering. PMID:26420987

  3. Improving (18)F-Fluoro-D-Glucose-Positron Emission Tomography/Computed Tomography Imaging in Alzheimer's Disease Studies.

    PubMed

    Knešaurek, Karin

    2015-01-01

    The goal was to improve Alzheimer's 2-deoxy-2-(18)F-fluoro-D-glucose ((18)F FDG)-positron emission tomography (PET)/computed tomography (CT) imaging through application of a novel, hybrid Fourier-wavelet windowed Fourier transform (WFT) restoration technique, in order to provide earlier and more accurate clinical results. General Electric Medical Systems downward-looking sonar PET/CT 16 slice system was used to acquire studies. Patient data were acquired according the Alzheimer's disease Neuroimaging Initiative (ADNI) protocol. Here, we implemented Fourier-wavelet regularized restoration, with a Butterworth low-pass filter, order n = 6 and a cut-off frequency f = 0.35 cycles/pixel and wavelet (Daubechies, order 2) noise suppression. The original (PET-O) and restored (PET-R) ADNI subject PET images were compared using the Alzheimer's discrimination analysis by dedicated software. Forty-two PET/CT scans were used in the study. They were performed on eleven ADNI subjects at intervals of approximately 6 months. The final clinical diagnosis was used as a gold standard. For three subjects, the final clinical diagnosis was mild cognitive impairment and those 13 PET/CT studies were not included in the final comparison, as the result was considered as inconclusive. Using the reminding 29 PET/CT studies (23 AD and 6 normal), the sensitivity and specificity of the PET-O and PET-R were calculated. The sensitivity was 0.65 and 0.96 for PET-O and PET-R, respectively, and the specificity was 0.67 and 0.50 for PET-O and PET-R. The accuracy was 0.66 and 0.86 for PET-O and PET-R, respectively. The results of the study demonstrated that the accuracy of three-dimensional brain F-18 FDG PET images was significantly improved by Fourier-wavelet restoration filtering.

  4. Metastatic superscan in prostate carcinoma on gallium-68-prostate-specific membrane antigen positron emission tomography/computed tomography scan

    PubMed Central

    Agarwal, Krishan Kant; Tripathi, Madhavi; Kumar, Rajeev; Bal, Chandrasekhar

    2016-01-01

    We describe the imaging features of a metastatic superscan on gallium-68 Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68(HBED-CC)], abbreviated as gallium-68-prostate-specific membrane antigen (68Ga-PSMA) positron emission tomography/computed tomography (PET/CT) imaging. 68Ga-PSMA is novel radiotracer undergoing evaluation for PET/CT imaging of prostate carcinoma. This patient had a superscan of metastases on conventional bone scintigraphy and was referred for 68Ga-PSMA PET/CT to evaluate the feasibility of 177Lu-PSMA therapy. PMID:27095868

  5. Extramedullary Plasmacytoma of the Gallbladder Detected on Fluorine 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Fakhri, Asif Ali; Rodrigue, Paul David; Fakhri, Amena Fatima

    2016-01-01

    Extramedullary plasmacytoma is rare in patients with diagnosed multiple myeloma. Soft tissue plasmacytoma of the gallbladder is particularly uncommon and has been described in only a handful of cases. Diagnosis of gallbladder plasmacytoma with fluorine 18-fluorodeoxyglucose (F18-FDG) positron emission tomography/computed tomography (PET/CT) has not previously been reported. We present a 65-year-old female with a history of multiple myeloma who underwent a restaging F18-FDG-PET/CT which showed a focal area of hypermetabolic activity, corresponding to a nodular lesion within the posterior gallbladder wall. The patient underwent successful cholecystectomy, with surgical pathology revealing gallbladder plasmacytoma. A follow-up scan was negative for active malignancy. This is a novel case of gallbladder plasmacytoma diagnosed on whole-body F18-FDG PET/CT – thus demonstrating the clinical value of this imaging modality in staging, restaging, and surveillance for patients with multiple myeloma. PMID:27761300

  6. Detection of scalene lymph node metastases from lung cancer. Positron emission tomography.

    PubMed

    Scott, W J; Gobar, L S; Hauser, L G; Sunderland, J J; Dewan, N A; Sugimoto, J T

    1995-04-01

    Preliminary data indicate that positron emission tomography (PET) following injection of fluorodeoxyglucose F18 (FDG) is sensitive and specific for detecting malignant cells in chest tumors and mediastinal lymph nodes. We report a case of non-small cell lung cancer metastatic to clinically normal scalene lymph nodes that was correctly staged by FDG-PET. PMID:7705136

  7. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction

    SciTech Connect

    Brady, Samuel L.; Shulkin, Barry L.

    2015-02-15

    Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.

  8. [TUBERCULOUS CONSTRICTIVE PERICARDITIS DETECTED ON POSITRON EMISSION TOMOGRAPHY].

    PubMed

    Takakura, Hiroki; Sunada, Kouichi; Shimizu, Kunihiko

    2016-02-01

    A 72-year-old man presented with fever, dyspnea, and weight loss. He was referred to our hospital for further examination of the cause of the pleural effusions. Chest computed tomography showed pleural effusions, a pericardial effusion, and enlarged lymph nodes in the carina tracheae. We administered treatment for heart failure and conducted analyses for a malignant tumor. The pericardial effusion improved, but the pericardium was thickened. Positron emission tomography-computed tomography (PET-CT) showed fluorine-18 deoxyglucose accumulation at the superior fovea of the right clavicle, carina tracheae, superior mediastinum lymph nodes, and a thickened pericardium. Because these findings did not suggest malignancy, we assumed this was a tuberculous lesion. Echocardiography confirmed this finding as constrictive pericarditis; therefore, pericardiolysis was performed. Pathological examination showed features of caseous necrosis and granulomatous changes. Hence, the patient was diagnosed with tuberculous constrictive pericarditis. PET-CT serves as a useful tool for the diagnosis of tuberculous pericarditis. PMID:27263228

  9. Absorbed dose estimates for positron emission tomography (PET): C/sup 15/O, /sup 11/CO, and CO/sup 15/O

    SciTech Connect

    Kearfott, K.J.

    1982-11-01

    Regional cerebral blood volume and blood flow may be determined using PET and C/sup 15/O, /sup 11/CO, and CO/sup 15/O. Detailed estimates of radiation absorbed dose for 22 organs and the whole body are reported and compared for these gases administered by continuous or bolus inhalation and by infusion techniques.

  10. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  11. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    SciTech Connect

    Fitzpatrick, Gianna M.; Wells, R. Glenn

    2006-08-15

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with {sup 68}Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing {sup 68}Ge- to CT-based AC with the CT map acquired at end inhalation.

  12. Cardiac PET/Computed Tomography Applications and Cardiovascular Outcome.

    PubMed

    Schindler, Thomas Hellmut

    2015-07-01

    Cardiac PET/computed tomography (CT) in conjunction with different blood flow tracers is increasingly applied for the assessment of myocardial perfusion and myocardial flow reserve (MFR) in the detection of coronary artery disease (CAD). The ability of PET/CT to noninvasively determine regional myocardial blood flow at rest and during vasomotor stress allows the calculation of the MFR, which carries important prognostic information in patients with subclinical forms of cardiomyopathy. The measured MFR optimizes the identification and characterization of the extent and severity of CAD burden, and contributes to the flow-limiting effect of single lesions in multivessel CAD. PMID:26099678

  13. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  14. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    PubMed

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  15. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers

    PubMed Central

    Awan, Musaddiq J; Siddiqui, Farzan; Schwartz, David; Yuan, Jiankui; Machtay, Mitchell; Yao, Min

    2015-01-01

    18-fluorodeoxygluocose positron emission tomography/computed tomography (18FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs. PMID:26644824

  16. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

    PubMed

    Chapman, J D; Schneider, R F; Urbain, J L; Hanks, G E

    2001-01-01

    Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that

  17. Integrated telemedicine applications and services for oncological positron emission tomography.

    PubMed

    Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel

    2006-01-01

    TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology.

  18. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Ricardi, Umberto; Milanesi, Enrica; Cassoni, Paola; Baccega, Massimo; Filippini, Claudia; Racca, Patrizia; Lesca, Adriana; Munoz, Fernando H.; Fora, Gianluca; Skanjeti, Andrea; Cravero, Francesca; Morino, Mario

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  19. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy

    PubMed Central

    Siontis, B; Kumar, S; Dispenzieri, A; Drake, M T; Lacy, M Q; Buadi, F; Dingli, D; Kapoor, P; Gonsalves, W; Gertz, M A; Rajkumar, S V

    2015-01-01

    We studied 188 patients with a suspected smoldering multiple myeloma (MM) who had undergone a positron emission tomography-computed tomography (PET-CT) scan as part of their clinical evaluation. PET-CT was positive (clinical radiologist interpretation of increased bone uptake and/or evidence of lytic bone destruction) in 74 patients and negative in 114 patients. Of these, 25 patients with a positive PET-CT and 97 patients with a negative PET-CT were observed without therapy and formed the study cohort (n=122). The probability of progression to MM within 2 years was 75% in patients with a positive PET-CT observed without therapy compared with 30% in patients with a negative PET-CT; median time to progression was 21 months versus 60 months, respectively, P=0.0008. Of 25 patients with a positive PET-CT, the probability of progression was 87% at 2 years in those with evidence of underlying osteolysis (n=16) and 61% in patients with abnormal PET-CT uptake but no evidence of osteolysis (n=9). Patients with positive PET-CT and evidence of underlying osteolysis have a high risk of progression to MM within 2 years when observed without therapy. These observations support recent changes to imaging requirements in the International Myeloma Working Group updated diagnostic criteria for MM. PMID:26495861

  20. Effects of Respiration-Averaged Computed Tomography on Positron Emission Tomography/Computed Tomography Quantification and its Potential Impact on Gross Tumor Volume Delineation

    SciTech Connect

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Luo Dershan; Liao Zhongxing; Macapinlac, Homer A.; Pan Tinsu

    2008-07-01

    Purpose: Patient respiratory motion can cause image artifacts in positron emission tomography (PET) from PET/computed tomography (CT) and change the quantification of PET for thoracic patients. In this study, respiration-averaged CT (ACT) was used to remove the artifacts, and the changes in standardized uptake value (SUV) and gross tumor volume (GTV) were quantified. Methods and Materials: We incorporated the ACT acquisition in a PET/CT session for 216 lung patients, generating two PET/CT data sets for each patient. The first data set (PET{sub HCT}/HCT) contained the clinical PET/CT in which PET was attenuation corrected with a helical CT (HCT). The second data set (PET{sub ACT}/ACT) contained the PET/CT in which PET was corrected with ACT. We quantified the differences between the two datasets in image alignment, maximum SUV (SUV{sub max}), and GTV contours. Results: Of the patients, 68% demonstrated respiratory artifacts in the PET{sub HCT}, and for all patients the artifact was removed or reduced in the corresponding PET{sub ACT}. The impact of respiration artifact was the worst for lesions less than 50 cm{sup 3} and located below the dome of the diaphragm. For lesions in this group, the mean SUV{sub max} difference, GTV volume change, shift in GTV centroid location, and concordance index were 21%, 154%, 2.4 mm, and 0.61, respectively. Conclusion: This study benchmarked the differences between the PET data with and without artifacts. It is important to pay attention to the potential existence of these artifacts during GTV contouring, as such artifacts may increase the uncertainties in the lesion volume and the centroid location.

  1. Positron emission tomography for the evaluation and treatment of cardiomyopathy.

    PubMed

    Shah, Palak; Choi, Brian G; Mazhari, Ramesh

    2011-06-01

    Congestive heart failure accounts for tremendous morbidity and mortality worldwide. There are numerous causes of cardiomyopathy, the most common of which is coronary artery disease. Positron emission tomography (PET) has an established and expanding role in the evaluation of patients with cardiomyopathy. The specific application of PET to hypertrophic cardiomyopathy, cardiac sarcoidosis, and diabetic cardiomyopathy has been studied extensively and promises to be a useful tool for managing these patients. Furthermore, evaluating the efficacy of standard treatments for congestive heart failure is important as health care costs continue to rise. Recently, there have been significant developments in the field of cardiovascular stem cell research. Familiarity with the mechanisms by which stem cells benefit patients with cardiovascular disease is the key to understanding these advances. Molecular imaging techniques including PET/CT imaging play an important role in monitoring stem cell therapy in both animals and humans. These noninvasive imaging techniques will be highlighted in this paper.

  2. Positron emission tomography in the study of hepatic encephalopathy.

    PubMed

    Lockwood, A H

    1998-12-01

    Positron-emission tomography (PET) is a quantitative technique that produces images of biological or physiological processes. The nature of the image depends on the tracer used: common tracers used to study HE include 18F-fluordeoxyglucose, a marker of glucose metabolism; 15O-water, a marker of cerebral blood flow; and 13N-ammonia, a marker of ammonia metabolism. Combined blood flow and ammonia metabolism studies can be used to calculate the permeability surface area product for ammonia at the blood brain barrier. To take full advantage of PET, the data should be analyzed using one of the several sophisticated image processing and analysis techniques that are available. Thus, PET is an ideal technique to evaluate ammonia metabolism and, because of a close linkage of blood flow and glucose metabolism with neural activity, to investigate the neural response to drugs and other treatments and to examine neural systems that mediate specific tasks that are impaired in patients with HE.

  3. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  4. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  5. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2016-07-12

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  6. Florbetapir positron emission tomography and cerebrospinal fluid biomarkers

    PubMed Central

    Hake, Ann; Trzepacz, Paula T.; Wang, Shufang; Yu, Peng; Case, Michael; Hochstetler, Helen; Witte, Michael M.; Degenhardt, Elisabeth K.; Dean, Robert A.

    2015-01-01

    Background We evaluated the relationship between florbetapir-F18 positron emission tomography (FBP PET) and cerebrospinal fluid (CSF) biomarkers. Methods Alzheimer’s Disease Neuroimaging Initiative (ADNI)-GO/2 healthy control (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) dementia subjects with clinical measures and CSF collected ±90 days of FBP PET data were analyzed using correlation and logistic regression. Results In HC and MCI subjects, FBP PET anterior and posterior cingulate and composite standard uptake value ratios correlated with CSF amyloid beta (Aβ1-42) and tau/Aβ1-42 ratios. Using logistic regression, Aβ1-42, total tau (t-tau), phosphorylated tau181P (p-tau), and FBP PET composite each differentiated HC versus AD. Aβ1-42 and t-tau distinguished MCI versus AD, without additional contribution by FBP PET. Total tau and p-tau added discriminative power to FBP PET when classifying HC versus AD. Conclusion Based on cross-sectional diagnostic groups, both amyloid and tau measures distinguish healthy from demented subjects. Longitudinal analyses are needed. PMID:25916563

  7. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  8. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography.

    PubMed

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results. PMID:27625897

  9. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  10. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  11. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of

  12. Radiosynthesis and Evaluation of an 18F-Labeled Positron Emission Tomography (PET) Radioligand for Metabotropic Glutamate Receptor Subtype 4 (mGlu4)

    PubMed Central

    2015-01-01

    Four 4-phthalimide derivatives of N-(3-chlorophenyl)-2-picolinamide were synthesized as potential ligands for the PET imaging of mGlu4 in the brain. Of these compounds, N-(3-chloro-4-(4-fluoro-1,3-dioxoisoindolin-2-yl)phenyl)-2-picolinamide (3, KALB001) exhibited improved binding affinity (IC50 = 5.1 nM) compared with ML128 (1) and was subsequently labeled with 18F. When finally formulated in 0.1 M citrate buffer (pH 4) with 10% ethanol, the specific activity of [18F]3 at the end of synthesis (EOS) was 233.5 ± 177.8 GBq/μmol (n = 4). The radiochemical yield of [18F]3 was 16.4 ± 4.8% (n = 4), and the purity was over 98%. In vivo imaging studies in a monkey showed that the radiotracer quickly penetrated the brain with the highest accumulation in the brain areas known to express mGlu4. Despite some unfavorable radiotracer properties like fast washout in rodent studies, [18F]3 is the first 18F-labeled mGlu4 radioligand, which can be further modified to improve pharmacokinetics and brain penetrability for future human studies. PMID:25330258

  13. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    PubMed Central

    Esfandiari, Nazanene H.; Papaleontiou, Maria; Worden, Francis P.; Haymart, Megan R.

    2015-01-01

    Background: Using the Surveillance, Epidemiology, and End Results—Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was

  14. Spectrum of fluorodeoxyglucose-positron emission tomography/computed tomography and magnetic resonance imaging findings of ovarian tumors.

    PubMed

    Kitajima, Kazuhiro; Ueno, Yoshiko; Maeda, Tetsuo; Murakami, Koji; Kaji, Yasushi; Kita, Masato; Suzuki, Kayo; Sugimura, Kazuro

    2011-11-01

    The purpose of this article is to review fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI) findings in a variety of benign, malignant, and borderline malignant ovarian tumors. It is advantageous to become familiar with the wide variety of FDG-PET/CT findings of this entity. Benign ovarian tumors generally have faint uptake, whereas endometriomas, fibromas, and teratomas show mild to moderate uptake. Malignant ovarian tumors generally have intense uptake, whereas tumors with a small solid component often show minimal uptake.

  15. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    PubMed

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  16. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    SciTech Connect

    Yeoh, Kheng-Wei; Mikhaeel, N. George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  17. Optical Coherence Tomography

    MedlinePlus

    ... Cardiac Magnetic Resonance Imaging (MRI and MRA) Computed Tomography (CT) Scan Diagnostic Tests and Procedures Echocardiography Electrocardiogram ... Ultrasound Nuclear Stress Test Nuclear Ventriculography Positron Emission Tomography (PET) Stress ... Optical Coherence Tomography | ...

  18. Prostate cancer nodal oligometastasis accurately assessed using prostate-specific membrane antigen positron emission tomography-computed tomography and confirmed histologically following robotic-assisted lymph node dissection

    PubMed Central

    O’Kane, Dermot B.; Lawrentschuk, Nathan; Bolton, Damien M.

    2016-01-01

    We herein present a case of a 76-year-old gentleman, where prostate-specific membrane antigen positron emission tomography-computed tomography (PSMA PET-CT) was used to accurately detect prostate cancer (PCa), pelvic lymph node (LN) metastasis in the setting of biochemical recurrence following definitive treatment for PCa. The positive PSMA PET-CT result was confirmed with histological examination of the involved pelvic LNs following pelvic LN dissection. PMID:27141207

  19. Rare case of isolated splenic metastases from gastric cancer detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Sivanesan, Balasubramanian; Shibu, Deepu; Shinto, Ajit Sugunan

    2013-04-01

    We report a rare case of isolated splenic metastasis from gastric cancer detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT). A 55-year-old man with gastric cancer 1 year post surgery, evaluated with PET/CT showed focal, intense uptake in the spleen, with no other abnormal findings. On splenectomy, the lesion was confirmed as metastasis from gastric cancer pathologically.

  20. Radiofluorinated carbohydrates for positron emission tomography.

    PubMed

    Mun, Jiyoung

    2013-01-01

    2-Deoxy-2-[(18)F]fluoro-D-glucose (2-(18)FDG) has represented radiofluorinated carbohydrates as the most successful tracer for positron emission tomography (PET). 2-(18)FDG uptake depends on glucose metabolism, which is related to a disease progression. 2-(18)FDG has been widely used in oncology, neurology, cardiology, infectious diseases, and inflammation, to complement anatomical modalities such as CT and MRI. Followed by the success of 2-(18)FDG, various radiofluorinated carbohydrates have been evaluated as PET tracers, which include analogs of D-ribose, D-mannose, D-galactose, D-talose, D-fructose, D-allose, lactose, L-fucose, N-acetylneuraminic acid, and L-ascorbic acid. Among those radiofluorinated carbohydrates, several have implied potential for further development. 2-Deoxy-2-[(18)F]fluoro-D-galactose has been developed to assess liver function and diagnose hepatic carcinoma. 6-Deoxy-6-[(18)F]fluoro-D-fructose showed promising characteristics for diagnosis of breast cancer. Three radiofluorinated analogs of lactose have been designed as the substrates of the overexpressed hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in peritumoral pancreatic tissue for early diagnosis of pancreatic cancer. The metabolism of 6-[(18)F]fluoro-L-fucose suggested that it is a bioactive analog of L-fucose in the synthesis of glycoconjugate macromolecules. 6-Deoxy-6-[(18)F]fluoro-L-ascorbic acid was evaluated to assess antioxidant function of L-ascorbic acid in rodent models of transient global ischemia and glutathione deficiency.

  1. Positron emission tomography: a first-hand experience.

    PubMed

    Traylor, J

    2000-01-01

    In July 1999, the University of Kansas Hospital installed a positron emission tomography (PET) scanner and added PET to the imaging technologies it offers patients and physicians. The new service is managed by the nuclear medicine section in the department of radiology. Plans are being implemented now to install a cyclotron in March 2000. Prior to installation of the scanner, a radiation area survey was performed in the space being considered for the PET unit. We also needed to address other critical considerations, including the manufacturer's requirements for construction of the scanner room, special electrical needs, and how the system would connect to our existing information network. It is important to work closely with your chief financial officer and chief operations officer from the beginning of the purchasing process so that these administrators have up-to-date, supportive information about PET and the progress of the installation. We made use of a variety of promotional techniques to market the new service, including broadcast e-mail, an open house for potential referring physicians, postings on the nuclear medicine Web site and communication through the local media. We also worked with the major insurance providers that utilize our hospital to educate them about PET and its benefits. In addition, we trained our own billing staff about procedures that optimize reimbursement for PET. In March 2000, University of Kansas Hospital will install the first cyclotron in the state, enabling us to generate the drugs used for PET scanning and potentially to add targets for research PET radiopharmaceuticals. PMID:10787761

  2. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  3. Comparative Oncology: Evaluation of 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) Positron Emission Tomography/Computed Tomography (PET/CT) for the Staging of Dogs with Malignant Tumors

    PubMed Central

    Beer, Ambros J.; Brühschwein, Andreas; Kreutzmann, Nina; Laberke, Silja; Wergin, Melanie C.; Meyer-Lindenberg, Andrea; Brandl, Johanna; von Thaden, Anne-Kathrin; Farrell, Eliane

    2015-01-01

    Introduction 2-Deoxy-2-[18F]fluoro-D-glucose PET/CT is a well-established imaging method for staging, restaging and therapy-control in human medicine. In veterinary medicine, this imaging method could prove to be an attractive and innovative alternative to conventional imaging in order to improve staging and restaging. The aim of this study was both to evaluate the effectiveness of this image-guided method in canine patients with spontaneously occurring cancer as well as to illustrate the dog as a well-suited animal model for comparative oncology. Methods Ten dogs with various malignant tumors were included in the study and underwent a whole body FDG PET/CT. One patient has a second PET-CT 5 months after the first study. Patients were diagnosed with histiocytic sarcoma (n = 1), malignant lymphoma (n = 2), mammary carcinoma (n = 4), sertoli cell tumor (n = 1), gastrointestinal stromal tumor (GIST) (n = 1) and lung tumor (n = 1). PET/CT data were analyzed with the help of a 5-point scale in consideration of the patients’ medical histories. Results In seven of the ten dogs, the treatment protocol and prognosis were significantly changed due to the results of FDG PET/CT. In the patients with lymphoma (n = 2) tumor extent could be defined on PET/CT because of increased FDG uptake in multiple lymph nodes. This led to the recommendation for a therapeutic polychemotherapy as a treatment. In one of the dogs with mammary carcinoma (n = 4) and in the patient with the lung tumor (n = 1), surgery was cancelled due to the discovery of multiple metastasis. Consequently no treatment was recommended. Conclusion FDG PET/CT offers additional information in canine patients with malignant disease with a potential improvement of staging and restaging. The encouraging data of this clinical study highlights the possibility to further improve innovative diagnostic and staging methods with regard to comparative oncology. In the future, performing PET/CT not only for staging but also in

  4. Positron emission tomography: An overview

    PubMed Central

    Shukla, A. K.; Kumar, Utham

    2006-01-01

    The rate of glucose utilization in tumor cells is significantly enhanced as compared to normal cells and this biochemical characteristic is utilized in PET imaging using FDG as a major workhorse. The PET systems as well as cyclotrons producing positron emitting radiopharmaceuticals have undergone continuous technological refinements. While PET (CT) systems enable fusion images as well as precise attenuation correction, the self-shielded cyclotrons developed provide dedicated systems for in-house production of a large number of PET radiopharmaceuticals. The application of PET images in oncology includes those of pulmonary, colorectal, breast, lymphoma, head & neck, bone, ovarian and GI cancers. The PET has been recognized as promising diagnostic tool to predict biological and physiological changes at the molecular level and hence offer a potential area for future applications including Stem Cell research. PMID:21206635

  5. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  6. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer.

    PubMed

    Mac Manus, Michael P; Hicks, Rodney J

    2012-09-01

    Positron emission tomography (PET)/computed tomography (CT) has rapidly assumed a critical role in the management of patients with locoregionally advanced lung cancers who are candidates for definitive radiation therapy (RT). Definitive RT is given with curative intent, but can only be successful in patients without distant metastasis and if all gross tumor is contained within the treated volume. An increasing body of evidence supports the use of PET-based imaging for selection of patients for both surgery and definitive RT. Similarly, the use of PET/CT images for accurate target volume definition in lung cancer is a dynamic area of research. Most available evidence on PET staging of lung cancer relates to non-small cell lung cancer (NSCLC). In general clinical use, (18)F-fluorodeoxyglucose (FDG) is the primary radiopharmaceutical useful in NSCLC. Other tracers, including proliferation markers and hypoxia tracers, may have significant roles in future. Much of the FDG-PET literature describing the impact of PET on actual patient management has concerned candidates for surgical resection. In the few prospective studies where PET was used for staging and patient selection in NSCLC candidates for definitive RT, 25%-30% of patients were denied definitive RT, generally because PET detected unsuspected advanced locoregional or distant metastatic disease. PET/CT and CT findings are often discordant in NSCLC but studies with clinical-pathological correlation always show that PET-assisted staging is more accurate than conventional assessment. In all studies in which "PET-defined" and "non-PET-defined" RT target volumes were compared, there were major differences between PET and non-PET volumes. Therefore, in cases where PET-assisted and non-PET staging are different and biopsy confirmation is unavailable, it is rational to use the most accurate modality (namely PET/CT) to define the target volume. The use of PET/CT in patient selection and target volume definition is likely

  7. Positron Emission Tomography: A Basic Analysis

    NASA Astrophysics Data System (ADS)

    Kerbacher, M. E.; Deaton, J. W.; Phinney, L. C.; Mitchell, L. J.; Duggan, J. L.

    2007-10-01

    Positron Emission Tomography is useful in detecting biological abnormalities. The technique involves attaching radiotracers to a material used inside the body, in many cases glucose. Glucose is absorbed most readily in areas of unusual cell growth or uptake of nutrients so through natural processes the treated glucose highlights regions of tumors and other degenerative disorders such as Alzheimer's disease. The higher the concentration of isotopes, the more dynamic the area. Isotopes commonly used as tracers are 11C, 18F, 13N, and 15O due to their easy production and short half-lives. Once the tracers have saturated an area of tissue they are detected using coincidence detectors collinear with individual isotopes. As the isotope decays it emits a positron which, upon annihilating an electron, produces two oppositely directioned gamma rays. The PET machine consists of several pairs of detectors, each 180 degrees from their partner detector. When the oppositely positioned detectors are collinear with the area of the isotope, a computer registers the location of the isotope and can compile an image of the activity of the highlighted area based on the position and strength of the isotopes.

  8. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  9. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    PubMed

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively.

  10. Characterization of nontransmural myocardial infarction by positron-emission tomography

    SciTech Connect

    Geltman, E.M.; Biello, D.; Welch, M.J.; Ter-Pogossian, M.M.; Roberts, R.; Sobel, B.E.

    1982-04-01

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 (+/- SEM SEM)) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction.

  11. Quantifying the limitations of small animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Oxley, D. C.; Boston, A. J.; Boston, H. C.; Cooper, R. J.; Cresswell, J. R.; Grint, A. N.; Nolan, P. J.; Scraggs, D. P.; Lazarus, I. H.; Beveridge, T. E.

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ http://geant4.web.cern.ch/geant4/] was employed to improve the understanding of detailed γ-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  12. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  13. Co-registration of glucose metabolism with positron emission tomography and vascularity with fluorescent diffuse optical tomography in mouse tumors

    PubMed Central

    2012-01-01

    Background Bimodal molecular imaging with fluorescence diffuse optical tomography (fDOT) and positron emission tomography (PET) has the capacity to provide multiple molecular information of mouse tumors. The objective of the present study is to co-register fDOT and PET molecular images of tumors in mice automatically. Methods The coordinates of bimodal fiducial markers (FM) in regions of detection were automatically detected in planar optical images (x, y positions) in laser pattern optical surface images (z position) and in 3-D PET images. A transformation matrix was calculated from the coordinates of the FM in fDOT and in PET and applied in order to co-register images of mice bearing neuroendocrine tumors. Results The method yielded accurate non-supervised co-registration of fDOT and PET images. The mean fiducial registration error was smaller than the respective voxel sizes for both modalities, allowing comparison of the distribution of contrast agents from both modalities in mice. Combined imaging depicting tumor metabolism with PET-[18 F]2-deoxy-2-fluoro-d-glucose and blood pool with fDOT demonstrated partial overlap of the two signals. Conclusions This automatic method for co-registration of fDOT with PET and other modalities is efficient, simple and rapid, opening up multiplexing capacities for experimental in vivo molecular imaging. PMID:22564761

  14. Positron emission tomography in cardiology

    SciTech Connect

    Correia, J.A.; Alpert, N.M.

    1985-12-01

    This article reviews the basis of PET imaging and current applications to cardiology. Included is a discussion of physical principles, detectors, quantitative estimation of regional radioactivity concentrations, radiopharmaceuticals, and application to flow and metabolism measurements in the myocardium.

  15. Spatial emission tomography reconstruction using Pitman-Yor process

    SciTech Connect

    Fall, Mame Diarra; Mohammad-Djafari, Ali; Barat, Eric; Comtat, Claude

    2009-12-08

    In this paper, we address the problem of emission tomography spatial reconstruction in three dimensions following a Bayesian nonparametric approach. Our model makes use of a generalization of the Dirichlet process called Pitman-Yor process. The problem in this approach is to deal with the infinite representation of the distribution in the inference. So we propose an efficient Markov Chain Monte-Carlo sampling scheme which is able to generate samples from the posterior distribution of the activity distribution. An application to 3D-PET reconstruction is presented.

  16. [Positron emission tomography: a new modality in Brazilian nuclear medicine].

    PubMed

    Robilotta, Cecil Chow

    2006-01-01

    In nuclear medicine, radioactive substances are used to diagnose and treat disease. This medical specialty, that can provide information about the human body's physiologic and metabolic processes, has become a key diagnostic tool for the early detection of many different disorders, including various types of cancer. The present article describes the historical milestones in nuclear medicine; the basic physical principles underlying positron emission tomography (PET), which is an imaging method used to map the distribution of radiopharmaceuticals in the body for diagnostic and therapeutic purposes, and the current status of this modality in Brazil.

  17. A Semiconductor-Based Positron Emission Tomography System

    NASA Astrophysics Data System (ADS)

    Oxley, D. C.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Grint, A. N.; Harkness, L. J.; Jones, M.; Judson, D. S.; Nolan, P. J.; Slee, M.; Unsworth, C.; Lazarus, I. H.

    2009-12-01

    This paper shall summarize the research conducted employing the high-purity germanium based small animal imaging system, SmartPET (SMall Animal Reconstructive Tomograph for Positron Emission Tomography). Geant4 simulations of the experimental setup were carried out in order to derive novel analysis procedures and quantify the system limitations. In this paper, we will focus on a gamma ray tracking approach devised to overcome germanium's high Compton scattering cross-section and on imaging challenging and complex phantom geometries. The potential of the developed tools and of the system itself will be discussed.

  18. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  19. Calcified peritoneal metastasis identified on 18F-fluoride positron emission tomography/computed tomography: Importance of extraosseous uptake of F-18 fluoride

    PubMed Central

    Verma, Priyanka; Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    F-18 NaF positron emission tomography/computed tomography (PET/CT) is used for the evaluation of malignant and nonmalignant osseous disease. Extraosseous uptake of 18 fluoride-NaF has been observed in the arterial vasculature, gastrointestinal tract, and genitourinary tract. We describe a case of a woman with carcinoma of unknown primary in whom F-18 NaF PET/CT showed tracer uptake in the calcified peritoneal metastasis. Extraosseous findings on F-18 NaF PET/CT, though rare, may be visualized and may result in important management changes. PMID:27095869

  20. Hypertrophic pulmonary osteoarthropathy on bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with lung adenocarcinoma

    PubMed Central

    Cengiz, Arzu; Eren, Mine Şencan; Polatli, Mehmet; Yürekli, Yakup

    2015-01-01

    Hypertrophic pulmonary osteoarthropathy (HPOA) is not an uncommon paraneoplastic syndrome that is frequently associated with lung cancer. A 54-year-old male patient with lung adenocarcinoma underwent bone scintigraphy and fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning for initial staging. Bone scintigraphy revealed increased periosteal activity in lower extremities. FDG PET/CT revealed hypermetabolic right lung mass, mediastinal lymph nodes, and mildly increased periosteal FDG uptake in both femurs and tibias. The findings in lower extremities on bone scan and FDG PET/CT were interpreted as HPOA. PMID:26170569

  1. Central Nervous System Drug Evaluation Using Positron Emission Tomography

    PubMed Central

    Maeda, Jun; Shimada, Hitoshi; Nogami, Tsuyoshi; Arakawa, Ryosuke; Takano, Harumasa; Higuchi, Makoto; Ito, Hiroshi; Okubo, Yoshiro; Suhara, Tetsuya

    2011-01-01

    In conventional pharmacological research in the field of mental disorders, pharmacological effect and dose have been estimated by ethological approach and in vitro data of affinity to the site of action. In addition, the frequency of administration has been estimated from drug kinetics in blood. However, there is a problem regarding an objective index of drug effects in the living body. Furthermore, the possibility that the concentration of drug in blood does not necessarily reflect the drug kinetics in target organs has been pointed out. Positron emission tomography (PET) techniques have made progress for more than 20 years, and made it possible to measure the distribution and kinetics of small molecule components in living brain. In this article, we focused on rational drug dosing using receptor occupancy and proof-of-concept of drugs in the drug development process using PET. PMID:23431048

  2. Resolution and Sensitivity in Positron Emission Tomography Imaging:. New Frontiers

    NASA Astrophysics Data System (ADS)

    Sossi, V.

    2004-07-01

    The combination of new detector technologies and rapidly increasing computing power is contributing to major developments in positron emission tomography (PET) imaging. The uniqueness of PET resides in its ability to detect very small concentrations of radioactively labeled tracers specifically designed to investigate selected biological functions. The desire to quantitatively observe increasingly complex biological processes together with the need of furthering research in small animal models of disease are pushing the limits of imaging spatial resolution and sensitivity. Resolution of approximately 10 mm3 is now achievable in human size brain scanners, while 1 mm3 can almost be reached in small animal imaging. Such ability will enable a more detailed exploration of healthy and disease function with the ultimate goal of imaging at a molecular level and of detecting pre-clinical disease induced changes.

  3. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  4. Imaging Brain Metabolism and Pathology in Alzheimer’s Disease with Positron Emission Tomography

    PubMed Central

    Shokouhi, S; Claassen, D; Riddle, WR

    2014-01-01

    Current Positron Emission Tomography (PET) biomarkers for Alzheimer’s disease (AD) assess either neuronal function, or associated pathological features of this common neurodegenerative disease. The most widely accepted clinical PET tool for AD is 18-fluorodeoxyglucose PET (FDG-PET), which measures cerebral metabolic glucose utilization rate (CMRglc). FDG-PET is a marker of synaptic activity, neuronal function, and neuronal metabolic activity. AD is characterized by a distinct pattern of hypometabolism, as seen with the FDG images. This pattern can show variability across different subjects and is present before a patient is demented, specifically in amnestic mild cognitive impairment a clinical diagnosis defined as an intermediate state from normal aging to dementia. In addition to FDG PET, novel PET approaches assess known pathological hallmarks of AD including extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles composed of tau fibrils. Already, amyloid PET imaging is a tool that allows in vivo imaging of extracellular beta-amyloid levels. Efforts to bring tau imaging into clinical use continue, but this approach is hampered by the intracellular nature of tau protein deposition, subsequent weak radiotracer binding, and low image contrast. Several new candidate probes for tau-specific PET imaging are currently available but have not found their way into broad clinical applications. This study gives an overview of the most recent PET-based neuroimaging techniques for AD. We place special emphasis on PET data analysis and interpretation techniques, as well as radiochemistry for imaging metabolism and assessing Aβ and tau pathology. PMID:25343059

  5. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new?

    PubMed

    Vallabhajosula, Shankar; Solnes, Lilja; Vallabhajosula, Brigitte

    2011-07-01

    Positron emission tomography (PET)/computed tomography (CT) is a rapidly expanding imaging modality, thanks to the availability of compact medical cyclotrons and automated chemistry synthesis modules for the production of PET radiopharmaceuticals. Despite the availability of many radiotracers, [(18)F]fluorodeoxyglucose (FDG) is currently the most widely used radiopharmaceutical in PET, and the field of molecular imaging is anxiously awaiting the introduction of new PET radiopharmaceuticals for routine clinical use. During the last five years, several proprietary PET radiopharmaceuticals have been developed by major companies, and these new agents are in different stages of clinical evaluation. These new PET drugs are designed for imaging brain beta amyloid, myocardial perfusion, amino acid transport, angiogenesis, and tumor antigen expression. In addition, the National Cancer Institute, Society of Nuclear Medicine Clinical Trials Network, and the American College of Radiology Imaging Network have been conducting multicenter clinical trials with several nonproprietary PET drugs such as sodium [(18)F]fluoride, [(18)F]fluorothymidine, [(18)F]fluoromisonidazole, and (64)Cu-labeled diacetyl-bis (N(4)-methylthiosemicarbazone. All new PET radiopharmaceuticals, like any other drugs, must be manufactured under current good manufacturing practices as required by the Food and Drug Administration before clinical evaluation (phases I, II, and III) and submission of new drug application. This review briefly describes the chemistry, mechanisms(s) of localization, and clinical application of both proprietary and nonproprietary new PET drugs under multicenter clinical evaluation.

  6. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 ... Persantine) or dobutamine. The tests may take between 2 and 2 1/2 hours. What happens after ...

  7. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Findings of Post Traumatic Lymphangioma in a Young Adult Male

    PubMed Central

    Kwon, Sang Don; Chun, Kyung Ah; Kong, Eun Jung; Cho, Ihn Ho

    2016-01-01

    The authors report the case of a 34-year-old male, who underwent a fluorine-18 fluoro deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan 7 years after trauma for the evaluation of multifocal masses in the right iliac and right inguinal areas. CT findings showed multifocal low density masses and 18F-FDG PET revealed slightly increased uptake (maximum standardized uptake value [SUVmax] 3.1). These findings did not exclude the possibility of a benign or malignant lesion. To achieve differential diagnosis, partial surgical excision was performed and a pathologic examination subsequently revealed lymphangioma. Here, the authors describe the 18F-FDG PET/CT findings of a rare case of lymphangioma resulting from trauma. PMID:27699163

  8. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Findings of Post Traumatic Lymphangioma in a Young Adult Male

    PubMed Central

    Kwon, Sang Don; Chun, Kyung Ah; Kong, Eun Jung; Cho, Ihn Ho

    2016-01-01

    The authors report the case of a 34-year-old male, who underwent a fluorine-18 fluoro deoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scan 7 years after trauma for the evaluation of multifocal masses in the right iliac and right inguinal areas. CT findings showed multifocal low density masses and 18F-FDG PET revealed slightly increased uptake (maximum standardized uptake value [SUVmax] 3.1). These findings did not exclude the possibility of a benign or malignant lesion. To achieve differential diagnosis, partial surgical excision was performed and a pathologic examination subsequently revealed lymphangioma. Here, the authors describe the 18F-FDG PET/CT findings of a rare case of lymphangioma resulting from trauma.

  9. Silicon as an unconventional detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  10. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  11. Simultaneous laser speckle imaging and positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, p<0.001) when correcting for surface vessel structures taking into account the contribution of static scatterers while keeping the coherence factor constant. However, using the originally published relation, which allows a 900 times faster computation of blood flow maps, still provided a good correlation (R2 = 0.879, p<0.001). Given the good correlation between LSI and PET we used our data to calibrate the speckle ICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  12. Pulmonary malignant melanoma with distant metastasis assessed by positron emission tomography-computed tomography.

    PubMed

    Kim, So Ri; Yoon, Ha-Yong; Jin, Gong Yong; Choe, Yeong Hun; Park, Seung Yong; Lee, Yong Chul

    2016-07-01

    Melanoma is a cutaneous malignant neoplasm of melanocytes. Primary malignant melanoma (MM) of the lung is very rare. Although previous reports have described the radiologic features of pulmonary MM, its rarity means that many factors are unknown. Thus, radiologic diagnosis is very difficult. Furthermore, there is little information regarding diagnostic application and/or the usefulness of [(18)F]-fluorine-2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (FDG-PET-CT) for primary pulmonary MM. A 69-year-old patient with a productive cough lasting three weeks was admitted to our hospital. Chest CT showed a large single mass with a multi-lobulated margin and homogeneous enhancement in the right upper lobe, which was subsequently diagnosed as a primary pulmonary MM with multiple metastases. On PET-CT images, the pulmonary mass and multiple bone lesions showed very increased uptakes of FDG. Considering that pulmonary metastasis from a mucocutaneous melanoma is the main differential diagnosis of primary pulmonary MM, systemic assessment of the whole body is more important than for other types of lung malignancies. This report introduces PET-CT as a useful diagnostic modality for pulmonary MM, especially in cases of distant multiple metastases. PMID:27385996

  13. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    PubMed

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  14. Role of positron emission tomography-computed tomography in non-small cell lung cancer

    PubMed Central

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-01-01

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  15. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid.

    PubMed

    Vallabhajosula, Shankar

    2011-07-01

    Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.

  16. Vascular endothelial growth factor C complements the ability of positron emission tomography to predict nodal disease in lung cancer

    PubMed Central

    Farjah, Farhood; Madtes, David K.; Wood, Douglas E.; Flum, David R.; Zadworny, Megan E.; Waworuntu, Rachel; Hwang, Billanna; Mulligan, Michael S.

    2016-01-01

    Objective Vascular endothelial growth factors (VEGFs) C and D are biologically rational markers of nodal disease that could improve the accuracy of lung cancer staging. We hypothesized that these biomarkers would improve the ability of positron emission tomography (PET) to predict nodal disease among patients with suspected or confirmed non–small cell lung cancer (NSCLC). Methods A cross-sectional study (2010–2013) was performed of patients prospectively enrolled in a lung nodule biorepository, staged by computed tomography (CT) and PET, and who underwent pathologic nodal evaluation. Enzyme-linked immunosorbent assay was used to measure biomarker levels in plasma from blood drawn before anesthesia. Likelihood ratio testing was used to compare the following logistic regression prediction models: ModelPET, ModelPET/VEGF-C, ModelPET/VEGF-D, and ModelPET/VEGF-C/VEGF-D. To account for 5 planned pairwise comparisons, P values<.01 were considered significant. Results Among 62 patients (median age, 67 years; 48% men; 87% white; and 84% NSCLC), 58% had fluorodeoxyglucose uptake in hilar and/or mediastinal lymph nodes. The prevalence of pathologically confirmed lymph node metastases was 40%. Comparisons of prediction models revealed the following: ModelPET/VEGF-C versus ModelPET (P = .0069), ModelPET/VEGF-D versus ModelPET (P = .1886), ModelPET/VEGF-C/VEGF-D versus ModelPET (P = .0146), ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-C (P = .2818), and ModelPET/VEGF-C/VEGF-D versus ModelPET/VEGF-D (P = .0095). In ModelPET/VEGF-C, higher VEGF-C levels were associated with an increased risk of nodal disease (odds ratio, 2.96; 95% confidence interval, 1.26–6.90). Conclusions Plasma levels of VEGF-C complemented the ability of PET to predict nodal disease among patients with suspected or confirmed NSCLC. VEGF-D did not improve prediction. PMID:26320776

  17. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    ERIC Educational Resources Information Center

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  18. Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents.

    PubMed

    Kim, Dong-Yeon; Min, Jung-Joon

    2016-09-01

    Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed. PMID:27540422

  19. Clinical and research applications of simultaneous positron emission tomography and MRI

    PubMed Central

    Fraioli, F

    2014-01-01

    Abstract Evaluation of the molecular processes responsible for disease pathogenesis and progression represents the new frontier of clinical radiology. Multimodality imaging lies at the cutting edge, combining the power of MRI for tissue characterization, microstructural appraisal and functional assessment together with new positron emission tomography (PET) tracers designed to target specific metabolic processes. The recent commercial availability of an integrated clinical whole-body PET-MRI provides a hybrid platform for exploring and exploiting the synergies of multimodal imaging. First experiences on the clinical and research application of hybrid PET-MRI are emerging. This article reviews the rapidly evolving field and speculates on the potential future direction. PMID:24234585

  20. Positron emission tomography for measurement of copper fluxes in live organisms.

    PubMed

    Peng, Fangyu

    2014-05-01

    Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy.

  1. 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology

    PubMed Central

    Freebody, John; Wegner, Eva A; Rossleigh, Monica A

    2014-01-01

    Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology. PMID:25349660

  2. Contrast-Enhanced [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Staging and Radiotherapy Planning in Patients With Anal Cancer

    SciTech Connect

    Bannas, Peter; Weber, Christoph; Adam, Gerhard; Frenzel, Thorsten; Derlin, Thorsten; Mester, Janos; Klutmann, Susanne

    2011-10-01

    Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequent radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.

  3. PET/Computed Tomography in Breast Cancer: Can It Aid in Developing a Personalized Treatment Design?

    PubMed

    Suresh Malapure, Sumeet; Das, Kalpa Jyoti; Kumar, Rakesh

    2016-07-01

    PET with fluorodeoxyglucose (FDG-PET)/computed tomography (CT) imaging has significantly improved the management of breast cancer. FDG, however, is not tumor-specific and various image interpretation pitfalls may occur due to false-positive and false-negative causes of FDG uptake. PET/CT imaging with more specific radiopharmaceuticals may provide useful information about the pathophysiology in such cases. In the present article, we reviewed the use of whole-body FDG-PET/CT and (18)F-16α-17β-Fluoroestradiol PET/CT imaging to determine if these can be used to develop personalized treatment design for the better management of breast cancer. PMID:27321033

  4. Multiple pulmonary sclerosing hemangiomas (pneumocytoma) mimicking lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajan, Firoz; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Pulmonary sclerosing hemangioma (PSH), or the alternative name of “sclerosing pneumocytoma,” is a rare benign neoplasm. PSH is often asymptomatic and presents as a solitary or multiple pulmonary nodules on radiologic imaging studies. Few articles have been reported to describe the fluorodeoxyglucose positron emission tomography (FDG PET) findings about PSH. The authors describe an interesting but uncommonly encountered cause of false positive FDG PET scan in the thorax in a 25-year-old woman, a known case of arteriovenous malformation of oral cavity who underwent embolization and presented with incidental detection of bilateral lung nodules. She is asymptomatic and is on follow-up. PMID:25210285

  5. Multiple pulmonary sclerosing hemangiomas (pneumocytoma) mimicking lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajan, Firoz; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-07-01

    Pulmonary sclerosing hemangioma (PSH), or the alternative name of "sclerosing pneumocytoma," is a rare benign neoplasm. PSH is often asymptomatic and presents as a solitary or multiple pulmonary nodules on radiologic imaging studies. Few articles have been reported to describe the fluorodeoxyglucose positron emission tomography (FDG PET) findings about PSH. The authors describe an interesting but uncommonly encountered cause of false positive FDG PET scan in the thorax in a 25-year-old woman, a known case of arteriovenous malformation of oral cavity who underwent embolization and presented with incidental detection of bilateral lung nodules. She is asymptomatic and is on follow-up.

  6. 1999 ICP Distinguished Scientist Award. The history of positron emission tomography.

    PubMed

    Nutt, Ronald

    2002-01-01

    The history of Positron Emission Tomography (PET) is rich in technological achievements and advancements. The advancements that have benchmarked PET progress are the result of key components that include human intellect and passion for PET technology, relentless persuasion of key political forces to eliminate the barriers precluding PET usage, tireless efforts to raise awareness about PET and a crucial network of support throughout the PET community. This article sets forth a timeline of significant events that have contributed to the development of PET as it is known today. It introduces the earliest physicist and physician, for instance, who were responsible for the first medical applications for positron emitting radioisotopes using a simple brain probe that utilized coincidence to localize brain tumors. Additionally, it identifies landmark technological achievements that have helped pave the way to modern PET. This study includes historical accounts surrounding the use of the first human PET tomograph, discovery of the Bismuth Germanate (BGO) scintillator, development of the Fluorodeoxyglucose (FDG) PET method, the design of the first PET medical cyclotron with automated chemistry and operated by a PC and a technologist, Food and Drug Administration's approval of FDG, HCFA reimbursement, and the capacity of Lutetium Oxyorthosilicate (LSO) to produce a revolutionary advance in PET scanners. The main thrust of this article is to recognize via a timeline of PET accomplishments the noteworthy work of scientists, physicians and others who have been key players in various aspects of the continuous activity to move PET technology forward from invention to research, and to become a major clinical imaging modality.

  7. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    PubMed Central

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated. PMID:26274871

  8. The use of fluorine-18 fluorodeoxyglucose positron emission tomography for imaging human motor neuronal activation in the brain

    PubMed Central

    PAHK, KISOO; PARK, KUN-WOO; PYUN, SUNG BOM; LEE, JAE SUNG; KIM, SUNGEUN; CHOE, JAE GOL

    2015-01-01

    The present study aimed to visualize human motor neuronal activation in the brain using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), and to develop an FDG-PET procedure for imaging neuronal activation. A male volunteer underwent 20 min periods of rest and motor activation, whilst being assessed using FDG-PET on two consecutive days. The motor task, which involved repetitively grasping and releasing the right hand, was performed during the initial 5 min of the activation period. Subtraction of the rest period signal from the activation PET images was performed using the subtraction ictal single-photon emission computed tomography co-registered to magnetic resonance imaging method. The subtracted image detected activation of the contralateral (left) primary motor cortex, supplementary motor area, and ipsilateral (right) cerebellum. In the present study, FDG-PET detected significantly increased motor-associated activation of the brain in a subject performing a motor task. PMID:26668604

  9. The Use and Misuse of Positron Emission Tomography in Lung Cancer Evaluation

    PubMed Central

    Chang, Ching-Fei; Rashtian, Afshin; Gould, Michael K.

    2011-01-01

    Synopsis Positron emission tomography (PET) has been studied for a variety of indications in patients with known or suspected non-small cell lung cancer (NSCLC). In this review, we discuss the potential benefits and limitations of PET for characterizing lung nodules, staging the mediastinum, identifying occult distant metastasis, determining prognosis and treatment response, guiding plans for radiation therapy, restaging during and after treatment, and selecting targets for tissue sampling. (Table 1) Evidence from randomized, controlled trials supports the use of PET for initial staging in NSCLC, while lower quality evidence from studies of diagnostic accuracy and modeling studies supports the use of PET for characterizing lung nodules. For most other indications in NSCLC, additional studies are required to clarify the role of PET and determine who is most likely to benefit. PMID:22054883

  10. Positron emission tomography imaging as a key enabling technology in drug development.

    PubMed

    McCarthy, T J

    2007-01-01

    The use of positron emission tomography (PET) in drug development has become more common in the pharmaceutical industry in recent years. One of the biggest challenges to gaining acceptance of this technology is for project teams to understand when to use PET. This chapter reviews the usage of PET in drug development in the context of target, mechanism and efficacy biomarkers. Examples are drawn from a number of therapeutic areas, but we also show that the relative penetration of this technology beyond CNS and oncology applications has been relatively small. However, with the increasing availability of PET and development of novel radiotracers it is expected that the utilization will be much broader in future years, with the additional expectation that the use of PET as an efficacy biomarker will also become more evident. PMID:17172162

  11. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Singh, Harmandeep; Patel, Chetan; Sarkar, Kaushik; Kumar, Rakesh; Bal, Chandra Sekhar

    2014-01-01

    Purpose: Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. Materials and Methods: PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. Results: The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. Conclusion: This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose. PMID:25400362

  12. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  13. Data analysis in emission tomography using emission-count posteriors

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  14. Evaluation of Shoulder Disorders by 2-[F-18]-fluoro-2-deoxy-D-glucose Positron Emission Tomography and Computed Tomography

    PubMed Central

    Lee, Sang Hong; Park, Sung Yong; Yu, Jae Cheol; Gorthi, Venkat

    2010-01-01

    Background Although flourine-18-flourodeoxyglucose (FDG) positron emission tomography (PET) has a limitation for localizing anatomical structures, combining it with computed tomography (CT) has made it more efficient for overcoming such limitations. This study aims to evaluate the efficacy of PET/CT for evaluating diseases of the shoulder. Methods Retrospective examination was performed on 25 patients who underwent FDG-PET/CT scanning. All the patients were over 60 years of age, and they were evaluated both clinically and radiologically for shoulder pain. The study period was from May, 2006 to May, 2008. One of the patients had metastatic lesion in a shoulder and this patient was excluded from the study, so the total number of subjects in the study was finally 24 patients. Results PET/CT showed 67% sensitivity, 73% specificity, a positive predictive value of 60%, a negative predictive value of 79%, 27% false positivity and 33% false negativity concerning shoulder pain. PET/CT showed negative finding in 4 cases that were successfully treated by operative treatment (rotator cuff tear [RCT], 3 cases; impingement syndrome, 1 case). Negative findings were also noted in 6 cases in which the pain subsided after conservative treatment (RCT, 1 case; suspected RCT, 2 cases; impingement syndrome, 3 cases). All the patients with osteoarthritis and rheumatoid arthritis had positive findings on PET/CT scanning. Conclusions PET/CT is a useful adjunct to the existing imaging modalities to assess functional and pathophysiologic processes and at a very early stage, and so PET/CT can help physicians make better preoperative and postoperative decisions on treatment. PMID:20808588

  15. Positron emission tomography to assess hypoxia and perfusion in lung cancer

    PubMed Central

    Verwer, Eline E; Boellaard, Ronald; van der Veldt, Astrid AM

    2014-01-01

    In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed. PMID:25493221

  16. [Capabilities of positron emission tomography to study mecha-nisms of multiple sclerosis: own data and literature].

    PubMed

    Stolyarov, I D; Petrov, A M; Shkil'nyuk, G G; Kataeva, G V; Prakhova, L N

    2016-01-01

    The article presents the literature data and results of our own researchon the use of positron emission tomography (PET) with different radiotracersin multiple sclerosis (MS). Informationon the operating principles of PET and PET studies with different radiotracers are considered. The results of PET studiesin different typesof MS, including determinationof the localization of neuronal damagein the corticalgray matter, assessmentof microglial activation, study of the relationship between glucose metabolismin the brain and the severity of cognitive impairmentin MS, can providenew information about the pathogenesis ofMS.

  17. The methodology of TSPO imaging with positron emission tomography.

    PubMed

    Turkheimer, Federico E; Rizzo, Gaia; Bloomfield, Peter S; Howes, Oliver; Zanotti-Fregonara, Paolo; Bertoldo, Alessandra; Veronese, Mattia

    2015-08-01

    The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [(11)C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers.

  18. Sydenham's chorea: positron emission tomographic (PET) scan studies.

    PubMed

    Aron, Alan M

    2005-10-01

    Two patients with Sydenham's chorea were evaluated with positron emission tomographic (PET) scans in the active phase of the disease. One patient had repeat scanning in the recovery phase. PET scans showed hypermetabolic changes of the caudate nuclei and putamen in the active phase of Sydenham's chorea. The scan reverted to normal in the recovery phase. These changes can afford a basis for comparing concurrent serum antibody studies in the acute and recovery phases of Sydenham's chorea.

  19. [{sup 18}F]FDG-Positron Emission Tomography Coregistration With Computed Tomography Scans for Radiation Treatment Planning of Lymphoma and Hematologic Malignancies

    SciTech Connect

    Terezakis, Stephanie A.; Hunt, Margie A.; Kowalski, Alexander; McCann, Patrick; Schmidtlein, C. Ross; Reiner, Anne; Goenen, Mithat; Kirov, Assen S.; Gonzales, Anne Marie; Schoeder, Heiko; Yahalom, Joachim

    2011-11-01

    Purpose: Positron emission-tomography (PET) using 2-[{sup 18}F]fluoro-2-deoxyglucose (FDG-PET) increases sensitivity and specificity of disease detection in lymphoma and thus is standard in lymphoma management. This study examines the effects of coregistering FDG-PET and computed tomography (CT) (PET/CT) scans on treatment planning for lymphoma patients. Methods and Materials: Twenty-nine patients (30 positive PET scans) underwent PET/CT treatment planning from July 2004 to February 2007 and were retrospectively studied. For each patient, gross tumor volume was blindly contoured on the CT-only and PET/CT studies by a radiation oncologist. Treatment plans were generated for both the CT-only and PET/CT planning target volumes (PTVs) for all patients. Normal tissue doses and PTV coverage were evaluated using dose--volume histograms for all sites. Results: Thirty-two treatment sites were evaluated. Twenty-one patients had non-Hodgkin lymphoma, 5 patients had Hodgkin lymphoma, and 3 patients had plasma cell neoplasms. Previously undetected FDG-avid sites were identified in 3 patients during PET/CT simulation, resulting in one additional treatment field. Due to unexpected PET/CT simulation findings, 2 patients did not proceed with radiation treatment. The addition of PET changed the volume of 23 sites (72%). The PTV was increased in 15 sites (47%) by a median of 11% (range, 6-40%) and reduced in 8 sites (25%) by a median of 20% (range, 6%-75%). In six (19%) replanned sites, the CT-based treatment plan would not have adequately covered the PTV defined by PET/CT. Conclusions: Incorporation of FDG-PET into CT-based treatment planning for lymphoma patients resulted in considerable changes in management, volume definition, and normal tissue dosimetry for a significant number of patients.

  20. Contrast-enhanced [18 F] fluorodeoxyglucose-positron emission tomography/computed tomography in clinical oncology: tumor-, site-, and question-based comparison with standard positron emission tomography/computed tomography

    PubMed Central

    2014-01-01

    Background The present study aimed to evaluate the added value of contrast-enhanced computed tomography (ceCT) in comparison to standard, non-enhanced CT in the context of a combined positron emission tomography (PET)/CT examination by means of a tumor-, site-, and clinical question-based approach. Methods Analysis was performed in 202 patients undergoing PET/CT consisting of a multiphase CT protocol followed by a whole-body PET. The Cochran Q test was performed, followed by a multiple comparisons correction (McNemar test and Bonferroni adjustment), to compare standard and contrast-enhanced PET (cePET/CT). Histopathology or clinical-radiologic follow-up greater than 1 year was used as a reference. Results cePET/CT showed significantly different results with respect to standard PET/CT in head and neck and gastrointestinal cancer (P = 0.02 and 0.0002, respectively), in the evaluation of lesions located in the abdomen (P = 0.009), and in the context of disease restaging (P = 0.003). In all these clinical scenarios, adding ceCT resulted in a distinct benefit, by yielding a higher percentage of change in patient management. Conclusion These data strongly underline the importance of strictly selecting patients for the combined exam. In particular, patient selection should not be driven solely by mere tumor classification, but should also account for the clinical question and the anatomical location of the neoplastic disease, which can significantly impact patient management. PMID:25609564

  1. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography

    SciTech Connect

    Casey, Dana L.; Wexler, Leonard H.; Fox, Josef J.; Dharmarajan, Kavita V.; Schoder, Heiko; Price, Alison N.; Wolden, Suzanne L.

    2014-12-01

    Purpose: To evaluate whether [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) response of the primary tumor after induction chemotherapy predicts outcomes in rhabdomyosarcoma (RMS). Methods and Materials: After excluding those with initial tumor resection, 107 patients who underwent FDG-PET after induction chemotherapy at Memorial Sloan Kettering Cancer Center from 2002 to 2013 were reviewed. Local control (LC), progression-free survival (PFS), and overall survival (OS) were calculated according to FDG-PET response and maximum standardized uptake value (SUV) at baseline (PET1/SUV1), after induction chemotherapy (PET2/SUV2), and after local therapy (PET3/SUV3). Receiver operator characteristic curves were used to determine the optimal cutoff for dichotomization of SUV1 and SUV2 values. Results: The SUV1 (<9.5 vs ≥9.5) was predictive of PFS (P=.02) and OS (P=.02), but not LC. After 12 weeks (median) of induction chemotherapy, 45 patients had negative PET2 scans and 62 had positive scans: 3-year PFS was 72% versus 44%, respectively (P=.01). The SUV2 (<1.5 vs ≥1.5) was similarly predictive of PFS (P=.005) and was associated with LC (P=.02) and OS (P=.03). A positive PET3 scan was predictive of worse PFS (P=.0009), LC (P=.05), and OS (P=.03). Conclusions: [{sup 18}F]fluorodeoxyglucose positron emission tomography is an early indicator of outcomes in patients with RMS. Future prospective trials may incorporate FDG-PET response data for risk-adapted therapy and early assessment of new treatment regimens.

  2. Bilateral Diffuse Fluorodeoxyglucose Uptake in Thyroid Gland Diagnosed by Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    PubMed Central

    Win, Aung Zaw; Aparici, Carina Mari

    2014-01-01

    Our patient is a female who was first diagnosed with breast cancer at the age of 23. A follow-up fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at age 44 revealed diffuse high FDG uptake in an enlarged thyroid gland. Fine-needle aspiration (FNA) of the thyroid mass revealed estrogen receptor/progesterone receptor negative, human epidermal growth factor receptor 2+ breast cancer. To the best of our knowledge, this is the first case to report breast cancer metastasis to the thyroid in a diffuse pattern on FDG-PET/CT. Bilateral diffuse uptake of FDG in thyroid is the most commonly associated with benign conditions. However, FNA biopsies need to be done to rule out metastatic disease in thyroid lesions with diffuse high FDG uptake, especially for patients with history of cancer. PMID:25191131

  3. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    NASA Astrophysics Data System (ADS)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  4. Role of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Cytologically Indeterminate Thyroid Nodules

    PubMed Central

    Buyukdereli, Gulgun; Aktar, Yasemin; Kara, Ertan; Uguz, Aysun; Sonmez, Husnu

    2016-01-01

    Background: Thyroid nodules with indeterminate fine-needle aspiration biopsy (FNAB) results remain a diagnostic dilemma, because 70 - 85% of these nodules have been found to be benign after thyroid surgery. Objectives: The purpose of this study was to evaluate the usefulness of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the preoperative diagnosis of cytologically indeterminate nodules. Patients and Methods: Forty-six patients were included in this study. These individuals had undergone FDG PET/CTs for the preoperative evaluation of thyroid nodules with indeterminate FNAB results. The results of the preoperative PET/CT scans were compared with the postoperative pathological results and statistically analyzed. Results: Of the 46 patients included in our study, the histopathology of the surgical specimens revealed thyroid cancer in 17 individuals (37%, 17/46). The PET/CT scan showed a positive result in 27 patients. Of these, 16 patients (59.3%) were found to have thyroid carcinomas. In addition, the PET/CT scan was considered to be negative in 19 patients, 18 (94.7%) of whom had benign lesions. For the detection of malignant lesions, the values for the sensitivity and specificity, and the positive predictive and negative predictive values were 94%, 62%, 59%, and 95%, respectively. Conclusion: The FDG PET/CT showed a high sensitivity and a high negative predictive value for identifying malignancies in thyroid nodules with indeterminate FNAB results. Therefore, the FDG PET/CT may be a helpful tool in the clinical management of these nodules. When an FDG positive lesion is detected, further examination is recommended. PMID:27110335

  5. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases. PMID:27184919

  6. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases.

  7. Positron Emission Tomography - Computed Tomography (PET/CT)

    MedlinePlus

    ... perfusion scan ). evaluate brain abnormalities, such as tumors, memory disorders, seizures and other central nervous system disorders. map normal human brain and heart function. top of page How ...

  8. Active subcutaneous calcinosis demonstrated by fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in a case of limited cutaneous systemic sclerosis.

    PubMed

    Vadrucci, Manuela; Castellani, Massimo; Benti, Riccardo

    2016-01-01

    Systemic sclerosis (SSc) is a rheumatic autoimmune disease of unknown origin causing fibrosis of the skin and the internal organs. The limited cutaneous variant is the most common subtype of SSc, and it is predominantly characterized by skin and soft-tissues involvement. A 72-year-old woman, who had been diagnosed with the limited cutaneous form of SSc 16 years before, underwent fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) examination due to unexplained weight loss and recent onset of fatigue and joint pain. PET/CT images showed widespread soft-tissue calcinosis characterized by elevated glucose uptake. PMID:27095870

  9. The distinctive role of positron emission tomography/computed tomography in breast carcinoma with brown adipose tissue 2-fluoro-2-deoxy-d-glucose uptake.

    PubMed

    Heiba, Sherif I; Bernik, Stephanie; Raphael, Barbara; Sandella, Nick; Cholewinski, Witold; Klein, Paula

    2005-01-01

    The diagnostic power of an integrated positron emission tomography/computed tomography (PET/CT) system for whole-body 2-fluoro-2-deoxy-d-glucose (FDG) imaging is clearly demonstrated in this case report. The precise anatomic localization of FDG uptake with CT in a PET/CT scan of a patient with known breast carcinoma helped identify a contralateral breast tumor with axillary lymph node metastasis despite the presence of extensive physiologic brown fat FDG uptake. Accordingly, the patient received appropriate surgical management and pathologic confirmation of the disease.

  10. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-07-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes.

  11. Image findings of monomorphic non-hogdkin lymphoproliferative disorder in a post renal transplant patient diagnosed with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajasekar, Thirugnanam; Shibu, Deepu; Radhakrishnan, Edathurthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoid proliferations caused by immunosuppression after solid organ or bone marrow transplantation. PTLD is categorized by early lesion, polymorphic PTLD and monomorphic PTLD. Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) scans have clinical significance in the evaluation of PTLD following renal transplantation. We report imaging findings of a monomorphic non-Hodgkin lymphoma, post renal transplant seen on FDG PET/CT in a 32-year-old lactating woman. Whole body FDG- ET/CT demonstrated uptake in right external iliac and inguinal lymph nodes. PMID:25210292

  12. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  13. The distinctive role of positron emission tomography/computed tomography in breast carcinoma with brown adipose tissue 2-fluoro-2-deoxy-d-glucose uptake.

    PubMed

    Heiba, Sherif I; Bernik, Stephanie; Raphael, Barbara; Sandella, Nick; Cholewinski, Witold; Klein, Paula

    2005-01-01

    The diagnostic power of an integrated positron emission tomography/computed tomography (PET/CT) system for whole-body 2-fluoro-2-deoxy-d-glucose (FDG) imaging is clearly demonstrated in this case report. The precise anatomic localization of FDG uptake with CT in a PET/CT scan of a patient with known breast carcinoma helped identify a contralateral breast tumor with axillary lymph node metastasis despite the presence of extensive physiologic brown fat FDG uptake. Accordingly, the patient received appropriate surgical management and pathologic confirmation of the disease. PMID:16297092

  14. Muscle use during double poling evaluated by positron emission tomography.

    PubMed

    Bojsen-Møller, Jens; Losnegard, Thomas; Kemppainen, Jukka; Viljanen, Tapio; Kalliokoski, Kari K; Hallén, Jostein

    2010-12-01

    Due to the complexity of movement in cross-country skiing (XCS), the muscle activation patterns are not well elucidated. Previous studies have applied surface electromyography (SEMG); however, recent gains in three-dimensional (3D) imaging techniques such as positron emission tomography (PET) have rendered an alternative approach to investigate muscle activation. The purpose of the present study was to examine muscle use during double poling (DP) at two work intensities by use of PET. Eight male subjects performed two 20-min DP bouts on separate days. Work intensity was ∼ 53 and 74% of peak oxygen uptake (Vo(2peak)), respectively. During exercise 188 ± 8 MBq of [(18)F]fluorodeoxyglucose ([(18)F]FDG) was injected, and subsequent to exercise a full-body PET scan was conducted. Regions of interest (ROI) were defined within 15 relevant muscles, and a glucose uptake index (GUI) was determined for all ROIs. The muscles that span the shoulder and elbow joints, the abdominal muscles, and hip flexors displayed the greatest GUI during DP. Glucose uptake did not increase significantly from low to high intensity in most upper body muscles; however, an increased GUI (P < 0.05) was seen for the knee flexor (27%) and extensor muscles (16%), and for abdominal muscles (21%). The present data confirm previous findings that muscles of the upper limb are the primary working muscles in DP. The present data further suggest that when exercise intensity increases, the muscles that span the lumbar spine, hip, and knee joints contribute increasingly. Finally, PET provides a promising alternative or supplement to existing methods to assess muscle activation in complex human movements.

  15. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    SciTech Connect

    Yeung, Timothy P C; Yartsev, Slav; Lee, Ting-Yim; Wong, Eugene; He, Wenqing; Fisher, Barbara; VanderSpek, Lauren L; Macdonald, David; Bauman, Glenn

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  16. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  17. Assessment of Cancer-Associated Biomarkers by Positron Emission Tomography: Advances and Challenges

    PubMed Central

    Collier, T. Lee; Lecomte, Roger; McCarthy, Timothy J.; Meikle, Steve; Ruth, Thomas J.; Scopinaro, Francesco; Signore, Alberto; Van Brocklin, Henry; Van de Wiele, Christophe; Waterhouse, Rikki N.

    2002-01-01

    Positron emission tomography (PET) provides a powerful means to non-invasively image and quantify protein expression and biochemical changes in living subjects at nano- and picomolar levels. As the field of molecular imaging develops, and as advances in the biochemistry, pharmacology, therapeutics, and molecular biology of disease are made, there is a corresponding increase in the number of clinically relevant, novel disease-associated biomarkers that are brought to the attention of those developing imaging probes for PET. In addition, due to the high specificity of the PET radiotracers being developed, there is a demand for PET cameras with higher sensitivity and resolution. This manuscript reviews advances over the past five years in clinical and pre-clinical PET instrumentation and in new PET probes and imaging methods associated with the latest trends in the molecular imaging of cancer. Included in the PET tracer review is a description of new radioligands for steroid receptors, growth factor receptors, receptor tyrosine kinases, sigma receptors, tumor-associated enzymes, gene reporter probes, markers for tumor hypoxia and metabolism, and sites associated with angiogenesis and cellular proliferation. The use of PET imaging in drug development, including the monitoring of cancer chemotherapy, also is discussed. PMID:14646039

  18. Molecular imaging using PET for breast cancer.

    PubMed

    Kurihara, Hiroaki; Shimizu, Chikako; Miyakita, Yasuji; Yoshida, Masayuki; Hamada, Akinobu; Kanayama, Yousuke; Yonemori, Kan; Hashimoto, Jun; Tani, Hitomi; Kodaira, Makoto; Yunokawa, Mayu; Yamamoto, Harukaze; Watanabe, Yasuyoshi; Fujiwara, Yasuhiro; Tamura, Kenji

    2016-01-01

    Molecular imaging can visualize the biological processes at the molecular and cellular levels in vivo using certain tracers for specific molecular targets. Molecular imaging of breast cancer can be performed with various imaging modalities, however, positron emission tomography (PET) is a sensitive and non-invasive molecular imaging technology and this review will focus on PET molecular imaging of breast cancer, such as FDG-PET, FLT-PET, hormone receptor PET, and anti-HER2 PET.

  19. Clinical use of amyloid-positron emission tomography neuroimaging: Practical and bioethical considerations.

    PubMed

    Witte, Michael M; Foster, Norman L; Fleisher, Adam S; Williams, Monique M; Quaid, Kimberly; Wasserman, Michael; Hunt, Gail; Roberts, J Scott; Rabinovici, Gil D; Levenson, James L; Hake, Ann Marie; Hunter, Craig A; Van Campen, Luann E; Pontecorvo, Michael J; Hochstetler, Helen M; Tabas, Linda B; Trzepacz, Paula T

    2015-09-01

    Until recently, estimation of β-amyloid plaque density as a key element for identifying Alzheimer's disease (AD) pathology as the cause of cognitive impairment was only possible at autopsy. Now with amyloid-positron emission tomography (amyloid-PET) neuroimaging, this AD hallmark can be detected antemortem. Practitioners and patients need to better understand potential diagnostic benefits and limitations of amyloid-PET and the complex practical, ethical, and social implications surrounding this new technology. To complement the practical considerations, Eli Lilly and Company sponsored a Bioethics Advisory Board to discuss ethical issues that might arise from clinical use of amyloid-PET neuroimaging with patients being evaluated for causes of cognitive decline. To best address the multifaceted issues associated with amyloid-PET neuroimaging, we recommend this technology be used only by experienced imaging and treating physicians in appropriately selected patients and only in the context of a comprehensive clinical evaluation with adequate explanations before and after the scan. PMID:27239516

  20. Respiratory motion correction in emission tomography image reconstruction.

    PubMed

    Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques

    2005-01-01

    In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  1. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  2. TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-01

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  3. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    PubMed Central

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699

  4. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  5. Distributed microprocessor automation network for synthesizing radiotracers used in positron emission tomography

    SciTech Connect

    Russell, J.A.G.; Alexoff, D.L.; Wolf, A.P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. 20 refs. (DT)

  6. Using Positron Emission Tomography to Study Transporter-Mediated Drug–Drug Interactions in Tissues

    PubMed Central

    Wulkersdorfer, B; Wanek, T; Bauer, M; Zeitlinger, M; Müller, M; Langer, O

    2014-01-01

    Drug disposition is highly regulated by membrane transporters. Some transporter-mediated drug–drug interactions (DDIs) may not manifest themselves in changes in systemic exposure but rather in changes in tissue exposure of drugs. To better assess the impact of transporter-mediated DDIs in tissues, positron emission tomography (PET)—a noninvasive imaging method—plays an increasingly important role. In this article, we provide examples of how PET can be used to assess transporter-mediated DDIs in different organs. PMID:24682030

  7. [18F]-fluoride positron emission tomography for imaging condylar hyperplasia.

    PubMed

    Laverick, S; Bounds, G; Wong, Wai Lup

    2009-04-01

    The management of condylar hyperplasia depends on the diagnosis of continued growth in the affected condyle, and there is currently no satisfactory way of imaging it. [(18)F]-fluoride positron emission tomography (PET) was included in the investigation of 5 patients who were suspected of having condylar hyperplasia, and the results were correlated with the operative findings. The technique correctly identified condylar hyperplasia in all patients. Our results suggest that [(18)F]-fluoride PET is a valid way of assessing patients with condylar hyperplasia. PMID:18926607

  8. An advanced fully 3D OSEM reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yun, Ming-Kai; Liu, Shuang-Quan; Shan, Bao-Gi; Wei, Long

    2010-02-01

    A fully 3D OSEM reconstruction method for positron emission tomography (PET) based on symmetries and sparse matrix technique is described. Great savings in both storage space and computation time were achieved by exploiting the symmetries of scanner and sparseness of the system matrix. More reduction of storage requirement was obtained by introducing the approximation of system matrix. Iteration-filter was performed to restrict image noise in reconstruction. Performances of simulation data and phantom data got from Micro-PET (Type: Epuls-166) demonstrated that similar image quality was achieved using the approximation of the system matrix.

  9. Positron emission tomography tracers for imaging angiogenesis

    PubMed Central

    Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2013-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. PMID:20559632

  10. Cerebral blood volume measured with inhaled C/sup 15/O and positron emission tomography

    SciTech Connect

    Martin, W.R.; Powers, W.J.; Raichle, M.E.

    1987-08-01

    Local cerebral blood volume (CBV) has been measured previously with inhaled /sup 11/CO and positron emission tomography (PET). The model used assumes that equilibrium in tracer concentration has occurred between arterial and systemic venous blood before the PET measurement is made. To verify that this model may be used with the much shorter half-lived C/sup 15/O, we have simultaneously measured arterial and venous blood radioactivity following C/sup 15/O inhalation. Equilibrium occurred 95 +/- 39 s after inhalation (n = 7). If the PET measurement is commenced prior to arteriovenous equilibrium, significant errors occur in calculated CBV. These data indicate that C/sup 15/O may be used as a tracer for CBV measurement provided that emission data collection commences at approximately 120 s after inhalation. Strict quality control measures must be maintained to minimize the contamination of administered C/sup 15/O with /sup 15/O-labeled CO/sub 2/.

  11. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  12. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined: the diagnostic accuracy of FDG PET for predicting functional recovery; the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes. Clinical Need: Condition and Target Population Left Ventricular Systolic Dysfunction and Heart Failure Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality. In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997. Treatment Options In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long

  13. Eyeblink Conditioning in Healthy Adults: A Positron Emission Tomography Study

    PubMed Central

    Andreasen, Nancy C.; Liu, Dawei; Freeman, John H.; Boles Ponto, Laura L.; O’Leary, Daniel S.

    2013-01-01

    Eyeblink conditioning is a paradigm commonly used to investigate the neural mechanisms underlying motor learning. It involves the paired presentation of a toneconditioning stimulus which precedes and co-terminates with an airpuff unconditioned stimulus. Following repeated paired presentations a conditioned eyeblink develops which precedes the airpuff. This type of learning has been intensively studied and the cerebellum is known to be essential in both humans and animals. The study presented here was designed to investigate the role of the cerebellum during eyeblink conditioning in humans using positron emission tomography (PET). The sample includes 20 subjects (10 male and 10 female) with an average age of 29.2 years. PET imaging was used to measure regional cerebral blood flow (rCBF) changes occurring during the first, second, and third blocks of conditioning. In addition, stimuli-specific rCBF to unpaired tones and airpuffs (“pseudoconditioning”) was used as a baseline level that was subtracted from each block. Conditioning was performed using three, 15-trial blocks of classical eyeblink conditioning with the last five trials in each block imaged. As expected, subjects quickly acquired conditioned responses. A comparison between the conditioning tasks and the baseline task revealed that during learning there was activation of the cerebellum and recruitment of several higher cortical regions. Specifically, large peaks were noted in cerebellar lobules IV/V, the frontal lobes, and cingulate gyri. PMID:22430943

  14. Bimedial rectus hypermetabolism in convergence spasm as observed on positron emission tomography.

    PubMed

    Jeong, Seong-Hae; Oh, Young-Mi; Kim, Chae-Yong; Kim, Ji Soo

    2008-09-01

    A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.

  15. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction.

    PubMed

    Paulus, Daniel H; Quick, Harald H

    2016-10-01

    Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification. PMID:27175550

  16. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction.

    PubMed

    Paulus, Daniel H; Quick, Harald H

    2016-10-01

    Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification.

  17. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging

    PubMed Central

    Chaudhry, Ammar A; Gul, Maryam; Gould, Elaine; Teng, Mathew; Baker, Kevin; Matthews, Robert

    2016-01-01

    Differentiation between neoplastic and nonneoplastic conditions magnetic resonance imaging (MRI) has established itself as one of the key clinical tools in evaluation of musculoskeletal pathology. However, MRI still has several key limitations which require supplemental information from additional modalities to complete evaluation of various disorders. This has led to the development hybrid positron emission tomography (PET)-MRI which is rapidly evolving to address key clinical questions by using the morphological strengths of MRI and functional information of PET imaging. In this article, we aim to review physical principles and techniques of PET-MRI and discuss clinical utility of functional information obtained from PET imaging and structural information obtained from MRI imaging for the evaluation of musculoskeletal pathology. More specifically, this review highlights the role of PET-MRI in musculoskeletal oncology including initial diagnosis and staging, treatment planning and post-treatment follow-up. Also we will review utility of PET-MRI in evaluating musculoskeletal infections (especially in the immunocompromised and diabetics) and inflammatory condition. Additionally, common pitfalls of PET-MRI will be addressed. PMID:27027320

  18. Positron Emission Tomography Imaging of Cancer Biology: Current Status and Future Prospects

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2011-01-01

    Positron emission tomography (PET) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. The principal goal of PET imaging is to visualize, characterize, and measure biological processes at the cellular, subcellular, and molecular levels in living subjects using noninvasive procedures. PET imaging takes advantage of the traditional diagnostic imaging techniques and introduces positron-emitting probes to determine the expression of indicative molecular targets at different stages of cancer progression. Although [18F]fluorodeoxyglucose ([18F]FDG)-PET has been widely utilized for staging and restaging of cancer, evaluation of response to treatment, differentiation of post-therapy alterations from residual or recurrent tumor, and assessment of prognosis, [18F]FDG is not a target-specific PET tracer. Over the last decade, numerous target-specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current status and trends in the development of non-[18F]FDG PET probes in oncology and their application in the investigation of cancer biology. PMID:21362517

  19. Detection of bone marrow involvement in newly diagnosed post-transplant lymphoproliferative disorder: (18)F-fluorodeoxyglucose positron emission tomography/computed tomography versus bone marrow biopsy.

    PubMed

    Gheysens, Olivier; Thielemans, Sanne; Morscio, Julie; Boeckx, Nancy; Goffin, Karolien E; Deroose, Christophe M; Sagaert, Xavier; Wlodarska, Iwona; Verhoef, Gregor; Dierickx, Daan; Tousseyn, Thomas

    2016-10-01

    Detecting bone marrow involvement (BMI) in lymphoma is important as it adversely affects stage. Bone marrow biopsy (BMB) remains the standard to detect BMI but is prone to sampling error. We retrospectively investigated whether (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) could identify BMI in patients with post-transplant lymphoproliferative disorder (PTLD) with sufficient accuracy in comparison with staging BMB. Twenty-five patients diagnosed with PTLD who underwent (18)F-FDG-PET/CT and BMB within one month were evaluated. Based on our criteria, six patients (24%) were considered positive for BMI on (18)F-FDG-PET/CT compared to one by BMB. Although we cannot completely exclude false positive results on (18)F-FDG-PET/CT, our data indicate a significantly higher sensitivity of (18)F-FDG-PET/CT compared to BMB (100% vs 17%) but similar specificity. These data confirm the high diagnostic performance of (18)F-FDG-PET/CT for detecting BMI, but prospective studies are needed to determine whether (18)F-FDG-PET/CT could indeed replace staging BMB in PTLD.

  20. Role of (18F) 2-fluoro-2-deoxyglucose positron emission tomography in upper gastrointestinal malignancies

    PubMed Central

    Smyth, Elizabeth C; Shah, Manish A

    2011-01-01

    The role of whole-body FDG [(18F) 2-fluoro-2-deoxyglucose] positron emission tomography (PET) scanning as an imaging modality in the management of patients with malignancy has evolved enormously over the past two decades. FDG-PET has demonstrated significant efficacy in the staging, prognostication and detection of occult metastatic disease in malignancies of the gastrointestinal tract, in addition to assessment of the response to cytotoxic chemotherapy in a more timely manner than has traditionally been possible by more conventional imaging tools. The sensitivity and specificity of FDG-PET for the detection and staging of malignancy depend not only on the site and size of the primary tumor and metastases, but also on histological cell type, reflecting underlying disparities in glucose metabolism. The metabolic response to neo-adjuvant chemotherapy or to chemo-radiotherapy in cancers of the gastro-esophageal junction or stomach has been demonstrated in several prospective studies to correlate significantly with both the histological tumor response to treatment and with consequent improvements in overall survival. This may offer a future paradigm of personalized treatment based on the PET response to chemotherapy. FDG-PET has been less successful in efforts to screen for and detect recurrent upper gastrointestinal malignancies, and in the detection of low volume metastatic peritoneal disease. Efforts to improve the accuracy of PET include the use of novel radiotracers such as (18F) FLT (3-deoxy-3-fluorothymidine) or 11C-choline, or fusion PET-CT with concurrent high-resolution computed tomography. This review focuses on the role of FDG-PET scanning in staging and response assessment in malignancies of the upper gastrointestinal tract, specifically gastric, esophageal and pancreas carcinoma. PMID:22171140

  1. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  2. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast

    PubMed Central

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-01-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05).

  3. Quantitative Assessment of Radionuclide Uptake and Positron Emission Tomography-computed Tomography Image Contrast.

    PubMed

    Francis, Hasford; Amuasi, John Humphrey; Kwame, Kyere Augustine; Vangu, Mboyo Di Tamba

    2016-09-01

    Radionuclide uptake and contrast for positron emission tomography-computed tomography (PET-CT) images have been assessed in this study using NEMA image quality phantom filled with background activity concentration of 5.3 kBq/mL fluorodeoxyglucose (F-18 FDG). Spheres in the phantom were filled in turns with water to mimic cold lesions and FDG of higher activity concentrations to mimic tumor sites. Transaxial image slices were acquired on the PET-CT system and used for the evaluation of mean standard uptake value (SUVmean) and contrasts for varying sphere sizes at different activity concentrations of 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL. For spheres of same sizes, SUVmean increased with increase in activity concentration. SUVmean was increased by 80.6%, 83.5%, 63.2%, 87.4%, and 63.2% when activity concentrations of spheres with a diameter of 1.3 cm, 1.7 cm, 2.2 cm, 2.8 cm, and 3.7 cm, respectively, were increased from 10.6 kBq/mL to 42.4 kBq/mL. Average percentage contrast between cold spheres (cold lesions) and background activity concentration was estimated to be 89.96% for the spheres. Average contrast for the spheres containing 10.6 kBq/mL, 21.2 kBq/mL, and 42.4 kBq/mL were found to be 110.92%, 134.48%, and 150.52%, respectively. The average background contrast variability was estimated to be 2.97% at 95% confidence interval (P < 0.05). PMID:27650938

  4. Management of respiratory motion in PET/computed tomography: the state of the art.

    PubMed

    Pépin, Audrey; Daouk, Joël; Bailly, Pascal; Hapdey, Sébastien; Meyer, Marc-Etienne

    2014-02-01

    Combined PET/computed tomography (CT) is of value in cancer diagnosis, follow-up, and treatment planning. For cancers located in the thorax or abdomen, the patient's breathing causes artifacts and errors in PET and CT images. Many different approaches for artifact avoidance or correction have been developed; most are based on gated acquisition and synchronization between the respiratory signal and PET acquisition. The respiratory signal is usually produced by an external sensor that tracks a physiological characteristic related to the patient's breathing. Respiratory gating is a compensation technique in which time or amplitude binning is used to exclude the motion in reconstructed PET images. Although this technique is performed in routine clinical practice, it fails to adequately correct for respiratory motion because each gate can mix several tissue positions. Researchers have suggested either selecting PET events from gated acquisitions or performing several PET acquisitions (corresponding to a breath-hold CT position). However, the PET acquisition time must be increased if adequate counting statistics are to be obtained in the different gates after binning. Hence, other researchers have assessed correction techniques that take account of all the counting statistics (without increasing the acquisition duration) and integrate motion information before, during, or after the reconstruction process. Here, we provide an overview of how motion is managed to overcome respiratory motion in PET/CT images.

  5. Therapy response evaluation with positron emission tomography-computed tomography.

    PubMed

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice. PMID:21147376

  6. Appropriate indications for positron emission tomography/computed tomography: College of Nuclear Physicians of the Colleges of Medicine of South Africa.

    PubMed

    Sathekge, Mike; Warwick, James M; Doruyter, Alex; Vorster, Mariza

    2015-11-01

    Individualised patient treatment approaches demand precise determination of initial disease extent combined with early, accurate assessment of response to treatment, which is made possible by positron emission tomography/computed tomography (PET/CT). PET is a non-invasive tool that provides tomographic images and quantitative parameters of perfusion, cell viability, and proliferation and/or metabolic activity of tissues. Fusion of the functional information with the morphological detail provided by CT as PET/CT can provide clinicians with a sensitive and accurate one-step whole-body diagnostic and prognostic tool, which directs and changes patient management. Three large-scale national studies published by the National Oncologic PET Registry in the USA have shown that imaging with PET changes the intended patient management strategy in 36.5% to 49% of cases, with consistent results across all cancer types. The proven clinical effectiveness and growing importance of PET/CT have prompted the College of Nuclear Physicians of South Africa, in collaboration with university hospitals, to develop a list of recommendations on the appropriate use of fluorine-18-fluorodeoxyglucose (18F-FDG) and non-18F-FDG PET/CT in oncology, cardiology, neurology and infection/inflammation. It is expected that other clinical situations will be added to these recommendations, provided that they are based upon solid clinical evidence. These recommendations are intended to offer advice regarding contemporary applications of PET/CT, as well as indicating novel developments and potential future indications. The CNP believes that these recommendations will serve an important and relevant role in advising referring physicians on the appropriate use of 18F-FDG and non-18F-FDG PET/CT. More promising clinical applications will be possible in the future, as newer PET tracers become more readily available. PMID:26632309

  7. Usefulness of Whole-Body Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Patients with Neurofibromatosis Type 1: A Systematic Review

    PubMed Central

    Treglia, Giorgio; Taralli, Silvia; Bertagna, Francesco; Salsano, Marco; Muoio, Barbara; Novellis, Pierluigi; Vita, Maria Letizia; Maggi, Fabio; Giordano, Alessandro

    2012-01-01

    Aim. To systematically review the role of positron emission tomography (PET) with fluorine-18-fluorodeoxyglucose (FDG) in patients with neurofibromatosis type 1 (NF1). Methods. A comprehensive literature search of published studies regarding FDG-PET and PET/CT in patients with NF1 was performed. No beginning date limit and language restriction were used; the search was updated until December 2011. Only those studies or subsets in studies including whole-body FDG-PET or PET/CT scans performed in patients with NF1 were included. Results. We identified 12 studies including 352 NF1 patients. Qualitative evaluation was performed in about half of the studies and semiquantitative analysis, mainly based on different values of SUV cutoff, in the others. Most of the studies evaluated the role of FDG-PET for differentiating benign from malignant peripheral nerve sheath tumors (MPNSTs). Malignant lesions were detected with a sensitivity ranging between 100% and 89%, but with lower specificity, ranging between 100% and 72%. Moreover, FDG-PET seems to be an important imaging modality for predicting the progression to MPNST and the outcome in patients with MPNST. Two studies evaluated the role of FDG-PET in pediatric patients with NF1. Conclusions. FDG-PET and PET/CT are useful methods to identify malignant change in neurogenic tumors in NF1 and to discriminate malignant from benign neurogenic lesions. PMID:22991664

  8. High time-resolution photodetectors for PET applications

    DOE PAGESBeta

    Ronzhin, Anatoly

    2016-02-01

    This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.

  9. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, Vr; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-10-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma.

  10. Spindle cell sarcoma of pulmonary artery mimicking thromboembolism with lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Pattabiraman, VR; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Pulmonary artery sarcoma (PAS), although rare, must be considered in the differential diagnosis of pulmonary thromboembolism (PTE). This tumor is highly malignant and the prognosis is very poor. As much as the standardized uptake values (SUVs) at fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) have helped in differentiating between benign and malignant tumors, visualization of a low-attenuation filling defect within a pulmonary artery on contrast-enhanced chest computed tomography (CT) can be suggestive of a malignancy, such as PAS, if the lesion shows high FDG uptake at PET. We present a case of PAS that showed high FDG uptake on integrated FDG PET/CT and with lung metastasis. Patient underwent endoscopic bronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA), which confirmed spindle cell sarcoma. PMID:25400365

  11. The Utility of Positron Emission Tomography in the Treatment Planning of Image-Guided Radiotherapy for Non-Small Cell Lung Cancer

    PubMed Central

    Chi, Alexander; Nguyen, Nam P.

    2014-01-01

    In the thorax, the extent of tumor may be more accurately defined with the addition of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to computed tomography (CT). This led to the increased utility of FDG-PET or PET/CT in the treatment planning of radiotherapy for non-small cell lung cancer (NSCLC). The inclusion of FDG-PET information in target volume delineation not only improves tumor localization but also decreases the amount of normal tissue included in the planning target volume (PTV) in selected patients. Therefore, it has a critical role in image-guided radiotherapy (IGRT) for NSCLC. In this review, the impact of FDG-PET on target volume delineation in radiotherapy for NSCLC, which may increase the possibility of safe dose escalation with IGRT, the commonly used methods for tumor target volume delineation FDG-PET for NSCLC, and its impact on clinical outcome will be discussed. PMID:25340040

  12. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  13. Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer

    SciTech Connect

    Chang Guoping; Chang Tingting; Pan Tinsu; Clark, John W.; Mawlawi, Osama R.

    2012-05-01

    Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

  14. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma. PMID:27678362

  15. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma.

  16. Positron Emission Tomography for the Assessment of Myocardial Viability

    PubMed Central

    2005-01-01

    Executive Summary Objective The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques. Background Left Ventricular Viability Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization. For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left

  17. A novel phantom design for emission tomography enabling scatter- and attenuation-"free" single-photon emission tomography imaging.

    PubMed

    Larsson, S A; Jonsson, C; Pagani, M; Johansson, L; Jacobsson, H

    2000-02-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99mTcO4- depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain "ideal" experimental images (essentially built up by primary photons) for comparison with "real

  18. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. PMID:27522237

  19. Zolpidem-Induced Arousal by Paradoxical GABAergic Stimulation: A Case Report With F-18 Flumazenil Positron Emission Tomography and Single Photon Emission Computed Tomography Study

    PubMed Central

    Kim, Changjae; Nam, Ki Yeun; Park, Jin Woo; Lee, Ho Jun

    2016-01-01

    Zolpidem is a non-benzodiazepine drug that has selectivity for the gamma-aminobutyric acid (GABA) receptors. We experienced paradoxical effect of zolpidem in a 48-year-old male patient with hypoxic-ischemic brain injury after cardiac arrest. The patient was in stupor and could not communicate. His Glasgow Coma Scale (GCS) was E2M4V2 and Rancho Los Amigos (RLA) was grade III to IV. Zolpidem was prescribed to induce sedation but paradoxically, he became alert (GCS 15, RLA VII) and was able to communicate. The arousal lasted for 2 hours repeatedly following each administration of the medication. While he was alert, electroencephalogram showed the reversal of slow wave into beta range fast activity and F-18 flumazenil positron emission tomography (PET) showed increased GABAergic receptor activity in both frontoparietotemporal cortices. Single photon emission computed tomography (SPECT) also showed increased cerebral perfusion and reversal of cerebellar diaschisis. PMID:26949686

  20. Pretreatment Staging Positron Emission Tomography/Computed Tomography in Patients With Inflammatory Breast Cancer Influences Radiation Treatment Field Designs

    SciTech Connect

    Walker, Gary V.; Niikura, Naoki; Yang Wei; Rohren, Eric; Valero, Vicente; Woodward, Wendy A.; Alvarez, Ricardo H.; Lucci, Anthony; Ueno, Naoto T.; Buchholz, Thomas A.

    2012-08-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly being utilized for staging of inflammatory breast cancer (IBC). The purpose of this study was to define how pretreatment PET/CT studies affected postmastectomy radiation treatment (PMRT) planning decisions for IBC. Methods and Materials: We performed a retrospective analysis of 62 patients diagnosed with IBC between 2004 and 2009, who were treated with PMRT in our institution and who had a staging PET/CT within 3 months of diagnosis. Patients received a baseline physical examination, staging mammography, ultrasonographic examination of breast and draining lymphatics, and chest radiography; most patients also had a bone scan (55 patients), liver imaging (52 patients), breast MRI (46 patients), and chest CT (25 patients). We compared how PET/CT findings affected PMRT, assuming that standard PMRT would target the chest wall, level III axilla, supraclavicular fossa, and internal mammary chain (IMC). Any modification of target volumes, field borders, or dose prescriptions was considered a change. Results: PET/CT detected new areas of disease in 27 of the 62 patients (44%). The areas of additional disease included the breast (1 patient), ipsilateral axilla (1 patient), ipsilateral supraclavicular (4 patients), ipsilateral infraclavicular (1 patient), ipsilateral IMC (5 patients), ipsilateral subpectoral (3 patients), mediastinal (8 patients), other distant/contralateral lymph nodes (15 patients), or bone (6 patients). One patient was found to have a non-breast second primary tumor. The findings of the PET/CT led to changes in PMRT in 11 of 62 patients (17.7%). These changes included additional fields in 5 patients, adjustment of fields in 2 patients, and higher doses to the supraclavicular fossa (2 patients) and IMC (5 patients). Conclusions: For patients with newly diagnosed IBC, pretreatment PET/CT provides important information concerning involvement of locoregional lymph nodes

  1. Positron emission tomography and drug discovery: contributions to the understanding of pharmacokinetics, mechanism of action and disease state characterization.

    PubMed

    Klimas, Michael T

    2002-10-01

    As an imaging modality, positron emission tomography (PET) provides unique quantitative in vivo information of value to drug discovery studies. These non-invasive studies span the pharmacokinetic/pharmacodynamic evaluation of potential drug candidates, receptor occupancy as an important determinant of efficacy, the pharmacological characterization of potential mechanisms of action, and the biological characterization of disease with well-characterized PET ligands. PET techniques are also being applied to the assessment of gene-level activities and the longitudinal evaluation of disease progression and therapeutic intervention. As the availability of PET scanners, cyclotrons, and specific PET ligands grows, the techniques highlighted in this review will become central to target validation, drug candidate selection, pharmacokinetic characterization, and clinical evaluation.

  2. Imaging Spectrum and Pitfalls of 11C-Methionine Positron Emission Tomography in a Series of Patients with Intracranial Lesions

    PubMed Central

    Matsuda, Hiroshi; Kubota, Kazoo

    2016-01-01

    11C-methionine (Met) positron emission tomography (PET) is one of the most commonly used PET tracers for evaluating brain tumors. However, few reports have described tips and pitfalls of 11C-Met PET for general practitioners. Physiological 11C-Met uptake, anatomical variations, vascular disorders, non-tumorous lesions such as inflammation or dysplasia, benign brain tumors and patient condition during 11C-Met PET examination can potentially affect the image interpretation and cause false positives and negatives. These pitfalls in the interpretation of 11C-Met PET images are important for not only nuclear medicine physicians but also general radiologists. Familiarity with the spectrum and pitfalls of 11C-Met images could help prevent unfavorable clinical results caused by misdiagnoses. PMID:27134530

  3. Positron emission tomography for initial staging of esophageal cancer among medicare beneficiaries

    PubMed Central

    Varghese, Thomas K.; Flanagan, Meghan R.; Flum, David R.; Shankaran, Veena; Oelschlager, Brant K.; Mulligan, Michael S.; Wood, Douglas E.; Pellegrini, Carlos A.

    2016-01-01

    Background The role of positron emission tomography (PET) in the initial staging of esophageal cancer is to detect occult metastases, but its ability to do so has not been evaluated at the population-level. In 2001, Medicare approved reimbursement of PET for esophageal cancer staging. We hypothesized rapid adoption of PET after 2001 and a coincident increase in the prevalence of stage IV disease. Methods A retrospective cohort study [1997-2009] was conducted of 12,870 Medicare beneficiaries with esophageal cancer using the Surveillance, Epidemiology, and End-Results (SEER)-Medicare database. Results PET use increased from <3% before 2001 to 44% in 2009 (post-PET era) (P trend <0.001). Over the same period, the prevalence of stage IV disease also increased (20% in 1997 and 28% in 2009, P trend <0.001). After adjusting for changing patient characteristics over time, the rate of increase in stage IV disease in the post-PET era [relative risk (RR) =1.06; 95% confidence interval (CI), 1.00-1.13] was no different than the rate of increase in the pre-PET era (RR =1.02; 95% CI, 1.02-1.04). Over the entire study period, the prevalence of unrecorded stage decreased by more than half (43% to 18%, adjusted P trend <0.001) with coincident increases in stage 0-III (37% to 53%, adjusted P trend <0.001) as well as stage IV disease. Conclusions The increasing frequency of PET use and stage IV disease over time is more likely explained by improved documentation rather than PET’s ability to detect occult metastases. The absence of compelling population-level impact compliments previous studies, revealing an opportunity to increase value through selective use of PET. PMID:27284472

  4. Positron emission tomography imaging of braintumors with Cobalt-55 and L-[1-C11]-tyrosine

    SciTech Connect

    Jansen, H.M.L.; Pruim J.; Willemsen, A.T.M.

    1994-05-01

    The applicability of positron emission tomography (PET) with [C-11] tyrosine (TYR) and Cobalt-55 (Co) in patients with known primary brain tumors is reported. We used Co as a Calcium (Ca) marker to study Ca influx in degenerating neural tissue and TYR to indicate incorporation of amino acids into protein. Four patients showing a primary brain tumor with central necrosis on CT/MRI were studied with Co-PET. Additionally, 2 of these patients were consecutively studied with TYR-PET. Diagnostic confirmation was obtained by means of histology and/or cytology shortly after PET. Thirty-seven MBq Co was administered iv. approximately 24 hours before acquisition. The Co-scan was acquired for I hour. Immediately following Co-PET, 2 patients received 370 MBq TYR iv. TYR-PET acquisition was done dynamically for 55 minutes starting from the time of injection. The necrotic center of the tumor revealed no uptake of either Co or TYR. Vital tumor tissue showed intense uptake of TYR, indicating a high protein synthesis rate (PSR). The circumferent zone between necrotic and tumor tissue showed evident uptake of Co, suggesting cell-decay. In conclusion, TYR and Co are both suitable tracers for visualization of different aspects of brain malignancies, ie. PSR and cell-decay. Combining Co and TYR enables differentiation of necrosis vs. tumor growth with clear marking of the border zone. We think these complementary PET-techniques in conjunction with CT and/or MRI allow the visualization of different aspects of tumor tissue: central necrosis (CT/MRI), cell-decay (Co-PET) and vital tumor tissue (TYR-PET).

  5. Measurement of blood-brain barrier permeability with positron emission tomography and (68Ga)EDTA

    SciTech Connect

    Kessler, R.M.; Goble, J.C.; Bird, J.H.; Girton, M.E.; Doppman, J.L.; Rapoport, S.I.; Barranger, J.A.

    1984-09-01

    Positron emission tomography (PET) was employed to examine time-dependent changes in blood-brain barrier (BBB) permeability to (68Ga)ethylenediaminetetraacetate (EDTA) in the rhesus monkey, following reversible barrier opening by intracarotid infusion of a hypertonic mannitol solution. The PET technique, when combined with measurements of plasma radioactivity, provided a quantitative measure of the cerebrovascular permeability-area product (PA) at different times following mannitol infusion. Hypertonic mannitol treatment reversibly increased PA to (68Ga)EDTA more than 10-fold; much of the barrier effect was over by 10 min after mannitol treatment. The results show that PET can be used to measure transient changes in BBB integrity in specific brain regions, under in vivo, noninvasive conditions.

  6. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    SciTech Connect

    Sato, K.; Kobayashi, Y.

    2015-05-15

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  7. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons.

    PubMed

    Sato, K; Kobayashi, Y

    2015-05-01

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  8. Integrated (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging ((18)F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: A pictorial essay.

    PubMed

    Jena, Amarnath; Renjen, Pushpendra Nath; Taneja, Sangeeta; Gambhir, Aashish; Negi, Pradeep

    2015-01-01

    Dementia, caused by irreversible neurodegenerative disorders such as Alzheimer's disease or reversible non-degenerative conditions, is rapidly becoming one of the most alarming health problems in our aging society. This cognitive disorder associated with a multitude of clinical differentials with overlapping clinical, pathological, and imaging features is difficult to diagnose and treat, as it often presents late after significant neuronal damage has already occurred. Novel disease-modifying treatments being developed will have to be corroborated with innovative imaging biomarkers so that earlier reliable diagnosis can be made and treatment initiated upon. Along with new specific PET radiotracers, integrated PET/MRI with combined methodological advantage and simultaneously acquired structural-cum-functional information may help achieve this goal. The present pictorial essay details our experiences with PET/MRI in dementing disorders, along with reviewing recent advances and future scope.

  9. Integrated 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging (18F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: A pictorial essay

    PubMed Central

    Jena, Amarnath; Renjen, Pushpendra Nath; Taneja, Sangeeta; Gambhir, Aashish; Negi, Pradeep

    2015-01-01

    Dementia, caused by irreversible neurodegenerative disorders such as Alzheimer's disease or reversible non-degenerative conditions, is rapidly becoming one of the most alarming health problems in our aging society. This cognitive disorder associated with a multitude of clinical differentials with overlapping clinical, pathological, and imaging features is difficult to diagnose and treat, as it often presents late after significant neuronal damage has already occurred. Novel disease-modifying treatments being developed will have to be corroborated with innovative imaging biomarkers so that earlier reliable diagnosis can be made and treatment initiated upon. Along with new specific PET radiotracers, integrated PET/MRI with combined methodological advantage and simultaneously acquired structural-cum-functional information may help achieve this goal. The present pictorial essay details our experiences with PET/MRI in dementing disorders, along with reviewing recent advances and future scope. PMID:26752814

  10. An investigation into positron emission tomography contouring methods across two treatment planning systems

    SciTech Connect

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-04-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

  11. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    PubMed

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  12. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography.

    PubMed

    Maddalena, Francesca; Lettini, Giacomo; Gallicchio, Rosj; Sisinni, Lorenza; Simeon, Vittorio; Nardelli, Anna; Venetucci, Angela Assunta; Storto, Giovanni; Landriscina, Matteo

    2015-01-01

    To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [(18)F]FDG and the expression levels of glucose transporters. Indeed, [(18)F]FDG incorporation on PET was comparable to [(18)F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [(18)F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [(18)F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines.

  13. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  14. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities.

    PubMed

    Basu, Sandip; Chryssikos, Timothy; Moghadam-Kia, Siamak; Zhuang, Hongming; Torigian, Drew A; Alavi, Abass

    2009-01-01

    The past decade has witnessed the emergence of yet another promising application of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging in the detection and management of patients with infection and inflammatory disorders. This phenomenon is quite evident when the peer-reviewed scientific literature is searched for on this topic. Among these scientific communications, the 6 conditions in which FDG-PET has demonstrated its greatest utility include (1) chronic osteomyelitis, (2) complicated lower-limb prostheses, (3) complicated diabetic foot, (4) fever of unknown origin, (5) acquired immunodeficiency syndrome (ie, AIDS), and (6) vascular graft infection and fistula. On the basis of published literature, orthopedic infections, particularly those related to implanted prostheses and osteomyelitis (including that occurring in the setting of a complicated diabetic foot), can be detected successfully by the use of FDG-PET and, therefore, this modality has great promise for becoming the study of choice in these complex settings. Increasingly, this technique is being used to detect infection in soft tissues, including those representing the sources of fever of unknown origin. The ability of FDG-PET to diagnose vascular graft infection and fistula, even when the anatomical imaging modalities are inconclusive, is of considerable interest to practitioners of vascular surgery. Combined PET/computed tomography (CT) imaging has the potential to determine the sites of infection or inflammation with high precision. The data on the role of PET/CT imaging in the assessment of infection and inflammation is sparse, but this combined modality approach may prove to be the study of choice in foreseeable future for precise localization of involved sites. However, the role of PET/CT may be limited in the presence of metallic artifacts (such as those caused by prostheses) adjacent to the sites of infection. PMID:19038599

  15. Estimation of linear functionals in emission tomography

    SciTech Connect

    Kuruc, A.

    1995-08-01

    In emission tomography, the spatial distribution of a radioactive tracer is estimated from a finite sample of externally-detected photons. We present an algorithm-independent theory of statistical accuracy attainable in emission tomography that makes minimal assumptions about the underlying image. Let f denote the tracer density as a function of position (i.e., f is the image being estimated). We consider the problem of estimating the linear functional {Phi}(f) {triple_bond} {integral}{phi}(x)f(x) dx, where {phi} is a smooth function, from n independent observations identically distributed according to the Radon transform of f. Assuming only that f is bounded above and below away from 0, we construct statistically efficient estimators for {Phi}(f). By definition, the variance of the efficient estimator is a best-possible lower bound (depending on and f) on the variance of unbiased estimators of {Phi}(f). Our results show that, in general, the efficient estimator will have a smaller variance than the standard estimator based on the filtered-backprojection reconstruction algorithm. The improvement in performance is obtained by exploiting the range properties of the Radon transform.

  16. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-01-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL. PMID:27651745

  17. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-09-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL. PMID:27651745

  18. An Extremely Rare Intersection: Neurolymphomatosis in a Patient with Burkitt Lymphoma Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Oner, Ali Ozan; Okuyucu, Kursat; Alagoz, Engin; Battal, Bilal; Arslan, Nuri

    2016-01-01

    Neurolymphomatosis (NL) is a rarely seen neurologic involvement of the systematic lymphoma. Its diagnosis is challenging, and requires biopsy. In cases where biopsy is not appropriate, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) may aid in diagnosis. Here, we present a 54-year old male patient diagnosed with Burkitt lymphoma who underwent FDG-PET/CT in order to evaluate the treatment response after chemotherapy and radiotherapy. On viewing PET/CT images of the patient who complained of pain and weakness in his upper extremities after therapy, linear FDG uptake was observed in bilateral cervical 5 (C5), left cervical 6 (C6), bilateral cervical 7 (C7), and right lumbar 4 (L4) nerve roots. Magnetic resonance imaging (MRI) revealed dilation and thickening of nerve roots consisted with FDG uptake observed on PET/CT images. Since biopsy was not performed, histopathological diagnosis could not be established. However, overlapping of clinical, PET/CT, and MRI findings strongly suggested the presence of NL. As is the case of this patient, in cases with non-Hodgkin lymphoma, a combined evaluation of FDG-PET/CT and MRI modalities aid in the establishment of the diagnosis of NL.

  19. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  20. Positron emission tomography and [18F]BPA: a perspective application to assess tumour extraction of boron in BNCT.

    PubMed

    Menichetti, L; Cionini, L; Sauerwein, W A; Altieri, S; Solin, O; Minn, H; Salvadori, P A

    2009-07-01

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. (18)F, (11)C, (124)I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10(-9)-10(-12)M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of (10)B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[(18)F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of (10)B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[(18)F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable prognostic and therapeutic indicator for

  1. Fan Beam Emission Tomography for Laminar Fires

    NASA Technical Reports Server (NTRS)

    Sivathanu, Yudaya; Lim, Jongmook; Feikema, Douglas

    2003-01-01

    Obtaining information on the instantaneous structure of turbulent and transient flames is important in a wide variety of applications such as fire safety, pollution reduction, flame spread studies, and model validation. Durao et al. has reviewed the different methods of obtaining structure information in reacting flows. These include Tunable Laser Absorption Spectroscopy, Fourier Transform Infrared Spectroscopy, and Emission Spectroscopy to mention a few. Most flames emit significant radiation signatures that are used in various applications such as fire detection, light-off detection, flame diagnostics, etc. Radiation signatures can be utilized to maximum advantage for determining structural information in turbulent flows. Emission spectroscopy is most advantageous in the infrared regions of the spectra, principally because these emission lines arise from transitions in the fundamental bands of stable species such as CO2 and H2O. Based on the above, the objective of this work was to develop a fan beam emission tomography system to obtain the local scalar properties such as temperature and mole fractions of major gas species from path integrated multi-wavelength infrared radiation measurements.

  2. Diagnosis of Alzheimer-type dementia: a preliminary comparison of positron emission tomography and proton magnetic resonance

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Brant-Zawadzki, M.; Jagust, W.J.

    1984-11-16

    The use of positron emission tomography with (18F)-2-fluoro-2-deoxy-D-glucose (FDG) to study glucose metabolism in dementia is described and compared with the use of magnetic resonance imaging. These studies suggest that physiological imaging with PET may be superior to MR as it is currently used in the diagnosis of dementia-like diseases. Pet is currently limited to a few centers; however, single photon emission CT can provide regional physiological data without the need for a local cyclotron. 15 references, 2 tables.

  3. Disease-specific cardiovascular positron emission tomography/magnetic resonance imaging: a brief review of the current literature.

    PubMed

    Lau, Jeffrey M C; Zheng, Jie

    2016-06-01

    The hybrid positron emission tomography/magnetic resonance (PET/MR) is a new imaging tool that has garnered immense research interest for its potentials to assist clinical investigations. PET/MR combines the quantitative measurement of PET with dynamic functional and anatomic assessment of MR and can deliver a robust clinical examination. Currently, simultaneous cardiovascular PET/MR imaging remains in the pre-clinical research stage, and most institutions have not adopted a clinical PET/MR clinical imaging service. Nevertheless, PET/MR examination has unique promises in several areas of cardiovascular medicine, and in recent years more and more research publications have become available to lend us insight into its utility in cardiovascular imaging. Here we review the existing literature on simultaneous cardiovascular PET/MR imaging, with an emphasis on organizing the current literature into disease-specific discussions. These areas include coronary artery disease (CAD), carotid atherosclerosis, various infiltrative, inflammatory and hereditary heart diseases, myocarditis, vasculitis, and cardiac mass assessment. The purpose of this review is to provide an overview of the current understanding of cardiovascular PET/MR clinical imaging, in a disease-specific manner, from a clinician's perspective. Potential limitations of simultaneous PET/MR, such as cost effectiveness, artifacts, contraindications, and radiation exposure, are briefly discussed. PMID:27429913

  4. Disease-specific cardiovascular positron emission tomography/magnetic resonance imaging: a brief review of the current literature

    PubMed Central

    Zheng, Jie

    2016-01-01

    The hybrid positron emission tomography/magnetic resonance (PET/MR) is a new imaging tool that has garnered immense research interest for its potentials to assist clinical investigations. PET/MR combines the quantitative measurement of PET with dynamic functional and anatomic assessment of MR and can deliver a robust clinical examination. Currently, simultaneous cardiovascular PET/MR imaging remains in the pre-clinical research stage, and most institutions have not adopted a clinical PET/MR clinical imaging service. Nevertheless, PET/MR examination has unique promises in several areas of cardiovascular medicine, and in recent years more and more research publications have become available to lend us insight into its utility in cardiovascular imaging. Here we review the existing literature on simultaneous cardiovascular PET/MR imaging, with an emphasis on organizing the current literature into disease-specific discussions. These areas include coronary artery disease (CAD), carotid atherosclerosis, various infiltrative, inflammatory and hereditary heart diseases, myocarditis, vasculitis, and cardiac mass assessment. The purpose of this review is to provide an overview of the current understanding of cardiovascular PET/MR clinical imaging, in a disease-specific manner, from a clinician’s perspective. Potential limitations of simultaneous PET/MR, such as cost effectiveness, artifacts, contraindications, and radiation exposure, are briefly discussed. PMID:27429913

  5. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    NASA Astrophysics Data System (ADS)

    Herraiz, J. L.; España, S.; Vaquero, J. J.; Desco, M.; Udías, J. M.

    2006-09-01

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution.

  6. Role of Fluorodeoxyglucose PET/Computed Tomography in Targeted Radionuclide Therapy for Endocrine Malignancies.

    PubMed

    Pattison, David A; Hofman, Michael S

    2015-10-01

    This review provides practical guidance for clinicians involved in the management of endocrine malignancies, including endocrinologists, medical oncologists, surgeons and nuclear medicine specialists regarding the indications and use of 2-fluoro-2-deoxy-d-glucose F-18 (FDG) PET/computed tomography (CT), particularly with respect to targeted radionuclide therapy. Key principles of FDG PET/CT for radionuclide therapy are explored in detail using gastroenteropancreatic neuroendocrine tumors as a prototype endocrine malignancy. The relevant literature is reviewed, and practical application in this new and emerging field is highlighted with the use of case examples.

  7. Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects

    PubMed Central

    Karakatsanis, Nicolas A; Fokou, Eleni; Tsoumpas, Charalampos

    2015-01-01

    Positron emission tomography (PET) is widely used nowadays for tumor staging and therapy response in the clinic. However, average PET radiation exposure has increased due to higher PET utilization. This study aims to review state-of-the-art PET tracer dosage optimization methods after accounting for the effects of human body attenuation and scan protocol parameters on the counting rate. In particular, the relationship between the noise equivalent count rate (NECR) and the dosage (NECR-dosage curve) for a range of clinical PET systems and body attenuation sizes will be systematically studied to prospectively estimate the minimum dosage required for sufficiently high NECR. The optimization criterion can be determined either as a function of the peak of the NECR-dosage curve or as a fixed NECR score when NECR uniformity across a patient population is important. In addition, the systematic NECR assessments within a controllable environment of realistic simulations and phantom experiments can lead to a NECR-dosage response model, capable of predicting the optimal dosage for every individual PET scan. Unlike conventional guidelines suggesting considerably large dosage levels for obese patients, NECR-based optimization recommends: i) moderate dosage to achieve 90% of peak NECR for obese patients, ii) considerable dosage reduction for slimmer patients such that uniform NECR is attained across the patient population, and iii) prolongation of scans for PET/MR protocols, where longer PET acquisitions are affordable due to lengthy MR sequences, with motion compensation becoming important then. Finally, the need for continuous adaptation of dosage optimization to emerging technologies will be discussed. PMID:26550543

  8. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  9. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  10. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  11. The Promise and Pitfalls of Positron Emission Tomography and Single-Photon Emission Computed Tomography Molecular Imaging–Guided Radiation Therapy

    PubMed Central

    Wahl, Richard L.; Herman, Joseph M.; Ford, Eric

    2015-01-01

    External beam radiation therapy procedures have, until recently, been planned almost exclusively using anatomic imaging methods. Molecular imaging using hybrid positron emission tomography (PET)/computed tomography scanning or single-photon emission computed tomography (SPECT) imaging has provided new insights into the precise location of tumors (staging) and the extent and character of the biologically active tumor volume (BTV) and has provided differential response information during and after therapy. In addition to the commonly used radiotracer 18F-fluoro- 2-deoxyD-glucose (FDG), additional radiopharmaceuticals are being explored to image major physiological processes as well as tumor biological properties, such as hypoxia, proliferation, amino acid accumulation, apoptosis, and receptor expression, providing the potential to target or boost the radiation dose to a biologically relevant region within a tumor, such as the most hypoxic or most proliferative area. Imaging using SPECT agents has furthered the possibility of limiting dose to functional normal tissues. PET can also portray the distribution of particle therapy by displaying activated species in situ. With both PET and SPECT imaging, fundamental physical issues of limited spatial resolution relative to the biological process, partial volume effects for quantification of small volumes, image misregistration, motion, and edge delineation must be carefully considered and can differ by agent or the method applied. Molecular imaging–guided radiation therapy (MIGRT) is a rapidly evolving and promising area of investigation and clinical translation. As MIGRT evolves, evidence must continue to be gathered to support improved clinical outcomes using MIGRT versus purely anatomic approaches. PMID:21356477

  12. Imaging Prostate Cancer: An Update on Positron Emission Tomography and Magnetic Resonance Imaging

    PubMed Central

    Turkbey, Baris; Choyke, Peter; Capala, Jacek

    2012-01-01

    Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an essential role in the clinical management of patients. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI allows functional assessment with techniques such as diffusion-weighted MRI, MR spectroscopy, and dynamic contrast-enhanced MRI. The most common PET radiotracer, 18F-fluorodeoxyglucose, is not very useful in prostate cancer. However, in recent years other PET tracers have improved the accuracy of PET/CT imaging of prostate cancer. Among these, choline (labeled with 18F or 11C), 11C-acetate, and 18F-fluoride have demonstrated promising results, and other new radiopharmaceuticals are currently under evaluation in preclinical and clinical studies. PMID:20425625

  13. Positron emission tomography in aging and dementia: effect of cerebral atrophy

    SciTech Connect

    Chawluk, J.B.; Alavi, A.; Dann, R.; Hurtig, H.I.; Bais, S.; Kushner, M.J.; Zimmerman, R.A.; Reivich, M.

    1987-04-01

    The spatial resolution of current positron emission tomography (PET) scanners does not allow a distinction between cerebrospinal fluid (CSF) containing spaces and contiguous brain tissue. Data analysis strategies which therefore purport to quantify cerebral metabolism per unit mass brain tissue are in fact measuring a value which may be artifactually reduced due to contamination by CSF. We studied cerebral glucose metabolism (CMRglc) in 17 healthy elderly individuals and 24 patients with Alzheimer's dementia using (/sup 18/F)fluorodeoxyglucose and PET. All subjects underwent x-ray computed tomography (XCT) scanning at the time of their PET study. The XCT scans were analyzed volumetrically, in order to determine relative areas for ventricles, sulci, and brain tissue. Global CMRglc was calculated before and after correction for contamination by CSF (cerebral atrophy). A greater increase in global CMRglc after atrophy correction was seen in demented individuals compared with elderly controls (16.9% versus 9.0%, p less than 0.0005). Additional preliminary data suggest that volumetric analysis of proton-NMR images may prove superior to analysis of XCT data in quantifying the degree of atrophy. Appropriate corrections for atrophy should be employed if current PET scanners are to accurately measure actual brain tissue metabolism in various pathologic states.

  14. Dementias appear to have individual profiles in single photon emission computed tomography

    SciTech Connect

    Not Available

    1989-02-17

    A number of researchers are seeking clinical applications for single photon emission computed tomographic (SPECT) images of demented patients. They have found that dementias have somewhat individual SPECT profiles. The challenge now, they say, is to determine if the SPECT information is meaningful to the clinician and to develop more specific radiotracers, such as tracers for individual neuroreceptors. The initial work was done with positron emission tomography (PET), a sometimes more sensitive, but much more expensive technique. Recently, a number of centers began trying to duplicate the PET findings using SPECT. Developing SPECT could actually make dementia scanning fairly available, they say. Radiologists estimate that three fourths of the nation's nuclear medicine departments have SPECT scanning machines-either rotating or multiaperature gamma cameras.

  15. 18F-fluorodeoxyglucose positron emission tomography imaging in brain tumours: the Western Australia positron emission tomography/cyclotron service experience.

    PubMed

    McCarthy, M; Yuan, J B; Campbell, A; Lenzo, N P; Butler-Henderson, K

    2008-12-01

    (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans in the first 49 patients referred with either possible brain tumour or brain tumour recurrence were reviewed. FDG-PET imaging was reported with reference to anatomical imaging. Based on the report the FDG study was classified as either positive or negative for the presence of tumour. Thirty-eight cases were included in the analysis, 21 having pathological data and 17 with diagnostic clinical follow up. Eleven were excluded, as they had inadequate follow-up data. Of the 21 cases with pathology, 18 were shown to have tumour. In this group there were five false-negative scans and two false-positive PET scans. Seventeen cases were assessed by clinical follow up, nine were considered to have been tumour. There were two false negatives with one false positive. The overall sensitivity, specificity and positive and negative predictive values were 74, 73, 87 and 53% respectively. This is similar to figures previously quoted in published work. Despite relatively limited numbers, the utility of FDG PET imaging in our hands is similar to published reports. With a positive predictive value of 87%, a positive FDG study indicates a high likelihood that there is brain tumour present. A negative study does not exclude the presence of tumour.

  16. [Examination of myocardial perfusion with positron emission tomography: a clinically useful and valid method?].

    PubMed

    vom Dahl, J

    1997-02-01

    Positron emission tomography (PET) of the heart has gained widespread scientific and clinical acceptance with regard to 2 indications: 1. the detection of perfusion abnormalities by qualitative and semiquantitative analyses of perfusion images at rest and during physical or pharmacological stress using well validated perfusion tracers such as N-13 ammonia, Rb-82 rubidiumchloride, or O-15 labeled water, 2. Viability imaging of myocardial regions with reduced contractility by combining perfusion measurements with substrate metabolism as assessed from F-18 deoxyglucose utilization. This overview summarizes the use of PET as a perfusion imaging method. With a sensitivity > 90% in combination with a high specificity, PET is today the best available nuclear imaging technique for the diagnosis of coronary artery disease (CAD). The short half-life of the perfusion tracers in combination with highly sophisticated hard- and software enables rapid PET studies with high patient throughput. The high diagnostic accuracy and the methological advantages as compared to conventional scintigraphy allows to use PET perfusion imaging for detection of subtle changes of the perfusion reserve for detection of CAD in high risk but asymptomatic patients as well as in patients with proven CAD undergoing various treatment forms such as risk factor reduction or coronary revascularization. In patients following orthotopic heart transplantation, evolving transplant vasculopathy can be detected at an early stage. Quantitative PET imaging at rest allows for detection of myocardial viability since cellular survival is based on maintenance of a minimal perfusion and structural changes correlate to the degree of perfusion reduction. Furthermore, quantitative assessment of the myocardial perfusion reserve detects the magnitude and competence of collaterals in regions with occluded epicardial arteries and thus, imaging of several coronary distribution territories in one noninvasive study. The cost of

  17. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  18. Bayesian image reconstruction: Application to emission tomography

    SciTech Connect

    Nunez, J.; Llacer, J.

    1989-02-01

    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  19. Improved photomultiplier tube for positron emission tomography.

    PubMed

    Woldeselassie, T

    1989-05-01

    The paper describes an investigation in which it is shown that small positive voltage pulses applied to an external conductor placed against the photocathode of a photomultiplier tube can be used to switch the photocathode completely off for the duration of the pulses. This suggests that a photomultiplier tube with a multisegment photocathode can be constructed, the individual cathode segments of which can be switched off independently by means of such pulses. A theoretical explanation for the effect is provided with the aid of a simple circuit model for the photocathode. Analysis of the model also shows that it is possible to identify the particular cathode segment in which a photon is detected when a pulse is recorded at the phototube's anode. A phototube with these characteristics can have important implications for positron emission tomography, as it can provide improved spatial resolution, simultaneous multislice capability and the ability to eliminate distortion due to dead-time effects at high count rates.

  20. Prognostic Significance of Tumor Response as Assessed by Sequential {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography During Concurrent Chemoradiation Therapy for Cervical Cancer

    SciTech Connect

    Oh, Dongryul; Lee, Jeong Eun; Huh, Seung Jae; Park, Won; Nam, Heerim; Choi, Joon Young; Kim, Byung-Tae

    2013-11-01

    Purpose: To investigate the prognostic role of metabolic response by the use of serial sets of positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer who were treated with concurrent chemoradiation therapy (CCRT). Methods and Materials: A total of 60 patients who were treated with CCRT between February 2009 and December 2010 were analyzed. Three sequential PET/CT images were acquired for each patient: pre-CCRT, during-CCRT at 4 weeks of CCRT, and 1 month post-CCRT PET/CT. Metabolic responses were assessed qualitatively. The percentage changes in the maximum values of standardized uptake value (ΔSUV{sub max}%) from the PET/CT images acquired pre-CCRT and during-CCRT were calculated. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether ΔSUV{sub max}% could predict complete response (CR) on the post-CCRT PET/CT and to identify the best cutoff value. Prognostic factors of progression-free survival (PFS) were analyzed. Results: During-CCRT PET/CT showed that 8 patients (13%) had CR, and the other 52 patients (87%) had partial response (PR). On the post-CCRT PET/CT, 43 patients (73%) had CR, 12 patients (20%) had PR, and 4 patients (7%) had progressive disease. The average SUV{sub max} in primary tumors was 16.3 (range, 6.4-53.0) on the pre-CCRT PET/CT images and 5.3 (range, 0-19.4) on the during-CCRT PET/CT images. According to ROC curve analysis, ΔSUV{sub max}% could predict CR response on post-CCRT PET/CT (P<.001, cutoff value of 59.7%). In all patients, the PFS rate was 71.9% at 2 years. Multivariate analysis showed that ΔSUV{sub max}% ≥60% (P=.045) and CR response on the post-CCRT PET/CT (P=.012) were statistically significant predictors of PFS. Conclusion: Metabolic responses on the during-CCRT images at 4 weeks of treatment and 1-month post-CCRT PET/CT images may predict treatment outcomes in patients with cervical cancer. ΔSUV{sub max}% ≥60% at 4 weeks of CCRT may predict CR response

  1. Clinical oncologic positron emission tomography: an introduction.

    PubMed

    Turkington, Timothy G; Coleman, R Edward

    2002-04-01

    PET imaging is a molecular imaging technology that is diffusing into imaging departments quite rapidly. The unique characteristics of positron emitting radionuclides such as fluorine-18 provide high-quality images with reasonable acquisition times. The imaging instrumentation continues to improve with new detector materials and combinations of PET scanners and CT scanners. FDG is now readily available to most hospitals in the United States. Third-party payers now recognize the importance of PET imaging in multiple malignancies. The number of PET scans performed annually will continue to increase as the indications increase and the instrumentation is more available.

  2. Influence of [{sup 18}F] fluorodeoxyglucose positron emission tomography on salvage treatment decision making for locally persistent nasopharyngeal carcinoma

    SciTech Connect

    Zheng Xiaojang . E-mail: zkn1268@fimmu.com; Chen Longhua; Wang Quanshi; Wu Fubing

    2006-07-15

    Purpose: The purpose of this study was to evaluate the role of [{sup 18}F] fluorodeoxyglucose positron emission tomography (FDG-PET) in influencing salvage treatment decision making for locally persistent nasopharyngeal carcinoma (NPC). Methods and Materials: A total of 33 NPC patients with histologic persistence at nasopharynx 1 to 6 weeks after a full course of radiotherapy underwent both computed tomography (CT) and FDG-PET/CT simulation at the same treatment position. The salvage treatment decisions, with regard to the decision to offer salvage treatment and the definition of gross tumor volume (GTV), were made before knowledge of the FDG-PET findings. Subsequently the salvage treatment decisions were made again based on the FDG-PET findings and compared with the pre-FDG-PET decisions. Results: All 33 patients were referred for salvage treatment in the pre-FDG-PET decision. After knowledge of the FDG-PET results, the decision to offer salvage treatment was withdrawn in 4 of 33 patients (12.1%), as no abnormal uptake of FDG was found at nasopharynx. Spontaneous remission was observed in repeat biopsies and no local recurrence was found in these 4 cases. For the remaining 29 patients, GTV based on FDG-PET was smaller than GTV based on CT in 24 (82.8%) cases and was greater in 5 (17.2%) cases, respectively. The target volume had to be significantly modified in 9 of 29 patients (31%), as GTV based on FDG-PET images failed to be enclosed by the treated volume in the salvage treatment plan performed based on GTV based on CT simulation images. Conclusion: Use of FDG-PET was found to influence the salvage treatment decision making for locally persistent NPC by identifying patients who were not likely to benefit from additional treatment and by improving accuracy of GTV definition in salvage treatment planning.

  3. ¹⁸F-DOPA PET/computed tomography imaging.

    PubMed

    Chondrogiannis, Sotirios; Marzola, Maria Cristina; Rubello, Domenico

    2014-07-01

    18F-DOPA is a radiopharmaceutical with interesting clinical applications and promising performances in the evaluation of the integrity of dopaminergic pathways, brain tumors, NETs (especially MTCs, paragangliomas, and pheochromocytomas), and congenital hyperinsulinism. 18F-DOPA traces a very specific metabolic pathway and has a very precise biodistribution pattern. As for any radiopharmaceutical, the knowledge of the normal distribution of 18F-DOPA, its physiologic variants, and its possible pitfalls is essential for the correct interpretation of PET scans. Moreover, it is important to be aware of the potential false-positive and false-negative episodes that can occur in the various clinical settings.

  4. Defining Radiotherapy Target Volumes Using {sup 18}F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography: Still a Pandora's Box?

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Menard, Sonia; Lisbona, Robert; Lehnert, Shirley

    2010-12-01

    Purpose: We discuss the effect of {sup 18}F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) data on target volume definition for radiotherapy planning. We compared the effect of various thresholding methods on the PET-based target volume vs. the standard CT-based tumor volume. Methods and Materials: Different thresholding methods were reviewed and compared to our PET-based gross tumor volume data obtained from a cohort of 31 non-small-cell lung carcinoma patients who had undergone preoperative PET/CT scans for staging. The feasibility and limitations of FDG-based PET/CT data on target volume delineation in radiotherapy planning have been demonstrated with frequently used approaches for target outlining such as the qualitative visual method and the fixed 15% or 40% of the maximal iso-uptake value threshold methods. Results: The relationship between PET-based and CT-based volumes generally suffers from poor correlation between the two image data sets, expressed in terms of a large statistical variation in gross tumor volume ratios, irrespective of the threshold method used. However, we found that the maximal signal/background ratios in non-small-cell lung carcinoma patients correlated well with the pathologic results, with an average ratio for adenocarcinoma, large cell carcinoma, and squamous cell carcinoma of 10.5 {+-} 3.5, 12.6 {+-} 2.8, and 14.1 {+-} 5.9, respectively. Conclusion: The fluctuations in tumor volume using different quantitative PET thresholding approaches did not depend on the thresholding method used. They originated from the nature of functional imaging in general and PET imaging in particular. Functional imaging will eventually be used for biologically tailored target radiotherapy volume definition not as a replacement of CT- or magnetic resonance imaging-based anatomic gross tumor volumes but with the methods complementing each other in a complex mosaic of distinct biologic target volumes.

  5. European health telematics networks for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  6. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  7. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  8. The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography in Thyroid Neoplasms

    PubMed Central

    Law, Tsz Ting

    2011-01-01

    18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has established itself as an important imaging modality in many oncological and nononcological specialties and, as a consequence, it is increasingly being used in clinical practice. Since the first report of FDG being taken up by metastatic differentiated thyroid carcinoma (DTC) cells >20 years ago, various groups of investigators have explored the potential role of FDG-PET scanning in patients with benign and malignant thyroid neoplasms. With the increasing demand for FDG-PET scanning, clinicians are faced with the challenge of managing an increasing number of FDG-PET–detected thyroid incidentalomas because their significance remains unclear. The aims of this review are to address some of these issues, specifically, the clinical significance of FDG-PET–detected thyroid incidentalomas, the ability of FDG-PET to characterize thyroid nodules, especially those with indeterminate fine needle aspiration cytology results, and the role of FDG-PET in patients with confirmed primary DTC and with suspected recurrent DTC, by reviewing the current literature. PMID:21378078

  9. Effect of {sup 11}C-Methionine-Positron Emission Tomography on Gross Tumor Volume Delineation in Stereotactic Radiotherapy of Skull Base Meningiomas

    SciTech Connect

    Astner, Sabrina T. Dobrei-Ciuchendea, Mihaela; Essler, Markus; Bundschuh, Ralf A.; Sai, Heitetsu; Schwaiger, Markus; Molls, Michael; Weber, Wolfgang A.; Grosu, Anca-Ligia

    2008-11-15

    Purpose: To evaluate the effect of trimodal image fusion using computed tomography (CT), magnetic resonance imaging (MRI) and {sup 11}C-methionine positron emission tomography (MET-PET) for gross tumor volume delineation in fractionated stereotactic radiotherapy of skull base meningiomas. Patients and Methods: In 32 patients with skull base meningiomas, the gross tumor volume (GTV) was outlined on CT scans fused to contrast-enhanced MRI (GTV-MRI/CT). A second GTV, encompassing the MET-PET positive region only (GTV-PET), was generated. The additional information obtained by MET-PET concerning the GTV delineation was evaluated using the PET/CT/MRI co-registered images. The sizes of the overlapping regions of GTV-MRI/CT and GTV-PET were calculated and the amounts of additional volumes added by the complementing modality determined. Results: The addition of MET-PET was beneficial for GTV delineation in all but 3 patients. MET-PET detected small tumor portions with a mean volume of 1.6 {+-} 1.7 cm{sup 3} that were not identified by CT or MRI. The mean percentage of enlargement of the GTV using MET-PET as an additional imaging method was 9.4% {+-} 10.7%. Conclusions: Our data have demonstrated that integration of MET-PET in radiotherapy planning of skull base meningiomas can influence the GTV, possibly resulting in an increase, as well as in a decrease.

  10. Transconvolution and the virtual positron emission tomograph-A new method for cross calibration in quantitative PET/CT imaging

    SciTech Connect

    Prenosil, George A.; Weitzel, Thilo; Hentschel, Michael; Klaeser, Bernd; Krause, Thomas

    2013-06-15

    Purpose: Positron emission tomography (PET)/computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET/CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET/CT in the context of multicenter trials. Methods: To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET/CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET/CT systems, a dedicated solid-state phantom incorporating {sup 68}Ge/{sup 68}Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination

  11. The Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Bone Lesions of Undetermined Origin.

    PubMed

    Tamam, Cuneyt; Tamam, Muge; Mulazimoglu, Mehmet

    2016-01-01

    The aim of the current study was to determine the diagnostic accuracy of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting carcinoma of unknown primary (CUP) with bone metastases. We evaluated 87 patients who were referred to FDG-PET/CT imaging and reported to have skeletal lesions with suspicion of malignancy. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. The median survival rate was measured to evaluate the prognostic value of the FDG-PET/CT findings. In the search for a primary, FDG-PET/CT findings correctly diagnosed lesions as the site of the primary true positive (TP) in 64 (73%) cases, 4 (5%) findings diagnosed no site of a primary, and none were subsequently proven to be true negative (TN); 14 (16%) diagnoses were false positive (FP) and 5 (6%) diagnoses were false negative (FN). Life expectancy was between 2 months and 25 months. Whole-body FDG-PET/CT imaging may be a useful method in assessing the bone lesions with suspicion of bone metastases. PMID:27134563

  12. High-speed digitization readout of silicon photomultipliers for time of flight positron emission tomography

    SciTech Connect

    Ronzhin, A.; Los, S.; Martens, M.; Ramberg, E.; Kim, H.; Chen, C.; Kao, C.; Niessen, K.; Zatserklyaniy, A.; Mazzillo, M.; Carbone, B.; /SGS Thomson, Catania

    2011-02-01

    We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomography (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage

  13. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    SciTech Connect

    Herraiz, J. L.; Sitek, A.

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  14. Clustering-initiated factor analysis application for tissue classification in dynamic brain positron emission tomography

    PubMed Central

    Boutchko, Rostyslav; Mitra, Debasis; Baker, Suzanne L; Jagust, William J; Gullberg, Grant T

    2015-01-01

    The goal is to quantify the fraction of tissues that exhibit specific tracer binding in dynamic brain positron emission tomography (PET). It is achieved using a new method of dynamic image processing: clustering-initiated factor analysis (CIFA). Standard processing of such data relies on region of interest analysis and approximate models of the tracer kinetics and of tissue properties, which can degrade accuracy and reproducibility of the analysis. Clustering-initiated factor analysis allows accurate determination of the time–activity curves and spatial distributions for tissues that exhibit significant radiotracer concentration at any stage of the emission scan, including the arterial input function. We used this approach in the analysis of PET images obtained using 11C-Pittsburgh Compound B in which specific binding reflects the presence of β-amyloid. The fraction of the specific binding tissues determined using our approach correlated with that computed using the Logan graphical analysis. We believe that CIFA can be an accurate and convenient tool for measuring specific binding tissue concentration and for analyzing tracer kinetics from dynamic images for a variety of PET tracers. As an illustration, we show that four-factor CIFA allows extraction of two blood curves and the corresponding distributions of arterial and venous blood from PET images even with a coarse temporal resolution. PMID:25899294

  15. Physiologic variants, benign processes, and artifacts from 106 canine and feline FDG-PET/computed tomography scans.

    PubMed

    Randall, Elissa; Loeber, Samantha; Kraft, Susan

    2014-01-01

    18F-Fluoro-deoxyglucose positron emission computed tomography (FDG-PET/CT) is an emerging diagnostic imaging modality in veterinary medicine; however, little published information is available on physiologic variants, benign processes, and artifacts. The purpose of this retrospective study was to describe the number of occurrences of non-neoplastic disease-related FDG-PET/CT lesions in a group of dogs and cats. Archived FDG-PET/CT scans were retrieved and interpreted based on a consensus opinion of two board-certified veterinary radiologists. Non-neoplastic disease-related lesions were categorized as physiologic variant, benign activity, or equipment/technology related artifact. If the exact cause of hypermetabolic areas could not be determined, lesions were put into an indeterminate category. A total of 106 canine and feline FDG-PET/CT scans were included in the study. In 104 of the 106 scans, a total of 718 occurrences of physiologic variant, areas of incidental benign activity, and artifacts were identified. Twenty-two of 23 feline scans and 82 of 83 canine scans had at least one artifact. Previously unreported areas of increased radiopharmaceutical uptake included foci associated with the canine gall bladder, linear uptake along the canine mandible, and focal uptake in the gastrointestinal tract. Benign activity was often seen and related to healing, inflammation, and indwelling implants. Artifacts were most often related to injection or misregistration. Further experience in recognizing the common veterinary FDG physiologic variation, incidental radiopharmaceutical uptake, and artifacts is important to avoid misinterpretation and false-positive diagnoses.

  16. "Mixed" anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands.

    PubMed

    Nakao, Ryuji; Halldin, Christer

    2013-03-15

    A mixed micellar liquid chromatographic (LC) method, the mobile phase consisting of anionic and non-ionic surfactants, has been developed for the high-speed direct radiometabolite analysis of positron emission tomography (PET) radioligands in plasma. The addition of Triton X-100 on an anionic surfactant sodium dodecyl sulphate (SDS) mobile phase improved elution strength and peak efficiency for many PET radioligands. Several radioligands could be easily separated from their radioactive metabolites with short run time of only 4 min using a "pure" (without organic solvent) mixed micellar mobile phase and semi-preparative monolithic C(18)-bonded silica column by simple isocratic elution without any treatment of plasma. Moreover, the use of "hybrid" mixed micellar mobile phase containing anionic, non-ionic surfactants and organic solvent was effective to further enhance peak efficiency and elute highly retained hydrophobic PET radioligands. These characteristics enabled significant shorting the radiometabolite analysis procedure of PET radioligands and simplifying the experimental setup.

  17. 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging findings of primary intracranial histiocytic sarcoma in a dog.

    PubMed

    Kang, Byeong-Teck; Park, Chul; Yoo, Jong-Hyun; Gu, Su-Hyun; Jang, Dong-Pyo; Kim, Young-Bo; Woo, Eung-Je; Kim, Dae-Young; Cho, Zang-Hee; Park, Hee-Myung

    2009-10-01

    A 10-year-old, neutered male, Maltese dog presented with a three week history of intention tremor, right hind limb rigidity, poor coordination, and occasional circling to the left. On magnetic resonance imaging (MRI) of the brain, a mass was identified in the right occipital lobe and cerebellum. Three weeks after the initial MRI scan, we performed an (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the brain. The FDG-PET demonstrated areas of hypermetabolism in the right occipital lobe, cerebellum, pons, and medulla oblongata. When the standardized uptake value was calculated, the hypermetabolic lesion was higher than the gray matter values. The anatomical location of the hypermetabolic lesion was more precisely identified by the PET-MRI fusion images. The dog was definitively diagnosed as a primary histiocytic sarcoma of the brain. This is the first report of PET findings of an intracranial histiocytic sarcoma in a dog.

  18. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  19. Patient self-attenuation and technologist dose in positron emission tomography

    SciTech Connect

    Zeff, Benjamin W.; Yester, Michael V.

    2005-04-01

    Positron emission tomography (PET), with 511-keV radiation and long patient-uptake times, presents unique radiation safety concerns. This two-part study considers aspects of PET radiation safety as they relate to PET suite design, dose to the public, and technologist occupational dose. In the first part of the study, the self-attenuation of radiation by patients' bodies was quantified. The radiation exposure was measured at three positions from 64 patients injected with fluorine-18 fluorodeoxyglucose (FDG) during the uptake period. Compared with an in vitro control used as a point source, a significant decrease in exposure (>40% at 1 m) was observed due to nonuniform distribution of FDG and attenuation within the patients. The attenuation data are consistent with results from simulations [M. E. Phelps, ''Comments and Perspectives,'' J. Nucl. Med. 45, 1601 (2004)] that treat the body as a uniform, water-filled cylinder. As distance is often the principal source of protection for 511-keV radiation, the considerable self-attenuation may allow for more compact PET suites. However, despite high patient self-attenuation, shielding, and standard precautionary measures, PET technologist occupational doses can remain quite high ({approx}12 mSv/year). The second part of this study tracked the daily dose received by PET technologists. Close technologist-patient interaction both during and following FDG administration, as much as 20 min/study, contribute to the high doses and point to the need for a more innovative approach to radiation protection for PET technologists.

  20. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer. PMID:23782777

  1. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  2. Detection and Assessment Using Positron Emission Tomography of Genetically Determined Defects in Myocardial Fatty Acid Utilization. Final report, 8/1/93-6/30/97

    SciTech Connect

    Bergmann, Steven R.

    2000-04-09

    An approach using positron emission tomography (PET) was developed, validated and used to measure myocardial fatty acid metabolism in patients with inherited forms of heart failure. Abnormalities were correlated with the severity of the clinical illness. The approach developed was also shown to identify abnormalities in myocardial fatty acid metabolism in some patients with acquired forms of heart failure. The PET technique thus permits identification of abnormal fatty acid metabolism and provides an approach to evaluate the efficacy of interventional strategies.

  3. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18 deoxyglucose positron emission tomography

    SciTech Connect

    Marwick, T.H.; MacIntyre, W.J.; Salcedo, E.E.; Go, R.T.; Saha, G.; Beachler, A. )

    1991-02-01

    The identification of ischemic and hibernating myocardium facilitates the selection of patients most likely to benefit from revascularization. This study examined the feasibility of metabolic imaging, using post-exercise F-18 deoxyglucose positron emission tomography (FDG-PET) for the diagnosis of both ischemia and hibernation in 27 patients with known coronary anatomy. Normal post-exercise FDG uptake was defined in each patient by reference to normal resting perfusion and normal coronary supply. Abnormal elevation of FDG (ischemia or hibernation) was compared in 13 myocardial segments in each patient, with the results of dipyridamole stress perfusion imaging performed by rubidium-82 positron emission tomography (Rb-PET). Myocardial ischemia was diagnosed by either FDG-PET or Rb-PET in 34 segments subtended by significant local coronary stenoses. Increased FDG uptake was present in 32/34 (94%) and a reversible perfusion defect was identified by Rb-PET in 22/34 (65%, p less than .01). In 3 patients, ischemia was identified by metabolic imaging alone. In 16 patients with previous myocardial infarction, perfusion defects were present at rest in 89 regions, 30 of which (34%) demonstrated increased FDG uptake, consistent with the presence of hibernation. Increased post-exercise FDG uptake appears to be a sensitive indicator of ischemia and myocardial hibernation. Increased post-exercise FDG uptake, appears to be a sensitive indicator of ischemia and myocardial hibernation. This test may be useful in selecting post-infarction patients for revascularization.

  4. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging of an isolated subcutaneous loin metastasis from primary papillary carcinoma of the thyroid

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Shibu, Deepu; Edathurthy, Radhakrishnan; Shinto, Ajit Sugunan

    2014-01-01

    Differentiated thyroid cancer frequently metastasizes but generally spreads to regional cervical lymph nodes and, in advanced cases, to the lungs and/or skeleton. Metastases to the skin/subcutaneous tissue are rare. We report 45-year-old male patient presented with a loin swelling which on biopsy showed a papillary carcinoma and referred for fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) to find out the primary disease. PET/CT showed abnormal FDG uptake within a loin metastasis and right lobe thyroid nodule. Fine-needle aspiration from nodule showed papillary carcinoma. Because thyroid cancer can rarely metastasize to the skin, attention should be given to that region during interpretation of the images. He was advised total thyroidectomy and metastasis excision. PMID:24761062

  5. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography imaging of an isolated subcutaneous loin metastasis from primary papillary carcinoma of the thyroid.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Shibu, Deepu; Edathurthy, Radhakrishnan; Shinto, Ajit Sugunan

    2014-04-01

    Differentiated thyroid cancer frequently metastasizes but generally spreads to regional cervical lymph nodes and, in advanced cases, to the lungs and/or skeleton. Metastases to the skin/subcutaneous tissue are rare. We report 45-year-old male patient presented with a loin swelling which on biopsy showed a papillary carcinoma and referred for fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) to find out the primary disease. PET/CT showed abnormal FDG uptake within a loin metastasis and right lobe thyroid nodule. Fine-needle aspiration from nodule showed papillary carcinoma. Because thyroid cancer can rarely metastasize to the skin, attention should be given to that region during interpretation of the images. He was advised total thyroidectomy and metastasis excision.

  6. Kikuchi Disease with Generalized Lymph Node, Spleen and Subcutaneous Involvement Detected by Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Alshammari, Alshaima; Skoura, Evangelia; Kazem, Nafisa; Ashkanani, Rasha

    2016-06-01

    Kikuchi-Fujimoto disease, known as Kikuchi disease, is a rare benign and self-limiting disorder that typically affects the regional cervical lymph nodes. Generalized lymphadenopathy and extranodal involvement are rare. We report a rare case of a 19-year-old female with a history of persistent fever, nausea, and debilitating malaise. Fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) revealed multiple hypermetabolic generalized lymph nodes in the cervical, mediastinum, axillary, abdomen and pelvic regions with diffuse spleen, diffuse thyroid gland, and focal parotid involvement, bilaterally. In addition, subcutaneous lesions were noted in the left upper paraspinal and occipital regions. An excisional lymph node biopsy guided by 18F-FDG PET/CT revealed the patient's diagnosis as Kikuchi syndrome. PMID:27277328

  7. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  8. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F).

  9. Integration of the metabolic data of positron emission tomography in the dosimetry planning of radiosurgery with the gamma knife: early experience with brain tumors. Technical note.

    PubMed

    Levivier, M; Wikier, D; Goldman, S; David, P; Metens, T; Massager, N; Gerosa, M; Devriendt, D; Desmedt, F; Simon, S; Van Houtte, P; Brotchi, J

    2000-12-01

    The purpose of this study was to assess the use of positron emission tomography (PET) as a stereotactic planning modality for gamma knife radiosurgery (GKS). The authors developed and validated a technique for fiducial marker imaging, importation, and handling of PET data for integration into GammaPlan planning software. The clinical feasibility in applying this approach to a selected group of patients presenting with recurrent glial tumors or metastases was evaluated. Positron emission tomography data can be integrated into GammaPlan, allowing a high spatial accuracy, as validated using a phantom. Positron emission tomography data were successfully combined with magnetic resonance (MR) images to define the target volume for the radiosurgical treatment of patients with recurrent glioma or metastasis. This approach may contribute to optimizing target selection for infiltrating or ill-defined brain lesions. Because PET is also useful for the pretreatment and follow-up evaluation, the use of stereotactic PET in these patients can enable an accurate comparison of PET-based metabolic data with MR-based anatomical data. This could give a better understanding of the metabolic changes following radiosurgery. The ability to use PET data in GKS represents a crucial step toward further developments in radiosurgery, as this approach provides additional information that may open new perspectives for the optimization of the treatment of brain tumors.

  10. Comparison of Physical Examination and Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography 4-6 Months After Radiotherapy to Assess Residual Head-and-Neck Cancer

    SciTech Connect

    Zundel, M. Tracy; Michel, Michelle A.; Schultz, Christopher J.; Maheshwari, Mohit; Wong, Stuart J.; Campbell, Bruce H.; Massey, Becky L.; Blumin, Joel; Wilson, J. Frank; Wang, Dian

    2011-12-01

    Purpose: To retrospectively compare fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and physical examination 4-6 months after radiotherapy for assessing residual head-and-neck cancer (HNC). Methods and Materials: From July 2002 through March 2006, 52 HNC patients underwent definitive radiotherapy or chemoradiotherapy. Categoric assessments of residual tumor by PET/CT and physical examination 4-6 months after therapy were correlated and compared with clinical outcomes. Pretreatment data, including tumor stage and primary site standardized uptake value, were also gathered retrospectively and correlated with clinical outcomes. Median follow-up time was 58 months. Results: Twenty-one patients had either locoregionally 'positive' (17 of 21) or 'equivocal' (4 of 21) PET/CT scans, whereas 31 patients had locoregionally negative scans. Four patients failed treatment and had biopsy-confirmed residual or recurrent local disease. All patients, including patients with locally suspicious scans or examinations who refused biopsies, were followed clinically for a minimum of 29 months after therapy, with no other cases of treatment failure detected during this time. No patient had residual nodal disease after therapy. Sensitivities of PET/CT vs. physical examination for early detection of treatment failure were 100% vs. 50%, whereas the specificities of the two modalities were 64.6% vs. 89.6%, respectively. Higher initial T stage and American Joint Commission on Cancer stage correlated with increased incidence of positive/equivocal PET/CT results and treatment failure. Maximal standardized uptake value was not predictive of any clinical outcome. Conclusions: A negative result on PET/CT obtained 4-6 months after radiotherapy is highly sensitive and correlates with successful locoregional control. Patients with negative scans may reasonably be spared invasive diagnostic procedures, such as biopsy and neck dissection, unless recurrent disease is suspected

  11. Occupational Exposure to Veterinary Workers from the Positron Emission Tomography Imaging Agent 64Cu-ATSM.

    PubMed

    Hetrick, Lucas D; Kraft, Susan L; Johnson, Thomas E

    2015-11-01

    Cu-ATSM is an emerging radiopharmaceutical for diagnostic use in positron emission tomography (PET), but to date there are no studies that assess the potential occupational doses to workers in either human or veterinary medicine. This study was aimed at determining the external radiation dose to veterinary workers from clinical PET/CT (PET combined with computed tomography) procedures using Cu-ATSM. To determine the dose to the workers, each worker was assigned two Electronic Personal Dosimeters (EPDs) to be worn on the chest and waist during the entirety of each procedure. The workers monitored during this study included a radiobiologist, a nuclear medicine technologist, an anesthesiologist, and a veterinary surgeon. Seven canine patients were imaged with an average mass of 33.7 kg (a range of 20.0-55.1 kg) with an average injected activity of 5 MBq kg. The dose range for the radiobiologist was 2-17 μSv (mean of 7.1 μSv), for the nuclear medicine technologist 0-14 μSv (mean of 5.6 μSv), for the anesthesiologist 0-12 μSv (mean of 4.0 μSv), and for the surgeon 0-10 μSv (mean of 3.6 μSv). In a comparison between the results of this study and published literature on occupational exposures from veterinary FDG PET/CT procedures, Cu-ATSM veterinary PET/CT procedures, on a per patient bias, exposed workers to less radiation. PMID:26425985

  12. Positron Emission Tomography and Magnetic Resonance Imaging of Cellular Inflammation in Patients with Abdominal Aortic Aneurysms

    PubMed Central

    McBride, O.M.B.; Joshi, N.V.; Robson, J.M.J.; MacGillivray, T.J.; Gray, C.D.; Fletcher, A.M.; Dweck, M.R.; van Beek, E.J.R.; Rudd, J.H.F.; Newby, D.E.; Semple, S.I.

    2016-01-01

    Objectives Inflammation is critical in the pathogenesis of abdominal aortic aneurysm (AAA) disease. Combined 18F-fludeoxyglucose (18F-FDG) positron emission tomography with computed tomography (PET-CT) and ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) are non-invasive methods of assessing tissue inflammation. The aim of this study was to compare these techniques in patients with AAA. Materials and methods Fifteen patients with asymptomatic AAA with diameter 46 ± 7 mm underwent PET-CT with 18F-FDG, and T2*-weighted MRI before and 24 hours after administration of USPIO. The PET-CT and MRI data were then co-registered. Standardised uptake values (SUVs) were calculated to measure 18F-FDG activity, and USPIO uptake was determined using the change in R2*. Comparisons between the techniques were made using a quadrant analysis and a voxel-by-voxel evaluation. Results When all areas of the aneurysm were evaluated, there was a modest correlation between the SUV on PET-CT and the change in R2* on USPIO-enhanced MRI (n = 70,345 voxels; r = .30; p < .0001). Although regions of increased 18F-FDG and USPIO uptake co-localised on occasion, this was infrequent (kappa statistic 0.074; 95% CI 0.026–0.122). 18F-FDG activity was commonly focused in the shoulder region whereas USPIO uptake was more apparent in the main body of the aneurysm. Maximum SUV was lower in patients with mural USPIO uptake. Conclusions Both 18F-FDG PET-CT and USPIO-MRI uptake identify vascular inflammation associated with AAA. Although they demonstrate a modest correlation, there are distinct differences in the pattern and distribution of uptake, suggesting a differential detection of macrophage glycolytic and phagocytic activity respectively. PMID:26919936

  13. Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography.

    PubMed

    Almeida, P; Ribeiro, M J; Bottlaender, M; Loc'h, C; Langer, O; Strul, D; Hugonnard, P; Grangeat, P; Mazière, B; Bendriem, B

    1999-12-01

    Epidepride labelled with iodine-123 is a suitable probe for the in vivo imaging of striatal and extrastriatal dopamine D2 receptors using single-photon emission tomography (SPET). Recently, this molecule has also been labelled with carbon-11. The goal of this work was to develop a method allowing the in vivo quantification of radioactivity uptake in baboon brain using SPET and to validate it using positron emission tomography (PET). SPET studies were performed in Papio anubis baboons using 123I-epidepride. Emission and transmission measurements were acquired on a dual-headed system with variable head angulation and low-energy ultra-high resolution (LEUHR) collimation. The imaging protocol consisted of one transmission measurement (24 min, heads at 90 degrees), obtained with two sliding line sources of gadolinium-153 prior to injection of 0.21-0.46 GBq of 123I-epidepride, and 12 emission measurements starting 5 min post injection. For scatter correction (SC) we used a dual-window method adapted to 123I. Collimator blurring correction (CBC) was done by deconvolution in Fourier space and attenuation correction (AT) was applied on a preliminary (CBC) filtered back-projection reconstruction using 12 iterations of a preconditioned, regularized minimal residual algorithm. For each reconstruction, a calibration factor was derived from a uniform cylinder filled with a 123I solution of a known radioactivity concentration. Calibration and baboon images were systematically built with the same reconstruction parameters. Uncorrected (UNC) and (AT), (SC + AT) and (SC + CBC + AT) corrected images were compared. PET acquisitions using 0.11-0.44 GBq of 11C-epidepride were performed on the same baboons and used as a reference. The radioactive concentrations expressed in percent of the injected dose per 100 ml (% ID/100 ml) obtained after (SC + CBC + AT) in SPET are in good agreement with those obtained with PET and 11C-epidepride. A method for the in vivo absolute quantitation of 123

  14. Receptor-specific positron emission tomography radiopharmaceuticals: /sup 75/Br-labeled butyrophenone neuroleptics

    SciTech Connect

    Moerlein, S.M.; Stoecklin, G.; Weinhard, K.; Pawlik, G.; Heiss, W.D.

    1985-11-01

    Cerebral dopaminergic D/sub 2/ receptors are involved in several common disease states, such as schizophrenia, Parkinson's disease, and Huntington's chorea. The use of radiolabeled D/sub 2/ receptor-binding ligands with positron emission tomography (PET) to noninvasively quantitate D/sub 2/ receptor densities thus has potential application in medicine. Butyrophenone neuroleptics have a high in vitro and in vivo binding affinity for cerebral D/sub 2/ receptors, and due to the useful chemical and nuclear decay properties of /sup 74/Br (76% ..beta../sup +/, half-life = 1.6 h), the authors have evaluated radiobrominated bromospiperone (BSP), brombenperidol (BBP), and bromperidol (BP) as radiopharmaceuticals for use with PET.

  15. Myelin imaging with C-11 labeled diphenylmethanol and positron emission tomography

    SciTech Connect

    Herscovitch, P.; Dischino, D.D.; Kilbourn, M.R.; Welch, M.J.; Raichle, M.E.

    1985-05-01

    The authors have recently studied several C-11-labeled radiopharmaceuticals for their suitability as myelin imaging agents with positron emission tomography (PET). C-11 diphenylmethanol (DPM) was selected on the basis of its in vivo metabolic stability and high extraction and lipophilicity. PET studies were performed in three normal subjects and in one patient with multiple sclerosis (MS). Myelin distribution was imaged following the bolus intravenous administration of 25-30 mCi of C-11 DPM. Sequential scans were obtained after radiotracer administration to measure the DPM distribution as a function of time. In addition, regional cerebral blood flow was measured after the bolus intravenous injection of 0-15 water. A tomographic slice through the centrum semiovale was used to obtain regional data for gray matter (GM) and white matter (WM).

  16. The nigrostriatal dopaminergic pathway in Wilson's disease studied with positron emission tomography.

    PubMed Central

    Snow, B J; Bhatt, M; Martin, W R; Li, D; Calne, D B

    1991-01-01

    Movement disorders, including Parkinsonism, are prominent features of neurological Wilson's disease (WD). This suggests there may be dysfunction of the nigrostriatal dopaminergic pathway. To explore this possibility, five patients were studied using positron emission tomography (PET) with 18F-6-fluorodopa (6FD), and magnetic resonance imaging (MRI). We calculated striatal 6FD uptake rate constants by a graphical method and compared the results with those of 18 normal subjects. It was found that four patients with symptoms all had abnormally low 6FD uptake, and the one asymptomatic patient had normal uptake. PET evidence for nigrostriatal dopaminergic dysfunction was present even after many years of penicillamine treatment. It is concluded that the nigrostriatal dopaminergic pathway is involved in neurological WD. Images PMID:1901347

  17. Sparse representation and dictionary learning penalized image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei

    2015-01-01

    Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.

  18. Positron emission tomography radioligands for in vivo imaging of Aβ plaques

    PubMed Central

    Mason, N. Scott; Mathis, Chester A.; Klunk, William E.

    2014-01-01

    The development of positron emission tomography (PET) radioligands for the non-invasive imaging of amyloid-β plaque burden has been the focus of intense research efforts over the last decade. A variety of structural backbones have been investigated and several radiolabeled molecules have been evaluated in phase I (and later) clinical studies. These efforts have been driven by the desire not only to develop a suitable diagnostic imaging agent but also to develop a means to evaluate potential therapies for Alzheimer’s disease. This review focuses on the development of these ligands, as well as the radiochemistry and current regulatory status of these PET radioligands. Particular attention is given to those ligands that have progressed to the later stages of drug development (phase II/III clinical trial studies) or approved New Drug Application status. PMID:24285314

  19. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    PubMed

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  20. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    SciTech Connect

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew; Ryan, Gail; Seymour, John F.; Prince, H. Miles

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  1. Positron emission tomography for the assessment of myocardial viability

    SciTech Connect

    Schelbert, H.R. )

    1991-09-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach.

  2. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography

    PubMed Central

    Mattsson, Niklas

    2016-01-01

    See Rabinovici (doi:10.1093/brain/aww025) for a scientific commentary on this article. Cerebral accumulation of amyloid-β is thought to be the starting mechanism in Alzheimer’s disease. Amyloid-β can be detected by analysis of cerebrospinal fluid amyloid-β42 or amyloid positron emission tomography, but it is unknown if any of the methods can identify an abnormal amyloid accumulation prior to the other. Our aim was to determine whether cerebrospinal fluid amyloid-β42 change before amyloid PET during preclinical stages of Alzheimer’s disease. We included 437 non-demented subjects from the prospective, longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. All underwent 18F-florbetapir positron emission tomography and cerebrospinal fluid amyloid-β42 analysis at baseline and at least one additional positron emission tomography after a mean follow-up of 2.1 years (range 1.1–4.4 years). Group classifications were based on normal and abnormal cerebrospinal fluid and positron emission tomography results at baseline. We found that cases with isolated abnormal cerebrospinal fluid amyloid-β and normal positron emission tomography at baseline accumulated amyloid with a mean rate of 1.2%/year, which was similar to the rate in cases with both abnormal cerebrospinal fluid and positron emission tomography (1.2%/year, P = 0.86). The mean accumulation rate of those with isolated abnormal cerebrospinal fluid was more than three times that of those with both normal cerebrospinal fluid and positron emission tomography (0.35%/year, P = 0.018). The group differences were similar when analysing yearly change in standardized uptake value ratio of florbetapir instead of percentage change. Those with both abnormal cerebrospinal fluid and positron emission tomography deteriorated more in memory and hippocampal volume compared with the other groups (P < 0.001), indicating that they were closer to Alzheimer’s disease dementia. The results were replicated after

  3. Positron Emission Tomography for Neck Evaluation Following Definitive Treatment with Chemoradiotherapy for Locoregionally Advanced Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Bar-Ad, Voichita; Mishra, Mark; Ohri, Nitin; Intenzo, Charles

    2013-01-01

    Objectives The objective of the current review was to assess published data on the role of Positron Emission Tomography (PET) for evaluation of nodal residual disease after definitive chemoradiotherapy for head and neck squamous cell carcinoma (HNSCC). Methods Studies were identified by searching PubMed electronic databases. Only studies using a post-chemoradiotherapy PET for nodal residual disease evaluation were included in the present review. Both prospective and retrospective studies were included. Information regarding sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET for detecting nodal residual disease after definitive chemoradiotherapy for HNSCC was extracted and analyzed. Results Twenty published studies were included in the present review. Existing data suggest that a negative post-chemoradiotherapy PET scan is associated with a negative predictive value up to 100%. The sensitivity of PET in detecting nodal residual disease is greater for scans performed ≥ 10 weeks after definitive treatment with chemoradiotherapy for HNSCC. Conclusions Further studies are needed to quantify the reliability of PET in detecting nodal residual disease after chemoradiotherapy for locoregionally advanced HNSCC. The optimal timing of PET imaging after chemoradiotherapy remains to be defined. PMID:21864252

  4. Practical implementation of tetrahedral mesh reconstruction in emission tomography.

    PubMed

    Boutchko, R; Sitek, A; Gullberg, G T

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  5. Detection of neuronal damage in degenerative brain disease with cobalt-55 and positron emission tomography

    SciTech Connect

    Jansen, H.M.L.; Pruim, J.; Paans, A.M.J.

    1994-05-01

    We suggest Cobalt-55 (Co) as a Calcium (Ca)-marker to visualize Ca transport across the neuronal membrane. Elevation of intracellular Ca is closely linked with the process of neuronal cell-decay. Co-uptake is correlated with Ca-accumulation through divalent cation-permeable kainate (KA)-activated receptor-operated channels in the neuronal membrane. This hypothesis was studied with position emission tomography (PET) both in patients with a ischemic cerebro-vascular accident (CVA) and in patients with relapsing progressive multiple sclerosis (MS). Co-PET studies were performed in a dynamic mode (6 frames of 10 minutes) 20-25 hours after iv.-administration of 1-2 mCi Co. Regional specific accumulation irrespective of blood brain barrier (BBB) integrity in the (clinically appropriate) affected cerebral region could be demonstrated in CVA-patients, thus suggesting neuronal decay in (the early phase of) infarction. In MS, inhomogeneous cerebral distribution of Co was detected, in contrast to healthy volunteers. This suggests focal accumulation of Co in multiple spots of neuronal decay, possibly related to MS-lesions on MRI. In conclusion, Co-PET may prove to be a valuable tool for the early detection of neuronal decay not only in CVA and MS, but in other brain-pathology as well. The usefulness of Co-PET in imaging brain-tumors and myocardial ischemia has already been established.

  6. Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques.

    PubMed Central

    Scharko, A M; Perlman, S B; Hinds PW2nd; Hanson, J M; Uno, H; Pauza, C D

    1996-01-01

    Pathogenesis of simian immunodeficiency virus (SIV) infection in rhesus macaques begins with acute viremia and then progresses to a distributed infection in the solid lymphoid tissues, which is followed by a process of cellular destruction leading to terminal disease and death. Blood and tissue specimens show the progress of infection at the cellular level but do not reveal the pattern of infection and host responses occurring throughout the body. The purpose of this investigation was to determine whether positron emission tomography (PET) imaging with intravenous 2-18F-2-deoxyglucose (FDG) could identify activated lymphoid tissues in a living animal and whether this pattern would reflect the extent of SIV infection. PET images from SIV-infected animals were distinguishable from uninfected controls and revealed a pattern consistent with widespread lymphoid tissue activation. Significant FDG accumulation in colon along with mesenteric and ileocaecal lymph nodes was found in SIV infection, especially during terminal disease stages. Areas of elevated FDG uptake in the PET images were correlated with productive SIV infection using in situ hybridization as a test for virus replication. PET-FDG images of SIV-infected animals correlated sites of virus replication with high FDG accumulation. These data show that the method can be used to evaluate the distribution and activity of infected tissues in a living animal without biopsy. Fewer tissues had high FDG uptake in terminal animals than midstage animals, and both were clearly distinguishable from uninfected animal scans. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692831

  7. Fluorine-18 fluorodeoxyglucose positron emission tomography imaging of T-lymphoblastic lymphoma patients

    PubMed Central

    Park, Jong Hoon; Pahk, Kisoo; Kim, Sungeun; Lim, Sang Moo; Cheon, Gi Jeong; Park, Yeon Hee; Lee, Seung-Sook; Choe, Jae Gol

    2016-01-01

    The purpose of the present study was to evaluate the fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) findings in patients with T-lymphoblastic lymphoma (T-LBL). In total, 9 patients with histopathologically confirmed T-LBL were included in the study. Bone marrow (BM) involvement and leukemic transformation (LT) were evaluated through iliac crest marrow biopsy and peripheral blood blast count. FDG-PET scans were performed at the initial pre-treatment point. Two experienced nuclear medicine physicians evaluated the FDG-PET images by visual analysis and using the maximum standardized uptake values (SUVmax) of the malignant lesions. Overall, 8 out 9 patients presented with BM involvement; 7 showed LT, while 1 showed BM involvement without LT. All involved T-LBL lesions were FDG-avid with variable uptake. The mean SUVmax was 6.4±3.3. T-LBL patients with BM involvement showed diffuse or nodular marrow uptake. In addition, all the patients with LT showed diffuse marrow FDG activity. However, the patient with BM involvement but no LT showed nodular FDG uptake in the marrow. In conclusion, the present study indicates that it is possible to use FDG-PET for the evaluation of the disease extent of T-LBL. Furthermore, the imaging technique could provide a diagnostic clue for determining BM involvement or LT. PMID:27446482

  8. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  9. [(18)F]-Group 13 fluoride derivatives as radiotracers for positron emission tomography.

    PubMed

    Chansaenpak, Kantapat; Vabre, Boris; Gabbaï, François P

    2016-02-21

    The field of (18)F chemistry is rapidly expanding because of the use of this radionuclide in radiotracers for positron emission tomography (PET). Until recently, most [(18)F]-radiotracers were generated by the direct attachment of (18)F to a carbon in the organic backbone of the radiotracer. The past decade has witnessed the emergence of a new strategy based on the formation of an (18)F-group 13 element bond. This approach, which is rooted in the field of fluoride anion complexation/coordination chemistry, has led to the development of a remarkable family of boron, aluminium and gallium [(18)F]-fluoride anion complexing agents which can be conjugated with peptides and small molecules to generate disease specific PET radiotracers. This review is dedicated to the chemistry of these group 13 [(18)F]-fluorides anion complexing agents and their use in PET. Some of the key fluoride-binding motifs covered in this review include the trifluoroborate unit bound to neutral or cationic electron deficient backbones, the BF2 unit of BODIPY dyes, and AlF or GaF3 units coordinated to multidentate Lewis basic ligands. In addition to describing how these moieties can be converted into their [(18)F]-analogs, this review also dicusses their incorporation into bioconjugates for application in PET. PMID:26548467

  10. Dynamic study of methionine positron emission tomography in patients with glioblastoma with oligodendroglial components.

    PubMed

    Yano, Hirohito; Ohe, Naoyuki; Nakayama, Noriyuki; Nomura, Yu-Ichi; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2015-10-01

    Anaplastic oligoastrocytoma (AOA) with necrosis is classified as glioblastoma (GBM) with oligodendroglioma component (GBMO), according to the 2007 World Health Organization classification. The prognosis of GBMO remains controversial because definitive diagnostic criteria regarding the percentage of the oligodendroglial components (OC) in the GBM do not exist. We previously reported dynamic methionine (MET) positron emission tomography (PET) in patients with these tumors. A significant decrease in the MET signal was seen in oligodendrocytic tumors, in contrast to a significant MET increase in GBMs. In this study, we analyzed the dynamic MET PET signal in four patients with primary (n = 2) and secondary (n = 2) GBMOs. Static PET scanning was performed in three consecutive phases. Both cases of primary GBMOs and one case of secondary GBMO presented with a gradual decrease in MET PET signal over the consecutive phases. In contrast, the remaining case of secondary GBMO presented with a pattern of slight increase. It is likely that the dynamic change of MET in patients with GBMO resemble those in patients with oligodendroglial tumor, however, further studies are needed to confirm them. We discuss the mechanisms from a viewpoint of pathological findings.

  11. The role of positron emission tomography in the evaluation of myocardial ischemia in women.

    PubMed

    Taqueti, Viviany R; Dorbala, Sharmila

    2016-10-01

    Cardiovascular disease continues to be the number one cause of death in women, yet most women are unaware of their risk. Over the last decade, radionuclide myocardial perfusion imaging with positron emission tomography (PET) has become a powerful tool for the diagnosis and risk stratification of patients with known or suspected coronary artery disease (CAD). This editorial viewpoint will review the maturing role of PET imaging in women, particularly as applied to the evaluation of ischemic heart disease. Specifically, we focus on distinct advantages offered by PET imaging in the evaluation of myocardial ischemia in women: (1) improved diagnostic accuracy, including in the presence of breast or adipose tissue and small left ventricular cavity size, (2) decreased radiation exposure through the use of short-lived radiopharmaceuticals, and (3) the ability to quantify myocardial blood flow and coronary flow reserve to diagnose ischemia, even in the absence of obstructive CAD. As such, cardiac PET perfusion imaging stands to play a unique role in defining the diagnosis and prognosis of women with ischemic heart disease, while also guiding new treatment strategies for their more prevalent cardiovascular disease phenotypes. PMID:27488383

  12. Biological Response of Positron Emission Tomography Scan Exposure and Adaptive Response in Humans

    PubMed Central

    Schnarr, Kara; Carter, Timothy F.; Gillis, Daniel; Webber, Colin; Dayes, Ian; Dolling, Joanna A.; Gulenchyn, Karen; Boreham, Douglas R.

    2015-01-01

    The biological effects of exposure to radioactive fluorodeoxyglucose (18F-FDG) were investigated in the lymphocytes of patients undergoing positron emission tomography (PET) procedures. Low-dose, radiation-induced cellular responses were measured using 3 different end points: (1) apoptosis; (2) chromosome aberrations; and (3) γH2AX foci formation. The results showed no significant change in lymphocyte apoptosis, or chromosome aberrations, as a result of in vivo 18F-FDG exposure, and there was no evidence the PET scan modified the apoptotic response of lymphocytes to a subsequent 2 Gy in vitro challenge irradiation. However, lymphocytes sampled from patients following a PET scan showed an average of 22.86% fewer chromosome breaks and 39.16% fewer dicentrics after a subsequent 2 Gy in vitro challenge irradiation. The effect of 18F-FDG exposure on phosphorylation of histone H2AX (γH2AX) in lymphocytes of patients showed a varied response between individuals. The relationship between γH2AX foci formation and increasing activity of 18F-FDG was not directly proportional to dose. This variation is most likely attributed to differences in the factors that combine to constitute an individual’s radiation response. In summary, the results of this study indicate18F-FDG PET scans may not be detrimental but can elicit variable responses between individuals and can modify cellular response to subsequent radiation exposures. PMID:26740810

  13. Positron Emission Tomography Image-Guided Drug Delivery: Current Status and Future Perspectives

    PubMed Central

    2015-01-01

    Positron emission tomography (PET) is an important modality in the field of molecular imaging, which is gradually impacting patient care by providing safe, fast, and reliable techniques that help to alter the course of patient care by revealing invasive, de facto procedures to be unnecessary or rendering them obsolete. Also, PET provides a key connection between the molecular mechanisms involved in the pathophysiology of disease and the according targeted therapies. Recently, PET imaging is also gaining ground in the field of drug delivery. Current drug delivery research is focused on developing novel drug delivery systems with emphasis on precise targeting, accurate dose delivery, and minimal toxicity in order to achieve maximum therapeutic efficacy. At the intersection between PET imaging and controlled drug delivery, interest has grown in combining both these paradigms into clinically effective formulations. PET image-guided drug delivery has great potential to revolutionize patient care by in vivo assessment of drug biodistribution and accumulation at the target site and real-time monitoring of the therapeutic outcome. The expected end point of this approach is to provide fundamental support for the optimization of innovative diagnostic and therapeutic strategies that could contribute to emerging concepts in the field of “personalized medicine”. This review focuses on the recent developments in PET image-guided drug delivery and discusses intriguing opportunities for future development. The preclinical data reported to date are quite promising, and it is evident that such strategies in cancer management hold promise for clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in enhanced quality of life for cancer patients. PMID:24865108

  14. Bone Positron Emission Tomography with or without CT Is More Accurate than Bone Scan for Detection of Bone Metastasis

    PubMed Central

    Lee, Soo Jin; Kim, Sang Eun

    2013-01-01

    Objective Na18F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Materials and Methods Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na18F, and a bone scan was performed 3 hours after the injection of 1295 MBq 99mTc-hydroxymethylene diphosphonate. Results In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% = 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p < 0.05). In the lesion-based analysis (43 lesions in 14 patients; 31 malignant and 12 benign), the sensitivity of bone PET (100% = 31/31) was significantly greater than that of bone scan (38.7% = 12/31) (p < 0.01), and the specificity of bone PET (75.0% = 9/12) was also significantly higher than that of bone scan (8.3% = 1/12) (p < 0.05). The receiver operating characteristic curve analysis showed that bone PET was significantly more accurate than the bone scan in the patient (p = 0.0306) and lesion (p = 0.0001) based analyses. Conclusion Na18F bone PET is more accurate than bone scan for BM evaluation. PMID:23690722

  15. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  16. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology. PMID:27273293

  17. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease

    SciTech Connect

    Stewart, R.E.; Schwaiger, M.; Molina, E.; Popma, J.; Gacioch, G.M.; Kalus, M.; Squicciarini, S.; al-Aouar, Z.R.; Schork, A.; Kuhl, D.E. )

    1991-06-15

    The diagnostic performance of rubidium-82 (Rb-82) positron emission tomography (PET) and thallium-201 (Tl-201) single-photon emission-computed tomography (SPECT) for detecting coronary artery disease was investigated in 81 patients (52 men, 29 women). PET studies using 60 mCi of Rb-82 were performed at baseline and after intravenous infusion of 0.56 mg/kg dipyridamole in conjunction with handgrip stress. Tl-201 SPECT was performed after dipyridamole-handgrip stress and, in a subset of patients, after treadmill exercise. Sensitivity, specificity and overall diagnostic accuracy were assessed using both visually and quantitatively interpreted coronary angiograms. The overall sensitivity, specificity and accuracy of PET for detection of coronary artery disease (greater than 50% diameter stenosis) were 84, 88 and 85%, respectively. In comparison, the performance of SPECT revealed a sensitivity of 84%, specificity of 53% (p less than 0.05 vs PET) and accuracy of 79%. Similar results were obtained using either visual or quantitative angiographic criteria for severity of coronary artery disease. In 43 patients without prior myocardial infarction, the sensitivity for detection of disease was 71 and 73%, respectively, similar for both PET and SPECT. There was no significant difference in diagnostic performance between imaging modalities when 2 different modes of stress (exercise treadmill vs intravenous dipyridamole plus handgrip) were used with SPECT imaging. Thus, Rb-82 PET provides improved specificity compared with Tl-201 SPECT for identifying coronary artery disease, most likely due to the higher photon energy of Rb-82 and attenuation correction provided by PET. However, post-test referral cannot be entirely excluded as a potential explanation for the lower specificity of Tl-201 SPECT.

  18. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  19. A follow-up analysis of positron emission tomography/computed tomography in detecting hidden malignancies at the time of diagnosis of membranous nephropathy

    PubMed Central

    Feng, Zhonglin; Wang, Shuxia; Huang, Yanlin; Liang, Xinling; Shi, Wei; Zhang, Bin

    2016-01-01

    Membranous nephropathy (MN) is the most common kidney disease reported in a variety of malignant diseases. Search for an occult malignancy in MN has presented special challenges. 124 MN patients with a physical examination not suspicious for cancer underwent screening for an occult malignancy with either 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scanning (n = 49) or conventional screening (n = 75) at the time of diagnosis of MN, and were followed up (median,28 months). 154 patients who refused to undergo any screening were followed up (median, 30 months). In FDG-PET/CT cohort, 5 (10.20%) patients were screened and confirmed as malignancy, in contrast, 1 (1.33%) patient in conventional screening cohort. During follow-up, none of malignancy was detected in FDG-PET/CT cohort, 3(4.05%) patients in conventional screening cohort, and 8(5.19%) patients in no-screening cohort. All 6 cases of cancer were detected at early stages and underwent curative resection, and after the resection, proteinuria decreased. In contrast, 11 cases of cancer detected during follow-up died without any remission of proteinuria. These preliminary data provide the first evidence for a potential cancer surveillance that the malignancy screening either through conventional or by PET-CT at the diagnosis of MN led to an early diagnosis and curative treatment. PMID:27009881

  20. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response.

    PubMed

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-09-16

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin's lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as "GEM-P") as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy. PMID:27672640

  1. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography evaluation of subcutaneous panniculitis-like T cell lymphoma and treatment response

    PubMed Central

    Gorodetskiy, Vadim R; Mukhortova, Olga V; Aslanidis, Irakli P; Klapper, Wolfram; Probatova, Natalya A

    2016-01-01

    Subcutaneous panniculitis-like T cell lymphoma (SPTCL) is a very rare variant of non-Hodgkin’s lymphoma. Currently, there is no standard imaging method for staging of SPTCL nor for assessment of treatment response. Here, we describe our use of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging and monitoring of treatment response in 3 cases of SPTCL. Primary staging by PET/CT showed that all 3 patients had multiple foci in the subcutaneous fat tissue, with SUVmax from 10.5 to 14.6. Involvement of intra-abdominal fat with high SUVmax was identified in 2 of the patients. Use of the triple drug regimen of gemcitabine, cisplatin and methylprednisolone (commonly known as “GEM-P”) as first-line therapy or second-line therapy facilitated complete metabolic response for all 3 cases. FDG PET/CT provides valuable information for staging and monitoring of treatment response and can reveal occult involvement of the intra-abdominal visceral fat. High FDG uptake on pre-treatment PET can identify patients with aggressive disease and help in selection of first-line therapy.

  2. Positron Emission Tomography in Breast Cancer

    PubMed Central

    Vercher-Conejero, Jose Luis; Pelegrí-Martinez, Laura; Lopez-Aznar, Diego; Cózar-Santiago, María del Puig

    2015-01-01

    Gradually, FDG-PET/CT has been strengthening within the diagnostic algorithms of oncological diseases. In many of these, PET/CT has shown to be useful at different stages of the disease: diagnosis, staging or re-staging, treatment response assessment, and recurrence. Some of the advantages of this imaging modality versus CT, MRI, bone scan, mammography, or ultrasound, are based on its great diagnostic capacity since, according to the radiopharmaceutical used, it reflects metabolic changes that often occur before morphological changes and therefore allows us to stage at diagnosis. Moreover, another advantage of this technique is that it allows us to evaluate the whole body so it can be very useful for the detection of distant disease. With regard to breast cancer, FDG-PET/CT has proven to be important when recurrence is suspected or in the evaluation of treatment response. The technological advancement of PET equipment through the development of new detectors and equipment designed specifically for breast imaging, and the development of more specific radiopharmaceuticals for the study of the different biological processes of breast cancer, will allow progress not only in making the diagnosis of the disease at an early stage but also in enabling personalized therapy for patients with breast cancer. PMID:26854143

  3. Impact of computed tomography and {sup 18}F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer

    SciTech Connect

    Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel . E-mail: emmanuel.touboul@tnn.aphp.fr; Lerouge, Delphine; Grahek, Dany; Foulquier, Jean-Noel; Petegnief, Yolande; Gres, Benoit; El Balaa, Hanna; Keraudy, Katia; Kerrou, Kaldoun; Montravers, Francoise; Milleron, Bernard; Lebeau, Bernard; Talbot, Jean-Noel

    2005-12-01

    Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define the target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8

  4. Assessment of Tumor Volumes in Skull Base Glomus Tumors Using Gluc-Lys[{sup 18}F]-TOCA Positron Emission Tomography

    SciTech Connect

    Astner, Sabrina T.; Bundschuh, Ralph A.; Beer, Ambros J.; Ziegler, Sibylle I.; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Grosu, Anca L.; Essler, Markus

    2009-03-15

    Purpose: To assess a threshold for Gluc-Lys[{sup 18}F]-TOCA positron emission tomography (PET) in target volume delineation of glomus tumors in the skull base and to compare with MRI-based target volume delineation. Methods and Materials: The threshold for volume segmentation in the PET images was determined by a phantom study. Nine patients with a total of 11 glomus tumors underwent PET either with Gluc-Lys[{sup 18}F]-TOCA or with {sup 68}Ga-DOTATOC (in 1 case). All patients were additionally scanned by MRI. Positron emission tomography and MR images were transferred to a treatment-planning system; MR images were analyzed for lesion volume by two observers, and PET images were analyzed by a semiautomated thresholding algorithm. Results: Our phantom study revealed that 32% of the maximum standardized uptake value is an appropriate threshold for tumor segmentation in PET-based target volume delineation of gross tumors. Target volume delineation by MRI was characterized by high interobserver variability. In contrast, interobserver variability was minimal if fused PET/MRI images were used. The gross tumor volumes (GTVs) determined by PET (GTV-PET) showed a statistically significant correlation with the GTVs determined by MRI (GTV-MRI) in primary tumors; in recurrent tumors higher differences were found. The mean GTV-MRI was significantly higher than mean GTV-PET. The increase added by MRI to the common volume was due to scar tissue with strong signal enhancement on MRI. Conclusions: In patients with glomus tumors, Gluc-Lys[{sup 18}F]-TOCA PET helps to reduce interobserver variability if an appropriate threshold for tumor segmentation has been determined for institutional conditions. Especially in patients with recurrent tumors after surgery, Gluc-Lys[{sup 18}F]-TOCA PET improves the accuracy of GTV delineation.

  5. Fluorodeoxyglucose Positron Emission Tomography Response and Normal Tissue Regeneration After Stereotactic Body Radiotherapy to Liver Metastases

    SciTech Connect

    Stinauer, Michelle A.; Diot, Quentin; Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    2012-08-01

    Purpose: To characterize changes in standardized uptake value (SUV) in positron emission tomography (PET) scans and determine the pace of normal tissue regeneration after stereotactic body radiation therapy (SBRT) for solid tumor liver metastases. Methods and Materials: We reviewed records of patients with liver metastases treated with SBRT to {>=}40 Gy in 3-5 fractions. Evaluable patients had pretreatment PET and {>=}1 post-treatment PET. Each PET/CT scan was fused to the planning computed tomography (CT) scan. The maximum SUV (SUV{sub max}) for each lesion and the total liver volume were measured on each PET/CT scan. Maximum SUV levels before and after SBRT were recorded. Results: Twenty-seven patients with 35 treated liver lesions were studied. The median follow-up was 15.7 months (range, 1.5-38.4 mo), with 5 PET scans per patient (range, 2-14). Exponential decay curve fitting (r=0.97) showed that SUV{sub max} declined to a plateau of 3.1 for controlled lesions at 5 months after SBRT. The estimated SUV{sub max} decay half-time was 2.0 months. The SUV{sub max} in controlled lesions fluctuated up to 4.2 during follow-up and later declined; this level is close to 2 standard deviations above the mean normal liver SUV{sub max} (4.01). A failure cutoff of SUV{sub max} {>=}6 is twice the calculated plateau SUV{sub max} of controlled lesions. Parenchymal liver volume decreased by 20% at 3-6 months and regenerated to a new baseline level approximately 10% below the pretreatment level at 12 months. Conclusions: Maximum SUV decreases over the first months after SBRT to plateau at 3.1, similar to the median SUV{sub max} of normal livers. Transient moderate increases in SUV{sub max} may be observed after SBRT. We propose a cutoff SUV{sub max} {>=}6, twice the baseline normal liver SUV{sub max}, to score local failure by PET criteria. Post-SBRT values between 4 and 6 would be suspicious for local tumor persistence or recurrence. The volume of normal liver reached nadir 3

  6. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    SciTech Connect

    Ashamalla, Hani . E-mail: hashamalla@aol.com; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-06-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 {+-} 0.28. The mean halo thickness was 2.02 {+-} 0.21 mm. Significant volume modification ({>=}25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a {<=}10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p < 0.001). Interobserver variability decreased from a mean GTV difference of 20.3 cm{sup 3} in CT-based planning to 7.2 cm{sup 3} in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells.

  7. 2-(fluorine-18)-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography after breast conserving surgery: Correlation with molecular markers of breast cancer

    PubMed Central

    Ozguven, Salih; Inanir, Sabahat; Turoglu, Halil Turgut; Erdil, Tanju Yusuf; Ugurlu, Mustafa Umit; Gulluoglu, Bahadir

    2016-01-01

    Aim: To investigate the role of 2-(fluorine-18)-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) early after breast-conserving surgery (BCS) in patients with breast cancer (BC) and whether we can determine which molecular biomarkers of breast carcinoma put the patients at risk. Materials and Methods: This retrospective study involved 88 patients with histologically proven T1 or T2 BC, who were treated with BCS and underwent 18F-FDG PET/CT study. The correlation between biological markers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 [HER2], and Ki-67) of the primary tumor and 18F-FDG PET/CT findings was analyzed. Results: 18F-FDG PET/CT demonstrated the presence of BC disease (locoregional disease [LRD], distant metastases, or contralateral BC) in 26 of 88 patients (29.5%). Regarding immunohistochemical profiles, BC expressing high levels of Ki-67 were associated with an increased percentage of LRD, which was the major recurrence pattern on 18F-FDG PET/CT. Although the BC disease was observed more commonly in patients with HER2 positivity compared to those of HER2 negative, the difference did not reach statistical significance. The patients with T2 tumor or a higher histopathological grade had a higher percentage of BC disease. Conclusions: This study demonstrated that patients with early stage BC treated with BCS have a remarkable risk of the presence of BC even early after surgery, and there was a clinically important relationship between 18F-FDG PET/CT findings and biological markers of BC. These findings suggest that high-risk molecular biomarkers (Ki-67, HER2) can be taken into account in the decision-making the process for both preoperative imaging and planning of the surgical approach. PMID:27385883

  8. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    SciTech Connect

    Ng, Sweet Ping; David, Steven; Alamgeer, Muhammad; Ganju, Vinod

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  9. Diagnostic sensitivity of ¹⁸fluorodeoxyglucose positron emission tomography for detecting synchronous multiple primary cancers in head and neck cancer patients.

    PubMed

    Kondo, Norio; Tsukuda, Mamoru; Nishimura, Goshi

    2012-05-01

    We assessed the sensitivity of positron emission tomography (PET) for detecting synchronous multiple primary cancers, particularly synchronous esophageal cancers in head and neck cancer patients. We retrospectively reviewed 230 head and neck cancer patients. All the patients routinely underwent the following examinations: urinalysis, occult blood, tumor marker detection [squamous cell carcinoma (SCC), cytokeratin fragment (CYFRA), and carcinoembryonic antigen (CEA)], esophagogastroduodenoscopy, colonoscopy (when CEA was high or occult blood was positive), abdominal ultrasonography, plain chest computed tomography (CT), and PET. Bronchoscopy was performed when CT revealed lung shadow of central region. Synchronous multiple primary cancers were detected in 42 (18.2%) patients. The diagnostic sensitivity of PET for synchronous primary cancers was as follows: esophagus, 7.6% (1/13); stomach, 25.0% (2/8); lung, 66.7% (4/6); head and neck, 75.0% (3/4); colon, 0% (0/1); kidney, 0% (0/1); and subcutaneous, 100% (1/1). The sensitivity of PET for detecting synchronous esophageal cancers is low because these are early-stage cancers (almost stage 0-I). Therefore, it is necessary to perform esophagogastroduodenoscopy for detecting synchronous esophageal cancers. PET is an important additional tool for detecting synchronous multiple primary cancers because the diagnostic sensitivity of PET in synchronous head and neck cancer and lung cancer is high. But PET has the limitation of sensitivity for synchronous multiple primary cancers because the diagnostic sensitivity of PET in synchronous esophageal cancer is very low.

  10. An online emission spectral tomography system with digital signal processor.

    PubMed

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei

    2009-03-30

    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  11. Positron Emission Tomography/Computed Tomography Findings During Therapy Predict Outcome in Patients With Diffuse Large B-Cell Lymphoma Treated With Chemotherapy Alone but Not in Those Who Receive Consolidation Radiation

    SciTech Connect

    Dabaja, Bouthaina S.; Hess, Kenneth; Shihadeh, Ferial; Podoloff, Donald A.; Medeiros, L. Jeffrey; Mawlawi, Osama; Arzu, Isidora; Oki, Yasuhiro; Hagemeister, Fredrick B.; Fayad, Luis E.; Rodriguez, Alma

    2014-06-01

    Purpose: To assess the value of mid-therapy positron emission tomography (PET) findings for predicting survival and disease progression in patients with diffuse large B-cell lymphoma, considering type of therapy (chemotherapy with or without radiation therapy). Methods and Materials: We retrospectively evaluated 294 patients with histologically confirmed diffuse large B-cell lymphoma with respect to age, sex, disease stage, International Prognostic Index score, mid-therapy PET findings (positive or negative), and disease status after therapy and at last follow-up. Overall survival (OS) and progression-free survival (PFS) were compared according to mid-therapy PET findings. Results: Of the 294 patients, 163 (55%) were male, 144 (49%) were age >61 years, 110 (37%) had stage I or II disease, 219 (74%) had International Prognostic Index score ≤2, 216 (73%) received ≥6 cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and 88 (30%) received consolidation radiation therapy. Five-year PFS and OS rates were associated with mid-therapy PET status: PFS was 78% for those with PET-negative (PET−) disease versus 63% for PET-positive (PET+) disease (P=.024), and OS was 82% for PET− versus 62% for PET+ (P<.002). These associations held true for patients who received chemotherapy only (PFS 71% for PET− vs 52% PET+ [P=.012], OS 78% for PET− and 51% for PET+ [P=.0055]) but not for those who received consolidation radiation therapy (PFS 84% PET− vs 81% PET+ [P=.88]; OS 90% PET− vs 81% PET+ [P=.39]). Conclusion: Mid-therapy PET can predict patient outcome, but the use of consolidation radiation therapy may negate the significance of mid-therapy findings.

  12. Digital contrast enhancement of 18Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    Purpose: The role of 18fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold “m” and slope “e”). The input parameters which resulted in an image having a high value of 2nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters “m” had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope “e” was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted. PMID:26917889

  13. PET/CT artifacts.

    PubMed

    Blodgett, Todd M; Mehta, Ajeet S; Mehta, Amar S; Laymon, Charles M; Carney, Jonathan; Townsend, David W

    2011-01-01

    There are several artifacts encountered in positron emission tomography/computed tomographic (PET/CT) imaging, including attenuation correction (AC) artifacts associated with using CT for AC. Several artifacts can mimic a 2-deoxy-2-[18F] fluoro-d-glucose (FDG) avid malignant lesions and therefore recognition of these artifacts is clinically relevant. Our goal was to identify and characterize these artifacts and also discuss some protocol variables that may affect image quality in PET/CT.

  14. Positron emission tomography and optical tissue imaging

    DOEpatents

    Falen, Steven W.; Hoefer, Richard A.; Majewski, Stanislaw; McKisson, John; Kross, Brian; Proffitt, James; Stolin, Alexander; Weisenberger, Andrew G.

    2012-05-22

    A mobile compact imaging system that combines both PET imaging and optical imaging into a single system which can be located in the operating room (OR) and provides faster feedback to determine if a tumor has been fully resected and if there are adequate surgical margins. While final confirmation is obtained from the pathology lab, such a device can reduce the total time necessary for the procedure and the number of iterations required to achieve satisfactory resection of a tumor with good margins.

  15. Occipital lobe infarction and positron emission tomography.

    PubMed

    Tagawa, K; Nagata, K; Shishido, F

    1990-08-01

    Even though the PET study revealed a total infarct in the territory of the left PCA in our 3 cases of pure alexia, it is still obscure which part of the left occipital lobe is most closely associated with the occurrence of the pure alexia. In order to elucidate the intralobar localization of the pure alexia, it is needed to have an ideal case who shows an pure alexia due to the localized lesion within the left occipital lobe. Furthermore, high-resolution PET scanner will circumvent the problem in detecting the metabolism and blood flow in the corpus callosum which plays an important role in the pathogenesis. We have shown that the occlusion of the right PCA also produced a left unilateral agnosia which is one of the common neurological signs in the right MCA infarction. To tell whether the responsible lesion for the unilateral spatial agnosia differs between the PCA occlusion and the MCA occlusion, the correlation study should be carried out in a greater number of the subjects. Two distinctive neuropsychological manifestations, cerebral color blindness and prosopagnosia, have been considered to be produced by the bilateral occipital lesion. The PET studies disclosed reduction of blood flow and oxygen metabolism in both occipital lobes in our particular patient who exhibited cerebral color blindness and prosopagnosia.

  16. Use of 18F-2-Fluorodeoxyglucose to Label Antibody Fragments for Immuno-Positron Emission Tomography of Pancreatic Cancer

    PubMed Central

    2015-01-01

    We generated 18F-labeled antibody fragments for positron emission tomography (PET) imaging using a sortase-mediated reaction to install a trans-cyclooctene-functionalized short peptide onto proteins of interest, followed by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose (FDG). The method is rapid, robust, and site-specific (radiochemical yields > 25%, not decay corrected). The availability of 18F-2-deoxyfluoroglucose avoids the need for more complicated chemistries used to generate carbon–fluorine bonds. We demonstrate the utility of the method by detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-labeled antibodies and their fragments at a level of molecular specificity that complements conventional 18F-FDG imaging. PMID:26955657

  17. GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT

    PubMed Central

    Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P. M.; Brasse, D.; Breton, V.; Bruyndonckx, P.; Buvat, I.; Chatziioannou, A. F.; Choi, Y.; Chung, Y. H.; Comtat, C.; Donnarieix, D.; Ferrer, L.; Glick, S. J.; Groiselle, C. J.; Guez, D.; Honore, P.-F.; Kerhoas-Cavata, S.; Kirov, A. S.; Kohli, V.; Koole, M.; Krieguer, M.; van der Laan, D. J.; Lamare, F.; Largeron, G.; Lartizien, C.; Lazaro, D.; Maas, M. C.; Maigne, L.; Mayet, F.; Melot, F.; Merheb, C.; Pennacchio, E.; Perez, J.; Pietrzyk, U.; Rannou, F. R.; Rey, M.; Schaart, D. R.; Schmidtlein, C. R.; Simon, L.; Song, T. Y.; Vieira, J.-M.; Visvikis, D.; Van de Walle, R.; Wieërs, E.; Morel, C.

    2012-01-01

    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document, and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.ep.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects toward the gridification of GATE and its extension to other domains such as dosimetry are also discussed. PMID:15552416

  18. Role of Positron Emission Tomography in the Treatment of Occult Disease in Head-and-Neck Cancer: A Modeling Approach

    SciTech Connect

    Phillips, Mark H.; Smith, Wade P.; Parvathaneni, Upendra; Laramore, George E.

    2011-03-15

    Purpose: To determine under what conditions positron emission tomography (PET) imaging will be useful in decisions regarding the use of radiotherapy for the treatment of clinically occult lymph node metastases in head-and-neck cancer. Methods and Materials: A decision model of PET imaging and its downstream effects on radiotherapy outcomes was constructed using an influence diagram. This model included the sensitivity and specificity of PET, as well as the type and stage of the primary tumor. These parameters were varied to determine the optimal strategy for imaging and therapy for different clinical situations. Maximum expected utility was the metric by which different actions were ranked. Results: For primary tumors with a low probability of lymph node metastases, the sensitivity of PET should be maximized, and 50 Gy should be delivered if PET is positive and 0 Gy if negative. As the probability for lymph node metastases increases, PET imaging becomes unnecessary in some situations, and the optimal dose to the lymph nodes increases. The model needed to include the causes of certain health states to predict current clinical practice. Conclusion: The model demonstrated the ability to reproduce expected outcomes for a range of tumors and provided recommendations for different clinical situations. The differences between the optimal policies and current clinical practice are likely due to a disparity between stated clinical decision processes and actual decision making by clinicians.

  19. Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography.

    PubMed

    Nichols, Trent L; Kabalka, George W; Miller, Laurence F; Khan, Mohammad K; Smith, Gary T

    2002-10-01

    Boron neutron capture therapy (BNCT) is a cancer brachytherapy based upon the thermal neutron reaction: 10B(n,alpha)7Li. The efficacy of the treatment depends primarily upon two conditions being met: (a) the preferential concentration of a boronated compound in the neoplasm and (b) an adequate fluence of thermal neutrons delivered to the neoplasm. The boronated amino acid, para-boronophenylalanine (BPA), is the agent widely used in clinical trials to deliver 10B to the malignancy. Positron emission tomography (PET) can be used to generate in vivo boron distribution maps by labeling BPA with the positron emitting nuclide fluorine-18. The incorporation of the PET-derived boron distribution maps into current treatment planning protocols is shown to provide improved treatment plans. Using previously established protocols, six patients with glioblastoma had 18BPA PET scans. The PET distribution maps obtained were used in the conventional BNCT treatment codes. The isodose curves derived from the PET data are shown to differ both qualitatively and quantitatively from the conventional isodose curves that were derived from calculations based upon the assumption of uniform uptake of the pharmaceutical in tumor and normal brain regions. The clinical course of each of the patients who eventually received BNCT (five of the six patients) was compared using both sets of isodose calculations. The isodose contours based upon PET derived distribution data appear to be more consistent with the patients' clinical course. PMID:12408309

  20. Interrogating Tumor Metabolism and Tumor Microenvironments Using Molecular Positron Emission Tomography Imaging. Theranostic Approaches to Improve Therapeutics

    PubMed Central

    Jacobson, Orit

    2013-01-01

    Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [18F]fluorodeoxyglucose ([18F]FDG), which measures glucose metabolism. However, [18F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[18F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications. PMID:24064460

  1. Correlation of Positron Emission Tomography Standard Uptake Value and Pathologic Specimen Size in Cancer of the Head and Neck

    SciTech Connect

    Burri, Ryan J. Rangaswamy, Balasubramanya; Kostakoglu, Lale; Hoch, Benjamin; Genden, Eric M.; Som, Peter M.; Kao, Johnny

    2008-07-01

    Purpose: To correlate positron emission tomography (PET) standard uptake value (SUV) with pathologic specimen size in patients with head-and-neck cancers. Methods and Materials: Eighteen patients with Stage II-IVB head-and-neck cancer with 27 tumors who underwent PET and computed tomography (CT) imaging of the head and neck followed by surgical resection were selected for this study. Various SUV thresholds were examined, including the software default (SUV{sub def}), narrowing the window by 1 standard deviation (SD) of the maximum (SUV-1SD), and SUV cutoff values of 2.5 or greater (SUV2.5) and 40% or greater maximum (SUV40). Volumetric pathologic data were available for 12 patients. Tumor volumes based on pathologic examination (gold standard), CT, SUV{sub def}, SUV-1SD, SUV2.5, and SUV40 were analyzed. Results: PET identified five tumors not seen on CT. The sensitivity of PET for identifying primary tumors was 94% (17 of 18). The Sensitivity of PET for staging the neck was 90% (9 of 10), whereas the specificity was 78% (7 of 9). The SUV2.5 method was most likely to overestimate tumor volume, whereas SUV{sub def} and SUV-1SD were most likely to underestimate tumor volume. Conclusions: The PET scan provides more accurate staging of primary tumors and nodal metastases for patients with advanced head-and-neck cancer than CT alone. Compared with the gold standard, significant variability exists in volumes obtained by using various SUV thresholds. A combination of clinical, CT, and PET data should continue to be used for optimal treatment planning. The SUV40 method appears to offer the best compromise between accuracy and reducing the risk of underestimating tumor extent.

  2. Optimization and Reproducibility of Aortic Valve 18F-Fluoride Positron Emission Tomography in Patients With Aortic Stenosis

    PubMed Central

    Cartlidge, Timothy R.G.; Jenkins, William S.A.; Adamson, Philip D.; Robson, Phillip; Lucatelli, Christophe; Van Beek, Edwin J.R.; Prendergast, Bernard; Denison, Alan R.; Forsyth, Laura; Rudd, James H.F.; Fayad, Zahi A.; Fletcher, Alison; Tuck, Sharon; Newby, David E.; Dweck, Marc R.

    2016-01-01

    Background— 18F-Fluoride positron emission tomography (PET) and computed tomography (CT) can measure disease activity and progression in aortic stenosis. Our objectives were to optimize the methodology, analysis, and scan–rescan reproducibility of aortic valve 18F-fluoride PET-CT imaging. Methods and Results— Fifteen patients with aortic stenosis underwent repeated 18F-fluoride PET-CT. We compared nongated PET and noncontrast CT, with a modified approach that incorporated contrast CT and ECG-gated PET. We explored a range of image analysis techniques, including estimation of blood-pool activity at differing vascular sites and a most diseased segment approach. Contrast-enhanced ECG-gated PET-CT permitted localization of 18F-fluoride uptake to individual valve leaflets. Uptake was most commonly observed at sites of maximal mechanical stress: the leaflet tips and the commissures. Scan–rescan reproducibility was markedly improved using enhanced analysis techniques leading to a reduction in percentage error from ±63% to ±10% (tissue to background ratio MDS mean of 1.55, bias −0.05, limits of agreement −0·20 to +0·11). Conclusions— Optimized 18F-fluoride PET-CT allows reproducible localization of calcification activity to different regions of the aortic valve leaflet and commonly to areas of increased mechanical stress. This technique holds major promise in improving our understanding of the pathophysiology of aortic stenosis and as a biomarker end point in clinical trials of novel therapies. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02132026. PMID:27733431

  3. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis

    PubMed Central

    de Boysson, Hubert; Liozon, Eric; Lambert, Marc; Parienti, Jean-Jacques; Artigues, Nicolas; Geffray, Loïk; Boutemy, Jonathan; Ollivier, Yann; Maigné, Gwénola; Ly, Kim; Huglo, Damien; Hachulla, Eric; Hatron, Pierre-Yves; Aouba, Achille; Manrique, Alain; Bienvenu, Boris

    2016-01-01

    Abstract Previous studies reported a 2- to 17-fold higher risk of aortic complications (dilation or dissection) in patients with giant-cell arteritis (GCA). We aimed to determine whether or not GCA patients with large-vessel involvement demonstrated by positron emission tomography with 18F-fluorodeoxyglucose combined with computed tomography (FDG-PET/CT) have a higher risk of aortic complications. We conducted a retrospective multicenter study between 1995 and 2014. Patients were included if they fulfilled at least 3 American College of Rheumatology criteria for GCA, or 2 criteria associated with extratemporal biopsy-proven giant-cell vasculitis; they underwent at least 1 FDG-PET/CT scan at diagnosis or during follow-up; and the morphology of the aorta was assessed by medical imaging at diagnosis. Patients with an aortic complication at the time of diagnosis were excluded. Of the 130 patients included [85 women (65%), median age 70 (50–86)], GCA was biopsy proven in 77 (59%). FDG-PET/CT was performed at diagnosis in 63 (48%) patients and during the follow-up period in the 67 (52%) remaining patients. FDG-PET/CT was positive in 38/63 (60%) patients at diagnosis and in 31/67 (46%) patients when performed during follow-up (P = NS). One hundred four patients (80%) underwent at least 1 morphological assessment of the aorta during follow-up. Nine (9%) patients developed aortic complications (dilation in all and dissection in 1) at a median time of 33 (6–129) months after diagnosis. All of them displayed large-vessel inflammation on previous FDG-PET/CT. A positive FDG-PET/CT was significantly associated with a higher risk of aortic complications (P = 0.004). In our study, a positive FDG-PET/CT was associated with an increased risk of aortic complications at 5 years. PMID:27367985

  4. Using positron emission tomography to study human ketone body metabolism: a review.

    PubMed

    Bouteldja, Nadia; Andersen, Lone Thing; Møller, Niels; Gormsen, Lars Christian

    2014-11-01

    Ketone bodies - 3-hydroxybutyrate and acetoacetate - are important fuel substrates, which can be oxidized by most tissues in the body. They are synthesized in the liver and are derived from fatty acids released from adipose tissue. Intriguingly, under conditions of stress such as fasting, arterio-venous catheterization studies have shown that the brain switches from the use of almost 100% glucose to the use of >50-60% ketone bodies. A similar adaptive mechanism is observed in the heart, where fasting induces a shift toward ketone body uptake that provides the myocardium with an alternate fuel source and also favorably affects myocardial contractility. Within the past years there has been a renewed interest in ketone bodies and the possible beneficial effects of fasting/semi-fasting/exercising and other "ketogenic" regimens have received much attention. In this perspective, it is promising that positron emission tomography (PET) techniques with isotopically labeled ketone bodies, fatty acids and glucose offer an opportunity to study interactions between ketone body, fatty acid and glucose metabolism in tissues such as the brain and heart. PET scans are non-invasive and thus eliminates the need to place catheters in vascular territories not easily accessible. The short half-life of e.g. 11C-labeled PET tracers even allows multiple scans on the same study day and reduces the total radiation burden associated with the procedure. This short review aims to give an overview of current knowledge on ketone body metabolism obtained by PET studies and discusses the methodological challenges and perspectives involved in PET ketone body research. PMID:25195069

  5. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography

    PubMed Central

    Francis, D L; Freeman, A; Visvikis, D; Costa, D C; Luthra, S K; Novelli, M; Taylor, I; Ell, P J

    2003-01-01

    Background and aims: Positron emission tomography (PET) using 18F labelled 2-fluoro-2-deoxy-D-glucose (18FDG) is an established imaging tool, although the recent development of a biologically stable thymidine analogue [18F] 3′-deoxy-3-fluorothymidine (18FLT) has allowed PET to image cellular proliferation by utilising the salvage pathway of DNA synthesis. In this study, we have compared uptake of 18FLT and 18FDG with MIB-1 immunohistochemistry to evaluate the role of PET in quantifying in vivo cellular proliferation in colorectal cancer (CRC). Patients and methods: Patients with resectable, primary, or recurrent CRC were prospectively studied. Thirteen lesions from 10 patients (five males, five females), median age 68 years (range 54–87), were evaluated. Patients underwent 18FDG and 18FLT PET scanning. Tracer uptake within lesions was quantified using standardised uptake values (SUVs). Histopathological examination and MIB-1 immunohistochemistry were performed on all lesions, and proliferation quantified by calculating a labelling index (% of MIB-1 positively stained nuclei within 1500 tumour cells). Results: Histology confirmed adenocarcinoma in 12 of 13 lesions; the remaining lesion was reactive. All eight extrahepatic lesions were visualised using both 18FLT and 18FDG. Three of the five resected liver metastases were also avid for 18FLT and showed high proliferation, while the remaining two lesions which demonstrated no uptake of 18FLT had correspondingly very low proliferation. There was a statistically significant positive correlation (r =0.8, p<0.01) between SUVs of the tumours visualised with 18FLT and the corresponding MIB-1 labelling indices. No such correlation was demonstrated with 18FDG avid lesions (r =0.4). Conclusions: 18FLT PET correlates with cellular proliferation markers in both primary and metastatic CRC. This technique could provide a mechanism for in vivo grading of malignancy and early prediction of response to adjuvant chemotherapy. PMID

  6. Determination of plasma protein binding of positron emission tomography radioligands by high-performance frontal analysis.

    PubMed

    Amini, Nahid; Nakao, Ryuji; Schou, Magnus; Halldin, Christer

    2014-09-01

    Positron emission tomography (PET) is an imaging technique based on the use of radioligands labeled with short lived radionuclides, such as (11)C (t½=20.4min) and (18)F (t½=109.8min), which as a consequence often requires rapid plasma protein binding analysis methods. In addition, PET radioligands can suffer from non-specific binding to the membrane when ultrafiltraion, which is the most commonly used method for measuring protein binding in PET, is employed. In this study a high-performance frontal analysis (HPFA) method based on incorporation of a gel filtration column (discovery(®) BIO GFC 100, 50mm×4.6mm, 5μm, 100Å) into a radio-LC system with phosphate buffered saline (PBS, pH 7.4) at a flow rate of 3ml/min as mobile phase was developed and investigated for four PET radioligands. The minimum injection volume (MIV) of plasma, which is a crucial factor in HPFA, was determined to be 200μl (human), 500μl (monkey), 700μl (human) and 1000μl (monkey) for these four radioligands. The MIV values increased as a higher fraction of the radioligand was present in the protein-free form. The protein binding results obtained were in good agreement with ultrafiltration and the method did not suffer from non-specific binding. The short analysis time (<12min) allowed multiple protein binding measurements during time course of a human [(11)C]PBR28 PET study. PMID:24922085

  7. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension.

    PubMed

    Frille, Armin; Steinhoff, Karen Geva; Hesse, Swen; Grachtrup, Sabine; Wald, Alexandra; Wirtz, Hubert; Sabri, Osama; Seyfarth, Hans-Juergen

    2016-06-01

    Positron emission tomography (PET) visualizes increased cellular [F]fluorodeoxyglucose ([F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH.Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated.The [F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively).Pulmonary and cardiac [F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to

  8. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  9. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    SciTech Connect

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-11-15

    The increased interest in {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an 'analysis region' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of

  10. Attenuation-Corrected vs. Nonattenuation-Corrected 2-Deoxy-2-[F-18]fluoro-d-glucose-Positron Emission Tomography in Oncology, A Systematic Review

    PubMed Central

    Joshi, Urvi; Riphagen, Ingrid I.; Teule, Gerrit J. J.; van Lingen, Arthur; Hoekstra, Otto S.

    2007-01-01

    Purpose To perform a systematic review and meta-analysis to determine the diagnostic accuracy of attenuation-corrected (AC) vs. nonattenuation-corrected (NAC) 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography (FDG-PET) in oncological patients. Procedures Following a comprehensive search of the literature, two reviewers independently assessed the methodological quality of eligible studies. The diagnostic value of AC was studied through its sensitivity/specificity compared to histology, and by comparing the relative lesion detection rate reported with NAC-PET vs. AC, for full-ring and dual-head coincidence PET (FR- and DH-PET, respectively). Results Twelve studies were included. For FR-PET, the pooled sensitivity/specificity on a patient basis was 64/97% for AC and 62/99% for NAC, respectively. Pooled lesion detection with NAC vs. AC was 98% [95% confidence interval (95% CI): 96–99%, n = 1,012 lesions] for FR-PET, and 88% (95% CI:81–94%, n = 288 lesions) for DH-PET. Conclusions Findings suggest similar sensitivity/specificity and lesion detection for NAC vs. AC FR-PET and significantly higher lesion detection for NAC vs. AC DH-PET. PMID:17318671

  11. Positron Emission Tomography-Guided, Focal-Dose Escalation Using Intensity-Modulated Radiotherapy for Head and Neck Cancer

    SciTech Connect

    Madani, Indira . E-mail: indira@krtkg1.ugent.be; Duthoy, Wim; Derie, Cristina R.N.; De Gersem, Werner Ir.; Boterberg, Tom; Saerens, Micky; Jacobs, Filip Ir.; Gregoire, Vincent; Lonneux, Max; Vakaet, Luc; Vanderstraeten, Barbara; Bauters, Wouter; Bonte, Katrien; Thierens, Hubert; Neve, Wilfried de

    2007-05-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was applied for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.

  12. Paget's disease of pelvis mimicking metastasis in a patient with lung cancer evaluated using staging and follow-up imaging with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Natarajan, Sudhakar; Shibu, Deepu; Malaikkal, Anjali; Shinto, Ajit Sugunan

    2015-01-01

    Paget's disease of bone is a benign disease, of uncertain etiology, characterized by an accelerated turnover, that is, bone resorption and formation. Paget's disease may be present in up to 5% of the population, and the majority of cases are asymptomatic. We report the imaging findings of Paget's disease of pelvis discovered incidentally in patient with lung cancer evaluated by fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging. FDG PET-CT scan showed intense uptake in the right lung lower lobe primary and mediastinal lymph nodes. Furthermore, increased uptake noted in left hemipelvis suggestive of Paget's disease. He underwent follow-up FDG PET-CT after chemotherapy showed decrease in lung mass and mediastinal nodes. However, the uptake in left hemipelvis remains same confirming Paget's disease.

  13. Paget's disease of pelvis mimicking metastasis in a patient with lung cancer evaluated using staging and follow-up imaging with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Natarajan, Sudhakar; Shibu, Deepu; Malaikkal, Anjali; Shinto, Ajit Sugunan

    2015-01-01

    Paget's disease of bone is a benign disease, of uncertain etiology, characterized by an accelerated turnover, that is, bone resorption and formation. Paget's disease may be present in up to 5% of the population, and the majority of cases are asymptomatic. We report the imaging findings of Paget's disease of pelvis discovered incidentally in patient with lung cancer evaluated by fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for staging. FDG PET-CT scan showed intense uptake in the right lung lower lobe primary and mediastinal lymph nodes. Furthermore, increased uptake noted in left hemipelvis suggestive of Paget's disease. He underwent follow-up FDG PET-CT after chemotherapy showed decrease in lung mass and mediastinal nodes. However, the uptake in left hemipelvis remains same confirming Paget's disease. PMID:25829736

  14. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  15. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with 18F positron emission tomography

    PubMed Central

    Psaltis, Peter J.

    2016-01-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of 18Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of 18Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) and sodium 18F-fluoride (18F-NaF). PMID:27500093

  16. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  17. Cognitive processes and cerebral cortical fundi: findings from positron-emission tomography studies.

    PubMed Central

    Markowitsch, H J; Tulving, E

    1994-01-01

    Positron-emission tomography (PET) studies of regional cerebral blood flow have provided evidence relevant to localization of cognitive functions. The critical loci identified in these studies are typically described in terms of macroanatomically labeled cortical and subcortical regions. We report the results of a meta-analysis of localization of changes in blood flow, based on nearly 1000 cerebral cortical peaks of activity obtained from groups of subjects in 30 PET studies. The results showed that, on average, 47% of these peaks were localized within the fundus regions of cortical sulci. This is an unexpectedly high proportion because fundal regions compose < 8% of the cortical mantle. Further analysis suggested a coarse correlation between the extent of fundal activation observed in different studies and the estimated cognitive complexity of the tasks used in the studies. These findings are potentially interesting because (i) the preponderance of fundal activation has implications for the interpretation of the PET data, (ii) they suggest that cortical sulcal and fundal regions may play a distinctive role in higher cognitive processing, or (iii) both of the above. PMID:7937984

  18. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography.

    PubMed

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-15

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with (64)Cu were observed by positron emission tomography (PET). (64)Cu-C60 and (64)Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for (64)Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  19. The role of pallidal serotonergic function in Parkinson's disease dyskinesias: a positron emission tomography study.

    PubMed

    Smith, Ruben; Wu, Kit; Hart, Thomas; Loane, Clare; Brooks, David J; Björklund, Anders; Odin, Per; Piccini, Paola; Politis, Marios

    2015-04-01

    We have investigated the role of globus pallidus (GP) serotonergic terminals in the development of levodopa-induced dyskinesias (LIDs) in Parkinson's disease (PD). We studied 12 PD patients without LIDs, 12 PD patients with LIDs, and 12 healthy control subjects. We used (11)C-DASB positron emission tomography (PET), a marker of serotonin transporter availability, and (11)C-raclopride PET to measure changes in synaptic dopamine levels following levodopa administration. PD patients without LIDs showed a significant reduction of GP serotonin transporter binding compared with healthy controls although this was within the normal range in PD patients with LIDs. Levels of GP serotonin transporter binding correlated positively with severity of dyskinesias. (11)C-raclopride PET detected a significant rise in GP synaptic dopamine levels of patients with LIDs after a levodopa challenge but not in patients with a stable response. Our findings indicate that LIDs in PD are associated with higher GP serotonergic function. This increased serotonin function may result in further dysregulation of thalamocortical signals and so promote the expression of dyskinesias. PMID:25649022

  20. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    NASA Astrophysics Data System (ADS)

    Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.

    2014-08-01

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  1. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-01

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with 64Cu were observed by positron emission tomography (PET). 64Cu-C60 and 64Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for 64Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  2. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    SciTech Connect

    Yamamoto, Seiichi; Ogata, Yoshimune

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  3. Future imaging of atherosclerosis: molecular imaging of coronary atherosclerosis with (18)F positron emission tomography.

    PubMed

    Scherer, Daniel J; Psaltis, Peter J

    2016-08-01

    Atherosclerosis is characterized by the formation of complex atheroma lesions (plaques) in arteries that pose risk by their flow-limiting nature and propensity for rupture and thrombotic occlusion. It develops in the context of disturbances to lipid metabolism and immune response, with inflammation underpinning all stages of plaque formation, progression and rupture. As the primary disease process responsible for myocardial infarction, stroke and peripheral vascular disease, atherosclerosis is a leading cause of morbidity and mortality on a global scale. A precise understanding of its pathogenic mechanisms is therefore critically important. Integral to this is the role of vascular wall imaging. Over recent years, the rapidly evolving field of molecular imaging has begun to revolutionize our ability to image beyond just the anatomical substrate of vascular disease, and more dynamically assess its pathobiology. Nuclear imaging by positron emission tomography (PET) can target specific molecular and biological pathways involved in atherosclerosis, with the application of (18)Fluoride PET imaging being widely studied for its potential to identify plaques that are vulnerable or high risk. In this review, we discuss the emergence of (18)Fluoride PET as a promising modality for the assessment of coronary atherosclerosis, focusing on the strengths and limitations of the two main radionuclide tracers that have been investigated to date: 2-deoxy-2-((18)F)fluoro-D-glucose ((18)F-FDG) and sodium (18)F-fluoride ((18)F-NaF). PMID:27500093

  4. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  5. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  6. Correlation between histological grade and positron emission tomography parameters in cervical carcinoma

    PubMed Central

    Mocciaro, Vanessa; Scollo, Paolo; Stefano, Alessandro; Gieri, Stefania; Russo, Giorgio; Scibilia, Giuseppe; Cosentino, Sebastiano; Murè, Gabriella; Baldari, Sara; Sabini, Maria Gabriella; Fraggetta, Filippo; Gilardi, Maria Carla; Ippolito, Massimo

    2016-01-01

    The aim of the present study was to evaluate the changes in cervical cancer glucose metabolism for different levels of cellular differentiation. The metabolic activity was measured by standardized uptake value (SUV), SUV normalized to lean body mass, metabolic tumor volume and total lesion glycolysis using fluorine-18 fluorodeoxyglucose positron emission tomography (PET). A correlation study of these values could be used to facilitate therapeutic choice and to improve clinical practice and outcome. This study considered 32 patients with diagnosed cervical cancers, at different International Federation of Gynecology and Obstetrics stages. Glucose metabolism was assessed by PET examination, and histological specimens were examined to determine their initial grade of differentiation. A correlation study of these values was evaluated. Histological examination showed that all cases were of squamous cell carcinoma. Regarding the differentiation of the tumor, 19 well- to moderately-differentiated tumors and 13 poorly-differentiated tumors were determined. Negative findings for correlations between metabolic parameters and initial grade of histological differentiation were found, and considering that histological grade has been shown to have no consistent prognostic value in cervical cancer treatment, PET imaging could play a significant role in cervical cancer prognosis. PMID:27446445

  7. Aspects of positron emission tomography radiochemistry as relevant for food chemistry.

    PubMed

    Wuest, F

    2005-12-01

    Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are (11)C (t(1/2) = 20.4 min) and (18)F (t(1/2) = 109.8 min). Longer-lived radioisotopes are available by using (76)Br (t(1/2) = 16.2 h) and (124)I (t(1/2) = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with (11)C or via prosthetic group labelling approaches using the positron emitting halogens (18)F, (76)Br and (124)I.

  8. Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring

    PubMed Central

    Challapalli, Amarnath; Aboagye, Eric O.

    2016-01-01

    Cancer cells do reprogram their energy metabolism to enable several functions, such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article, we review both established and evolving radioprobes developed in association with positron emission tomography (PET) to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]fluoro-D-glucose is well established in the clinic. Analogs of choline, including [11C]choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogramed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism. PMID:26973812

  9. New Glucocyclic RGD Dimers for Positron Emission Tomography Imaging of Tumor Integrin Receptors.

    PubMed

    Lee, Ji Woong; Park, Ji-Ae; Lee, Yong Jin; Shin, Un Chol; Kim, Suhng Wook; Kim, Byung Il; Lim, Sang Moo; An, Gwang Il; Kim, Jung Young; Lee, Kyo Chul

    2016-08-01

    Most studies of radiolabeled arginine-glycine-aspartic acid (RGD) peptides have shown in vitro affinity for integrin ανβ3, allowing for the targeting of receptor-positive tumors in vivo. However, major differences have been found in the pharmacokinetic profiles of different radiolabeled RGD peptide analogs. The purposes of this study were to prepare (64)Cu-DOTA-gluco-E[c(RGDfK)]2 (R8), (64)Cu-NOTA-gluco-E[c(RGDfK)]2 (R9), and (64)Cu-NODAGA-gluco-E[c(RGDfK)]2 (R10) and compare their pharmacokinetics and tumor imaging properties using small-animal positron emission tomography (PET). All three compounds were produced with high specific activity within 10 minutes. The IC50 values were similar for all the substances, and their affinities were greater than that of c(RGDyK). R8, R9, and R10 were stable for 24 hours in human and mouse serums and showed high uptake in U87MG tumors with high tumor-to-blood ratios. Compared to the control, a cyclic RGD peptide dimer without glucosamine, R10, showed low uptake in the liver. Because of their good imaging qualities and improved pharmacokinetics, (64)Cu-labeled dimer RGD conjugates (R8, R9, and R10) may have potential applications as PET radiotracers. R9 (NOTA) with highly in vivo stability consequentially showed an improved PET tumor uptake than R8 (DOTA) or R10 (NODAGA). PMID:27403677

  10. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    PubMed

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  11. Single Photon Emission Local Tomography (SPELT)

    SciTech Connect

    Zeng, G.L.; Gullberg, G.T.

    1996-12-31

    Local tomography uses truncated projection data to reconstruct a region of interest, and is important in medical imaging and industrial non-destructive evaluation using micro X-ray CT. The popular filtered backprojection (FBP) algorithm does not reconstruct a reliable image, which varies with the degree and location of truncation due to its global convolution kernel. A typical local tomography method uses a second derivative local operator to replace the global convolution kernel in the filtered backprojection algorithm (LFBP). By using a local filter, the reconstructed region depends only on the local projections. The singularities (edges) are preserved, but the exact image value cannot be recovered. This paper, using the data consistency conditions, developed a pre-processing technique that uses the FBP algorithm, which outperforms direct FBP and LFBP.

  12. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    SciTech Connect

    Mammar, Hamid; Kerrou, Khaldoun; Nataf, Valerie; Pontvert, Dominique; Clemenceau, Stephane; Lot, Guillaume; George, Bernard; Polivka, Marc; Mokhtari, Karima; Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis; Pouyssegur, Jacques; Mazure, Nathalie; Talbot, Jean-Noeel

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  13. Are there radiographic, metabolic, and prognostic differences between cavitary and noncavitary nonsmall cell lung carcinoma? A retrospective fluorodeoxyglucose positron emission tomography/computed tomography study

    PubMed Central

    Nguyen, Nghi C.; Abhishek, Kumar; Nyon, Samuel; Farghaly, Hussein Rabie S.; Osman, Medhat M.; Reimers, Hans-Joachim

    2016-01-01

    AIMS: The prognosis of nonsmall cell lung cancer with cavitation (NSCLC-c) is not well-known. We compared the positron emission tomography/computed tomography (PET/CT) findings and survival data of patients with NSCLC-c patients with those without cavitation (NSCLC-nc). METHODS: Between 7/2004 and 6/2007, cavitary lung lesions were identified in 46/248 patients undergoing fluorodeoxyglucose (FDG) PET/CT for lung nodule characterization or lung cancer staging. Within the same period, 40 of 202 patients with NSCLC-nc were randomly selected for comparison. The primary was assessed by location, size, cell type, and standardized uptake value (SUV). Disease stage was determined according to American Joint Committee on Cancer guidelines for lung cancer. Kaplan–Meier method was used for survival analysis and Cox regression to assess the effect of clinical and imaging variables on survival. RESULTS: NSCLC-c was found in 87% of patients that had a cavitary lung lesion at PET/CT. Squamous cell carcinoma, primary size and primary-to-liver SUV ratio differed significantly between NSCLC-c and NSCLC-nc, whereas age, gender, primary location, primary SUV, type of treatment, and disease stage did not. Median survival and overall 5-year survival were 19 months and 24% for NSCLC-c, and 31 months and 31% for NSCLC-nc, P = 0.23. Disease stage was the only predictor of survival. CONCLUSION: Cavitary lung lesions in patients undergoing FDG PET/CT harbor a significant risk for cancer. NSCLC-c is associated with squamous cell carcinoma, larger size, and greater FDG metabolism compared with NSCLC-nc, although these variables may not be predictive of survival. Nonetheless, PET/CT contributes to accurate staging and has an indirect impact on prognosis. PMID:26933457

  14. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of 11C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D). of injected 11C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic 11C concentration was identical in the four groups of patients. Pancreatic uptake of 11C-L-methionine was significantly lower in patients with chronic pancreatitis (n . 13) and pancreatic carcinoma (n . 10) (p less than 0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  15. The role of positron emission tomography in the detection of pancreatic disease

    SciTech Connect

    Syrota, A.; Duquesnoy, N.; Paraf, A.; Kellershohn, C.

    1982-04-01

    Positron emission tomography (PET) was used to assess possible pancreatic disease in 100 patients. Following injection of 10-15 mCi (370-740 MBq) of /sup 11/C-L-methionine, 4-12 transverse sections 2 cm thick were obtained. In 85 patients with a definite diagnosis (45 normal, 9 acute pancreatitis, 18 chronic pancreatitis, and 13 cancer), PET showed a sensitivity of 85.0%, a specificity of 97.8%, and an accuracy of 91.8%, higher than with transmission computed tomography (CT) or ultrasonography, despite relatively low spatial resolution; this can be explained by the fact that exocrine pancreatic function was altered prior to morphological change. In 22 normal subjects, 0.011 +/- 0.003% (mean +/- S.D.) of injected /sup 11/C was found in 1 ml of liver tissue and 0.015 +/- 0.005% in 1 ml of pancreatic tissue; the pancreas-to-liver concentration ratio was 1.3 +/- 0.4. Hepatic /sup 11/C concentration was identical in the four groups of patients. Pancreatic uptake of /sup 11/C-L-methionine was significantly lower in patients with chronic pancreatitis (n = 13) and pancreatic carcinoma (n = 10) (p <0.001); however, it was not possible to distinguish cancer from chronic pancreatitis because the same functional alteration occurred in both.

  16. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    PubMed

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  17. A prospective evaluation of the impact of 18-F-fluoro-deoxy-D-glucose positron emission tomography staging on survival for patients with locally advanced esophageal cancer

    SciTech Connect

    Blackstock, A. William . E-mail: ablackst@wfubmc.edu; Farmer, Michael R.; Lovato, James; Mishra, Girish; Melin, Susan A.; Oaks, Timothy; Aklilu, Mabea; Clark, Paige B.; Levine, Edward A.

    2006-02-01

    Purpose: To determine the impact of 18-F-fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) in the staging and prognosis of patients with locally advanced esophageal cancer (LAEC). Methods and Materials: Between January 2000 and October 2004, all patients with LAEC evaluated in the Department of Radiation Oncology were considered for enrollment into a Phase II trial of preoperative chemoradiation. Entry required a staging whole-body FDG-PET scan. Results: One hundred ten consecutive patients were evaluated; 38 were ineligible for reasons including treatment elsewhere, prior malignancy, or refusal of treatment. After conventional staging (clinical examination, endoscopic ultrasound, and chest/abdominal computerized tomography), 33 patients were ineligible because of metastatic disease or poor performance status. Of the remaining 39 patients, 23 were confirmed to have LAEC after FDG-PET staging and were treated in the Phase II trial (Cohort I). Sixteen patients, however, had FDG-PET findings consistent with occult metastatic disease and were deemed ineligible for the trial but were treated with curative intent (Cohort II). The 2-year survival rate for the 23 patients in Cohort I was 64%, compared with 17% (p = 0.003) for patients in Cohort II (FDG-PET positive). Conclusions: More than one-third of patients determined to have LAEC with conventional staging were upstaged with the use of FDG-PET. Despite comparable therapy, upstaging with FDG-PET predicts poor 2-year survival.

  18. Impact of technology on the utilisation of positron emission tomography in lymphoma: current and future perspectives.

    PubMed

    Visvikis, D; Ell, P J

    2003-06-01

    Positron emission tomography (PET) has now gained a place in the management of patients with cancer, including those with Hodgkin's disease and non-Hodgkin's lymphoma. Restaging studies and those addressing the monitoring of response to treatment are especially in focus. Most of the knowledge gained has been achieved with dedicated BGO-based PET technology, but there are a number of developments that will impact on the use of this metabolic imaging technique in the investigation of patients with lymphoma. The challenges ahead are determined by the need for high-quality whole-body imaging associated with increased patient throughput and the need to investigate the role of new labelled ligands. The latter are likely to yield new insights into tumour cell characterisation, tumour behaviour and tumour outcome assessment. The study of new radiolabelled ligands will impose further demands for rapid dynamic data acquisition and accurate tracer quantification. Current and future developments in PET technology range from the use of new detector materials to different detector geometries and data acquisition modes. The search for alternatives to BGO scintillation materials for PET has led to the development of PET instruments utilising new crystals such as LSO and GSO. The use of these new detectors and the increased sensitivity achieved with 3D data acquisitions represent the most significant current developments in the field. With the increasing demands imposed on the clinical utilisation of PET, issues such as study cost and patient throughput will emerge as significant future factors. As a consequence, low-cost units are being offered by the manufacturers through the utilisation of gamma camera-based SPET systems for PET coincidence imaging. Unfortunately, clinical studies in lymphoma and other cancers have already demonstrated the limitations of this technology, with 20% of lesions <15 mm in size escaping detection. On the other hand, the recent development of combined

  19. SU-E-I-86: Ultra-Low Dose Computed Tomography Attenuation Correction for Pediatric PET CT Using Adaptive Statistical Iterative Reconstruction (ASiR™)

    SciTech Connect

    Brady, S; Shulkin, B

    2015-06-15

    Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co

  20. Cerebral glucose utilization measured with high resolution positron emission tomography in epileptic Finnish Spitz dogs and healthy dogs.

    PubMed

    Viitmaa, Ranno; Haaparanta-Solin, Merja; Snellman, Marjatta; Cizinauskas, Sigitas; Orro, Toomas; Kuusela, Erja; Johansson, Jarkko; Viljanen, Tapio; Jokinen, Tarja S; Bergamasco, Luciana; Metsähonkala, Liisa

    2014-01-01

    In human epileptic patients, changes in cerebral glucose utilization can be detected 2-deoxy-2-[(18) F] fluoro-D-glucose positron emission tomography (FDG-PET). The purpose of this prospective study was to determine whether epileptic dogs might show similar findings. Eleven Finnish Spitz dogs with focal idiopathic epilepsy and six healthy dogs were included. Dogs were examined using electroencephalography (EEG) and FDG-PET, with epileptic dogs being evaluated during the interictal period. Visual and semi-quantitative assessment methods of FDG-PET were compared and contrasted with EEG findings. Three independent observers, unaware of dog clinical status, detected FDG-PET uptake abnormalities in 9/11 epileptic (82%), and 4/8 healthy dogs (50%). Occipital cortex findings were significantly associated with epileptic status (P = 0.013). Epileptic dogs had significantly lower standardized uptake values (SUVs) in numerous cortical regions, the cerebellum, and the hippocampus compared to the control dogs. The lowest SUVs were found in the occipital lobe. White matter normalized and left-right asymmetry index values for all pairs of homologous regions did not differ between groups. Visual evaluation of the EEGs was less sensitive (36%) than FDG-PET. Both diagnostic tests were consensual and specific (100%) for occipital findings, but EEG had a lower sensitivity for detecting lateralized foci than FDG-PET. Findings supported the use of FDG-PET as a diagnostic test for dogs with suspected idiopathic epilepsy. Visual and semiquantitative analyses of FDG-PET scans provided complementary information. Findings also supported the theory that epileptogenesis may occur in multiple brain regions in Finnish Spitz dogs with idiopathic epilepsy.

  1. Testicular fluorine-18 fludeoxyglucose uptake on positron emission tomography CT in patients with lymphoma: clinical significance and management impact

    PubMed Central

    Lin, P; Son, H; Rosenfeld, D; Lin, M

    2014-01-01

    Objective: This is the first case series examining the role of fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography-CT (PET-CT) in the diagnosis of lymphoma, and its impact on the clinical management of patients with secondary testicular involvement. This study explores the clinical significance of abnormal testicular uptake, maximum standardized uptake values and the diagnostic value of the CT component in PET-CT scans of these patients. Methods: The case notes and PET scans of 12 patients with diagnosis of lymphoma that were reported to have abnormal 18F-FDG uptake in the testes were examined. Case notes were reviewed for the underlying diagnosis, indication for the scan and its effect on the management decision. Results: 12 patients demonstrated abnormal 18F-FDG uptake on the PET-CT scans (mean age, 63 years; range, 37–82 years). Seven patients were diagnosed with testicular lymphoma. Six out of the seven (86%) patients received additional intrathecal chemotherapy in addition to their systemic chemotherapy, and one patient had testicular radiotherapy. Conclusion: This study establishes the importance of identifying and reporting abnormal 18F-FDG uptake in the testes on PET-CT in patients with lymphoma. 18F-FDG PET-CT is superior to conventional imaging in identifying testicular lymphoma and has significant management impact. It also emphasizes the importance of incorporating the testes as part of the scan coverage. Advances in knowledge: The appearances of testicular lymphoma on 18F-FDG PET-CT can be variable and abnormal testicular uptake warrants further investigations and confirmation. FDG PET-CT is an important tool and can be used in addition to conventional imaging in the identification of testicular lymphoma. PMID:25333503

  2. Brain positron emission tomography in splenectomized adults with β-thalassemia intermedia: uncovering yet another covert abnormality.

    PubMed

    Musallam, Khaled M; Nasreddine, Wassim; Beydoun, Ahmad; Hourani, Roula; Hankir, Ahmed; Koussa, Suzanne; Haidar, Mohamad; Taher, Ali T

    2012-02-01

    Covert brain infarction is an emerging concern in patients with β-thalassemia intermedia (TI). We have recently observed a high prevalence (60%) of silent brain infarction on brain magnetic resonance imaging (MRI) in 30 splenectomized adults with TI. In this work, we further evaluate cerebral involvement in the same 30 patients using fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) scanning. The median age was 32 years (range, 18-54 years) with a male to female ratio of 13:17. Nineteen patients (63.3%) had evidence of decreased neuronal function on PET-CT. Involvement was mostly left sided, multiple, and most commonly in the temporal and parietal lobes. Elevated liver iron concentration, beyond 15 mg Fe/g dry weight, characterized patients with decreased neuronal function. The concordance rate between brain MRI and PET-CT for the detection of brain abnormality was only 36.7% (Kappa 0.056, P = 0.757), highlighting that both modalities reveal different types of brain pathology. Decreased neuronal function is a common finding in patients with TI and is associated with iron overload. Moreover, the addition of PET-CT to MRI identifies a greater proportion of TI patients with silent neuroimaging abnormalities.

  3. Label-free assay for the assessment of nonspecific binding of positron emission tomography tracer candidates.

    PubMed

    Assmus, Frauke; Seelig, Anna; Gobbi, Luca; Borroni, Edilio; Glaentzlin, Patricia; Fischer, Holger

    2015-11-15

    Positron emission tomography (PET) is a valuable non-invasive technique for the visualization of drug tissue distribution and receptor occupancy at the target site in living animals and men. Many potential PET tracers, however, fail due to an unfavorably high non-specific binding (NSB) to non-target proteins and phospholipid membranes which compromises the sensitivity of PET. Hence, there is a high demand to assess the extent of NSB as early as possible in the PET tracer development process, preferentially before ligands are radiolabeled and elaborate imaging studies are performed. The purpose of this study was to establish a novel Lipid Membrane Binding Assay (LIMBA) for assessing the tendency of potential tracers to bind non-specifically to brain tissue. The assay works with unlabeled compounds and allows the medium-throughput measurement of brain tissue/water distribution coefficients, logDbrain (pH7.4), at minimal expense of animal tissue. To validate LIMBA, logDbrain (pH7.4) values were measured and compared with NSB estimates derived from in vivo PET studies in human brain (n=10 tracers, literature data), and in vitro autoradiography studies in rat and mouse brain slices (n=30 tritiated radioligands). Good agreement between logDbrain (pH7.4) and the volume of distribution in brain of non-specifically bound tracer in PET was achieved, pertaining to compounds classified as non-substrates of P-glycoprotein (R(2)≥0.88). The ability of LIMBA for the prediction of NSB was further supported by the strong correlation between logDbrain (pH7.4) and NSB in brain autoradiography (R(2)≥0.76), whereas octanol/water distribution coefficients, logDoct (pH7.4) were less predictive. In conclusion, LIMBA provides a fast and reliable tool for identifying compounds with unfavorably high NSB in brain tissue. The data may be used in conjunction with other parameters like target affinity, density and membrane permeability for the selection of most promising compounds to be

  4. Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions

    SciTech Connect

    Aristophanous, Michalis; Killoran, Joseph H.; Chen, Aileen B.; Berbeco, Ross I.

    2011-07-01

    Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of both the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.

  5. Pulmonary alveolar microlithiasis with low fluorodeoxyglucose accumulation in PET/computed tomography

    PubMed Central

    Günay, Ersin; Özcan, Aysenaz; Günay, Sibel; Tatci, Ebru; Keyf, Atila Ihsan; Simsek, Cebrail

    2011-01-01

    Pulmonary alveolar microlithiasis (PAM) is an uncommon lung disease characterized by accumulation of intraalveolar calcifications. The disease can be diagnosed based on the radiological findings. We present a 27-year-old women with five-year history of shortness of breath. She was diagnosed with PAM due to the presence of the characteristic chest X-ray and thorax computed tomography (CT) findings. We performed 18F-fluorodeoxyglucose (FDG)-PET/CT imaging in order to detect any evidence of inflamation in the lung before deciding an anti-inflammatory treatment. The lung regions with dense calcifications revealed low FDG uptakes (SUVmax: 2.7) and the lung regions without calcifications showed lower FDG uptakes. No further treatment modality was planned besides inhaler salbutamol. Herein, we discuss this rare entity with literature search. PMID:21977072

  6. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy

    PubMed Central

    Topakian, Raffi; Pichler, Robert

    2016-01-01

    Abstract Background Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20–40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as well as non routinely used 18F-Flumazenil (18F-FMZ) tracers PET/CT in patients with refractory epilepsy. Conclusions Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays 18F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, 18F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of 11C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, 18F-FMZ might be established as one of the tracers of choice for patients

  7. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy

    PubMed Central

    Topakian, Raffi; Pichler, Robert

    2016-01-01

    Abstract Background Epilepsy is a neurological disorder characterized by epileptic seizures as a result of excessive neuronal activity in the brain. Approximately 65 million people worldwide suffer from epilepsy; 20–40% of them are refractory to medication therapy. Early detection of disease is crucial in the management of patients with epilepsy. Correct localization of the ictal onset zone is associated with a better surgical outcome. The modern non-invasive techniques used for structural-functional localization of the seizure focus includes electroencephalography (EEG) monitoring, magnetic resonance imaging (MRI), single photon emission tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT). PET/CT can predict surgical outcome in patients with refractory epilepsy. The aim of the article is to review the current role of routinely used tracer 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as well as non routinely used 18F-Flumazenil (18F-FMZ) tracers PET/CT in patients with refractory epilepsy. Conclusions Functional information delivered by PET and the morphologic information delivered by CT or MRI are essential in presurgical evaluation of epilepsy. Nowadays 18F-FDG PET/CT is a routinely performed imaging modality in localization of the ictal onset zone in patients with refractory epilepsy who are unresponsive to medication therapy. Unfortunately, 18F-FDG is not an ideal PET tracer regarding the management of patients with epilepsy: areas of glucose hypometabolism do not correlate precisely with the proven degree of change within hippocampal sclerosis, as observed by histopathology or MRI. Benzodiazepine-receptor imaging is a promising alternative in nuclear medicine imaging of epileptogenic focus. The use of 11C-FMZ in clinical practice has been limited by its short half-life and necessitating an on-site cyclotron for production. Therefore, 18F-FMZ might be established as one of the tracers of choice for patients

  8. Cardiac phantom measurement validating the methodology for a cardiac multi-centre trial with positron emission tomography.

    PubMed

    Nuyts, Johan; Mortelmans, Luc; Van de Werf, Frans; Djian, Jacques; Sambuceti, Gianmario; Schwaiger, Marcus; Touboul, Paul; Maes, Alex

    2002-12-01

    In an ongoing international multi-centre trial, positron emission tomography (PET) is being used to evaluate the effect of a new P-selectin antagonist on the infarct size in patients with acute myocardial infarction, treated with thrombolysis. Although it is possible to correct for site-dependent factors, it is desirable to reduce these factors to a minimum. Therefore, acquisition and reconstruction protocols have been defined that can be closely followed by all participating centres. The resulting reconstructed images are transferred to the core centre for central processing with semi-automatic software. This paper reports on the multi-centre phantom experiment that was carried out to assess the inter-centre reproducibility of defect size determination with this protocol. Also, the spatial resolution of the short axis slices was examined. In addition, the analysis procedure was applied to normal PET studies to evaluate the specificity of perfusion defect detection. The transmural cold defect in the phantom occupied 14.8% of the left ventricular area. The automated analysis was applied to the phantom measurements from the 14 participating PET cameras. It yielded an accurate estimate of 15.1% with a standard deviation of 0.6%, indicating excellent reproducibility. The spatial resolution in the short axis slices was similar for all PET systems: 9.6+/-0.8 mm. The same procedure produced a defect size of zero in the studies of normal volunteers. This study indicates that cardiac studies from multiple PET systems can be pooled for statistical analysis.

  9. Bitemporal hypometabolism in Creutzfeldt-Jakob Disease measured by positron emission tomography with (F-18)2-fluorodeoxyglucose

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Prusiner, S.B.; Jagust, W.J.

    1984-01-01

    It is well established that Creutzfeldt-Jakob Disease (CJD) is caused by a slow infectious agent similar to the scrapie prion. However, the pathogenesis of this infection is poorly understood. Positron emission tomography (PET) was performed on a 54 year old male subject with autopsy confirmed CJD using (F-18)2-fluorodeoxyglucose (FDG) and the Donner 280-crystal tomograph. An x-ray computed tomographic study of the brain performed 4 days prior to PET was normal. In the PET study the frontal to temporal cortex difference of activity densities was 30% on the left and 12% on the right, reflecting temporal hypometabolism. The left-right temporal cortex difference of activity density was 25%, documenting marked hemispheric asymmetry. These findings are similar to those previously obtained in PET-FDG studies of patients with clinically defined Alzheimer's Disease (AD) and are distinctly different from PET-FDG finding in patients with other dementing illnesses or in healthy aged subjects. Recent work has demonstrated extensive biological similarities between CJD, scrapie and AD. The similarities in the regional metabolic alterations between CJD and AD provide additional evidence for the hypothesis that AD is caused by a slow infectious (prion-like) pathogen.

  10. (18) F-labeled folic acid derivatives for imaging of the folate receptor via positron emission tomography.

    PubMed

    Schieferstein, Hanno; Ross, Tobias L

    2013-01-01

    The folate receptor (FR) is already known as a proven target in diagnostics and therapy of cancer. Furthermore, the FR is involved in inflammatory and autoimmune diseases. The major advantage as a valuable target is its strongly limited expression in healthy tissues. Over the past two decades, several folic acid-based radiopharmaceuticals addressing the FR have been developed, and some of them show great potential for applications in clinical routine. However, most of these radiofolates were developed for single photon emission computed tomography imaging, and only a few can be used for positron emission tomography (PET) imaging. The development of suitable (18) F-labeled derivatives for PET imaging of the FR has aroused great interest and recent studies revealed very promising candidates for further development and translation into human applications. In this review, we focus on the development of (18) F-labeled folic acid derivatives for PET imaging of the FR and discuss various radiochemical strategies and approaches towards (18) F-folates. Besides radiochemistry and (18) F-labeling, we briefly look into the crucial pharmacological parameters and the preclinical in vivo performance of those (18) F-folates.

  11. Clinical evaluation of a high-resolution (2. 6-mm) positron emission tomography

    SciTech Connect

    Valk, P.E.; Jagust, W.J.; Derenzo, S.E.; Huesman, R.H.; Geyer, A.B.; Budinger, T.F. )

    1990-09-01

    The intrinsic resolution of the Donner 600-crystal positron emission tomograph (PET 600) is 2.6 mm full width at half maximum (FWHM) in-plane and 6 mm FWHM axially. More than 100 patients with glioma, radiation necrosis, Alzheimer disease, or epilepsy have been studied with this system. Approximately 1 million events are acquired in 15 minutes, starting 1 hour after injection of 10 mCi (370 MBq) of fluorine-18-fluorodeoxyglucose. Normal structures as small as the superior colliculi and the external capsule have been resolved. Improved separation of the cortical ribbon from adjacent white matter has allowed more accurate determination of cortical metabolic rate. In two of 15 patients undergoing evaluation for recurrent glioma, the PET 600 images showed tumor uptake that was not apparent on a lower-resolution study. A high-activity orbiting transmission source with electronic collimation allows accurate, short-duration transmission measurements to be made after radiopharmaceutical administration. The anatomic detail seen on the transmission images can be used for reproducible patient positioning with an accuracy of 1-2 mm perpendicular to the image plane. These findings demonstrate the practicality and clinical effectiveness of high-resolution positron emission tomography.

  12. Positron emission tomography in the quantification of cellular and biochemical responses to intrapulmonary particulates

    SciTech Connect

    Jones, Hazel A. . E-mail: hazel.jones@imperial.ac.uk; Hamacher, Kurt; Clark, John C.; Schofield, John B.; Krausz, Thomas; Haslett, Christopher; Boobis, Alan R.

    2005-09-01

    Inhaled mineral dusts and fibres can cause chronic pulmonary inflammation, often leading to permanent scarring with loss of function, but the mechanisms involved remain obscure. There are currently no good methods for monitoring inflammatory processes in situ. Positron emission tomography (PET) of suitable intravenously injected radiolabelled markers provides non-invasive and repeatable methods of quantifying biochemical and cellular responses. We have developed animal models of fibrotic and non-fibrotic pulmonary response to particulate instillation and characterised these by histology. Different components of the inflammatory response have been investigated by PET: (1) [{sup 18}F]-labelled fluoro-deoxyglucose, a positron emitting glucose analogue, accumulates in cells in proportion to their glucose uptake; ex vivo microautoradiography indicates that neutrophils are the cells responsible for an increased signal during pulmonary inflammation; a persistently high uptake is associated with lung scarring. (2) The radioligand [{sup 11}C]-R-PK11195 binds to benzodiazepine-like receptors abundant in macrophages; following particulate instillation, the [{sup 11}C]-R-PK11195 PET signal tracks with lung macrophage accumulation and also localises to regions consistent with macrophage clearance; poor macrophage clearance is associated with fibrosis. (3) [{sup 18}F]-fluoroproline is likely a substrate for extracellular matrix production, especially proline-rich collagen; during active scarring, the rate of lung uptake of fluoroproline is elevated. Localisation of radioactivity in the lung has been validated ex vivo by microautoradiography of tritium analogues of each of the positron emitting tracers. The use of PET to monitor different inflammatory processes by repeated scanning of the same animal or individual is helping to identify key events in the fibrotic process.

  13. Molecular imaging of atherosclerotic lesions by positron emission tomography - can it meet the expectations?

    PubMed

    Brammen, Lindsay; Steiner, Sabine; Berent, Robert; Sinzinger, Helmut

    2016-01-01

    Early non-invasive imaging of atherosclerosis and in particular the detection of lesions at risk with high specificity could significantly affect cardiovascular morbidity and mortality. Conventional nuclear medicine approaches, in particular using autologous radiolabeled lipoproteins, can be related to histopathological findings; however, they fail to identify lesions at risk. Positron emission tomography (PET) tracers with much better physical properties have been examined, the most detailed information being available for F-18-deoxyglucose (FDG) and F-18-sodium fluoride (NaF). These two approaches are sensitive to different biochemical mechanisms, i.e. inflammation and microcalcification. Initial enthusiasm, in particular for F-18-FDG, has disappeared, although for F-18-NaF there is some hope, but this is not a breakthrough. No tracer is available so far that is able to identify a specific characteristic of a lesion prone to rupture. Other PET tracers in the pipeline have been examined, mainly in experimental models and only a few in patients, but they failed to contribute significantly to early lesion discovery and do not support great expectations. The key question is: Do we understand what we see? Moreover, methodological problems, a lack of standardization of imaging protocols and aspects of quantification provide a wide range for potential future improvements. While monitoring a therapeutic intervention seems to be possible for both F-18-FDG and F-18-NaF, highly specific early identification of lesions at risk by PET imaging is still far away. As of today, PET is not ready for routine clinical judgment of atherosclerotic lesions at risk to rupture. Even if all these problems can be solved, radiation exposure will still remain a concern, in particular for repeated studies.

  14. Molecular imaging of atherosclerotic lesions by positron emission tomography - can it meet the expectations?

    PubMed

    Brammen, Lindsay; Steiner, Sabine; Berent, Robert; Sinzinger, Helmut

    2016-01-01

    Early non-invasive imaging of atherosclerosis and in particular the detection of lesions at risk with high specificity could significantly affect cardiovascular morbidity and mortality. Conventional nuclear medicine approaches, in particular using autologous radiolabeled lipoproteins, can be related to histopathological findings; however, they fail to identify lesions at risk. Positron emission tomography (PET) tracers with much better physical properties have been examined, the most detailed information being available for F-18-deoxyglucose (FDG) and F-18-sodium fluoride (NaF). These two approaches are sensitive to different biochemical mechanisms, i.e. inflammation and microcalcification. Initial enthusiasm, in particular for F-18-FDG, has disappeared, although for F-18-NaF there is some hope, but this is not a breakthrough. No tracer is available so far that is able to identify a specific characteristic of a lesion prone to rupture. Other PET tracers in the pipeline have been examined, mainly in experimental models and only a few in patients, but they failed to contribute significantly to early lesion discovery and do not support great expectations. The key question is: Do we understand what we see? Moreover, methodological problems, a lack of standardization of imaging protocols and aspects of quantification provide a wide range for potential future improvements. While monitoring a therapeutic intervention seems to be possible for both F-18-FDG and F-18-NaF, highly specific early identification of lesions at risk by PET imaging is still far away. As of today, PET is not ready for routine clinical judgment of atherosclerotic lesions at risk to rupture. Even if all these problems can be solved, radiation exposure will still remain a concern, in particular for repeated studies. PMID:27058798

  15. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography

    PubMed Central

    Zeglis, Brian M.

    2013-01-01

    Positron emission tomography (PET) has become a vital imaging modality in the diagnosis and treatment of disease, most notably cancer. A wide array of small molecule PET radiotracers have been developed that employ the short half-life radionuclides 11C, 13N, 15O, and 18F. However, PET radiopharmaceuticals based on biomolecular targeting vectors have been the subject of dramatically increased research in both the laboratory and the clinic. Typically based on antibodies, oligopeptides, or oligonucleotides, these tracers have longer biological half-lives than their small molecule counterparts and thus require labeling with radionuclides with longer, complementary radioactive half-lives, such as the metallic isotopes 64Cu, 68Ga, 86Y, and 89Zr. Each bioconjugate radiopharmaceutical has four component parts: biomolecular vector, radiometal, chelator, and covalent link between chelator and biomolecule. With the exception of the radiometal, a tremendous variety of choices exists for each of these pieces, and a plethora of different chelation, conjugation, and radiometallation strategies have been utilized to create agents ranging from 68Ga-labeled pentapeptides to 89Zr-labeled monoclonal antibodies. Herein, the authors present a practical guide to the construction of radiometal-based PET bioconjugates, in which the design choices and synthetic details of a wide range of biomolecular tracers from the literature are collected in a single reference. In assembling this information, the authors hope both to illuminate the diverse methods employed in the synthesis of these agents and also to create a useful reference for molecular imaging researchers both experienced and new to the field. PMID:21442098

  16. Temporal lobe deficits in murderers: EEG findings undetected by PET.

    PubMed

    Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L

    2001-01-01

    This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.

  17. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy

  18. Comparison of Positron Emission Tomography Scanning and Sentinel Node Biopsy in the Detection of Inguinal Node Metastases in Patients With Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Castellano, Isabella; Cassoni, Paola; Ricardi, Umberto; Munoz, Fernando; Racca, Patrizia; Contu, Viviana; Beltramo, Giancarlo; Morino, Mario; Mussa, Antonio

    2010-05-01

    Background: Inguinal lymph node metastases in patients with anal cancer are an independent prognostic factor for local failure and overall mortality. Inguinal lymph node status can be adequately assessed with sentinel node biopsy, and the radiotherapy strategy can subsequently be changed. We compared this technique vs. dedicated 18F-fluorodeoxyglucose positron emission tomography (PET) to determine which was the better tool for staging inguinal lymph nodes. Methods and Materials: In our department, 27 patients (9 men and 18 women) underwent both inguinal sentinel node biopsy and PET-CT. PET-CT was performed before treatment and then at 1 and 3 months after treatment. Results: PET-CT scans detected no inguinal metastases in 20 of 27 patients and metastases in the remaining 7. Histologic analysis of the sentinel lymph node detected metastases in only three patients (four PET-CT false positives). HIV status was not found to influence the results. None of the patients negative at sentinel node biopsy developed metastases during the follow-up period. PET-CT had a sensitivity of 100%, with a negative predictive value of 100%. Owing to the high number of false positives, PET-CT specificity was 83%, and positive predictive value was 43%. Conclusions: In this series of patients with anal cancer, inguinal sentinel node biopsy was superior to PET-CT for staging inguinal lymph nodes.

  19. SPECT and PET serve as molecular imaging techniques and in vivo biomarkers for brain metastases.

    PubMed

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-06-03

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed.

  20. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    PubMed Central

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  1. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  2. Model-based respiratory motion compensation for emission tomography image reconstruction.

    PubMed

    Reyes, M; Malandain, G; Koulibaly, P M; González-Ballester, M A; Darcourt, J

    2007-06-21

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.

  3. Caffeine and human cerebral blood flow: A positron emission tomography study

    SciTech Connect

    Cameron, O.G.; Modell, J.G.; Hariharan, M. )

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed.

  4. Optical imaging of reporter gene expression using a positron-emission-tomography probe

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen

    2010-11-01

    Reporter gene/reporter probe technology is one of the most important techniques in molecular imaging. Lately, many reporter gene/reporter probe systems have been coupled to different imaging modalities such as positron emission tomography (PET) and optical imaging (OI). It has been recently found that OI techniques could be used to monitor radioactive tracers in vitro and in living subjects. In this study, we further demonstrate that a reporter gene/nuclear reporter probe system [herpes simplex virus type-1 thymidine kinase (HSV1-tk) and 9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine ([18F]FHBG)] could be successfully imaged by OI in vitro and in vivo. OI with radioactive reporter probes will facilitate and broaden the applications of reporter gene/reporter probe techniques in medical research.

  5. {sup 18}-F-Fluorodeoxyglucose-Positron Emission Tomography Evaluation of Early Metabolic Response During Radiation Therapy for Cervical Cancer

    SciTech Connect

    Schwarz, Julie K.; Lin, Lillie L.; Siegel, Barry A.; Miller, Tom R.; Grigsby, Perry W.

    2008-12-01

    Purpose: To document changes in cervical tumor {sup 18}-F-fluorodeoxyglocose (FDG) uptake during radiation therapy and to correlate those changes with post-treatment tumor response and survival outcome. Methods and Materials: A total of 36 patients with Stage Ib1 to IIIb cervical cancer were enrolled in an institutional protocol examining the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) for brachytherapy treatment planning. As part of this study, FDG-PET or PET/computed tomograpy (CT) images were obtained before, during, and after the completion of radiation therapy. Tumor metabolic responses were assessed qualitatively and semi-quantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Post-treatment FDG-PET images were obtained for 36 patients in this study. Of the patients, 29 patients had a complete metabolic response on the post-treatment PET, 4 had a partial metabolic response, and 3 had new sites of FDG uptake. Six patients had a complete metabolic response observed during radiation therapy, 26 had a partial metabolic response and 4 had stable or increased tumor metabolic activity. For patients with complete metabolic response during radiation therapy, median time to complete response was 29.5 days (range, 18-43 days). The mean cervical tumor SUV{sub max} decreased from 11.2 (SD, 6.3; range, 2.1-38.0) pretreatment to 2.4 (SD, 2.7; range, 0-8.8) mid treatment, and 0.5 (SD, 1.7; range, 0-8.3) post-treatment. Conclusions: During radiation therapy for cervical cancer, FDG-PET can be used to monitor treatment response. Complete metabolic response during radiation therapy was observed for a subset of patients. Recommendations regarding the optimal timing of FDG-PET during treatment for cervical cancer will require further systematic study.

  6. Quantification of [(11)C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography.

    PubMed

    Veronese, Mattia; Bodini, Benedetta; García-Lorenzo, Daniel; Battaglini, Marco; Bongarzone, Salvatore; Comtat, Claude; Bottlaender, Michel; Stankoff, Bruno; Turkheimer, Federico E

    2015-11-01

    An accurate in vivo measure of myelin content is essential to deepen our insight into the mechanisms underlying demyelinating and dysmyelinating neurological disorders, and to evaluate the effects of emerging remyelinating treatments. Recently [(11)C]PIB, a positron emission tomography (PET) tracer originally conceived as a beta-amyloid marker, has been shown to be sensitive to myelin changes in preclinical models and humans. In this work, we propose a reference-region methodology for the voxelwise quantification of brain white-matter (WM) binding for [(11)C]PIB. This methodology consists of a supervised procedure for the automatic extraction of a reference region and the application of the Logan graphical method to generate distribution volume ratio (DVR) maps. This approach was assessed on a test-retest group of 10 healthy volunteers using a high-resolution PET tomograph. The [(11)C]PIB PET tracer binding was shown to be up to 23% higher in WM compared with gray matter, depending on the image reconstruction. The DVR estimates were characterized by high reliability (outliers <1%) and reproducibility (intraclass correlation coefficient (ICC) >0.95). [(11)C]PIB parametric maps were also found to be significantly correlated (R(2)>0.50) to mRNA expressions of the most represented proteins in the myelin sheath. On the contrary, no correlation was found between [(11)C]PIB imaging and nonmyelin-associated proteins.

  7. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    PubMed Central

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O’Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2014-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems. PMID:24917693

  8. Diagnostic and prognostic evaluation of fluorodeoxyglucose positron emission tomography/computed tomography and its correlation with serum cancer antigen-125 (CA125) in a large cohort of ovarian cancer patients

    PubMed Central

    Evangelista, Laura; Palma, Maurizia Dalla; Gregianin, Michele; Nardin, Margherita; Roma, Anna; Nicoletto, Maria Ornella; Nardelli, Giovanni Battista; Zagonel, Vittorina

    2015-01-01

    Objective We evaluated the efficacy of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in recurrent disease, response to therapy, and long-term follow-up of ovarian cancer (OC) patients in relation to cancer antigen-125 (CA125) levels and the prognostic meaning of this modality in this subset of subjects. Material and Methods Between 2005 and 2015, we retrospectively evaluated 125 patients affected by OC who underwent FDG PET/CT imaging at our institution. The indications for PET/CT were recurrence of disease in 78 patients, therapy response assessment in 29, and follow-up in 18. The results of FDG PET/CT were compared with those of histopathology and clinical and radiological progression during follow-up for at least 6 months. The median long-term follow-up was 33 months. The diagnostic accuracies for the different clinical settings were evaluated. The relationships among global survival (GS), FDG PET/CT results, and CA125 levels were evaluated by both Kaplan–Meier and Cox regression analysis. Results CA125 results were positive (>35 UI/mL) in 62 patients and negative in 63 (49% vs. 51%). The sensitivity and specificity of CA125 were 72% and 91%, respectively. PET/CT imaging showed a sensitivity of 98.6% and a specificity of 77.8% for the assessment of recurrent disease, and a sensitivity of 72.7% and a specificity of 88.9% for therapy evaluation. Meanwhile, in 18 patients evaluated during follow-up, the specificity was 82.3%. GS was significantly higher in case of negative CA125 values at the time of FDG PET/CT, of a negative PET/CT scan and when no evidence of peritoneum recurrence and distant metastases was determined by PET. Multivariate regression analysis showed that only age and peritoneum recurrence as determined by PET were identified as independent predictors of poor prognosis. Conclusion Metabolic imaging with FDG PET/CT proved useful in patients where OC recurrence was suspected, even when the value of tumor

  9. Impact of Pretransplantation (18)F-fluorodeoxy Glucose-Positron Emission Tomography Status on Outcomes after Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma.

    PubMed

    Bachanova, Veronika; Burns, Linda J; Ahn, Kwang Woo; Laport, Ginna G; Akpek, Görgün; Kharfan-Dabaja, Mohamed A; Nishihori, Taiga; Agura, Edward; Armand, Philippe; Jaglowski, Samantha M; Cairo, Mitchell S; Cashen, Amanda F; Cohen, Jonathon B; D'Souza, Anita; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; Ghosh, Nilanjan; Holmberg, Leona A; Inwards, David J; Kanate, Abraham S; Lazarus, Hillard M; Malone, Adriana K; Munker, Reinhold; Mussetti, Alberto; Norkin, Maxim; Prestidge, Tim D; Rowe, Jacob M; Satwani, Prakash; Siddiqi, Tanya; Stiff, Patrick J; William, Basem M; Wirk, Baldeep; Maloney, David G; Smith, Sonali M; Sureda, Anna M; Carreras, Jeanette; Hamadani, Mehdi

    2015-09-01

    Assessment with (18)F-fluorodeoxy glucose (FDG)-positron emission tomography (PET) before hematopoietic cell transplantation (HCT) for lymphoma may be prognostic for outcomes. Patients with chemotherapy-sensitive non-Hodgkin lymphoma (NHL) undergoing allogeneic HCT reported to the Center of International Blood and Marrow Transplantation Registry between 2007 and 2012 were included. Pre-HCT PET status (positive versus negative) was determined by the reporting transplantation centers. We analyzed 336 patients; median age was 55 years and 60% were males. Follicular lymphoma (n = 104) was more common than large cell (n = 85), mantle cell (n = 69), and mature natural killer or T cell lymphoma (n = 78); two thirds of the cohort received reduced-intensity conditioning; one half had unrelated donor grafts. Patients underwent PET scanning a median of 1 month (range, .07 to 2.83 months) before HCT; 159 were PET positive and 177 were PET negative. At 3 years, relapse/progression, progression-free survival (PFS), and overall survival (OS) in PET-positive versus PET-negative groups were 40% versus 26%; P = .007; 43% versus 47%; P = .47; and 58% versus 60%; P = .73, respectively. On multivariate analysis, a positive pretransplantation PET was associated with an increased risk of relapse/progression (risk ratio [RR], 1.86; P = .001) but was not associated with increased mortality (RR, 1.29, 95% confidence interval [CI], .96 to 1.7; P = .08), therapy failure (RR, 1.32; 95% CI, .95 to 1.84; P = .10), or nonrelapse mortality (RR, .75; 95% CI, .48 to 1.18; P = .22). PET status conferred no influence on graft-versus-host disease. A positive PET scan before HCT is associated with increased relapse risk but should not be interpreted as a barrier to a successful allograft. PET status does not appear to predict survival after allogeneic HCT for NHL. PMID:25983043

  10. Impact of Pretransplantation (18)F-fluorodeoxy Glucose-Positron Emission Tomography Status on Outcomes after Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma.

    PubMed

    Bachanova, Veronika; Burns, Linda J; Ahn, Kwang Woo; Laport, Ginna G; Akpek, Görgün; Kharfan-Dabaja, Mohamed A; Nishihori, Taiga; Agura, Edward; Armand, Philippe; Jaglowski, Samantha M; Cairo, Mitchell S; Cashen, Amanda F; Cohen, Jonathon B; D'Souza, Anita; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; Ghosh, Nilanjan; Holmberg, Leona A; Inwards, David J; Kanate, Abraham S; Lazarus, Hillard M; Malone, Adriana K; Munker, Reinhold; Mussetti, Alberto; Norkin, Maxim; Prestidge, Tim D; Rowe, Jacob M; Satwani, Prakash; Siddiqi, Tanya; Stiff, Patrick J; William, Basem M; Wirk, Baldeep; Maloney, David G; Smith, Sonali M; Sureda, Anna M; Carreras, Jeanette; Hamadani, Mehdi

    2015-09-01

    Assessment with (18)F-fluorodeoxy glucose (FDG)-positron emission tomography (PET) before hematopoietic cell transplantation (HCT) for lymphoma may be prognostic for outcomes. Patients with chemotherapy-sensitive non-Hodgkin lymphoma (NHL) undergoing allogeneic HCT reported to the Center of International Blood and Marrow Transplantation Registry between 2007 and 2012 were included. Pre-HCT PET status (positive versus negative) was determined by the reporting transplantation centers. We analyzed 336 patients; median age was 55 years and 60% were males. Follicular lymphoma (n = 104) was more common than large cell (n = 85), mantle cell (n = 69), and mature natural killer or T cell lymphoma (n = 78); two thirds of the cohort received reduced-intensity conditioning; one half had unrelated donor grafts. Patients underwent