Science.gov

Sample records for emissions control system

  1. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  2. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2008-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce NOx, SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of NOx, SOx and heavy metals, while isolating useful by-products streams of sulfuric acid and nitric acid as well as solids for the recovery of the heavy metals.

  3. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  4. Advanced CIDI Emission Control System Development

    SciTech Connect

    Lambert, Christine

    2006-05-31

    Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design

  5. Variable emissivity laser thermal control system

    DOEpatents

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  6. Coke quench car emission control system

    SciTech Connect

    Baum, J.P.

    1983-07-19

    A coke quench car emission control system includes a coke car and a filter car connected in tandem for joint movement on rails disposed adjacent a coke oven. A hood and recuperator are mounted on a third car disposed on auxiliary rails which extend longitudinally along the upper portions of both the quench car and the filter car and in end-wise alignment. The hood is adapted to be coupled to the coke oven for receiving coke during a pushing operation. The recuperation has an inlet coupled to the hood for receiving emissions and withdrawing heat therefrom. The recuperator also has an outlet which is disposed adjacent the inlet of a filter system mounted on the filter car, when the third car is positioned atop the quench car. The third car is sized so that it can be moved on the auxiliary rails from a position atop the quench car to a position atop the filter car whereby the quench car can be exposed for a quenching operation.

  7. Cliffside 6 integrated emissions control system

    SciTech Connect

    McGinnis, D.G.; Rader, P.C.; Gansley, R.R.; Wang, W.

    2009-04-15

    The article takes an inside look into the environmental hardware going into one of the highest profile coal-fired power plants projects in the US, a new 800 MW supercritical coal-fired facility at Cliffside, NC, Unit C6. This is currently under construction and scheduled to be in commercial service in 2012. To evaluate the alternative air quality control system (AQCS) options, Duke Energy established a cross-functional team and used a decision analysis process to select the 'best balanced choice'. Alstom's integrated AQCS which combines dry and wet flue gas desulfurization systems was the best balanced choice. Replacing an ESP with a spray dryer absorber achieved major cost savings and eliminated the need for wastewater treatment. 1 ref., 2 photos.

  8. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  9. Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems.

    PubMed

    Tang, Shida; Frank, Brian P; Lanni, Thomas; Rideout, Greg; Meyer, Norman; Beregszaszy, Chris

    2007-07-15

    This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.

  10. Integrated emissions control system for residential CWS furnace

    SciTech Connect

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  11. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  12. Toxic emission control systems for mixed waste storage tanks

    SciTech Connect

    Robinson, J.D. ); Hansen, G.E. )

    1993-02-01

    The use of emission control systems on mixed waste storage tanks is a critical issue as characterization and remediation of tanks becomes a leading priority at DOE sites. The current tank ventilation systems, where installed, are designed primarily for the control of radionuclides with no treatment systems incorporated for toxic emissions. Many of the tanks also lack ammonia treatment systems, although ammonia, due to its noxious odor, is controlled in some applications. The need for emission control systems has become apparent by the numerous occurrences of occupational employee exposure and the buildup of toxic and/or flammable materials in the vapor space of tanks. This paper will focus on two alternate systems for the control of toxic emissions, and will provide a discussion of the key issues which must be addressed for each system. The contents of this paper are the results of two efforts being performed by Engineering-Science, Inc., under the contract to Battelle Environmental Management Operations (EMO), for the Westinghouse Hanford Company. These efforts are for the study, design, fabrication, installation, and testing of new modular exhaust units for the 241-C-103 Tank and for several tanks which are candidates for the Rotary Mode Core Sampling (RMCS) characterization. If one exhaust system can be used in several applications, during high activity and personnel exposure periods, then a tremendous savings to the capital investment needs, the annual operating budget, and decontamination and decommissioning costs can be realized.

  13. Resource recovery emission control system comparison

    SciTech Connect

    Teller, A.J.

    1985-01-01

    The response to the necessity for control of acid gases, fine particulate, mercury vapor, and organics present in the flue gas emitted from the incineration of municipal solid waste and hazardous waste has followed the conventional steps for emerging technology. These are: adaptation of existing equipment and its failure; development of new technologies; fear of failure of new technologies; modification of technology; overcoming of concerns by extended operation. It has been established that incineration of wastes produces a flue gas containing: particulates including fine particulates in which toxic heavy metals and organics are concentrated; acid gases, primarily HCl and SO/sub 2/ with quantities produced increasing with time; mercury and organic vapor; high concentrations of incandescent particles. The initial reponse was to apply existing types of equipment to the problem.

  14. 78 FR 36776 - Proposed Information Collection Request; Comment Request; Emission Control System Performance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... AGENCY Proposed Information Collection Request; Comment Request; Emission Control System Performance... an information collection request (ICR), ``Emission Control System Performance Warranty Regulations and Voluntary Aftermarket Part Certification Program (Renewal)'' (EPA ICR No. 0116.10, OMB Control...

  15. Spontaneous emission control in a tunable hybrid photonic system.

    PubMed

    Frimmer, Martin; Koenderink, A Femius

    2013-05-24

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS). We couple fluorophores to a plasmonic antenna to create a superemitter with an enhanced decay rate. In a superemitter analog of the seminal Drexhage experiment we probe the LDOS of a nanomechanically approached mirror. Because of the electrodynamic interaction of the antenna with its own mirror image, the superemitter traces the inverse of the LDOS enhancement provided by the mirror, in stark contrast to a bare source, whose decay rate is proportional to the mirror LDOS.

  16. Emission control system with integrated evaporative canister purge

    SciTech Connect

    Kingsley, C.A.

    1982-01-05

    In an emission control system for a vehicle powered by an internal combustion engine, the purge of fuel vapor from a canister containing fuel vapor is effected through a purge valve operated by a control vacuum signal, as controlled by operation of a thermal vacuum switch, which signal is also applied to an exhaust gas recirculating valve, acting on one side of a diaphragm in the purge valve, the diaphragm being operative to control flow of fuel vapor supplied to a compartment on the opposite side of the diaphragm via a restricted inlet passage from the canister to a passage having a positive crankcase ventilation vacuum signal applied thereto with flow through the passage controlled by movement of the diaphragm.

  17. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  18. Controlling satellite communication system unwanted emissions in congested RF spectrum

    NASA Astrophysics Data System (ADS)

    Olsen, Donald; Heymann, Roger

    2007-09-01

    The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard

  19. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  20. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  1. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  2. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  3. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  4. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  5. Control of acid mist emissions from FGD systems

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    Improved control of acid mist emissions can be achieved by replacing or augmenting the conventional mist eliminators with a wet electrostatic precipitator (WESP). This paper describes a two-phased study performed to determine the degree of control that can be achieved with this approach. Phase I was a study of the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  6. Humidity control of particle emissions in aeolian systems

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl; Sanderson, Steven

    2008-06-01

    Humidity is an important control of the wind speed required to entrain particles into an air flow and is well known to vary on a global scale, as do dust emissions. This paper reports on wind tunnel experiments which quantify this control through placing a polymer capacitance sensor immediately at the bed surface. The sensor measured changes in the humidity (RH) of the pore air in real time. RH was varied between 15% and 80% and the critical wind speed determined for the release of particles to the air stream. The results strongly support earlier suggestions that fine particles are most affected in relatively dry atmospheres, particularly those which are tightly packed. An analytical model is proposed to describe this relationship which depends on determination of the matric potential from the Kelvin equation. The total contact area between particle asperities adjoined by pendular rings is represented as a power function of the number of layers of adsorbed water. The value of the exponent appears to be governed by the surface roughness of the particles and their packing arrangement. Parallel developments in colloid interface science and atomic force microscopy, relevant to industrial and pharmaceutical applications, support these conclusions in principle and will likely have an important bearing on future progress in parameterization of the proposed model.

  7. CONTROL OF PCDD/PCDF EMISSIONS FROM MUNICIPAL WASTE COMBUSTION SYSTEMS

    EPA Science Inventory

    The article gives results of tests on five modern municipal waste combustors (MWCs) to characterize or determine the performance of representative combustor types and associated air emission control systems in the regulatory development process. Test results for uncontrolled (com...

  8. [Establishment and improvement of emission control standard system of volatile organic compounds in industry].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zou, Lan; Wei, Yu-Xia; Zhang, Ming-Hui

    2013-12-01

    Volatile organic compounds (VOCs) has become one of the priority control pollutants, due to the regional compound pollution problem represented by atmospheric haze. Through the analysis of the present situation for current national and local emission standards of VOCs, the pollution characteristics and the emission inventory of VOCs, a basic standard system of VOCs has been proposed and improved.

  9. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  10. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  11. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  12. Evaluation of a low-sulfate automative emission-control system

    SciTech Connect

    Ingalls, M.N.; Bruetsch, R.I.

    1980-01-01

    In a project sponsored by EPA and carried out at Southwest Research Institute with the assistance of Volvo of America, an air-injected oxidation catalyst was added to the Volvo ''California Lambra-Sond'' three-way catalyst with feedback fuel injection in a four-cylinder 1978 Volvo 244 vehicle. After baseline determination of gaseous and sulfate emissions in the 1978 Federal Test Procedure performed on a Clayton chassis dynamometer, the air-injection system for the oxidation catalyst was modified to reduce sulfates. Optimization tests determined the best air-injection schedule for adequate CO control with limited sulfate production. Compared with the standard air-injection system, the air-modulation system tested reduced sulfate emissions by >99%. With the tested emission-control system, sulfate emissions were maintained at 1 mg/km for 64,000 km, and gaseous emissions were maintained within the 1981 standards for 56,350 km. Most of the emission-control deterioration apparently occurred in the air-modulation system; improvements in the hardware durability should enable the hardware to maintain gaseous emissions within the 1981 standards for 80,500 km.

  13. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    SciTech Connect

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  14. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; and (4) 0.04 lb/ton of coke if a mobile control device that captures emissions during travel is used... for capture systems and control devices applied to pushing emissions? 63.7290 Section 63.7290... and control devices applied to pushing emissions? (a) You must not discharge to the atmosphere...

  15. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  16. Power train and emission control: allocation procedure by OBD-II system for automotive technology

    NASA Astrophysics Data System (ADS)

    Kalita, Porag

    2017-06-01

    OBD-II, systems were designed to maintain low emissions of in use vehicles, including light and medium duty vehicles. In 1989, the California code of Regulations (CCR) known as OBD - II was adopted by the California Air Resource Board (CARB) and the objective to reduce hydrocarbon (HC) emission caused by malfunction of the vehicles emission control systems. OBD-II provides additional information to engineer for diagnosis and repair of emissions related problems. OBD-II, standardizes on the amount of memory (Freeze Frame) it uses to store the readings of the vehicle sensor when it logs on emission related Intermittent Trouble code (IT). The intent of OBD-II, systems is to detect most vehicle malfunctions when performance of a power train component or system deteriorates to the point that the vehicle’s HC emission exceed standard. The vehicle operator is notified at the time when the vehicle begins to marginally exceed emission standards, by illuminating the Malfunctions Indicator Light (MIL).

  17. Chemical sensor systems for environmental and emission control

    NASA Astrophysics Data System (ADS)

    Lloyd Spetz, Anita; Darmastuti, Zhafira; Bur, Christian; Huotari, Joni; Bjorklund, Robert; Lindqvist, Niclas; Lappalainen, Jyrki; Jantunen, Heli; Schütze, Andreas; Andersson, Mike

    2013-05-01

    Focusing on environment and health aspects, the importance of monitoring and controlling dangerous gases and particulate matter increases. For this purpose we present a new version of silicon carbide based gas sensors with improved properties and suitable for high temperature and harsh environments such as power plants or car exhausts. Development of sulfur dioxide sensors for a power plant application is described as well as sensors for detection of ammonia in connection with the SCR process where urea is converted to ammonia, which reduces nitric oxide components in the exhausts. We also describe progress on nanoparticle detection, especially related to detection of the content of adsorbed particles through heating and detection of emitted molecules by a sensor array. Some results are also presented from impedance spectroscopy for detection of the concentration of nanoparticles but with the potential to reveal more details about the particles such as shape and kind of particles.

  18. Emission reduction of NOx and CO by optimization of the automatic control system in a coal-fired stoker boiler

    SciTech Connect

    Schnelle, K.B.; Laungphairojana, A.; Debelak, K.A.

    2006-07-15

    To date research on NO, and CO emission reduction in stoker-fired boilers has been devoted to combustion modification to the overfire air, diverting air to a selected set of burners, using modified low-NOx, burners, using flue gas recirculation or flue gas treatment with specially controlled catalyst and additives. This study introduces a concept that focuses on the dynamics of the boiler and the automatic control system. The objective of this study was to reduce the NO and CO emissions by restructuring the automatic control system and then tuning the control system with parameters that have been optimized with emission reduction as the objective. Dynamic data were obtained from a step-input test of either the underfire air or the overfire air. These data were used to model the boiler with a transfer function describing the emissions. The analyzer dynamic response was included in the overall model. The control parameters were determined from this overall emissions transfer function by mathematical optimization. These control parameters constituted the initial values in the automatic control system used for the final tests in the boiler. Additional adjustments to reduce the emissions were carried out during boiler operation. A low controller gain and a fast reset time were found to be the most suitable setting for the control system. The NO emissions controlled by the overfire air and CO emissions controlled by the underfire air produced the best results.

  19. Advanced Emissions Control Development Program

    SciTech Connect

    G. A. Farthing; G. T. Amrhein; G. A. Kudlac; D. A. Yurchison; D. K. McDonald; M. G. Milobowski

    2001-03-31

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. This objective is being met by identifying ways to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (fabric filters), and wet flue gas desulfurization (wet FGD) systems. Development work initially concentrated on the capture of trace metals, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  20. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    G.A. Farthing

    2001-02-06

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (HAPs, or air toxics) from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization (WFGD) systems. Development work initially concentrated on the capture of trace metals, fine particulate, hydrogen chloride, and hydrogen fluoride. Recent work has focused almost exclusively on the control of mercury emissions.

  1. Integrated dry NO sub x /SO sub 2 emissions control system

    SciTech Connect

    Not Available

    1992-02-15

    The DOE Cooperative Agreement No. DE-FC22-91PC90550 dated March 11, 1991, Public Service Company of Colorado has prepared the following quarterly report for Phases I, IIA, and IIB of the Integrated Dry NO{sub x}SO{sub 2} Emissions Control System Project. This project includes low NO{sub x} burners with NO{sub x} ports (post firing air injection), humidification and dry sorbent injection.

  2. 40 CFR 63.1015 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process. 63.1015 Section 63.1015 Protection of... Equipment Leaks-Control Level 1 § 63.1015 Closed vent systems and control devices; or emissions routed to a...

  3. 40 CFR 63.1015 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process. 63.1015 Section 63.1015 Protection of... Equipment Leaks-Control Level 1 § 63.1015 Closed vent systems and control devices; or emissions routed to a...

  4. 40 CFR 65.115 - Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control devices; or emissions routed to a fuel gas system or process. 65.115 Section 65.115 Protection of... Equipment Leaks § 65.115 Standards: Closed vent systems and control devices; or emissions routed to a fuel... operators of closed vent systems and nonflare control devices used to comply with provisions of this...

  5. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-07-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  6. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1998-10-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  7. ADVANCED EMISSIONS CONTROL DEVELOPMENT PROGRAM

    SciTech Connect

    M.J. Holmes

    1999-01-01

    The objective of this project is to develop practical strategies and systems for the simultaneous control of SO{sub 2}, NO{sub x}, particulate matter, and air toxics emissions from coal-fired boilers in such a way as to keep coal economically and environmentally competitive as a utility boiler fuel. Of particular interest is the control of air toxics emissions through the cost-effective use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESP's), fabric filters (baghouses), and SO{sub 2} removal systems such as wet scrubbers and various clean coal technologies. This objective will be achieved through extensive development testing in the state-of-the art, 10 MW{sub e} equivalent, Clean Environment Development Facility (CEDF). The project has extended the capabilities of the CEDF to facilitate air toxics emissions control development work on backend flue gas cleanup equipment. Specifically, an ESP, a baghouse, and a wet scrubber for SO{sub 2} (and air toxics) control were added--all designed to yield air toxics emissions data under controlled conditions, and with proven predictability to commercial systems. A schematic of the CEDF and the project test equipment is shown in Figure 1. The specific objectives of the project are to: (1) Measure and understand production and partitioning of air toxics species in coal-fired power plant systems; (2) Optimize the air toxics removal performance of conventional flue gas cleanup systems; (3) Quantify the impacts of coal cleaning on air toxics emissions; (4) Identify and/or develop advanced air toxics emissions control concepts; (5) Develop and validate air toxics emissions measurement and monitoring techniques; (6) Establish an air toxics data library to facilitate studies of the impacts of coal selection, coal cleaning, and emissions control strategies on the emissions of coal-fired power plants.

  8. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions.

    PubMed

    Flemmer, Michael M; Ham, Jason E; Wells, J R

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with alpha-terpineol on a vinyl surface over 72 h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with alpha-terpineol were collected from both zero and 100 ppb (parts per 10(9)) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100 ppb (over 339 h) provided a pooled standard deviation of 1.65 ppb and a 95% tolerance of 3.3 ppb. Humidity data from 17 experiments at 50% relative humidity (over 664 h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300 ml/min (over 548 h) provided a pooled standard deviation of 3.02 ml/min and a 95% tolerance range of 6.03 ml/min. Initial experimental results yielded long term emissions of ozone/alpha-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  9. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    NASA Astrophysics Data System (ADS)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  10. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  11. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6100 DIESEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    EPA Science Inventory

    This report is on an environmental verification of the emissions characteristics of a Donaldson Corp. catalytic muffler and catalyic crankcase emissions control. It was found the systems reduced emissions.

  12. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6100 DIESEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    EPA Science Inventory

    This report is on an environmental verification of the emissions characteristics of a Donaldson Corp. catalytic muffler and catalyic crankcase emissions control. It was found the systems reduced emissions.

  13. Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

    SciTech Connect

    Hunt, T.; Muzio, L.J.; Smith, R.; Jones, D.; Hebb, J.L.; Stallings, J.

    1997-12-31

    The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} control technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.

  14. A comparison of wet and dry scrubbing systems for control of metals and dioxin/furan emissions from incinerators

    SciTech Connect

    Farber, P.S.; Huang, H.S.

    1993-07-01

    In Europe and the United States, both wet and dry (including semidry) scrubbing systems are being used for control of emissions from all types of waste incinerators. In terms of the effectiveness of controlling particulates and acid gases, both types of scrubbing systems are capable of meeting US Environmental Protection Agency and European Community limits. Two of the more difficult emissions requirements for an incinerator air-pollution-control system to meet are the metals and the dioxin/furan limits. The dioxin/furan emissions requirement is especially stringent, calling for levels below 1 ng (10{sup {minus}9}) per cubic meter toxic equivalency. The differences between wet and dry scrubbing systems are discussed in this paper, as well as the advantages and disadvantages of each in its application to the control of emissions from incinerators. Particular attention will be paid to control of metals and dioxin/furan emissions and to the sampling and analysis techniques used to measure these emissions. Toxic equivalency factors will be explained, and in particular, the international toxic equivalency factor proposed as the US and European standard will be discussed. This paper will also address some of the techniques being employed to minimize the emissions of toxic compounds and discuss the use of combined wet and dry scrubbing systems for increased assurance of compliance.

  15. The evolution of automobile exhaust emission control

    SciTech Connect

    Taylor, K.C.

    1993-12-31

    Automobile catalytic converters have progressed from oxidation-only systems in the mid 1970`s to the current three-way catalytic converters which control emissions of carbon monoxide, hydrocarbons, and nitrogen oxide to very low levels. New exhaust emission regulations adopted Federally and in California which come into effect during the 1990`s once again demand new emission control system technology. A new generation of catalytic converter systems coupled with attention to fuel composition characterizes this third phase of exhaust emission control.

  16. Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Harley, R. A.

    2009-12-01

    gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.

  17. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    SciTech Connect

    Gibson, L.V. Jr.

    1997-12-31

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities.

  18. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    SciTech Connect

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  19. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    PubMed

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HONEYWELL POWER SYSTEMS, INC. PARALLON 75 KW TURBOGENERATOR WITH CO EMISSIONS CONTROL

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center), one of six verification organizations under the Environmental Technology Verification (ETV) program, evaluated the performance of the Parallon 75 kW Turbogenerator (Turbogenerator) with carbon monoxide (CO) emissions control syst...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HONEYWELL POWER SYSTEMS, INC. PARALLON 75 KW TURBOGENERATOR WITH CO EMISSIONS CONTROL

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center), one of six verification organizations under the Environmental Technology Verification (ETV) program, evaluated the performance of the Parallon 75 kW Turbogenerator (Turbogenerator) with carbon monoxide (CO) emissions control syst...

  2. 40 CFR 63.3546 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3546 Section 63... the Emission Rate with Add-on Controls Option § 63.3546 How do I establish the emission capture system... the emission stream for leakage. (d) Carbon adsorbers. If your add-on control device is a...

  3. 40 CFR 63.3546 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... Emission Rate with Add-on Controls Option § 63.3546 How do I establish the emission capture system and add... the emission stream for leakage. (d) Carbon adsorbers. If your add-on control device is a...

  4. Integrated emissions control system for residential CWS furnace. Annual status report No. 2, October 1, 1990--September 30, 1991

    SciTech Connect

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  5. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; Ragazzi, Ronald

    This guide designed to assist teachers in improving instruction in the area of automotive emission control curriculum includes four areas. Each area consists of one or more units of instruction, with each instructional unit including some or all of the following basic components: Performance objectives, suggested activities for teacher and…

  6. Automotive Emission Control.

    ERIC Educational Resources Information Center

    Lee, Billy D.; And Others

    This publication contains instructional materials for both teachers and students for a course in automotive emission control. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes 16 units. Each instructional unit includes some or all of the basic components of a…

  7. Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics.

    PubMed

    Brotto, Ariane C; Kligerman, Débora C; Andrade, Samara A; Ribeiro, Renato P; Oliveira, Jaime L M; Chandran, Kartik; de Mello, William Z

    2015-08-01

    Despite interest in characterizing nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) in several parts of the globe, there are few studies in tropical zones. This study focus on the contribution of the scientific knowledge of anthropogenic nitrogen greenhouse gas emissions to climate change in tropical countries, investigating factors controlling N2O emissions in a non-biological nitrogen removal municipal WWTP. In terms of operational parameters, dissolved oxygen (DO) concentrations displayed a biphasic impact on N2O production and emission, with the highest emission at DO of 2.0 mg O2 L(-1). The low solids retention time of 3 days also played a significant role, leading to nitrite accumulation, which is an important trigger for N2O production during nitrification. Furthermore, other factor especially important for tropical countries, namely, temperature, also had a positive correlation with N2O production. Emission factors estimated for this study were 0.12 (0.02-0.31)% of the influent total nitrogen load and 8.1 (3-17) g N2O person(-1) year(-1), 2.5 times higher than currently proposed emission factors. Therefore, the highly variability and dependence on operational parameters reinforce the use of a single emission factor is inadequate, especially for developing countries with limited or variable extent of biological wastewater treatment and in regions of the world with widely varying climate patterns.

  8. Advanced Emissions Control Development Program

    SciTech Connect

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  9. Advanced Emissions Control Development Program

    SciTech Connect

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  10. Advanced Emissions Control Development Program

    SciTech Connect

    Evans, A P

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W's new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  11. Advanced Emission Control Development Program.

    SciTech Connect

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  12. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  13. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  14. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  15. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE PAGES

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  16. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  17. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... Control Efficiency/outlet Concentration Option § 63.3556 How do I establish the emission capture system... the emission stream for leakage. (d) Carbon adsorbers. If your add-on control device is a...

  18. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... Emission Rate with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add... to § 63.4965. (c) Carbon adsorbers. If your add-on control device is a carbon adsorber, establish...

  19. 40 CFR 63.3546 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I establish the emission capture... Add-on Controls Option § 63.3546 How do I establish the emission capture system and add-on control... valves during internal inspections; and/or actual testing of the emission stream for leakage. (d)...

  20. Control of Emissions

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, Landy (Inventor)

    2013-01-01

    Methods and apparatus utilizing chlorine dioxide and hydrogen peroxide are useful to reduce NOx emissions, as well as SOx and mercury (or other heavy metal) emissions, from combustion flue gas streams.

  1. ETV TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: LUBRIZOL ENGINE CONTROL SYSTEMS PURIFILTER SC17L

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...

  2. ETV TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: LUBRIZOL ENGINE CONTROL SYSTEMS PURIFILTER SC17L

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...

  3. 40 CFR 65.115 - Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control devices; or emissions routed to a fuel gas system or process. 65.115 Section 65.115 Protection of... gas system or process. (a) Compliance schedule. The owner or operator shall comply with this section..., and malfunction provisions of § 65.6. (2) Owners or operators of closed vent systems and flares used...

  4. Emission Abatement System

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2003-05-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  5. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    PubMed

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  6. 40 CFR 63.4167 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... Emission Rate with Add-on Controls Option § 63.4167 How do I establish the emission capture system and add... test to determine destruction efficiency according to § 63.4166. (c) Carbon adsorbers. If your...

  7. The study of the emission frequency control system stability in hydropulse generator

    NASA Astrophysics Data System (ADS)

    Kapelyuhovskiy, Andrey A.; Kapelyuhovskaya, Alexandra A.; Stepanova, Elena P.

    2017-08-01

    During a low-frequency acoustic treatment of the oil-bearing formation, downhole hydraulic vibrators are used. Their efficient operation is possible when using the automatic frequency control system due to the change of the expenditure pump flow rate. A long hydraulic line specifies additional requirements to the parameters of the control system in terms of its stability. The stability of a control system using the Nyquist criterion is made. Approximating the delay by the second degree of the Pade polynomial, the stability region is determined by the D-decomposition method. The dependence of the critical delay on the system transfer ratio is found out.

  8. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4966 Section 63... for the Emission Rate with Add-on Controls Option § 63.4966 How do I establish the emission capture... to § 63.4965. (c) Carbon adsorbers. If your add-on control device is a carbon adsorber, establish...

  9. Method for discharging treated coal and controlling emissions from a heavy oil spray system

    SciTech Connect

    Skinner, J.L.

    1985-10-15

    A method for discharging heavy oil treated particulate coal and controlling emissions from a heavy oil spray contacting vessel is disclosed. In particular, a bed of heavy oil treated coal is maintained in the lower portion of the oil spray contacting vessel. The heavy oil treated coal is withdrawn from the bottom of the bed while maintaining the bed at a sufficient depth to remove a major portion of the heavy oil mist from gaseous materials within the vessel. A major portion of gaseous materials are made to pass downwardly through the bed.

  10. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  11. Economic comparison of emission control systems for glass manufacturing furnaces with heat recovery.

    PubMed

    Caputo, A C; Pelagagge, P M

    2001-07-01

    Glass manufacturing, like other process industries, is faced with air pollution compliance problems due to ever stricter emission limits. Several waste gas cleaning equipment options are available for air pollution control (APC) in glass plants, the most common arrangements being based on electrostatic precipitator (ESP) or fabric filter (FF) dust collectors and semi-wet or dry processes for acid gas removal. However, several counteracting aspects affect the choice of gas cleaning technologies, which are confirmed by the discrepancies encountered in actual suppliers' bids. In this paper, the main pollution control options are analyzed by carrying out a critical comparison under the cost-effectiveness point of view to select the lowest cost arrangement considering capital investment, operating expenses, and energy-saving revenues from heat recovery processes. The analysis is carried out with reference to a case study involving actual float glass production lines at Pilkington plants in Italy.

  12. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Final report, Volume 1: Public design

    SciTech Connect

    Hunt, T.; Hanley, T.J.

    1997-11-01

    The U.S. Department of Energy (DOE)/Pittsburgh Energy Technology Center (PETC) and the Public Services Company of Colorado (PSCo) signed the cooperative agreement for the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System in March 1991. This project integrates various combinations of five existing and emerging technologies onto a 100 MWe, down-fired, load-following unit that burns pulverized coal. The project is expected to achieve up to 70% reductions in both oxides of nitrogen (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Various combinations of low-NO{sub x} burners (LNBs), overfire air (OFA) ports, selective non-catalytic reduction (SNCR), dry sorbent injection (DSI) using both calcium- and sodium-based reagents, and flue-gas humidification are expected to integrate synergistically and control both NO{sub x} and SO{sub 2} emissions better than if each technology were used alone. For instance, ammonia emissions from the SNCR system are expected to reduce NO{sub 2} emissions and allow the DSI system (sodium-based reagents) to achieve higher removals of SO{sub 2}. Unlike tangentially or wall-fired units, down-fired require substantial modification to their pressure parts to retrofit LNBs and OFA ports, substantially increasing the cost of retrofit. Conversely, the retrofitting of SNCR, DSI, or humidification systems does not require any major boiler modifications and are easily retrofitted to all boiler types. However, existing furnace geometry and flue-gas temperatures can limit their placement and effectiveness. In particular, SNCR requires injecting the SNCR chemicals into the furnace where the temperature is within a very narrow temperature range.

  13. 40 CFR 63.1034 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process standards. 63.1034 Section 63.1034 Protection... stringent. The 20 parts per million by volume standard is not applicable to the provisions of § 63.1016. (ii...

  14. Development of a purpose built landfill system for the control of methane emissions from municipal solid waste.

    PubMed

    Yedla, Sudhakar; Parikh, Jyoti K

    2002-01-01

    In the present paper, a new system of purpose built landfill (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW), by considering all favourable conditions for improved methane generation in tropical climates. Based on certain theoretical considerations multivariate functional models (MFMs) are developed to estimate methane mitigation and energy generating potential of the proposed system. Comparison was made between the existing waste management system and proposed PBLF system. It has been found that the proposed methodology not only controlled methane emissions to the atmosphere but also could yield considerable energy in terms of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost of waste disposal in conventional as well as PBLF systems. In a case study of MSW management in Mumbai (INDIA), it was found that the unit cost of waste disposal with PBLF system is seven times lesser than that of the conventional waste management system. The proposed system showed promising energy generation potential with production of methane worth of Rs. 244 millions/y ($5.2 million/y). Thus, the new waste management methodology could give an adaptable solution for the conflict between development, environmental degradation and natural resources depletion.

  15. Biogenic Emission Inventory System (BEIS)

    EPA Pesticide Factsheets

    Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system

  16. Evaluation of two nitrous oxide scavenging systems using infrared thermography to visualize and control emissions.

    PubMed

    Rademaker, April M; McGlothlin, James D; Moenning, John E; Bagnoli, Michael; Carlson, Gary; Griffin, Carl

    2009-02-01

    The authors conducted a study to determine the effectiveness of two waste anesthetic gas-scavenging systems. They also evaluated one of the systems to determine the effect of work practices in controlling waste nitrous oxide (N2O). The authors collected a minimum of 13 data sets in each phase of the study that included infrared thermography, digital videography and real-time air analysis for ambient concentrations of waste N2O. Surgeon 1, who had experience using both systems, used the Safe Sedate Dental Mask (Airgas, Radnor, Pa.) system (system I) in phase I and the Porter Nitrous Oxide Sedation System (Porter Instruments, Hatfield, Pa.) (system II) in phase II. Surgeon 2, who did not have experience using system I, used it in phase III. To evaluate each system's effectiveness, the authors collected N2O air concentration data from phases I and II and compared the data with the National Institute for Occupational Safety and Health Recommended Exposure Limit (NIOSH REL). They also compared phases I and III to determine the effect of work practices on the systems' effectiveness. Surgeon 1 controlled occupational exposure to N2O significantly better using system I than using system II. Mean N2O air concentration levels during phases I and II were 61.6 parts per million (ppm) and 225.6 ppm, respectively. Surgeon 2 did not achieve results comparable to those of surgeon 1 in phase I using system I. Infrared thermography and air concentration data suggested that key work practices and patient and surgical variables accounted for the different results obtained in phases I and III. Although neither system was able to control occupational exposure of N2O oxide below the NIOSH REL, system I met the American Conference of Governmental Industrial Hygienists threshold limit value of less than 50 ppm during an eight-hour day and performed significantly better than did system II. System I achieved maximal efficiency when combined with consistent best work practices.

  17. Emissions enhancement in a pump-coupling V-type coherently controlled four-level atomic system

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Papademetriou, G.; Efthimiopoulos, T.; Merlemis, N.; Lyras, A.

    2013-12-01

    The nonlinear interaction of a four-level potassium system with a strong pump and a weak coupling laser is investigated. A strong pump pulse excites the two-photon transition ?, causing prompt parametric emissions along the path-1 ? and delayed emissions in the second available de-excitation path-2 ?. A weak coupling pulse is introduced to coherently excite either the transition ? (path-1) or the ? one (path-2) in a V-type scheme. Results are presented for the emissions generated under the combined action of the pump-coupling pulses as a function of their delay for certain peak pulse intensities and coherence relaxation times (CRTs) related to dephasing collisions. We find that emissions in path-1 are considerably enhanced for negative delays (counterintuitive pulse sequence) of the order of the CRT. An approach is suggested for the estimation of CRTs. Emissions in path-2 are enhanced and temporally shifted, suggesting an approach to control this path by varying the pulse delay.

  18. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  19. 40 CFR 63.3967 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... emission capture system and add-on control device operating limits during the performance test? During the... catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on control device is a...

  20. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems.

    PubMed

    Talaiekhozani, Amirreza; Bagheri, Marzieh; Goli, Amin; Talaei Khoozani, Mohammad Reza

    2016-04-01

    Odorous gases are the most important reason that people register complaints with organizations responsible for wastewater collection and treatment systems (WCTS). Although several studies have been conducted for prevention and control of odorous gases, no comprehensive research exists about recent achievements in this area. The aim of the present study is to collect and categorize the new achievements in preventing and controlling odorous gases in WCTS. Two strategies for controlling odor emissions from WCTS are (1) prevention of odor production and (2) removal of odorous compounds from emissions of WCTS. Between the two, priority goes to preventing odorous compounds' production. Several methods have been developed to prevent odor production, such as increasing oxidation reduction potential; inhibiting the activity of sulfide reducing bacteria; chemical removal of hydrogen sulfide; applying formaldehyde and paraformaldehyde to prevent hydrogen sulfide production; and using fuel cells in hydrogen sulfide inhibition and gradual release of oxygen in gas phase by using MgO2 or CaO2. In addition to preventing odorous compounds in WCTS, many other methods have been introduced to remove odorous compounds from emissions of WCTS, such as biofilters; bioscrubbers; biotrickling filters; suspended growth reactors; and membrane bioreactors and scrubbers. Through this review, responsible organizations can find new, effective, and economical strategies to prevent and control odorous gases in WCTS.

  1. Users guide for the conversion of Navy paint spray booth particulate emission control systems from wet to dry operation

    NASA Astrophysics Data System (ADS)

    Ayer, Jacqueline; Tate, Darrel

    1990-06-01

    Users are provided instructions and cost evaluation information for converting the water curtain particulate emission control system currently used on many Navy painting facilities to dry filter operation. Engineering and logistical issues are addressed, and example design plans are provided. Construction and operating permit requirements mandated by regulatory agencies, such as air pollution control districts and fire departments, are discussed. Cost estimates that may be used to perform comprehensive cost evaluation analyses are provided. In addition, sample calculations that illustrate how to use the cost data are included.

  2. Ecological controls over monoterpene emissions from confiers

    SciTech Connect

    Lerdau, M.T.

    1994-01-01

    Ecological controls over monoterpene emissions from two species of conifers, Ponderosa pine and Douglas fir are studied. Monoterpenes are hydrocarbons that serve as part of these plant's chemical defense system. They are highly volatile and make up approximately 40% of the reduced carbon budget of the lower atmosphere playing a major role in tropospheric photochemistry. Previous research has emphasized the controls over emissions from any one plant at any one time. This paper considers some of the controls over the baseline emission rates from different plants. In field studies on Ponderosa pine and greenhouse experiments with Douglas fir in which photosynthesis, tissue chemistry, and monoterpene emissions were measured, there is a strong correlation between the concentration of particular monoterpenes within foliage and emissions from that foliage. Changes in pine photosynthesis were not correlated with changes in monoterpene emissions. In Douglas fir a strong relationship existed among nitrogen availability, phenology (seasonal plant growth), and monoterpene concentration and emission. When foliage is not expanding, there is a direct relationship among nitrogen availability and monoterpene concentrations and emissions. However, during that time of the year when needles are expanding, there is a negative relationship among nitrogen availability and monoterpene concentrations and emissions. From these results I have parameterized a model of monoterpene emissions from vegetation that runs as a subroutine of an ecosystem gas exchange model. The model includes the physiochemical controls on instantaneous flux found in previous work and biological controls on baseline emission rates. Results from initial simulations suggest that low temperatures can decouple monoterpene concentrations from monoterpene emissions. These results also indicate that herbivory could be a major factor controlling monoterpene emissions from forests.

  3. 40 CFR 63.3092 - How must I control emissions from my electrodeposition primer system if I want to comply with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? 63.3092 Section 63.3092 Protection of... control emissions from my electrodeposition primer system if I want to comply with the combined primer...

  4. 40 CFR 63.3092 - How must I control emissions from my electrodeposition primer system if I want to comply with the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? 63.3092 Section 63.3092 Protection of... control emissions from my electrodeposition primer system if I want to comply with the combined primer...

  5. Method and apparatus for discharging treated coal and controlling emissions from a heavy oil spray system

    SciTech Connect

    Skinner, J.L.

    1986-10-07

    An apparatus is described for discharging heavy oil-treated particulate coal and controlling emissions from a heavy oil spray contacting vessel for contacting particulate coal and heavy oil. The contacting vessel includes a contacting zone into which the heavy oil is injected as a mist to initimately contact the coal as the coal falls through the contacting zone. The apparatus consists of: (a) a discharge chute positioned to receive the heavy oil-treated coal from the lower end of the contacting vessel and discharge the heavy oil-treated coal from a discharge chute outlet positioned on the lower end of the discharge chute; (b) a conveyor belt positioned at a distance beneath the discharge chute outlet so that when the conveyor belt is stopped, a bed of the heavy oil-treated coal is retained in the discharge chute and when the conveyor belt is activated controlled quantities of the heavy oil-treated coal are discharged through the discharge chute outlet at a rate such that the bed of heavy oil-treated coal is retained in the discharge chute; and, (c) a drive means for driving the conveyor belt at a selected rate.

  6. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems.

    PubMed

    Chen, Ji; Caputlu-Wilson, Serpil F; Shi, Hongcheng; Galt, James R; Faber, Tracy L; Garcia, Ernest V

    2006-01-01

    Emission-transmission misalignment with single-photon emission computed tomography (SPECT)-computed tomography (CT) systems can impair attenuation correction (AC) in myocardial perfusion imaging. This study was performed to develop automated quality control (Auto-QC) to detect critical misalignment that can significantly impact AC. Auto-QC was developed to segment myocardium and mediastinum from emission and transmission reconstructions, respectively. Myocardium-mediastinum mismatch was used as the quality-control index (QCI). The QCI threshold for acceptable AC was determined with NCAT (NURBS [nonuniform rational B-spline]-based cardiac torso phantom) simulation and verified with 2 patients with minimal misalignment. Compromised data sets, generated by shifting the attenuation maps by 0.5, 1.0, 1.5, and 2.0 pixels along left-right, up-down, and head-foot directions, respectively, were qualitatively and quantitatively compared with the unshifted data sets. Auto-QC was tested with the 2 verification patients and 41 additional patients. Shifts by more than 1 pixel along any direction compromised AC. Auto-QC with the QCI threshold (3%) had highly concordant results with manual quality control in the detection of critical misalignment (sensitivity of 88% and 90% and specificity of 93% and 95% for the tests by use of the 2 verification patients and 41 additional patients, respectively). QCI quantitatively represented the severity of misalignment. Auto-QC can help clinicians be aware of critical misalignment and can assist in realignment of SPECT and CT images.

  7. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  8. 40 CFR 65.115 - Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... no later than the implementation date specified in § 65.1(f). (b) Compliance standard. (1) Owners or... shall design and operate the closed vent systems and nonflare control devices to reduce emissions of... to comply with the provisions of this subpart shall design and operate the flare as specified in §...

  9. 40 CFR 63.3967 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3967 Section 63... establish the emission capture system and add-on control device operating limits during the performance test... catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on control device is a...

  10. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  11. 40 CFR 86.1717-01 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1999 and later light-duty vehicles and light-duty trucks. 86.1717-01 Section 86.1717-01 Protection of... Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1717-01 Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of §...

  12. 40 CFR 86.1717-99 - Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1999 and later light-duty vehicles and light-duty trucks. 86.1717-99 Section 86.1717-99 Protection of... Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1717-99 Emission control diagnostic system for 1999 and later light-duty vehicles and light-duty trucks. (a) The provisions of §...

  13. Controllable time dependent and dual band emission infrared source to test missile warning systems in flight

    NASA Astrophysics Data System (ADS)

    Cabib, Dario; Davidzon, Larry; Gil, Amir

    2008-10-01

    Proliferation and technological progress of Mid Wave Infrared (MWIR) sensors for Missile Warning Systems (MWS)1,2 and increased sophistication of countermeasures require demanding in-flight testing. The IR sensors are becoming more sensitive for longer range of detection, the spatial resolution is improving for better target detection and identification, spectral discrimination is being introduced for lower False Alarm Rate (FAR), and the imaging frame rate is increasing for faster defensive reaction. As a result, testing a complex MWS/countermeasure system performance before deployment requires ever more realistic simulation of the threats in their natural backgrounds, and faster measurement of the radiometric output, directionality and time response of the countermeasures. In a previous paper3 we have described a system (IRTS or Infrared Threat Stimulator) we developed to test missile warning systems (MWS) mounted on an aircraft. The IRTS is placed in the field and projects a time dependent infrared beam toward the flying aircraft. The time dependent intensity of the beam simulates the infrared emittance of an approaching missile in the 3 to 5 micron spectral range as sensed by an MWS system. Now we have developed a new system based on the IRTS concept allowing the user to separately control the time profiles of two different infrared ranges independently within the 3 to 5 micron range. This is important because MWS instrumentation now has higher spectral discrimination capability in order to be more missile-specific and less prone to be confused by clutter and background signals. In this paper we describe the new dual band IRTS system and its capability (or Dual Color IRTS, DCIRTS).

  14. Predicting methyl iodide emission, soil concentration, and pest control in a two-dimensional chamber system.

    PubMed

    Luo, Lifang; Yates, Scott R; Ashworth, Daniel J

    2011-01-01

    Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various

  15. Advanced Emissions Control Development Program

    SciTech Connect

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  16. THE DEVELOPMENT AND ON-ROAD PERFORMANCE AND DURABILITY OF THE FOUR-WAY EMISSION CONTROL SCRT{trademark} SYSTEM

    SciTech Connect

    Cooper, BJ; McDonald, AC; Walker, AP; Sanchez, M

    2003-08-24

    legislation worldwide necessitates the development of pollution control systems capable of enabling engines to meet the incoming legislative requirements. It is clear that to maximize the benefit to the environment, as well as to meet the very stringent future standards (especially the US 2010 limits), systems capable of high simultaneous conversions of all four major pollutants, carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and Particulate Matter (PM), are required. Very high conversions of CO, HC and PM are achieved using catalyst-based Diesel Particulate Filter (DPF) systems, such as the Continuously Regenerating Technology, CRT{reg_sign}, system. High NOx conversions can be obtained using Selective Catalytic Reduction (SCR) systems, in which ammonia (generated from urea) is used to selectively reduce the NOx. This paper summarizes the key steps in the development of the four-way SCRT system, which comprises the CRT system followed by an SCR system. Engine bench results obtained during the development of this system are presented and discussed. However, the key to real-world emissions benefit is the actual on-road performance of such systems. It is well established that the CRT system provides very high and durable conversions of CO, HC and PM, so the focus of this current work was to demonstrate the NOx conversion capability and durability of the SCRT system. The SCRT unit was installed on a long-haul truck powered by a 15 litre Cummins engine. On-road NOx emissions performance was measured using NOx sensors located upstream and downstream of the SCRT unit. Over an 850 km evaluation route, the average on-road NOx conversion obtained was up to 82%, even when the urea injection quantity was set to give a maximum NOx conversion of around 85%. The durability of the system has also been assessed. Over the course of 150,000 km, no reduction in the NOx conversion efficiency of the system was observed. The results presented in this paper demonstrate

  17. 40 CFR 63.4567 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4567 Section 63... emission capture system and add-on control device operating limits during the performance test? During the... operating limits for that catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on...

  18. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  19. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  20. Economic growth and carbon emission control

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  1. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  2. 40 CFR 63.3967 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I establish the emission capture... capture system and add-on control device operating limits during the performance test? During the... catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on control device is a...

  3. Integrated dry NO sub x /SO sub 2 emissions control system

    SciTech Connect

    Not Available

    1992-05-15

    The DSI system design is approximately eighty percent completed. About eighty percent of the materials have been purchased for erection and setup of the DSI system. Most of the equipment and supply purchases have been made for the DCS. The Unit 4 outage started March 20, 1992 for the installation of the remaining project equipment. overall field construction activities continued on the flyash, boiler, dry sorbent injection and humidification systems. Noell performed startup and testing activities for the urea injection system. FERCO completed baseline urea injection tests March 6, 1992. Preliminary analyses were reviewed at a project review meeting on March 11, 1992. The HVAC platform and duct work for the DCS was installed. B W mobilized on site. Demolition and construction activities began to support the future installation of the low NO, burners and ports. CSM completed the batch reactor vessel. The sorbent and flyash silos were erected for the DSI system. The humidification building was erected and piping for the fly ash silo started.

  4. Catalytic oxidation of toluene in contaminant emission control systems using Mn-Ce/gamma-Al2O3.

    PubMed

    Kim, H-J; Choi, S-W; Inyang, H I

    2008-05-01

    Toluene, the alkyl benzene, is a common constituent of contaminant streams emitted by hydrocarbon fuel combustion systems. The oxidation of toluene to less toxic compounds can be enhanced through catalysis. The capacity of Mn-Ce/gamma-Al2O3 to catalyze toluene oxidation was investigated using a fixed bed flow reactor, operating within a temperature range of 160-400 degrees C. Mono-metallic catalysts were prepared with the manganese and cerium contents of 1-21 wt% on gamma-Al2O3, support and bi-metallic catalysts were prepared with cerium (0.5-21 wt%/) on 18.2 wt% manganese. The results indicate that the 18.2 wt% Mn-10.0 wt% Ce catalyst combination had the best catalytic efficiency for toluene oxidation. Increase in cerium loading reduces the surface area of catalytic materials measured by BET, but increases catalytic activity. Data obtained through TGA (Thermogravimetric analysis), XRD (X-ray diffraction) and toluene-TPR (Temperature Programmed Reduction) measurements show that the reduction of the catalysts in the process of toluene oxidation is directly proportional to observed weight loss under hydrogen flow. From these results, it is concluded that cerium improves the catalytic role of manganese in toluene oxidation. Oxygen mobility is also promoted in a redox mechanism in which MnO2 serves as the active sites. These results are useful in the development of toluene emission control systems for hydrocarbon fuel combustion systems.

  5. Controlling formaldehyde emissions with MBS scrubbing

    SciTech Connect

    Lundquist, P.R.

    1998-12-31

    Sodium metabisulfite (MBS)-assisted water scrubbing was selected as the most cost-effective and reliable technology for removal of dilute formaldehyde emissions from a resin manufacturing plant. Dilute formaldehyde emission streams (e.g., from process hoods, sample hoods, and other miscellaneous captured sources) required treatment in order to meet the anticipated Maximum Achievable Control Technology (MACT) standards and state air toxic requirements. Other conventional technologies (e.g., thermal oxidation, carbon adsorption, and biofiltration) were considered, but later discarded because they were cost prohibitive or technically impractical. Segregation of dilute volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from other more concentrated VOC and HAP emissions facilitated the use of technologies tailored to the characteristics of each stream type, and thereby provided significant cost savings. While past experience has shown that simple water scrubbing of dilute formaldehyde emissions would not meet generally accepted treatment performance (90+% control), removals in excess of 95% can be readily achieved with the addition of a reactant like MBS to the scrubbing liquor. MBS in solution reacts with formaldehyde absorbed by the scrubber water to form a bisulfite salt, rendering the reacted formaldehyde non-volatile. The reaction accelerates mass transfer of formaldehyde into the scrubbing liquid, thereby decreasing the size and cost of emission control equipment. Design of such systems should also consider the chemistry of the make-up water (and scrubber water) used in the process. Recirculating water scrubbers can be susceptible to carbonate scaling and other inorganic fouling experienced in similar water treatment systems (e.g., air strippers). The addition of salts to the recirculating scrubber solutions can be controlled to limit potential sulfur dioxide emissions and deposits.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROTOCOL: BIOREACTION SYSTEM CONTROL TECHNOLOGIES FOR VOLATILE ORGANIC COMPOUND EMISSIONS

    EPA Science Inventory

    This report is a generic test plan for bioreaction systems that use biological tools to act as contaminant sorbers and biodegraders. These are usually biofilters and bioreactors which are packed bed reactors using peat, soil, etc., biotrickling filters which handle liquid phase ...

  7. Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration

    SciTech Connect

    Martinez, A.; Cabezas, J.

    2009-05-15

    Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consisted of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.

  8. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  9. Development and demonstration of a new filter system to control emissions during jet engine testing. Final report, February 1990-September 1992

    SciTech Connect

    Nelson, B.W.; Van Stone, D.A.; Nelson, S.G.

    1992-10-15

    Measurable quantities of NOx, CO and small particulates are produced and are emitted into the atmosphere during the testing of aircraft engines in jet engine test cells (JETCs). These emissions have been and are a concern to the Air Force and to others who test aircraft engines. The large quantities of exhaust gases that are generated, the wide range of testing conditions that are normally employed, and the sensitivity of engines to back pressures make control difficult and the use of conventional control technologies impractical. A need exists for a simple, low-cost method to control the emissions. In a Phase I SBIR project, Sorbent Technologies Corporation (Sorbtech) explored the ability of vermiculite to reduce or capture contaminants in exhaust gas streams. During the Phase II SBIR project described in this report, Sorbtech investigated how vermiculite might be employed in a commercial system to control emissions from JETCs and how chemical additions to vermiculite might enhance its NOx-removal abilities. The objectives of the Phase II project were to develop and to demonstrate a suitable filter design involving vermiculite that will control NOx, CO, and small-particulate emissions during jet-engine testing.... Turbine engine, Particle emissions, Air pollution. NOx Emissions, Aircraft exhaust.

  10. Industrial market for sulfur dioxide emission-control systems. Final report. [Forecasting to 2000

    SciTech Connect

    Not Available

    1982-08-01

    Under the postulated EIA medium world oil price scenario, in which oil prices are projected to rise at a real rate of 2.2% per year, coal will represent from 78 to 91% of MFBI fuel consumption by the year 2000, up from the present 16%. This increase would occur even in the absence of FUA, because the cost of coal is substantially lower than the cost of oil or gas. Much of this market will develop in the relatively near to intermediate term (before 1990). Annual installations will be much lower (by about 40%) after that period, reflecting a lower overall steam demand growth rate and the fact that much of the discretionary conversion of gas and oil boilers to coal will have been completed. About 22% of the sales will be for discretionary conversion of oil and gas boilers still having some useful life; the rest will be for nondiscretionary expansion or replacement of worn-out boilers. Under the postulated cost and performance estimates for the competing coal-burning technologies, we expect that AFB combustors and lime spray dryer FGD systems will dominate the market, with 42% of the market in our base case scenario. If the attitudes of the industrial decision-makers are factored into the analyses, particularly their aversion to FGD systems with wet wastes, the AFB and lime spray dryer technologies will capture as much as 73% of the coal-burning market. Costs for the various flue gas desulfurization (FGD) technologies were projected to be sufficiently close that the selection of one over another will depend on site-specific factors such as the availability of waste disposal facilities, the demonstrated reliability of the particular systems, and the vendor's reputation.

  11. Diagnostics for emission-control-system malfunction on three-way catalyst-equipped vehicles. Final report, November 1983-November 1985

    SciTech Connect

    Duleep, K.G.

    1985-11-01

    The report presents the results of a two part study. In Phase I, the contractor reviewed current manufacturer recommended diagnostic procedures for identifying vehicular emission control malfunctions on three-way catalyst-equipped gasoline-fueled automobiles and also surveyed diagnostic techniques used in the field. Diagnosis of malperformance was limited to the following systems: exhaust gas recirculating, secondary air, fuel, and catalyst. In Phase II, the contractor developed generalized diagnostic procedures for malfunctioning emission control systems and validated these procedures on 52 vehicles. Two mechanics alternatively disabled and repaired the vehicles using the diagnostic and repair procedures. The report also describes inspection procedures developed for the control of smoke emissions from light-duty diesel vehicles. Two types of procedures were developed, for component testing and for inspection/maintenance programs. These procedures were validated on six light-duty vehicles.

  12. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  13. Emissions from modern passenger cars with malfunctioning emissions controls

    SciTech Connect

    Wenzel, T.; Ross, M.

    1996-09-01

    Malfunctioning emission controls continue to be a major source of emissions from in-use vehicles. The authors analyze two sources of data on cars with malfunctioning emissions controls: remote sensing surveys and dynamometer tests of cars in the condition they were received. The analysis indicates that roughly 8% of relatively new (2- to 5-year old), modern technology (fuel-injected) cars have malfunctioning emission controls. There is a wide range in the probability of malfunction of specific models, from zero to over 20%. Possible causes of high model-specific malfunction probability are poor initial design and/or manufacture.

  14. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry-Perot interferometer and smart feedback control.

    PubMed

    Zhang, Qi; Zhu, Yupeng; Luo, Xiangyu; Liu, Guigen; Han, Ming

    2017-02-01

    We demonstrate a fiber-optic acoustic emission (AE) sensor system that is capable of performing AE detection, even when the sensor is experiencing large quasi-static strains. The sensor is a Fabry-Perot interferometer formed by cascaded chirped fiber-Bragg gratings (CFBGs). The reflection spectrum of the sensor features a number of narrow spectral notches equally spaced within the reflection bandwidth of the CFBG. A semiconductor laser whose wavelength can be fast tuned through current injection is used to lock the laser line to the center of a slope of a spectral notch. When the notch is knocked out of the tuning range of the laser, a neighboring notch moves into the range. Through a smart feedback control scheme, the laser is unlocked from the current spectral lock and relocked to the desired point of the new notch. The fast speed of the unlocking/relocking process (<1  ms) ensures that the AE signal is monitored without significant disruption.

  15. 40 CFR 63.4567 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... capture system and add-on control device operating limits during the performance test? During the... operating limits for that catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on...

  16. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  17. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  18. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  19. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  20. Hot stuff controls for VOC emissions

    SciTech Connect

    Yewshenko, P.

    1995-12-01

    For close to three decades, American industry has paved the way and led the world in controlling volatile organic compound (VOC) emissions. As more and more systems have been installed, the history of operation for the various types of systems has broadened dramatically, spurring significant technological advances, the traditional technologies and those on the cutting edge of VOC control. With the number of technologies available, the environmental professional may have a difficult task choosing the most strategic environmental solution. The conventional, traditional or proven methodology for VOC control has been incineration. Other technologies have been used for very specific applications. In deciding the specific type of incineration system to select, the environmental professional will look at a broad spectrum of evaluation factors. These include initial system cost, operational cost, maintenance requirements, reliability factors and most importantly, the projected success of achieving 99% VOC destruction efficiency. This article provides an overview of the basic differences among incineration technologies.

  1. Directional spectral emissivity measurement system

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)

    1992-01-01

    Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.

  2. Optimal emission control strategies for photochemical smog

    SciTech Connect

    Costanza, V.; Seinfeld, J.H.

    1982-02-01

    A study of certain aspects of the selection of reactive hydrocarbon and nitrogen oxide emission reductions for photochemical oxidant abatement is carried out. Optimal emission control paths are defined as those minimizing a total cost function consisting of control cost and ozone dosage contributions. Los Angeles County ozone air quality and control cost data are used to formulate an optimal emission reduction path. The analysis is presented primarily to provide insight into the factors involved in designing oxidant control strategies.

  3. Soil Emissions of N2O and NO in Agricultural Production Systems in the Upper Midwest U.S.: Management Controls and Measurement Issues (Invited)

    NASA Astrophysics Data System (ADS)

    Venterea, R. T.; Baker, J. M.

    2009-12-01

    Cropped fields in the upper Midwest have the potential to emit relatively large quantities of N2O and NO resulting from soil transformation of N fertilizers applied to crops such as corn and potatoes. The mitigation of N2O emissions may be an effective strategy for offsetting greenhouse gas emissions. While the rate of N fertilizer application exerts some control over N trace gas emission rates, a variety of other management practices and environmental factors interact to regulate these emissions. Observation-based studies are essential for improving models, developing accurate inventories, and documenting offsets. Since 2003, we have been examining the effects of management factors including: tillage, crop rotation, irrigation, and fertilizer chemical form and application method on N2O and NO emissions from corn and potato production systems using chamber-based measurement techniques. A summary of our findings will be presented, including: Application of anhydrous ammonia resulted in twice the N2O emissions compared to urea fertilizer, and twice the NO emissions compared to liquid urea ammonium nitrate (UAN) fertilizer. Growing corn continuously compared to in rotation with soybeans did not alter the amount of N2O emitted during the corn growing season. Reduced tillage (RT), often promoted as a means of reducing carbon losses to the atmosphere, also altered soil N2O emissions. However, the impact of RT on N2O emissions was found to vary, in both magnitude and direction, as a function of N fertilizer management. In addition to these studies, our efforts to overcome some of the inherent limitations of chamber-based flux measurement techniques will be discussed.

  4. National emissions report, 1985: National Emissions Data Systems (NEDS) of the Aerometric and Emissions Reporting System (AEROS). Final report

    SciTech Connect

    Not Available

    1988-09-01

    The National Emissions Report summarizes annual cumulative estimates of source emissions of five criteria pollutants: particulates, sulfur oxides, nitrogen oxides, volatile organic compounds, and carbon monoxide. Source emissions data are reported to the U.S. Environmental Protection Agency under provisions of Section 110 of the Clean Air Act, as amended 1977, and EPA regulations, Title 40, Code of Federal Regulations, Part 51.321. Summary data are presented for the Nation as a whole, for individual States, and for Air Quality Control Regions and for individual interstate portions thereof. The data compilations result from the operations of the National Emissions Data System (NED), which functions as a component of the comprehensive EPA air information system--the Aerometric and Emissions Reporting System (AEROS). AEROS is managed by the National Air Data Branch, Emissions Standard Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, at Research Triangle Park, North Carolina.

  5. Advanced Emissions Control Development Program: Phase III

    SciTech Connect

    G.T. Amrhein; R.T. Bailey; W. Downs; M.J. Holmes; G.A. Kudlac; D.A. Madden

    1999-07-01

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. The project goal is to effectively control air toxic emissions through the use of conventional flue gas clean-up equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses - BH), and wet flue gas desulfurization systems (WFGD). Development work concentrated on the capture of trace metals, fine particulate, hydrogen chloride and hydrogen fluoride, with an emphasis on the control of mercury. The AECDP project is jointly funded by the US Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (OCDO), and Babcock and Wilcox, a McDermott company (B and W). This report discusses results of all three phases of the AECDP project with an emphasis on Phase III activities. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on characterization of the emissions of mercury and other air toxics and the control of these emissions for typical operating conditions of conventional flue gas clean-up equipment. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP's and baghouses do a good job of removing non-volatile trace metals, (2) particulate control devices (ESPs and baghouses) effectively remove the particulate-phase mercury, but the particulate-phase mercury was only a small fraction of the total for the coals tested, (3) wet scrubbing can effectively remove hydrogen chloride and hydrogen fluoride, and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however, for certain applications, system enhancements can be required to achieve high

  6. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System. Quarterly report No. 7, July 1--September 30, 1992

    SciTech Connect

    Not Available

    1993-06-04

    Public Service Company of Colorado is continuing management of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System. The major emphasis this quarter has been on completion of the remaining construction of the system and startup and checkout of the equipment. The low-NO{sub x} burners have operated since their startup on May 30, 1992 without problem and no unit outages have been experienced due to their operation. All combustion system punch list items have been complete and plant management is very happy with the operation of the new system. Phase 3 operations began on August 3, 1992 with the initiation of testing of the combustion modifications. Preliminary results indicate that the modifications have been very effective and NO{sub x} emissions have been reduced by nearly 70% to approximately 0.4 lb/MMBtu. These reductions were possible while not negatively affecting fly ash unburned carbon or carbon monoxide emissions. Testing of the burner system will continue through October 1992. Construction of the dry sorbent injection system is now complete and the equipment is ready for operation. A few punchlist items remain but these will not affect system operations. All equipment has been operated dry without injecting reagent. A shipment of reagent will be received next quarter when final system startup will occur. Major construction of the humidification system is complete. The dry ash system was completed this quarter and has operated continuously from mid September.

  7. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  8. Data-driven analysis of the effectiveness of evaporative emissions control systems of passenger cars in real world use condition: Time and spatial mapping

    NASA Astrophysics Data System (ADS)

    De Gennaro, Michele; Paffumi, Elena; Martini, Giorgio

    2016-03-01

    This paper assesses the effectiveness of the evaporative emissions control systems of European passenger cars on the basis of real-world activity data. The study relies on two large datasets of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems, consisting of 4.5 million trips and parking events recorded by monitoring 28,000 vehicles over one month. Real world evaporative emissions are estimated using a model that associates a carbon canister desorption event to each trip and a fuel vapour generation event to each parking. The mass of volatile organic compounds released into the air is calculated taking into account the hot-soak, permeation and breathing emission mechanisms. The analysis is based on 36 scenarios, defined by varying the climate conditions, the fuel vapour pressure, the tank material, the tank headspace volume, the purging volume flow rate and the mass of the activated carbon contained in the canister. The results show that in May 4 out of the 18 scenarios considered for Modena and 6 out of the 18 scenarios considered for Firenze lead to evaporative emissions values above the current type approval limit (i.e. 2 [g/day] per vehicle). In July, these numbers increase to 10 out of the 18 scenarios for Modena and to 12 out of the 18 scenarios for Firenze. Looking at the fleet distribution a share of approximately 20% of the fleet is characterised by evaporative emissions higher than the limit in May, increasing to 48% in July, with a peak value of 98%. The emission peak value is estimated to be approximately 4 [g/day] in May and 8 [g/day] in July, while the time-dependent results show emission rates up to nearly 15 [g/s] in Modena and 30 [g/s] in Firenze, with a respective cumulative value in July up to 0.4 and 0.8 tons of VOCs per day. The space-dependent results show a value of the emissions in July of approximately 4-to-8 [kg/km2/day] in the city areas. These results confirm previous findings from the authors

  9. 40 CFR 63.4767 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I establish the emission capture... for the Emission Rate with Add-on Controls Option § 63.4767 How do I establish the emission capture...) Carbon adsorbers. If your add-on control device is a carbon adsorber, establish the operating...

  10. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Quarterly report No. 4, October 1--December 31, 1991

    SciTech Connect

    Not Available

    1992-02-15

    The DOE Cooperative Agreement No. DE-FC22-91PC90550 dated March 11, 1991, Public Service Company of Colorado has prepared the following quarterly report for Phases I, IIA, and IIB of the Integrated Dry NO{sub x}SO{sub 2} Emissions Control System Project. This project includes low NO{sub x} burners with NO{sub x} ports (post firing air injection), humidification and dry sorbent injection.

  11. Automated plasma control with optical emission spectroscopy

    SciTech Connect

    Ward, P.P.

    1995-08-01

    Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.

  12. Comparison of pollutant emission control strategies for cadmium and mercury in urban water systems using substance flow analysis.

    PubMed

    Revitt, D M; Lundy, L; Eriksson, E; Viavattene, C

    2013-02-15

    The European Union (EU) Water Framework Directive (WFD) requires Member States to protect inland surface and groundwater bodies but does not directly stipulate how the associated environmental quality standards should be achieved. This paper develops and assesses the performance of a series of urban emission control strategies (ECS) with an emphasis on the scientific and technological benefits which can be achieved. Data from the literature, in combination with expert judgement, have been used to develop two different semi-hypothetical case cities (SHCC), which represent virtual platforms for the evaluation of ECS using substance flow analysis (SFA). The results indicate that the full implementation of existing EU legislation is capable of reducing the total emissions of cadmium (Cd) and mercury (Hg) by between 11% and 20%. The ability to apply voluntary reduction practices is shown to be particularly effective for Cd with the potential to further lower the overall emissions by between 16% and 27%. The most efficient protection of the receiving surface water environment is strongly influenced by the city characteristics with the introduction of stormwater treatment practices being particularly effective for one city (59% reduction of Hg; 39% reduction of Cd) and the other city being most influenced by the presence of efficient advanced wastewater treatment processes (63% reduction of Hg; 43% reduction of Cd). These reductions in receiving water loads are necessarily accompanied by either increases in stormwater sediment loadings (2.6-14.9 kg/year or 0.6-2.4 kg/year for Hg) or wastewater sludge loadings (45.8-57.2 kg/year or 42.0-57.4 kg/year for Cd).

  13. Controlling workplace emissions: Worker exposure considerations

    SciTech Connect

    Ploss, F.D.

    1996-12-31

    Fugitive emissions are a growing concern with air emission regulatory agencies. In controlling these emissions, worker exposures may be affected and may have no impact on OSHA compliance. Issues affecting worker exposures are reviewed and techniques for ensuring that exposures are maintained within OSHA standards are discussed. The main factors affecting worker exposures and the techniques to be used in evaluating the effects of controls on employees are presented.

  14. Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

    SciTech Connect

    Lance, Michael; Wereszczak, Andrew; Toops, Todd J.; Ancimer, Richard; An, Hongmei; Li, Junhui; Rogoski, Leigh; Sindler, Petr; Williams, Aaron; Ragatz, Adam; McCormick, Robert L.

    2016-04-05

    For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1,001 hr using B20 doped with 14 ppm Na. During the study, oxides of nitrogen (NOx) emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals contamination that increased ammonia oxidation, and lowered NOx reduction. Therefore, it was determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.

  15. National Emissions Report (1978): National Emissions Data Systems (NEDS) of the Aerometric and Emissions Reporting System (AEROS). Annual report

    SciTech Connect

    Not Available

    1980-12-01

    The National Emissions Report summarizes annual cumulative estimates of source emissions of five criteria pollutants: particulates, sulfur oxides, nitrogen oxides, hydrocarbons, and carbon monoxide. Source emissions data are reported to the U. S. Environmental Protection Agency under provisions of Section 110 of the Clean Air Act, as amended 1977, and EPA Regulations, Title 40, Code of Federal Regulations, Part 51.321. Summary data are presented for the nation as a whole, for individual states, and for Air Quality Control Regions and individual interstate portions thereof. The data compilations result from the operations of the National Emissions Data System (NEDS), which functions as a component of the comprehensive EPA air information system--the Aerometric and Emissions Reporting System (AEROS). AEROS is managed by the National Air Data Branch, Monitoring and Data Analysis Division, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency at Research Triangle Park, North Carolina 27711.

  16. National emissions report (1979): National Emissions Data Systems (NEDS) of the Aerometric and Emissions Reporting System (AEROS). Annual report

    SciTech Connect

    Not Available

    1981-08-01

    The National Emissions Report summarizes annual cumulative estimates of source emissions of five criteria pollutants: particulates, sulfur oxides, nitrogen oxides, hydrocarbons, and carbon monoxide. Source emissions data are reported to the U. S. Environmental Protection Agency under provisions of Section 110 of the Clean Air Act, as amended 1977, and EPA Regulations, Title 40, Code of Federal Regulations, Part 51.321. Summary data are presented for the nation as a whole, for individual states, and for Air Quality Control Regions and individual interstate portions thereof. The data compilations result from the operations of the National Emissions Data System (NEDS), which functions as a component of the comprehensive EPA air information system--the Aerometric and Emissions Reporting System (AEROS). AEROS is managed by the National Air Data Branch, Monitoring and Data Analysis Division, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency at Research Triangle Park, North Carolina 27711.

  17. National Emissions Report, 1983: national emissions data systems (neds) of the Aerometric and Emissions Reporting System (AEROS). Final report

    SciTech Connect

    Not Available

    1985-12-01

    The National Emissions Report summarizes annual cumulative estimates of source emissions of five criteria pollutants: particulates, sulfur oxides, nitrogen oxides, volatile organic compounds, and carbon monoxide. Source emissions data are reported to the U.S. Environmental Protection Agency under provisions of Section 110 of the Clean Air Act, as amended 1977, and EPA Regulations, Title 40, Code of Federal Regulations, Part 51.321. Summary data are presented for the Nation as a whole, for individual States, and for Air Quality Control Regions and for individual interstate portions thereof. The data compilations result from the operations of the National Emissions Data System (NEDS), which functions as a component of the comprehensive EPA air information system--the Aerometric and Emissions Reporting System (AEROS). AEROS is managed by the National Air Data Branch, Monitoring and Data Analysis Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency at Research Triangle Park, North Carolina 27711.

  18. 40 CFR 63.1015 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices; or emissions routed to a fuel gas system or process. 63.1015 Section 63.1015 Protection of... fuel gas system or process. (a) Compliance schedule. The owner or operator shall comply with this... flares used to comply with the provisions of this subpart shall design and operate the flare as...

  19. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What emission limitations must I meet... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  20. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What emission limitations must I meet... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  1. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What emission limitations must I meet... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  2. 40 CFR 63.7290 - What emission limitations must I meet for capture systems and control devices applied to pushing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What emission limitations must I meet... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission...

  3. Further exhaust emission control for two-stroke engines

    SciTech Connect

    Sato, Kazuo; Nakano, Masamitsu; Ukawa, Haruo; Inaga, Hisashi

    1994-09-01

    Two-stroke engines are being utilized in large numbers as small utility, lawn and garden equipment engines. The following two subjects were examined with regards to exhaust emission control. The first subject was to compare the theoretical values of a combustion model simulation with the experimentally measured values of the base line emission of two-stroke volume. The second subject was to examine the emission conformability to the 1995 and 1999 California Air Resources Board (CARB) exhaust emission regulations California Regulations for 1995 and Later Utility and Lawn and Garden Equipment Engine, adopted at March 20, 1992, amended, at November 3, 1993. in two-stroke engines with various combinations between various fuels, fuel supply systems and scavenging systems. For this subject it was determine;that the emission control systems based on the lean combustion can be used to meet the 1995 CARB exhaust emission regulations. However, it was also concluded that to meet the 1999 CARB exhaust emission regulations, various emission control systems with various combinations regarding such parameters as fuels, scavenging systems and exhaust systems must be used. 27 refs., 20 figs., 4 tabs.

  4. Evaluation of the KIDC (Kress Indirect Dry Cooling) system for coke oven pushing and quench tower emission control

    SciTech Connect

    Vajda, S.

    1988-09-23

    The KIDC system, as observed at Granite City Steel on June 21, 1988, eliminates both pushing and quenching emissions. The coke is pushed into a container that is slightly wider and longer than the oven. The container is sealed at the oven door jamb, a guillotine door on the container is opened at the oven for the push and is closed and sealed after the push. A slightly negative pressure is maintained in the container during the push to prevent any pollutants from exiting into the oven or escaping to the atmosphere. The pushing force is only slightly higher than the normal push. No volatile gas mixtures are in the container box since oxygen is effectively absent. Coke yield is improved. Coke quality is improved similarly to existing dry quench systems. Since the system is environmentally sealed, some coking can take place in the container, ovens could be pushed slightly earlier, improving the production of the battery. The production of the blast furnace could be expected to improve, when the improved quality KIDC coke is used. 13 refs.

  5. Assessment of Pneumatic Controller Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and Natural Gas (ONG) production facilities have the potential to emit greenhouse gases such as methane (CH4) and other hydrocarbons (HCs) to the atmosphere. ONG production sites have multiple emission sources including storage tank venting, enclosed combustion devices, engine exhaust, pneumatic controllers and uncontrolled leaks. Accounting for up to 37.8 percent of CH4 emissions, pneumatic controllers are one of the most significant sources of CH4 in ONG production field operations. Recent measurement studies used the only commercially-available high volume sampling (HVS) technology (Bacharach Hi Flow Sampler, Bacharach, Inc., New Kensington, PA) to quantify CH4 emission rates of pneumatic devices on ONG production pads and compare to inventory estimates. Other studies indicate that this HVS may malfunction, causing underestimates of emissions in certain scenarios encountered in ONG production and should not be used for some sources such as heavy emissions from condensate storage tanks. The HVS malfunction can occur on relatively large emissions, where the measured leak concentrations exceed 5%, and is ascribed to a sensor transition failure in the instrument. The HVS malfunction is believed to be exacerbated by several factors (large emission rates, amount of non-CH4 HCs in the emission stream, non-optimal HVS calibration frequency, firmware, and emission measurement coupling geometries). The degree to which HVS measurements of emissions from pneumatic co

  6. Assessment of Pneumatic Controller Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and Natural Gas (ONG) production facilities have the potential to emit greenhouse gases such as methane (CH4) and other hydrocarbons (HCs) to the atmosphere. ONG production sites have multiple emission sources including storage tank venting, enclosed combustion devices, engine exhaust, pneumatic controllers and uncontrolled leaks. Accounting for up to 37.8 percent of CH4 emissions, pneumatic controllers are one of the most significant sources of CH4 in ONG production field operations. Recent measurement studies used the only commercially-available high volume sampling (HVS) technology (Bacharach Hi Flow Sampler, Bacharach, Inc., New Kensington, PA) to quantify CH4 emission rates of pneumatic devices on ONG production pads and compare to inventory estimates. Other studies indicate that this HVS may malfunction, causing underestimates of emissions in certain scenarios encountered in ONG production and should not be used for some sources such as heavy emissions from condensate storage tanks. The HVS malfunction can occur on relatively large emissions, where the measured leak concentrations exceed 5%, and is ascribed to a sensor transition failure in the instrument. The HVS malfunction is believed to be exacerbated by several factors (large emission rates, amount of non-CH4 HCs in the emission stream, non-optimal HVS calibration frequency, firmware, and emission measurement coupling geometries). The degree to which HVS measurements of emissions from pneumatic co

  7. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  8. Control emissions from marine vessel loading

    SciTech Connect

    Lawrence, G.N.; Cross, S.R.

    1994-03-01

    Regulations set by the US Coast Guard require safety measures during the loading of marine vessels connected to vapor collection systems. These regulations (which were promulgated in July 1990) immediately impacted all companies involved with the loading of benzene, due to previously enacted US Environmental Protection Agency regulations governing benzene transfer. In addition, regulations issued by the states of California, New Jersey, and Louisiana impose additional marine emission control requirements. These regulations effectively work together--the federal or state environmental rule first requires the collection of the vapors generate from vessel loading, and then the Coast Guard regulation governs the safety features that must be applied to the system. Depending on the vapor pressure of the chemical, a 10,000-barrel barge may emit over one ton of chemical to the atmosphere. Such large volumes make marine loading a prime target for the push to further reduce atmospheric pollution, and its is a good be that many more companies will be asked to look at the recovery of vapors during the loading of marine vessels. This article will aid the engineer who may be asked to evaluate the various methods of controlling emissions from vessel loading. It provides some guidance on the requirements of the Coast Guard regulations and briefly outlines some of the technologies that have been used to process the collected vapors. Some important design considerations unique to marine systems are discussed to help engineers avoid some of the potential pitfalls. Finally, some estimated costs are provided for two common types of marine vapor control systems.

  9. Reports related to Emissions Control Areas for Marine Vessels

    EPA Pesticide Factsheets

    Reports related to Marine Emissions Control Areas including Global Trade and Fuels Assessment, Modeling Sulfur Oxides Emissions Transport From Ships at Sea, Commercial Marine Emission Inventory Development

  10. Users guide for the conversion of Navy paint-spray-booth particulate emission-control systems from wet to dry operation. Final report, January-September 1989

    SciTech Connect

    Ayer, J.; Tate, D.

    1990-03-01

    The report is a guide for converting U.S. Navy paint-spray-booth particulate emission control systems from wet to dry operation. The use of water curtains for air-pollution-control of paint-spray booths is considered a major source of water and solid-waste pollution from industrial painting operations. It is possible, however, to eliminate this water-pollution problem and significantly reduce the solid-waste load by converting the booth to utilize a dry-filter pollution-control system. The conversion, however, requires extensive planning prior to actual facility modification. The report describes requirements to facilitate the planning and preparation for conversion of typical spray booths. Although the report addresses modifications of Navy spray booths, the basic engineering requirements discussed apply also to other Department of Defense installations and to commercial industrial facilities.

  11. Electrostatic control of acid mist emissions

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    This paper describes a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP is used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase I of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  12. Plasma process control with optical emission spectroscopy

    SciTech Connect

    Ward, P.P.

    1995-04-01

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  13. Evaluation of fuel-borne sodium effects on a DOC-DPF-SCR heavy-duty engine emission control system: Simulation of full-useful life

    SciTech Connect

    Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.; Ancimer, Adam; An, Hongmei; Li, Junhui; Rogoski, Leigh; Sindler, Peter; Williams, Aaron; Ragatz, Adam; Mccormick, Robert

    2016-10-17

    Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.

  14. Evaluation of fuel-borne sodium effects on a DOC-DPF-SCR heavy-duty engine emission control system: Simulation of full-useful life

    DOE PAGES

    Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.; ...

    2016-10-17

    Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent tomore » exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less

  15. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    EPA Pesticide Factsheets

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  16. CONTROL SYSTEM

    DOEpatents

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  17. Waterbury, Conn., Incinerator to Control Mercury Emissions

    EPA Pesticide Factsheets

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  18. Developments and advances in emission control technology. SP-1120

    SciTech Connect

    1995-12-31

    Automotive emission control is an increasingly complex subject that continues to be of vital importance. Tighter emission standards as well as requirements for increased emission system performance and durability have resulted in ongoing development and continuing advances in emission control technology. A great deal of attention continues to be focused on technologies for emission control during cold-start. Detailed analyses are required to determine fundamental mechanisms which govern emission control under a wide variety of operating conditions. Effects of possible catalyst poisons as well as the mechanical durability of aftertreatment systems are being evaluated. Engine, vehicle, and aftertreatment sensors are being utilized to monitor and ensure emission control performance. Improved analytical techniques are being used to help understand emissions problems and to suggest avenues to solutions. Papers assembled in this volume touch on all of these areas. Catalyst durability papers address issues related to hot vibration testing and catalyst durability based on substrate surface area. A variety of papers related to the chemical composition of fuels address issues such as fuel hydrocarbon and NO conversion in three-way catalysts, fuel composition effects on emissions in urban traffic, and fuel sulfur effects on catalysts and on-board diagnostics (OBD-II) systems. Information useful for understanding the performance of cold-start technologies is described in papers on a numerical method for predicting warm-up characteristics of catalysts systems, axial characterization of warmup and underfloor catalytic converters, and EHC impact on extended soak times. Other approaches for reducing cold-start emissions are addressed in papers on in-cylinder catalysts and the use of intake air oxygen enrichment technology. All papers have been processed separately for inclusion on the database.

  19. A Community Emissions Data System (CEDS) for Historical Emissions

    SciTech Connect

    Smith, Steven J.; Zhou, Yuyu; Kyle, G. Page; Wang, Hailong; Yu, Hongbin

    2015-04-21

    Historical emission estimates for anthropogenic aerosol and precursor compounds are key data needed for Earth system models, climate models, and atmospheric chemistry and transport models; both for general analysis and assessment and also for model validation through comparisons with observations. Current global emission data sets have a number of shortcomings, including timeliness and transparency. Satellite and other earth-system data are increasingly available in near real-time, but global emission estimates lag by 5-10 years. The CEDS project will construct a data-driven, open source framework to produce annually updated emission estimates. The basic methodologies to be used for this system have been used for SO2 (Smith et al. 2011, Klimont, Smith and Cofala 2013), and are designed to complement existing inventory efforts. The goal of this system is to consistently extend current emission estimates both forward in time to recent years and also back over the entire industrial era. The project will produce improved datasets for global and (potentially) regional model, allow analysis of trends across time, countries, and sectors of emissions and emission factors, and facilitate improved scientific analysis in general. Consistent estimation of uncertainty will be an integral part of this system. This effort will facilitate community evaluation of emissions and further emission-related research more generally.

  20. Improving Emission Estimates With The Community Emissions Data System (CEDS

    NASA Astrophysics Data System (ADS)

    Smith, S.; Hoesly, R. M.

    2016-12-01

    Inventory data is a key component of scientific and regulatory efforts focused on air pollution, climate and global change and also a critical compliment for observational emission efforts. The Community Emissions Data System (CEDS) project aims to provide consistent estimates of historical anthropogenic emissions using an open-source data system. The first product from this system was anthropogenic emissions over 1750-2014 of reactive gases, aerosols, and carbon dioxide, for use in CMIP6. These data are annually resolved, have monthly seasonality, were estimated at a moderately detailed level of 50+ sectors and 8 fuel types, and were mapped to spatial grids. CEDS combines bottom-up default emissions estimates that are calibrated to country-level inventories where these are deemed reliable. Outside of years where inventories are available, driver data and emission factors are extended using user-defined rules. The system is designed to facilitate annual updates (so the most recent inventory data is available). The software and most input data are being released as open source software in order to provide access to assumptions, improve emission estimates, and allow access to fundamental emissions data for research purposes. We report on our efforts to expand the spatial resolution by estimating emission trends by state/province for large countries. This will allow spatial shifts in emissions over time to be better represented and make the data more useful for research such as that discussed in this session. As part of these improvements we will add support for use of regionally-specific emission proxies and point sources. A key focus of ongoing research is better quantification of emissions uncertainty. Our goal is consistent estimation of uncertainty over time, sector, and country. We will also report on results estimating the additional uncertainty associated with extending emissions data over recent years. http://www.globalchange.umd.edu/CEDS/

  1. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6000 DISEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    EPA Science Inventory

    This report is on testing of a Donaldson Corp. catalytic muffler and closed crankcase filtration system for diesel trucks. It verified the emissions for these systems using low sufur and ultra low sulfur fuel.

  2. TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES DONALDSON COMPANY INC.SERIES 6000 DISEL OXIDATION CATALYST MUFFLER AND SPIRACLE CLOSED CRANKCASE FILTRATION SYSTEM

    EPA Science Inventory

    This report is on testing of a Donaldson Corp. catalytic muffler and closed crankcase filtration system for diesel trucks. It verified the emissions for these systems using low sufur and ultra low sulfur fuel.

  3. Emission and thermal performance upgrade through advanced control backfit

    SciTech Connect

    Banerjee, A.K.

    1994-12-31

    Reducing emission and improving thermal performance of currently operating power plants is a high priority. A majority of these power plants are over 20 years old with old control systems. Upgrading the existing control systems with the latest technology has many benefits, the most cost beneficial are the reduction of emission and improving thermal performance. The payback period is usually less than two years. Virginia Power is installing Stone & Webster`s NO{sub x} Emissions Advisor and Advanced Steam Temperature Control systems on Possum Point Units 3 and 4 to achieve near term NO{sub x} reductions while maintaining high thermal performance. Testing has demonstrated NO{sub x} reductions of greater than 20 percent through the application of NO{sub x} Emissions Advisor on these units. The Advanced Steam Temperature Control system which has been operational at Virginia Power`s Mt. Storm Unit 1 has demonstrated a signification improvement in unit thermal performance and controllability. These control systems are being combined at Units 3 and 4 to reduce NO{sub x} emissions and achieve improved unit thermal performance and control response with the existing combustion hardware. Installation has been initiated and is expected to be completed by the spring of 1995. Possum Point Power Station Units 3 and 4 are pulverized coal, tangentially fired boilers producing 107 and 232 MW and have a distributed control system and a PC based performance monitoring system. The installation of the advanced control and automation system will utilize existing control equipment requiring the addition of several PCs and PLC.

  4. Controlling quantum dot emission by plasmonic nanoarrays.

    PubMed

    Guo, R; Derom, S; Väkeväinen, A I; van Dijk-Moes, R J A; Liljeroth, P; Vanmaekelbergh, D; Törmä, P

    2015-11-02

    Metallic nanoparticle arrays support localized surface plasmon resonances (LSPRs) and propagating surface lattice resonances (SLRs). We study the control of quantum dot (QD) emission coupled to the optical modes of silver nanoparticle arrays, both experimentally and numerically. With a hybrid lithography-functionalization method, the QDs are deposited in the vicinity of the nanoparticles. Directionality and enhancement of the emission are observed in photoluminescence spectra and fluorescence lifetime measurements, respectively. Similar features are also demonstrated in the numerical simulations. The tunable emission of this type of hybrid structures could lead to potential applications in light sources.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION--TEST REPORT OF MOBILE SOURCE EMISSION CONTROL DEVICES, CUMMINS EMISSION SOLUTIONS AND CUMMINS FILTRATION DIESEL OXIDATION CATALYST AND CLOSED CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    The U.S. EPA has created the Environmental Technology Verification (ETV) Program. ETV seeks to provide high-quality, peer-reviewed data on technology performance. The Air Pollution Control Technology (APCT) Verification Center, a center under the ETV Program, is operated by Res...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION--TEST REPORT OF MOBILE SOURCE EMISSION CONTROL DEVICES, CUMMINS EMISSION SOLUTIONS AND CUMMINS FILTRATION DIESEL OXIDATION CATALYST AND CLOSED CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    The U.S. EPA has created the Environmental Technology Verification (ETV) Program. ETV seeks to provide high-quality, peer-reviewed data on technology performance. The Air Pollution Control Technology (APCT) Verification Center, a center under the ETV Program, is operated by Res...

  7. Environmental controls over methanol emission from leaves

    NASA Astrophysics Data System (ADS)

    Harley, P.; Greenberg, J.; Niinemets, É.; Guenther, A.

    2007-12-01

    Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.2 to 38 μg g (dry mass)-1 h-1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.3 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can

  8. [Emission control way of volatile organic compounds in industry].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Wei, Yu-Xia; Zou, Lan; Zhang, Ming-Hui

    2011-12-01

    Due to the volatile nature, the way of controlling way of VOCs was different from other atmospheric pollutants. By analyzing the emission characteristics of VOCs, four kinds of control way were proposed, which were the source control, organized emission control, fugitive emission control and the total amount control, and the control modes of each control way were also analyzed and compared.

  9. 40 CFR Appendix III to Part 1037 - Emission Control Identifiers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes advanced hybrid technology components -ADVO—Vehicle includes other advanced technology components (i.e., non-hybrid system) -INV—Vehicle includes innovative technology components ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Pt. 1037, App. III Appendix III...

  10. 40 CFR Appendix III to Part 1037 - Emission Control Identifiers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes advanced hybrid technology components -ADVO—Vehicle includes other advanced technology components (i.e., non-hybrid system) -INV—Vehicle includes innovative technology components ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Pt. 1037, App. III Appendix III...

  11. 40 CFR Appendix III to Part 1037 - Emission Control Identifiers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes advanced hybrid technology components -ADVO—Vehicle includes other advanced technology components (i.e., non-hybrid system) -INV—Vehicle includes innovative technology components ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Pt. 1037, App. III Appendix III...

  12. Nanophotonic control of circular dipole emission

    NASA Astrophysics Data System (ADS)

    Le Feber, B.; Rotenberg, N.; Kuipers, L.

    2015-04-01

    Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway.

  13. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  14. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1991-02-26

    This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

  15. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1990-05-02

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

  16. 40 CFR 63.3092 - How must I control emissions from my electrodeposition primer system if I want to comply with the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? 63.3092 Section 63.3092 Protection of... combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission...

  17. 40 CFR 63.3092 - How must I control emissions from my electrodeposition primer system if I want to comply with the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? 63.3092 Section 63.3092 Protection of... combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission...

  18. 40 CFR 63.3092 - How must I control emissions from my electrodeposition primer system if I want to comply with the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? 63.3092 Section 63.3092 Protection of... combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission...

  19. National emissions report, 1981: national emissions data system of the aerometric and emissions reporting system

    SciTech Connect

    Not Available

    1984-01-01

    This report summarizes annual cumulative estimates of source emissions of five criteria pollutants: particulates, sulfur oxides, nitrogen oxides, volatile organic compounds, and carbon monoxide. Source emissions data are reported to the U.S. Environmental Protection Agency under provisions of Section 110 of the Clean Air Act, as amended in 1977, and of EPA Regulations, Title 40. Code of Federal Regulations, Part 51.321. Summary data are presented for the nation as a whole, for individual states, for intrastate and individual interstate portions of Air Quality Control Regions, and for total interstate Air Quality Control Regions.

  20. Emissions and fuel economy effects of vehicle exhaust emission control device (revision). Technical report

    SciTech Connect

    Johnson, H.

    1998-10-01

    This report describes testing by EPA of the Vehicle Exhaust Emission Control Device (VEECD) retrofit device under Section 32918 of Title 49 U.S.C. Retrofit Devices (RD). The VEECD is described by the developer in the international patent application as an embodiment of air bleed principle. It is intended to be retrofitted to vehicles produced without any, or with earlier-technology emission control systems. The developer claims (RD Application Appendix A) that the valve significantly reduces CO and HC emissions without substantially increasing CO{sub 2} or NOx emissions. Incidental city fuel economy enhancement was also claimed. Non-FTP test data obtained for 1986/87 European vehicles from two laboratories in the UK was submitted. This data (Appendix B) was analyzed using the t-test for the difference of constant speed data (30/60/85MPH) at 95% confidence level.

  1. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2009-10-01

    A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.

  2. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    NASA Astrophysics Data System (ADS)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  3. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  4. CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...

  5. CONTROLLING ODOROUS EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The report discusses the control of odorous emissions from iron foundries. he main process sources of odors in iron foundries are mold and core making, casting, and sand shakeout. he odors are usually caused by chemicals, which may be present as binders and other additives to the...

  6. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  7. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Shetty, Suraj K.

    Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network

  8. Monitoring by Control Technique - Capture Systems

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about capture system control techniques used to reduce pollutant emissions.

  9. Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System baseline SNCR test report, February 4--March 6, 1992

    SciTech Connect

    Smith, R.A.; Shiomoto, G.H.; Muzio, L.J.; Hunt, T.

    1993-09-01

    The DOE sponsored Integrated Dry NO{sub x}SO{sub 2} Emissions Control System program, which is a Clean Coal Technology III demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low sulfur western coal. The project goal is to demonstrate 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be tested. This report documents the second test phase of the program. This second test phase was comprised of the start up of the SNCR system followed by a brief parametric test series. Time constraints due to the retrofit schedule precluded optimizing the SNCR system. Testing investigated both urea and aqueous ammonia as SNCR chemicals. Other parameters investigated included boiler load, the amount of chemical injected, as well as injection parameters (injection location, amount of mixing air, dilution water flow, and injector orifice sizes). NO{sub x} removals of nominally 35 percent could be obtained with both chemicals while maintaining ammonia slip levels less than 10 ppM at full load. At higher chemical injection rates (nominal N/NO molar ratios of 1.5 to 2.0), NO{sub x} reductions in the range of 60 to 70 percent were achieved, but with unacceptable levels of NH{sub 3} slip. For a given level of NO{sub x} reduction, ammonia slip was lower with aqueous ammonia injection than with urea. The test program also confirmed prior observations that (1) the optimum temperature for NO{sub x} reduction with ammonia is lower than with urea, and (2) N{sub 2}O emissions as a by-product of the SNCR process are lower for ammonia compared to urea.

  10. Controlling air toxics emissions poses challenges

    SciTech Connect

    Lausman, R.; Lavely, L.

    1997-08-01

    Emissions from power plants can include trace levels of air toxics such as mercury, selenium and arsenic that exist either partially or completely as a vapor in the flue-gas exit discharge. Other heavy metals such as lead and nickel, which are small, hard to collect particulates, also may be included in the discharged flue gas. Industry and government researchers have had limited success in developing methods to control these trace-level emissions. Developing controls for mercury emissions is complicated by the different forms that mercury can take in the flue gas of a power plant. The most common forms of mercury are elemental mercury (Hg{degree}) and mercuric chloride (HgCl{sub 2}). Hg{degree} has a high vapor pressure as compared to HgCl{sub 2} and most of the other trace toxics, and it typically exists as a vapor in the flue gas exiting power plants. Hg{degree} is also relatively insoluble in water. As a vapor, Hg{degree} can pass through the normal emission control devices that are installed on the majority of modern power plants such as electrostatic precipitators (ESP), fabric filters (FF), or wet scrubbers.

  11. Venturi/vortex technology for controlling chromium electroplating emissions

    SciTech Connect

    Hay, K.J.; Northrup, J.; Heck, S.R.

    1997-12-31

    A new technology has been developed to control air emissions from hexavalent chromium electroplating tanks. The venturi/vortex scrubber uses a patented drain assembly to pull plating solution, air with toxic particulates above the solution, and unpopped bubbles of generated gases down with a gravity generated vortex effect. The recirculated plating solution acts as the scrubbing liquid and air agitation is eliminated. Separated gases are passed through a condenser/filter to remove any remaining fumes. The device is almost entirely constructed of CPVC. This device offers several advantages over conventional end-of-pipe systems including significantly lower cost, no wastewater, no extensive ventilation system, and emissions are recycled. The system can be is easily retrofitted to existing tanks, however, a loose fitting tank lid is recommended. A pilot demonstration has been performed at Benet Laboratory, Watervliet, NY (US Army) with a 1,500 gallon chromic acid electroplating tank and 1,500 Amps of applied current. Overall chromium emissions results were 0.00002 mg/Amp-hr, surpassing the stringent California State requirement of 0.006 mg/Amp-hr. Emission prevention by capturing unpopped bubbles is the method in which this system reduces the most emissions. The system met current ambient worker safety standards. Two major improvements are recommended: an increase in gas flow rate through the system and a solution to the system`s sensitivity to the plating solution level.

  12. Sulfur oxide adsorbents and emissions control

    DOEpatents

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  13. Characteristics of typical non-road machinery emissions in China by using portable emission measurement system.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin

    2012-10-15

    Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas.

  14. Precipitation controls isoprene emissions from tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Potosnak, M. J.; Gatti, L. V.; Guenther, A. B.; Karl, T.; Trostdorf, C. R.; Martins, W. C.; Rinne, H. J.; Yamazaki, A.

    2003-12-01

    Isoprene emissions from tropical regions account for a majority of isoprene produced globally. Current estimates of global isoprene emissions use meteorological inputs (temperature and light), ecosystem leaf area, and a time invariant, ecosystem specific emissions factor. This approach has been verified to work well for deciduous mid-latitude forests, but the approach has not been tested for tropical ecosystems where seasonality is induced by precipitation. Recent flux studies at two field stations in the tropics found strong effects of precipitation regime (dry vs. wet season) on isoprene emissions. A flux study conducted during the wet season (October 1999) at the La Selva Biological Station (10° 26' N, 83° 59' W, precipitation 4000 mm yr{-1}) found whole system isoprene emissions rates between 2--10 mg C m-2 h-1, while a second campaign during the dry season (April 2003) found values ranging 8--16 mg C m-2 h-1. This difference could not be explained by changes in ambient temperature or light using established emissions algorithms. The second field site near Santarém, Brazil in the Floresta Nacional do Tapajós (2° 51' S, 54° 58' W, precipitation 2000 mm yr{-1}), part of the Large scale Biosphere-atmosphere experiment in Amazônia (LBA), showed a similar pattern. Additionally, a 13 month isoprene concentration record at this station found a 4 fold increase during the dry season. Application of a one dimensional chemistry model predicts a similar change in isoprene source strength. A standard emission model using temperature and light could not account for these seasonal changes, but adding an empirical term that accounted for previous precipitation greatly enhanced the fit.

  15. Enhanced control of mercury emissions through modified speciation

    SciTech Connect

    Livengood, C.D.; Mendelsohn, M.H.

    1997-07-01

    In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. Argonne National Laboratory has supported the DOE Fossil Energy Program for over 15 years with research on advanced environmental control technologies. The emphasis in Argonne`s work has been on integrated systems that combine control of several pollutants. Specific topics have included spray drying for sulfur dioxide and particulate-matter control with high-sulfur coal, combined sulfur dioxide and nitrogen oxides control technologies, and techniques to enhance mercury control in existing FGC systems. The latter area has focused on low-cost dry sorbents for use with fabric filters or electrostatic precipitators and techniques for improving the capture of mercury in wet flue-gas desulfurization (FGD) systems. This paper presents results from recent work that has studied the effects of several oxidizing agents in combination with typical flue-gas species (e.g., nitrogen oxides and sulfur dioxide) on the oxidation of Hg{sup 0}.

  16. Coal-fueled diesel technology development emissions control

    NASA Astrophysics Data System (ADS)

    Vankleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    General Electric Environmental Services, Inc. (GEESI), Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a coal-water-slurry (CWS) fuel single cylinder research diesel engine to the design, installation, and operation of a full-size emissions control system for a full-size CWS fuel diesel engine designed for locomotive operation. Early 10 CFM slipstream testing program activity was performed to determine emissions characteristics and to evaluate emissions control concepts such a barrier filtration, granular bed filtration, and cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO2 and NO(x) in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical emissions control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the envelope filter led to a subsequent progression to a similar configuration envelope filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This envelope filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  17. Coal-fueled diesel technology development Emissions Control

    SciTech Connect

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  18. Mechanisms controlling the dependence of surface warming on cumulative carbon emissions over the next century in a suite of Earth system models

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Roussenov, Vassil; Goodwin, Philip; Resplandy, Laure; Bopp, Laurent

    2017-04-01

    Insight into how to avoid dangerous climate may be obtained from Earth system model projections, which reveal a near-linear dependence of global-mean surface warming on cumulative carbon emissions. This dependence of surface warming on carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. Mechanistically each of these dependences varies, respectively, with ocean heat uptake, the CO2 and non-CO2 radiative forcing, and the ocean and terrestrial uptake of carbon. An ensemble of 9 Earth System models forced by up to 4 Representative Concentration Pathways are diagnosed. In all cases, the dependence of surface warming on carbon emissions evolves primarily due to competing effects of heat and carbon uptake over the upper ocean: there is a reduced effect of radiative forcing from CO2 due to ocean carbon uptake, which is partly compensated by enhanced surface warming due to a reduced effect of ocean heat uptake. There is a wide spread in the dependence of surface warming on carbon emissions, undermining the ability to identify the maximum permitted carbon emission to avoid dangerous climate. Our framework reveals how uncertainty in the future warming trend is high over the next few decades due to relatively high uncertainties in ocean heat uptake, non-CO2 radiative forcing and the undersaturation of carbon in the ocean.

  19. Controlling NOx emission from industrial sources

    SciTech Connect

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  20. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  1. Mercury emissions control in coal combustion systems using potassium iodide: bench-scale and pilot-scale studies

    SciTech Connect

    Ying Li; Michael Daukoru; Achariya Suriyawong; Pratim Biswas

    2009-01-15

    Bench- and pilot-scale experiments were conducted using potassium iodide (KI) for capture and removal of Hg in air and coal combustion exhaust. Two bench-scale reactor systems were used: (1) a packed-bed reactor (PBR) packed with granular or powder KI and (2) an aerosol flow reactor (AFR) with injection of KI particles. It was found that a higher temperature, a higher concentration of KI, and a longer gas residence time resulted in a higher Hg removal efficiency. A 100% Hg removal was achieved in the PBR above 300{sup o}C using 0.5 g of powder KI and in the AFR above 500{sup o}C with a KI/Hg molar ratio of 600 at a 5.8 s residence time. The low KI injection ratio relative to Hg indicated that KI is highly effective for Hg removal in air. Formation of I{sub 2} vapor by the oxidation of KI by O{sub 2} at high temperatures, which then reacts with Hg to produce HgI{sub 2}, was identified as the pathway for removal. The pilot-scale experiments were conducted in a 160 kW pulverized coal combustor. KI was introduced in two ways: as a powder mixed with coal and by spraying KI solution droplets into the flue gas. In both cases the Hg removal efficiency increased with an increase in the feed rate of KI. Mixing KI powder with coal was found to be more effective than spraying KI into the flue gas. The Hg removal by KI was less efficient in the pilot-scale tests than in the bench-scale tests probably due to certain flue gas components reacting with KI or I{sub 2}. Hg speciation measurements in both bench- and pilot-scale experiments indicated no oxidized mercury in the gas phase upon introduction of KI, indicating that the oxidation product HgI2 was captured in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic precipitators where particulate-bound Hg can be efficiently removed. 27 refs., 8 figs., 4 tabs.

  2. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  3. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  4. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  5. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  6. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  7. 40 CFR 1060.525 - How do I test fuel systems for diurnal emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel tanks, and volume-compensating air bags. (b) You may subtract your fuel tank's permeation...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... diurnal emission standard. (8) For emission control technologies that rely on a sealed fuel system,...

  8. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  9. 40 CFR 63.4767 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4767 Section 63... capture system and add-on control device operating limits during the performance test? During the... efficiency according to § 63.4766. (c) Carbon adsorbers. If your add-on control device is a carbon...

  10. [Regulations and policies for control of volatile organic compounds and the emission standards in Taiwan].

    PubMed

    Luan, Zhi-Qiang; Wang, Xi-Qin; Zheng, Ya-Nan; Liu, Ping

    2011-12-01

    Due to the well-developed managing system including policies, laws, regulations and emission standards, now the emission of volatile organic compounds (VOCs) is strictly controlled in Taiwai. The policy frameworks of VOCs control including both command control and economic incentives makes an excellent effect for VOCs treatment.

  11. Stimulated Parametric Emission Microscope Systems

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuyoshi; Isobe, Keisuke

    2006-10-01

    We present a novel microscopy technique based on the fourwave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our FWM technique can be used to obtain two-dimensional microscopic images of an unstained leaf of Camellia sinensis and an unlabeled tobacco BY2 Cell.

  12. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    SciTech Connect

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  13. Integrated dry NO{sub x}/SO{sub 2} emissions control system low-NO{sub x} combustion system retrofit test report. Test report, August 6--October 29, 1992

    SciTech Connect

    Smith, R.A.; Muzio, L.J.; Hunt, T.

    1993-06-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System program, which is a Clean Coal Technology M demonstration, is being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, which is a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low-NO{sub x} burners with overfire air; (2) Selective NonCatalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. The effectiveness of the integrated system on a high-sulfur coal will also be investigated. This report documents the third phase of the test program, where the performance of the retrofit low-NO{sub x} combustion system is compared to that of the original combustion system. This third test phase was comprised of an optimization of the operating conditions and settings for the burners and overfire air ports, followed by an investigation of the performance of the low-NO{sub x} combustion system as a function of various operating parameters. These parameters included boiler load, excess air level, overfire air flow rate and number of mills in service. In addition, emissions under normal load following operation were compared to those collected during the optimization and parametric performance tests under baseloaded conditions. The low-NO{sub x} combustion system retrofit resulted in NO{sub x} reductions of 63 to 69 percent, depending on boiler load. The majority of the NO{sub x} reduction was obtained with the low-NO{sub x} burners, as it was shown that the overfire air system provided little additional NO{sub x} reduction for a fixed excess air level. CO emissions and flyash carbon levels did not increase as a result of the retrofit.

  14. Air emission control equipment - the new challenge for equpiment suppliers

    SciTech Connect

    Lobb, F.H.

    1997-12-31

    The combination of Title V, the CAM Rule and the Credible Evidence Rule demand industrial sites view the selection and operation of emission control devices in a whole new light. No longer can users see these devices as detached end of pipe pieces of equipment essentially purchased off lowest bid. These regulatory changes force plants to fully integrate the operation of these devices into their process control systems and instrumentation. And this is specifically EPA`s stated intent. EPA believes that by forcing sites to exercise the same knowledge and attention to air emissions that they do to operate their production processes, emissions will undergo a natural reduction across the country. Process and operational data that historically has been the sole province of sites becomes public. And compliance with state defined requirements must be demonstrated essentially continuously. This paper explores the new approach to compliance and provides insight through specific field examples/installations of emission control equipment. The author seeks to promote understanding through discussion of these significant regulatory changes.

  15. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    NASA Astrophysics Data System (ADS)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  16. High Efficiency, Low Emission Refrigeration System

    SciTech Connect

    Fricke, Brian A.; Sharma, Vishaldeep

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  17. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  18. 40 CFR 63.4167 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.4167 Section 63... capture system and add-on control device operating limits during the performance test? During the... conduct a new performance test to determine destruction efficiency according to § 63.4166. (c)...

  19. Ammonia emissions of a rotational grazing system

    NASA Astrophysics Data System (ADS)

    Voglmeier, Karl; Häni, Christoph; Jocher, Markus; Ammann, Christof

    2017-04-01

    Intensive agricultural livestock production is the main source of air pollution by ammonia (NH3). Grazing is considered to reduce emissions significantly. However, ammonia emissions measurements on pastures are very rare and most emission models base their emissions factors for grazing on studies from the 1990s, which report a large emission range from 2.7% to 13.6% of the applied total ammonia nitrogen (TAN). We present first results of the Posieux pasture experiment in 2016 where NH3 concentration and fluxes were measured during the grazing season. The applied methods include an eddy covariance system with a two channel reactive nitrogen (Nr) converter measuring in parallel the sum of oxidized Nr species and the sum of the total Nr species. The difference of the two channels corresponds to the sum of reduced Nr species. Furthermore four MiniDOAS instruments for line integrated concentration measurements without an inlet system were used. The fluxes were estimated by applying a backward Lagrangian stochastic model (bLS) to the concentration difference of paired MiniDOAS up- and downwind of a sub-plot of the field. Monitoring of dung (visual survey) and urine patch locations (with soil electrical conductivity sensor) was carried out after each grazing rotation on selected sub-plots. It helped to compute statistics of the dung/urine patch distribution on the pasture. The experimental setup and the environmental conditions resulted in high temporal and spatial dynamics of NH3 concentrations and fluxes. The calculated fluxes were used to estimate the total net emission during the grazing period. Based on the average dung/urine patch distribution on the field an emission factor for the pasture was computed and compared to results from the literature. We discuss the applicability and limitations of the two measurement systems, reconsider the main emission drivers and explain differences in the results.

  20. Understanding and constraining global controls on dust emissions from playas

    NASA Astrophysics Data System (ADS)

    Bryant, Robert; Eckardt, Frank; Vickery, Kate; Wiggs, Giles; Hipondoka, Martin; Murray, Jon; Baddock, Matt; Brindley, Helen; King, James; Nield, Jo; Thomas, Dave; Washington, Richard; Haustein, Karsten

    2016-04-01

    Playas are ephemeral, endorheic lake systems that are common in arid regions. They have been identified as both regionally and globally significant sources of mineral dust. Emissions of dust from large playas can therefore impact significantly on regional climate through a range of land/atmosphere interactions. However, not all playas have or will emit dust, and those that do emit dust rarely do so consistently. Thus, global models that target ephemeral lakes at source areas often struggle to model the emission characteristics of the locations accurately. It is clear that our understanding of controls on dust emission from these environments varies at global scales (i.e. relevant to climate models) is poorly understood. Existing research confirms that the potential for dust emission from playas within dryland regions can be extremely varied; large disparities are noted to exist from one playa to another, and significant spatial/temporal heterogeneity has been observed within those playas that do emit dust. Research also shows that dust fluxes from playa surfaces varies vary based on hydrological gradient or ephemeral inflows and may change over time in response to human or climate forcing mechanisms. Consequently, despite the presence of abundant fine sediment and suitable wind conditions, some playas will remain supply limited and will not emit dust as they are either too wet (e.g. via extensive groundwater discharge) not salty enough (e.g. salts have been removed from the surface by groundwater recharge) or there is not a sufficient supply of sand (coarse particles) on or at the upwind edge of the playa surface to cause dust emission. Other playas (e.g. Owens Lake) have emitted dust at a disproportionate (regionally/nationally) significant level seemingly without constraint (becoming effectively transport capacity limited) through optimal combinations of the same factors. Finally, we can also see situations where dust emitting playa systems flip between supply

  1. OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)

    SciTech Connect

    Sverdrup, George M.

    2000-08-20

    The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

  2. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  3. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume contains papers on analysis and control system techniques for electric power systems. Topics include: modeling and control of electric power systems, dynamic state estimation techniques, optimal power flow algorithms, and neural networks in power systems.

  4. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures.

  5. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, A.F.; Hayes, J.P.

    1998-05-05

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.

  6. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  7. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume covers topics pertaining to analysis and control system techniques for electric power systems. Topics include: computer relaying in power systems, power system generation expansion, expert systems for power systems, and power flow algorithms.

  8. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  9. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    PubMed

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  10. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS CHARACTERIZATION

    EPA Science Inventory

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multipl...

  11. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  12. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  13. Emission control of four-stroke motorcycle engine

    SciTech Connect

    Wu, C.Y.Y.; Peng, Y.Y.; Gau, T.H.

    1995-12-31

    Experimental studies of the intake-generated charge motion (swirl and tumble) and engine combustion were conducted in a 125 cc four-stroke motorcycle engine. In this work, a Variable Inlet Port (VIP) was designed to generate various levels of charge motion in different operation conditions. The static flow test and the engine experiments were performed to study the effects of inlet charge motion on the engine combustion, cycle variation, fuel consumption and exhaust emissions. The results show that the cycle variation decreased, the lean limit extended, and the burning rate and the fuel economy increased when the charge motion increased. With this new design of flow control system, the motorcycle can be run with lean mixture and drastically reduce the exhaust emissions and fuel consumption while still maintaining high specific power output.

  14. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  15. Emissions tracking system (ETS-PC) software

    SciTech Connect

    Weatherbee, J. Jr.; Kress, T.

    1997-12-31

    The U.S. EPA Acid Rain Division developed and is maintaining the Emissions Tracking System (ETS) to receive, store and analyze data from continuous emissions monitors (CEMs) submitted by utilities affected by the 1990 Clean Air Act. This paper will describe ETS-PC, a PC application developed by EPA to assist utilities in analyzing and submitting emission data files each quarter. ETS-PC includes quality assurance software which helps utilities identify possible errors in their quarterly data files (QDFs) prior to submission. It also includes communications software which allows utilities to transfer QDFs via modem directly to the EPA mainframe computer located in Research Triangle Park, NC. After a file is transferred, users are provided with immediate feedback from the mainframe in the form of a file transfer receipt and summary.

  16. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  17. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  18. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  19. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  20. 40 CFR 266.104 - Standards to control organic emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control organic emissions... Standards to control organic emissions. (a) DRE standard—(1) General. Except as provided in paragraph (a)(3... and removal efficiency (DRE) of 99.99% for all organic hazardous constituents in the waste feed....

  1. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  2. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  3. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  4. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  5. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Standards to control metals emissions... Standards to control metals emissions. (a) General. The owner or operator must comply with the metals standards provided by paragraphs (b), (c), (d), (e), or (f) of this section for each metal listed...

  6. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. The evolution of shipping emissions and the costs of recent and forthcoming emission regulations in the northern European emission control area

    NASA Astrophysics Data System (ADS)

    Johansson, L.; Jalkanen, J.-P.; Kalli, J.; Kukkonen, J.

    2013-06-01

    An extensive inventory of marine exhaust emissions is presented in the northern European emission control area (ECA) in 2009 and 2011. The emissions of SOx, NOx, CO2, CO and PM2.5 were evaluated using the Ship Traffic Emission Assessment Model (STEAM). We have combined the information on individual vessel characteristics and position reports generated by the Automatic Identification System (AIS). The emission limitations from 2009 to 2011 have had a significant impact on reducing the emissions of both SOx and PM2.5. The predicted emissions of SOx originated from IMO-registered marine traffic have been reduced by 33%, from 322 ktons to 217 ktons, in the ECA from 2009 to 2011. The corresponding predicted reduction of PM2.5 emissions was 20%, from 74 ktons to 59 ktons. The highest CO2 and PM2.5 emissions in 2011 were located in the vicinity of the coast of the Netherlands, in the English Channel, near the South-Eastern UK and along the busiest shipping lines in the Danish Straits and the Baltic Sea. The changes of emissions and the financial costs caused by various regulative actions since 2005 were also evaluated, based on the increased direct fuel costs. We also simulated the effects and direct costs associated with the forthcoming switch to low-sulfur distillate fuels in 2015. According to the projections for the future, there will be a reduction of 85% in SOx emissions and a~reduction of 50% in PM2.5 emissions in 2015, compared with the corresponding shipping emissions in 2011 in the ECA. The corresponding relative increase in fuel costs for all shipping varied between 10% and 63%, depending on the development of the prices of fuels and the use of the sulfur scrubber equipment.

  8. Technology for CO{sub 2} emission monitoring and control

    SciTech Connect

    Joyce, E.L. Jr.; Unkefer, P.J.; Pendergrass, J.H.; Parkinson, W.J.; Loose, V.W.; Brainard, J.R.

    1998-12-31

    The authors examined three specific areas relative to CO{sub 2} emissions and controls: (1) the effect of deregulation of the utility industry on emissions, (2) the role of advanced power systems in reducing emissions, and (3) developing CO{sub 2} mitigation technologies. In this work the Energy Technologies program office at Los Alamos attempted to initiate an integrated approach that includes a range of tasks involving both point and distributed CO{sub 2} control. The authors have examined evolving mitigation (separation and sequestration) technologies for CO{sub 2} disposal. The separation of hydrogen gas from high-temperature CO{sub 2}-containing streams is a critical component of carbon dioxide mitigation technology, and cost-effective point sequestration will require separation of CO{sub 2} from H{sub 2}. They investigated four types of separation techniques: two high-temperature membrane technologies, an intermediate-temperature membrane technology, and a separation technology based on the formation of CO{sub 2} hydrate compounds through reaction of CO{sub 2} with water at near freezing conditions. At Los Alamos, sequestration technologies are being developed along three principal areas: mineral sequestration of CO{sub 2}, the enhancement of natural sinks using biotechnology methods, and the conversion of CO{sub 2} to methanol using high-temperature photolysis.

  9. VOC emissions controls for aluminum cold rolling mills

    SciTech Connect

    Genoble, A.L.; Lagoe, D.J.; Wasyluk, W.J.R.

    1997-12-31

    This paper is a case history of retrofitting VOC emissions controls to two (2) aluminum cold rolling mills at an aluminum sheet complex in central New York. The plant site was located in the northeast ozone transport region, and it was necessary to achieve compliance with VOC emissions limitations. Emissions control equipment included high efficiency filters for VOC mists and a wash oil process for scrubbing VOC vapors. All rolling oil was recovered for reuse on site. A vacuum distillation process was used to separate wash oil from rolling oil. The equipment began operating in mid-1995, and long term results have proven the validity of the recovery concept. Total project costs were $7.2 million for two (2) 60,000 ACFM systems. Project duration from the date of the initial request for equipment price quotations to the first round of stack testing was twenty (20) months. The modular construction of the vacuum distillation equipment simplified field erection and shortened the duration of field work. Stack testing indicated overall VOC collection efficiencies that exceeded regulatory requirements. Initially, problems were experienced with Method 25 stack testing methodology. Final results were confirmed by two (2) independent methods.

  10. Crystal Phase Quantum Well Emission with Digital Control.

    PubMed

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-09-18

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  11. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe.

    PubMed

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-12-04

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.

  12. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe

    PubMed Central

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-01-01

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given. PMID:28060306

  13. CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Nielsen, Chris P.; McElroy, Michael B.; Zhang, Lin; Zhang, Jie

    2012-03-01

    A bottom-up methodology and an improved database of emission factors combining the latest domestic field measurements are developed to estimate the emissions of anthropogenic CO from China at national and provincial levels. The CO emission factors for major economic sectors declined to varying degrees from 2005 to 2009, attributed to improved energy efficiency and/or emission control regulations. Total national CO emissions are estimated at 173 Tg for 2005 and have been relatively stable for subsequent years, despite fast growth of energy consumption and industrial production. While industry and transportation sources dominated CO emissions in developed eastern and north-central China, residential combustion played a much greater role in the less developed western provinces. The uncertainties of national Chinese CO emissions are quantified using Monte Carlo simulation at -20% to +45% (95% confidence interval). Due to poor understanding of emission factors and activity levels for combustion of solid fuels, the largest uncertainties are found for emissions from the residential sector. The trends of bottom-up emissions compare reasonably to satellite observation of CO columns and to ground observations of CO2-CO correlation slopes. The increase in the ratio for emissions of CO2 relative to CO suggests that China has successfully improved combustion efficiencies across its economy in recent years, consistent with national policies to improve energy efficiency and to control criteria air pollutants.

  14. Temperature Dependence of Factors Controlling Isoprene Emissions

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  15. Temperature Dependence of Factors Controlling Isoprene Emissions

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  16. Cold-start hydrocarbon emissions control

    SciTech Connect

    1995-10-01

    This article describes an effective, energy-efficient strategy for dealing with this problem using HC traps and heat-exchange related catalyst beds that have been successfully tested. The worldwide regulatory climate for continued and dramatic reductions in vehicle exhaust emissions will continue unabated for some time. The best known of these mandates includes California Air Resources Board`s Low Emission Vehicle (CARB LEV) program, the Ozone Transport Commission`s recent petition to the EPA for partial adoption of CARB`s LEV program, and the European Economic Community`s proposed staged multi-tier approach to reduce auto exhaust pollution. Since up to 70% of hydrocarbon tailpipe emissions occur during the cold-start portion of the Federal Test Procedure (FTP), significant reductions in total FTP HC emissions must include a cold-start HC abatement strategy.

  17. Multivariable Control Systems

    DTIC Science & Technology

    1968-01-01

    one). Examples abound of systems with numerous controlled variables, and the modern tendency is toward ever greater utilization of systems and plants of this kind. We call them multivariable control systems (MCS).

  18. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  19. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    None, None

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  20. Assessment and control of chrysotile asbestos emissions from unpaved roads

    NASA Astrophysics Data System (ADS)

    Serra, R. K.; Connor, M. A., Jr.

    1981-05-01

    The findings of field surveys and a test program to assess chrysotile asbestos emissions generated by vehicular use of unpaved roads surfaced with crushed serpentinite rock are presented. Included are discussions of Federal asbestos regulations, sampling and analysis procedures, human health effects, and various emission control techniques. The Enviromental Protection Agency believes that asbestos emissions which occur from unpaved roads and other dusty sources surfaced with serpentinite should be reduced to the greatest extent practical. Local, State, and Federal agencies responsible for road maintenance in the limited areas where asbestos emissions occur are in the best position to assess local conditions and implement the most appropriate control measures.

  1. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz.

  2. Wisdom Appliance Control System

    NASA Astrophysics Data System (ADS)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  3. Improved Photon-Emission-Microscope System

    NASA Technical Reports Server (NTRS)

    Vu, Duc

    2006-01-01

    An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.

  4. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  5. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  6. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  7. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  8. Catalytic destruction vs. adsorption in controlling dioxin emission.

    PubMed

    Hsu, Wei Ting; Hung, Pao Chen; Chang, Moo Been

    2015-12-01

    This study investigates the removal efficiencies of PCDD/Fs achieved with a catalytic filter (CF) and with activated carbon injection followed by bag filter (ACI+BF) as applied in an industrial waste incinerator (IWI) and a hazardous waste incinerator (HWI), respectively. Catalytic filtration has been successfully applied to remove PCDD/Fs from gas streams. Comparing the CF to the ACI+BF system, it appears that the PCDD/F removal efficiency achieved with a CF is higher than that of an ACI+BF system. The PCDD/F emissions from both incinerators are well controlled to meet the regulatory limit of 0.1 ng I-TEQ/Nm(3). Additionally, the PCDD/F concentration in BF ash is higher than the regulation limit of Taiwan (1.0 ng I-TEQ/g). In contrast, the PCDD/F concentration in CF ash is only 0.274 ng I-TEQ/g. The difference is attributed to the fact that the ACI+BF system just transfers PCDD/Fs from gas phase to solid phase and further increases the PCDD/F concentration in fly ash, while CF technology effectively destroys the gas-phase PCDD/Fs. Therefore, the disposal of the fly ash discharged from CF would be less expensive compared with the fly ash discharged from the ACI+BF system. In this study, the PCDD/F emission factors of both incinerators are also established.

  9. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    NASA Astrophysics Data System (ADS)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  10. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  11. Optimizing the mix of strategies for control of vehicular emissions

    SciTech Connect

    Lejano, R.P.; Ayala, P.M.; Gonzales, E.A.

    1997-01-01

    A number of strategies for the control of vehicular emissions are being considered by the Philippine government to address Metropolitan Manila`s air quality problem. An analytical tool is needed for optimizing criteria pollutant reductions given the budgetary constraints. The simplest approach is to take costs and pollutant removals to be linear with each strategy`s scale of activity, and this is readily solved as a linear programming problem. Another approach is to use a dynamic system of weights which shift with progressive improvements in pollutant emissions. The two approaches yield somewhat different results, suggesting the sensitivity of the solution to the assumed weights. The study also illustrates the importance of a sound methodology for evaluating priorities given to different air quality goals. One such methodology may involve a polling of expert panels and the public to gain insight into the relative importance given to competing emissions reduction goals. An informal polling of resource agency staff was conducted and discussed in this paper. The authors take the position that proper planning involves tracing intermediate steps to the final outcome and not just focusing on the latter. 17 refs., 1 fig., 8 tabs.

  12. Does the magnetostriction control the acoustic emission?

    NASA Astrophysics Data System (ADS)

    Guyot, M.; Merceron, T.; Cagan, V.

    1990-01-01

    It is shown that the acoustic emission (AE) activity in polycrystalline YIG:Mn and Ni-Zn ferrites is proportional to the hysteresis losses, and increases with grain size, but cannot be related to the magnetostriction λ s contrary to the current theory of AE. Our interpretation attributes AE to the domain wall creation/annihilation process.

  13. CONTROLLING NOX EMISSION FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx ...

  14. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  15. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This volume covers topics related to analysis and control system techniques for electric power systems. Topics include: simulation of multimachine power system dynamics, computer simulation in electric distribution systems, transient stability assessment, dynamic stability analysis, and improved power system control techniques.

  16. Automated UV process analyzers/distributed control boost emission control process efficiency

    SciTech Connect

    Fabre, M.C.

    1987-10-01

    The Marathon Petroleum Company refinery in Garyville, LA, refines more than 200,000 bbl/day of crude oil. Waste process gases-H/sub 2/S and NH/sub 3/-are handled by a single system. Emission control efficiency and reliability needed to be improve in the H/sub 2/S and NH/sub 3/ acid gas conversion process. To maintain the EPA emission maximum of only 10 ppm H/sub 2/S, the process required almost continuous manual inspection. The need for frequent optical measurements, the susceptibility of process upset due to human error or steam variances, and stream overloading problems combined to make the process unreliable. In its ongoing effort to ensure maximum emission control efficiency, Marathathon retrofit the process to an automated self-diagnostic treatment and monitoring system in 1986. The multistep treatment process controls and treats Marathon;s acid gas-by-product through two existing Claus process units and SO/sub 2/-to-H/sub 2/S converters, a desuperheater, an amine scrubber and a thermal oxidizer. Critical to maintaining both the stack emission control and the efficiency of the process are a pair of automated UV-photometric analyzers. The instruments were incorporated to monitor the gas streams and to fine-tune the process equipment (through the plant's existing distributed control system) to meet variably operating conditions. Since the retrofitted and monitoring system became operational, Marathon has eliminated the compliance reporting problems that had formerly plaqued the plant. Stack efficiency (measuring stream content of SO/sub 2/) has been consistently maintained at levels of 50% or less of the allowable EPA maximum. By automating the analysis procedures, little hands-on-or visual maintenance, sample testing, calibration, and report preparation time are required, saving an estimated 60% in yearly operations and maintenance costs.

  17. Alternative control technology document for bakery oven emissions. Final report

    SciTech Connect

    Sanford, C.W.

    1992-12-01

    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  18. Control of odour emission in wastewater treatment plants by direct and undirected measurement of odour emission capacity.

    PubMed

    Zarra, T; Giuliani, S; Naddeo, V; Belgiorno, V

    2012-01-01

    Odour emissions from wastewater treatment plants (WWTPs) are considered to be the main causes of disturbance noticed by the exposed population and have relevant impacts on both tourism economy and land costs. Odour impact from WWTPs is generated by primary and secondary odour emissions. Primary odour emissions are related especially to the wastewater type and variability discharged into the sewer and directed to the WWTP, and to the wastewater collection and sewage system. Secondary odours are related to the treatment units of the plant. Several studies describe the key role of primary odour emissions and how they are strongly related to odour impacts of WWTPs. In this way, a opportune characterization of the emission capacity of primary odour could be an effective way to control odour emission in the WWTPs. In this study the odour emission capacity (OEC) of different domestic sewers was described and investigated; a correlation between the OEC and the main physical-chemical parameters of wastewater quality was also carried out. Results of this study identify the optimum conditions for sampling and measuring OEC in wastewaters and define its dependence by wastewater quality. These results can contribute to setting the standards for the maximum odourant content of wastewater that are discharged into the publicly owned sewage system.

  19. 40 CFR 63.3554 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system efficiency? 63.3554 Section 63.3554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements for the Control Efficiency/outlet Concentration Option § 63.3554 How do I determine the emission capture system efficiency? The capture efficiency of your emission capture system must be 100 percent...

  20. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  1. Radio emission from RS CVn binary systems

    SciTech Connect

    Doiron, D.J.

    1984-01-01

    The RS CVn binary stellar systems UX Ari, HR 1099, AR Lac, HR 5110, II Peg, lambda And, and SZ Psc were investigated by use of radio interferometry during the period from July 1982 through August 1983. Interferometry took two forms: Very Large Array (VLA) observations and Very Long Baseline Interferometry (VLBI). The VLA observations determined the characteristic polarization and flux behavior of the centimeter wavelength radio emission. The observed spectral index was near zero during quiescent periods, rising to between 0.5 and 1.0 during active periods. No net linear polarization is observed to a limit of 1.7%. This is expected since the Faraday depth of thermal electrons deduced from x-ray observations is approx. 10/sup 5/. Circular polarization is observed to be less than 20% at all frequencies often with a helicity reversal between 1.6 GHz and 5 GHz. The VLBI observations have shown that the brightness temperatures are often T/sub B/ approx.> 10/sup 10/ /sup 0/K and size sources smaller than or comparable to the overall size of the binary system. These data are consistent with incoherent gyrosynchrotron emission from mildly relativistic electrons which are optically thick to their own radiation at 1.6 GHz and optically thin at 5 GHz and above. The spectral behavior suggests that the radio emission is due to a power-law distribution of electrons.

  2. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  3. Controls on methane emissions from Alnus glutinosa saplings.

    PubMed

    Pangala, Sunitha R; Gowing, David J; Hornibrook, Edward R C; Gauci, Vincent

    2014-02-01

    Recent studies have confirmed significant tree-mediated methane emissions in wetlands; however, conditions and processes controlling such emissions are unclear. Here we identify factors that control the emission of methane from Alnus glutinosa. Methane fluxes from the soil surface, tree stem surfaces, leaf surfaces and whole mesocosms, pore water methane concentrations and physiological factors (assimilation rate, stomatal conductance and transpiration) were measured from 4-yr old A. glutinosa trees grown under two artificially controlled water-table positions. Up to 64% of methane emitted from the high water-table mesocosms was transported to the atmosphere through A. glutinosa. Stem emissions from 2 to 22 cm above the soil surface accounted for up to 42% of total tree-mediated methane emissions. Methane emissions were not detected from leaves and no relationship existed between leaf surface area and rates of tree-mediated methane emissions. Tree stem methane flux strength was controlled by the amount of methane dissolved in pore water and the density of stem lenticels. Our data show that stem surfaces dominate methane egress from A. glutinosa, suggesting that leaf area index is not a suitable approach for scaling tree-mediated methane emissions from all types of forested wetland.

  4. Biotic systems to mitigate landfill methane emissions.

    PubMed

    Huber-Humer, Marion; Gebert, Julia; Hilger, Helene

    2008-02-01

    Landfill gases produced during biological degradation of buried organic wastes include methane, which when released to the atmosphere, can contribute to global climate change. Increasing use of gas collection systems has reduced the risk of escaping methane emissions entering the atmosphere, but gas capture is not 100% efficient, and further, there are still many instances when gas collection systems are not used. Biotic methane mitigation systems exploit the propensity of some naturally occurring bacteria to oxidize methane. By providing optimum conditions for microbial habitation and efficiently routing landfill gases to where they are cultivated, a number of bio-based systems, such as interim or long-term biocovers, passively or actively vented biofilters, biowindows and daily-used biotarps, have been developed that can alone, or with gas collection, mitigate landfill methane emissions. This paper reviews the science that guides bio-based designs; summarizes experiences with the diverse natural or engineered substrates used in such systems; describes some of the studies and field trials being used to evaluate them; and discusses how they can be used for better landfill operation, capping, and aftercare.

  5. Quantum statistical ensemble for emissive correlated systems.

    PubMed

    Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N

    2016-06-01

    Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.

  6. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  7. VOC from Vehicular Evaporation Emissions: Status and Control Strategy.

    PubMed

    Liu, Huan; Man, Hanyang; Tschantz, Michael; Wu, Ye; He, Kebin; Hao, Jiming

    2015-12-15

    Vehicular evaporative emissions is an important source of volatile organic carbon (VOC), however, accurate estimation of emission amounts and scientific evaluation of control strategy for these emissions have been neglected outside of the United States. This study provides four kinds of basic emission factors: diurnal, hot soak, permeation, and refueling. Evaporative emissions from the Euro 4 vehicles (1.6 kg/year/car) are about four times those of U.S. vehicles (0.4 kg/year/car). Closing this emissions gap would have a larger impact than the progression from Euro 3 to Euro 6 tailpipe HC emission controls. Even in the first 24 h of parking, China's current reliance upon the European 24 h diurnal standard results in 508 g/vehicle/year emissions, higher than 32 g/vehicle/year from Tier 2 vehicles. The U.S. driving cycle matches Beijing real-world conditions much better on both typical trip length and average speed than current European driving cycles. At least two requirements should be added to the Chinese emissions standards: an onboard refueling vapor recovery to force the canister to be sized sufficiently large, and a 48-h evaporation test requirement to ensure that adequate purging occurs over a shorter drive sequence.

  8. Investigations of the Impact of Biodiesel Metal Contaminants on Emissions Control Devices

    SciTech Connect

    Brookshear, Daniel W; Lance, Michael J; Mccormick, Robert; Toops, Todd J

    2017-01-01

    Biodiesel is a renewable fuel with the potential to displace a portion of petroleum use. However, as with any alternative fuel, in order to be a viable choice it must be compatible with the emissions control devices. The finished biodiesel product can contain up to 5 ppm Na + K and 5 ppm Ca + Mg, and these metal impurities can lead to durability issues with the devices used to control emissions in diesel vehicles. Significant work has been performed to understand how the presence of these metals impacts each individual component of diesel emissions control systems, and this chapter summarizes the findings of these research efforts.

  9. Self-organized global control of carbon emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  10. Control and dynamic systems

    SciTech Connect

    Leondes, C.T. . Dept. of Electrical Engineering)

    1991-01-01

    This book covers analysis and control system techniques for electric power systems. Topics include: concurrent processing in power system analysis, power system protection, voltage collapse, reliability techniques in large electric power systems, optimization in hydroelectric systems, and linear programming methods for optimal energy plant operation.

  11. Fugitive Emission Control for the APE 1236 Deactivation Furnace

    DTIC Science & Technology

    2007-03-01

    at Tooele Army Depot ( TEAD ) to contain fugitive emissions. A monitoring system was designed and installed to measure and record the effects of...door brought the average pressure to negative and the TEAD furnace into compliance with fugitive emissions requirements. DISCLAIMER: The contents...Pollutants NI National Instruments Corporation RCRA Resource Conservation and Recovery Act TEAD Tooele Army Depot UPS uninterrupted power supply

  12. Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Liu, Huan; Wu, Xiaomeng; Zhou, Yu; Yao, Zhiliang; Fu, Lixin; He, Kebin; Hao, Jiming

    2013-09-01

    The Guangzhou government adopted many vehicle emission control policies and strategies during the five-year preparation (2005-2009) to host the 2010 Asian Games. This study established a multi-year emission inventory for vehicles in Guangzhou during 2005-2009 and estimated the uncertainty in total vehicle emissions by taking the assumed uncertainties in fleet-average emission factors and annual mileage into account. In 2009, the estimated total vehicle emissions in Guangzhou were 313 000 (242 000-387 000) tons of CO, 60 900 (54 000-70 200) tons of THC, 65 600 (56 800-74 100) tons of NOx and 2740 (2100-3400) tons of PM10. Vehicle emissions within the urban area of Guangzhou were estimated to be responsible for ˜40% of total gaseous pollutants and ˜25% of total PM10 in the entire city. Although vehicle use intensity increased rapidly in Guangzhou during 2005-2009, vehicle emissions were estimated to have been reduced by 12% for CO, 21% for THC and 20% for PM10 relative to those in 2005. NOx emissions were estimated to have remained almost constant during this period. Compared to the "without control" scenario, 19% (15%-23%) of CO, 20% (18%-23%) of THC, 9% (8%-10%) of NOx and 16% (12%-20%) of PM10 were estimated to have been mitigated from a combination of the implementation of Euro III standards for light-duty vehicles (LDVs) and heavy-duty diesel vehicles and improvement of fuel quality. This study also evaluated several enhanced vehicle emission control actions taken recently. For example, the enhanced I/M program for LDVs was estimated to reduce 11% (9%-14%) of CO, 9% (8%-10%) of THC and 2% (2%-3%) of NOx relative to total vehicle emissions in 2009. Total emission reductions by temporary traffic controls for the Asian Games were estimated equivalent to 9% (7%-11%) of CO, 9% (8%-10%) of THC, 5% (5%-6%) of NOx and 10% (8%-13%) of PM10 estimated total vehicle emissions in 2009. Those controls are essential to further vehicle emission mitigation in Guangzhou

  13. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  14. Diesel particulate emission control without engine modifications

    SciTech Connect

    Filowitz, M.S.; Vataru, M.

    1989-01-01

    This paper describes an ashless, fuel supplement which was found to typically reduce diesel particulate emissions by over 30% while significantly improving fuel economy and power output without any modifications to existing diesel engines or fuels. The treating cost is an order of magnitude less than the estimated cost of reducing aromatic content at the refinery to achieve particulate reductions. The particulate reduction is virtually all from the carbon (soot) fraction. The reduced soot formation translates into less abrasives and less soot-loading stress on the engine oil. Diesel tests conducted are also discussed.

  15. Membrane technology for the control and recovery of vapor emissions from storage tanks

    SciTech Connect

    Gottschlich, D.; Simmons, V.; Jacobs, M.

    1995-12-31

    Organic vapor emissions from storage tanks are increasingly subject to control and regulation from both national and local laws. Title 1 of the Clean Air Act Amendments of 1990 require local authorities to control emissions of VOCs. Additional regulations have been imposed at the national level on hazardous air pollutants (HAPs). Membrane separation, commercialized within the last decade for hydrogen recovery and nitrogen generation applications, is now emerging as an attractive method for control of VOC emissions from a variety of sources, including storage tank emissions. MTR`s vapor recovery process combines both membrane separation and condensation, making it suitable for a broad range of applications. Membranes work like filters -- except here the larger vapor molecule goes through the membrane, while the smaller air molecules are retained. The membrane process has many advantages over other control techniques: the vapor is recovered as a liquid rather than destroyed; it is a continuous process not requiring regeneration; high removal efficiencies can be achieved (90--99.99%); variations in feed conditions (air flow, VOC concentration or species) are easily accommodated; and no secondary wastes are produced. The presentation includes a more detailed description of the membrane separation process, and describes several applications of MTR`s VaporSep technology for controlling vapor emissions. The first application is the control of gasoline vapors at service stations. Another application is recovery of various VOCs from storage tank emissions at a solvent recovery facility. The final application if a membrane system to control cyclohexane emissions from a storage tank. This system can operate in two separate modes: a low-flow mode to control emissions due to tank breathing, and a high-flow mode to control emissions from cleaning operations.

  16. Development of novel emission tomography system

    NASA Astrophysics Data System (ADS)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  17. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  18. Boiler control systems engineering

    SciTech Connect

    Gilman, J.

    2005-07-01

    The book provides in-depth coverage on how to safely and reliably control the firing of a boiler. Regardless of the capacity or fuel, certain fundamental control systems are required for boiler control. Large utility systems are more complex due to the number of burners and the overall capacity and equipment. This book covers engineering details on control systems and provides specific examples of boiler control including configuration and tuning. References to requirements are based on the 2004 NFPA 85 along with other ISA standards. Detailed chapters cover: Boiler fundamentals including piping and instrument diagrams (P&IDs) and a design basis checklist; Control of boilers, from strategies and bumpless transfer to interlock circuitry and final control elements; Furnace draft; Feedwater; Coal-fired boilers; Fuel and air control; Steam temperature; Burner management systems; Environment; and Control valve sizing. 2 apps.

  19. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  20. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  1. Intermittent Control Systems

    ERIC Educational Resources Information Center

    Montgomery, Thomas L.; And Others

    1975-01-01

    The technique of intermittent control systems for air quality control as developed and used by the Tennessee Valley Authority is investigated. Although controversial, all Tennessee Valley Authority sulfur dioxide elimination programs are scheduled to be operational this year. Existing or anticipated intermittent control systems are identified. (BT)

  2. Electric-utility emissions: control strategies and costs

    SciTech Connect

    Van Horn, A.; Arpi, D.; Bowen, C.; Chapman, R.; Cooper, R.; Greenfield, S.; Moffett, M.; Wells, M.

    1981-04-01

    The Utility Simulation Model has been used to project the emissions, costs, and operating decisions of the electric utilities for each year between 1980 and 2000. For each steam generating unit in the United States, the model simulates the compliance decision, including choice of fuels and pollution controls, as well as emissions and pollution control costs. Results are aggregated to state, regional, and national levels. The results presented here, summarized by strategy for selected years, include SO/sub 2/ and NO/sub x/ emissions, annual revenue requirements, the average price of electricity, dollars per ton of SO/sub 2/ reduced, coal capacity with FGD, utility fuel consumption, and regional production of coal for utility consumption. Because the strategies analyzed were aimed at SO/sub 2/ reduction, the results focus on the emissions and costs of controlling SO/sub 2/. This report is not intended to provide complete analysis and interpretation of the numerical results given in Section 3.

  3. Ergatic dynamic control systems

    NASA Technical Reports Server (NTRS)

    Pavlov, V. V. (Editor); Drozdova, T. I. (Editor); Antomonov, Y. G. (Editor); Golego, V. N. (Editor); Ivakhnenko, A. G. (Editor); Meleshev, A. M. (Editor)

    1977-01-01

    Synthesis and analysis of systems containing a man in their control circuits are considered. The concepts of ergonomics and ergatic systems are defined, and tasks and problems of ergonomics are outlined. The synthesis of the structure of an astronautic ergatic organism is presented, as well as the synthesis of nonstationary ergatic systems. Problems of selecting the criteria for complex systems are considered, and the results are presented from a study of ergatic control systems with any degree of human participation.

  4. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    Controller ................... 38 Sampled-Data Performance Analysis ............. 44 Doyle and Stein Technique in Discrete-Time Systems - 1...48 Doyle and Stein Technique in Discretd-Time System.s - 2 ................................. 50 Enhancing Robustness of... Technique Extended to Sampled-Data Controllers ................ 73 G715 Robustness Enhancement by Directly D"?C TAB E

  5. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Treesearch

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  6. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  7. Comparison of odour emissions from animal housing systems with low ammonia emission.

    PubMed

    Ogink, N W; Koerkamp, P W

    2001-01-01

    Nuisance from livestock facilities is an increasing problem in densely populated areas like The Netherlands. It is in the interest of both farmers and society that housing systems and management methods are developed to minimise the emission of odour. An odour research programme has been completed in The Netherlands to investigate odour emission from both conventional housing systems and systems designed for low ammonia emission. The aim of this paper is to compare within each animal category the odour emission of a number of swine housing systems and poultry housing systems. Emission measurements including 17 housing systems were carried out at 24 livestock facilities. Results showed that investigated systems with low ammonia emission for fattening pigs and sows were significantly (p<0.025) lower than conventional systems, being 50%, or more, lower. For laying hens and broilers, housing systems with low ammonia emission showed odour emissions that in most cases only differed slightly from conventional systems. Correlations between ammonia and odour concentration (within facilities) did not show a consistent pattern. It is concluded that methods for restriction of emitting (slurry) surface in pig husbandry may reduce both ammonia and odour emission. In poultry housings the effects of methods for ammonia reduction that involve drying of fresh manure or litter cannot be directly extrapolated to odour emision.

  8. Control of Nonlinear Systems.

    DTIC Science & Technology

    1980-02-26

    6-7 C. Minimum Energy Regulators for Commutative Bilinear Systems .................... ........ 8-9 D. Control Law.s for Certain Aerospace...class of nonlinear systems (3,10]. (c) Minimum energy regulators for commutative bilinear systems [3,10]. (D) Control laws for certain aerospace...With Delay in Control," IEEE Trans. on Auto Contr., Vol. AC-20, pp. 702-704, 1975, and [3].) - !. 8 C. Minimum Energy Regulators for Commutative Bilinear

  9. Control Systems & LEED

    SciTech Connect

    Cooperman, Alissa; Dieckmann, John; Brodrick, James

    2012-06-01

    This article discusses the LEED guidelines (2009 v3), and corresponding points, that can only be attained using control systems for lighting, HVAC, and/or the entire building. Integrating and centralizing control systems allows for better building management, energy savings and can potentially award 29 points towards certification across the following categories: Sustainable Sites, Energy & Atmosphere, and Indoor Air Quality. In closing, potential energy savings are highlighted and the overall market potential for control systems are summarized.

  10. The ILC control system.

    SciTech Connect

    Carwardine, J.; Saunders, C.; Arnold, N.; Lenkszus, F.; Rehlich, K.; Simrock, S.; Banerjee, b.; Chase, B.; Gottschalk, E.; Joireman, P.; Kasley, P.; Lackey, S.; McBride, P.; Pavlicek, V.; Patrick, J.; Votava, M.; Wolbers, S.; Furukawa, K.; Michizono, S.; Larson, R.S.; Downing, R.; DESY; FNAL; SLAC

    2007-01-01

    Since the last ICALEPCS, a small multi-region team has developed a reference design model for a control system for the International Linear Collider as part of the ILC Global Design Effort. The scale and performance parameters of the ILC accelerator require new thinking in regards to control system design. Technical challenges include the large number of accelerator systems to be controlled, the large scale of the accelerator facility, the high degree of automation needed during accelerator operations, and control system equipment requiring 'Five Nines' availability. The R&D path for high availability touches the control system hardware, software, and overall architecture, and extends beyond traditional interfaces into the technical systems. Software considerations for HA include fault detection through exhaustive out-of-band monitoring and automatic state migration to redundant systems, while the telecom industry's emerging ATCA standard - conceived, specified, and designed for High Availability - is being evaluated for suitability for ILC front-end electronics.

  11. Control and optimization system

    DOEpatents

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  12. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  13. Integrated blending control system

    SciTech Connect

    Cogbill, R.B.; Dodd, T.J.; Heilman, P.W.; Heronemus, D.L.; Sears, L.R.; Berryman, L.N.; Baker, R.L.; Guffee, L.E.; Prucha, D.A.; Roberts, D.M.

    1989-07-25

    This patent describes a proppant control system. It comprises: storage bin means for storing particulate material; surge bin means for receiving a flow of the particulate material from the storage bin means; first conveyor means for providing a flow of particulate material to the surge bin means from the storage bin means; second conveyor means for transferring a controllable quantity of the particulate material from the surge bin means; and proppant control means. The control means include: first speed control means for remotely controlling the speed of the first conveyor means; and second speed control means for remotely controlling the speed of the second conveyor means.

  14. Characterization and Control of Nanoparticle Emission during 3D Printing.

    PubMed

    Kwon, Ohhun; Yoon, Chungsik; Ham, Seunghon; Park, Jihoon; Lee, Jinho; Yoo, Danbi; Kim, Yoojin

    2017-08-30

    This study aimed to evaluate particle emission characteristics and to evaluate several control methods used to reduce particle emissions during three-dimensional (3D) printing. Experiments for particle characterization were conducted to measure particle number concentrations, emission rates, morphology, and chemical compositions under manufacturer-recommended and consistent-temperature conditions with seven different thermoplastic materials in an exposure chamber. Eight different combinations of the different control methods were tested, including an enclosure, an extruder suction fan, an enclosure ventilation fan, and several types of filter media. We classified the thermoplastic materials as high emitter (>10(11) #/min), medium emitters (10(9) #/min -10(11) #/min), and low emitters (<10(9) #/min) based on nanoparticle emissions. The nanoparticle emission rate was at least 1 order of magnitude higher for all seven filaments at the higher consistent extruder temperature than at the lower manufacturer-recommended temperature. Among the eight control methods tested, the enclosure with a high-efficiency particulate air (HEPA) filter had the highest removal effectiveness (99.95%) of nanoparticles. Our recommendations for reducing particle emissions include applying a low temperature, using low-emitting materials, and instituting control measures like using an enclosure around the printer in conjunction with an appropriate filter (e.g., HEPA filter) during 3D printing.

  15. Modeling of Control Costs, Emissions, and Control Retrofits for Cost Effectiveness and Feasibility Analyses

    EPA Pesticide Factsheets

    Learn about EPA’s use of the Integrated Planning Model (IPM) to develop estimates of SO2 and NOx emission control costs, projections of futureemissions, and projections of capacity of future control retrofits, assuming controls on EGUs.

  16. LSST camera control system

    NASA Astrophysics Data System (ADS)

    Marshall, Stuart; Thaler, Jon; Schalk, Terry; Huffer, Michael

    2006-06-01

    The LSST Camera Control System (CCS) will manage the activities of the various camera subsystems and coordinate those activities with the LSST Observatory Control System (OCS). The CCS comprises a set of modules (nominally implemented in software) which are each responsible for managing one camera subsystem. Generally, a control module will be a long lived "server" process running on an embedded computer in the subsystem. Multiple control modules may run on a single computer or a module may be implemented in "firmware" on a subsystem. In any case control modules must exchange messages and status data with a master control module (MCM). The main features of this approach are: (1) control is distributed to the local subsystem level; (2) the systems follow a "Master/Slave" strategy; (3) coordination will be achieved by the exchange of messages through the interfaces between the CCS and its subsystems. The interface between the camera data acquisition system and its downstream clients is also presented.

  17. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  18. Characterization of emissions from combustion sources: controlled studies

    SciTech Connect

    Tucker, W.G.

    1987-01-01

    This paper summarizes Session I papers (given at the EPA Workshop on Characterization of Contaminant Emissions from Indoor Sources, Chapel Hill, NC, May 1985) that illustrate the progress made to date on characterizing indoor-combustion emissions from unvented space heaters, gas appliances, and sidestream cigarette smoke. The state of knowledge of such emissions and their controllability is summarized by four general statements: (1) Unvented gas-fired appliances are important sources of indoor CO and NOx, but not of organic emissions; (2) Important combustion sources of indoor organics, include smoking and possibly kerosene heaters; (3) The extent of the problems of leakage from vented appliances is simply not known; (4) Indoor combustion sources do not appear to present major problems with controllability, if source removal is an acceptable alternative. From an engineering standpoint, the most-challenging issue is burner design changes for unvented appliances.

  19. Controlling thermal emission of phonon by magnetic metasurfaces

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-02-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications.

  20. Controlling thermal emission of phonon by magnetic metasurfaces

    PubMed Central

    Zhang, X.; Liu, H.; Zhang, Z. G.; Wang, Q.; Zhu, S. N.

    2017-01-01

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications. PMID:28157206

  1. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  2. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  3. Controlling thermal emission of phonon by magnetic metasurfaces.

    PubMed

    Zhang, X; Liu, H; Zhang, Z G; Wang, Q; Zhu, S N

    2017-02-03

    Our experiment shows that the thermal emission of phonon can be controlled by magnetic resonance (MR) mode in a metasurface (MTS). Through changing the structural parameter of metasurface, the MR wavelength can be tuned to the phonon resonance wavelength. This introduces a strong coupling between phonon and MR, which results in an anticrossing phonon-plasmons mode. In the process, we can manipulate the polarization and angular radiation of thermal emission of phonon. Such metasurface provides a new kind of thermal emission structures for various thermal management applications.

  4. Vehicular Diesel control emissions benefit assessment in Mexico City

    NASA Astrophysics Data System (ADS)

    Garcia-Reynoso, J.; Jazcilevich, A. D.; Ruiz-Suarez, L.; Cruz-Nuñez, X.; Rojas, A. R.; Tripp, M. R.

    2013-12-01

    Diesel vehicles contribute in an important proportion to the particle and black carbon (BC) ambient concentrations in urban areas. These pollutants can effect the climate and health. The average age of the Diesel fleet in Mexico is 15 year-old. An introduction of new technologies and retrofit systems can reduce emissions from this type of vehicles. A set of policies were selected and applied in order to identify their economic benefits in health. An air quality model was used to obtain ambient concentrations from the emissions and specific methodology for emissions inventory adjustment was developed for this project. Preliminary results show an important benefit due to the improvement of the emissions reduction from the Diesel fleet. PM2.5 differences for reduction scenario case 1 and base case. Output from WRF-chem using 2005 Naional Emissions Inventory Reductions obtained using data from the initial fleet, fleet temporal variation and substitution policies.

  5. Optical control of the emission direction of a quantum dot

    SciTech Connect

    Luxmoore, I. J.; Wasley, N. A.; Fox, A. M.; Skolnick, M. S.; Ramsay, A. J.; Thijssen, A. C. T.; Oulton, R.; Hugues, M.

    2013-12-09

    Using the helicity of a non-resonant excitation laser, control over the emission direction of an InAs/GaAs quantum dot is demonstrated. The quantum dot is located off-center in a crossed-waveguide structure, such that photons of opposite circular polarization are emitted into opposite waveguide directions. By preferentially exciting spin-polarized excitons, the direction of emission can therefore be controlled. The directional control is quantified by using the ratio of the intensity of the light coupled into the two waveguides, which reaches a maximum of ±35%.

  6. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  7. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  8. SUMMARY REPORT CONTROL OF NOX EMISSIONS BY REBURNING

    EPA Science Inventory

    This report covers NOx control employing reburning technology: A new, effective method of controlling NOx emissions from a wide range of stationary combustion sources including large, coal-fired, utility boilers. Although reburning potentially is applicable ...

  9. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  10. Novel microsatellite control system

    SciTech Connect

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1996-12-31

    The authors are developing extremely simple yet quite capable analog pulse-coded neural networks for smaller-faster-cheaper spacecraft attitude and control systems. They will demonstrate a prototype microsatellite that uses the novel control system to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source.

  11. Systems Modelling and Control.

    ERIC Educational Resources Information Center

    Kershenbaum, L. S.; And Others

    1980-01-01

    Describes aims, objectives content, and instructional strategies of a course in systems modelling and control at Imperial College, England. Major problem areas include multivariable control system design, estimation and filtering, and the design and use of adaptive "self-tuning" regulators. (Author/JN)

  12. Reduction of chlorofluorocarbon emissions from refrigeration systems

    SciTech Connect

    Cordova, A.; Kennicott, M.A.

    1992-09-01

    Recently enacted State and Federal legislation, (The Clean Air Act and Colorado Senate Bill 77), and the implementation of regulations for each, forbid the intentional release of ozone depleting chlorofluorocarbons(CFCs) from refrigeration and air conditioning systems to the atmosphere. In addition, an international agreement (The Montreal Protocol), calls for CFC manufacturing reductions, which began in 1991, and eventual discontinuation. The declining supply and resultant escalating costs of CFCs are additional driving forces toward conservation and reuse of present refrigerant resources. Rocky Flats Plant (RFP) currently has an estimated 42,000 pounds of CFCs in refrigeration and air conditioning systems. The purpose of this paper is to discuss steps being taken at RFP toward the abatement of CFC releases. The main thrust of our efforts is the use of a refrigerant management system, used to recover and recycle our current CFC stock. Additional methods of further reducing CFC emissions will also be discussed. These include the installation of state-of-the-art oil filtration systems on major chiller units, installation of spring-loaded pressure relief valves and the retrofitting of major chiller units to accept less harmful, alternative refrigerants.

  13. Soil acidification in China: is controlling SO2 emissions enough?

    PubMed

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.

  14. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  15. Analyzing Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    Interactive controls analysis (INCA) program developed to provide user-friendly environment for design and analysis of linear control systems, primarily feedback control. Designed for use with both small- and large-order systems. Using interactive-graphics capability, INCA user quickly plots root locus, frequency response, or time response of either continuous-time system or sampled-data system. Configuration and parameters easily changed, allowing user to design compensation networks and perform sensitivity analyses in very convenient manner. Written in Pascal and FORTRAN.

  16. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  17. Control system testing

    NASA Astrophysics Data System (ADS)

    Whittler, W. H.; Collart, R. E.

    1984-08-01

    A three stage process of ground testing of the Space Telescope Pointing Control System is used for verification prior to on-orbit operation. First, development tests are conducted in a laboratory environment using flight/engineering model control sensor and actuators configured with an engineering model of the flight computer and data management system breadboards. These development tests validate the results of computer simulations predicting control system performance. Integration tests bring together flight system elements and software interfaced to a software simulation of vehicle dynamics to confirm closed loop performance. The final ground test phase, flight systems testing, is conducted on the fully assembled Space Telescope, verifies interfaces with the Fine Guidance Sensors and includes a thermal vacuum testing period. During the final test phase, the Point Control System is exercised with the dynamics simulator running in real time.

  18. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect

    Heaphy, J.P.; Carbonara, J.; Litzke, W.; Butcher, T.A.

    1993-12-31

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  19. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 40 CFR 1060.104 - What running loss emission control requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND.... (3) Get an approved Executive Order from the California Air Resources Board showing that your system meets applicable running loss standards in California. (c) If you are subject to both running loss and...

  1. PRESSURE SYSTEM CONTROL

    DOEpatents

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  2. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  3. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  4. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    PubMed

    Arvanitis, Costas D; Livingstone, Margaret S; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2) = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  5. New emission controls for Missouri batch-type charcoal kilns

    SciTech Connect

    Yronwode, P.; Graf, W.J.

    1999-07-01

    Charcoal kilns have been exempted from air emission regulation in the state of Missouri. Today, 80% of US charcoal production takes place in Missouri. As a result of a petition filed by people in the area around an installation in southern Missouri, the US Environmental Protection Agency (EPA) set up air monitors and measured ambient air levels at that charcoal manufacturing installation. These monitors yielded the highest particulate matter less than 10 micron (PM{sub 10}) levels ever recorded in the state. Earlier stack testing at another charcoal manufacturing installation indicated that toxics and carcinogens are present in charcoal kiln air emissions. A Charcoal Kiln Workgroup was formed to determine the Best Available Control Technology (BACT) for charcoal kilns and to draft a charcoal kiln rule that requires BACT. The BACT report determined that afterburners were suitable for controlling emissions from batch-type charcoal kilns. In addition, the charcoal industry supported incorporating the BACT limits and requirements into an enforceable state rule and submitting this rule to the EPA for federal approval. A consent agreement between the EPA and three major charcoal companies was signed with provisions to install, operate, and maintain emission control devices on charcoal kilns. This agreement was to settle complaints alleging that the three major charcoal producers had failed to report toxic air emissions to federal and state regulators. The agreement provided that industry would install control devices on a set schedule with some charcoal kilns being shut down.

  6. Factors controlling emissions of dimethylsulphide from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, Stuart G.; King, Gary M.

    1987-01-01

    Salt marshes are presently identified as systems exhibiting high area-specific sulfur emission in the form of dimethylsulfide (DMS) and H2S, with the former predominating in vegetated areas of the marshes. Attention is presently given to the distribution of DMS in salt marshes; it is found that this compound primarily arises from physiological processes in the leaves of higher plants, especially the grass species Spartina alterniflora. Uncertainties associated with DMS emission measurements are considered.

  7. Plasmonic beaming and active control over fluorescent emission.

    PubMed

    Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L

    2011-01-01

    Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

  8. EPA moves to control offshore emissions

    SciTech Connect

    Not Available

    1991-12-09

    This paper reports that except for most of the Gulf Coast, the Environmental Protection Agency proposes to hold all U.S. offshore rigs and platforms within about 28 miles from shore to the same standards as onshore facilities. EPA estimated compliance will cost the oil industry $2.2 million/year for all sources on the Outer Continental Shelf. The rule, the first EPA has proposed to control air pollution from OCS operations, covers drilling and production off Alaska, the Pacific coast states, the Atlantic coast states, and the Florida Gulf Coast. It does not affect OCS areas off Texas, Louisiana, Mississippi, and Alabama.

  9. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  10. Controlling H{sub 2}S emissions

    SciTech Connect

    Nagl, G.J.

    1997-03-01

    With its signature rotten egg smell, hydrogen sulfide (H{sub 2}S) is not only odorous, but corrosive and toxic, too. It is produced naturally, by the anaerobic decomposition of sulfur-bearing materials, and synthetically, by a host of chemical process operations, including hydrogenation and hydrodesulfurization and coking. Many processes have been developed to convert H{sub 2}S to innocuous forms, such as elemental sulfur and sulfates. Selecting the best one depends on the overall composition and variability of the gas stream, the concentration of H{sub 2}S present, and the absolute quantity of H{sub 2}S to be removed. This article describes the advantages and disadvantages of seven H{sub 2}S removal systems. Described are: the Claus process, chemical oxidants, caustic scrubbers, adsorption, H{sub 2}S scavengers, amine absorption units, and liquid-phase oxidation systems.

  11. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  12. Environmental controls on Pan-Arctic wetland methane emissions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Bohn, Theodore; Lettenmaier, Dennis

    2015-04-01

    Environmental conditions such as soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane emissions from northern wetlands. We investigated the spatio-temporal distributions of influence of these factors over northern wetland methane emissions via the Variable Infiltration Capacity (VIC) model. We simulated methane emissions from wetlands across the Pan-Arctic domain over the period 1948-2006, with annual average emissions of 35.1±6.7 TgCH4/year. From control simulations that each held one environmental factor constant, we characterized sensitivities to air temperature, precipitation, incident long- and short-wave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Trade-offs between air temperature and precipitation caused maximal emissions to occur along a line in precipitation-temperature space with a slope of approximately 13 mm month-1 / K, leading to separation of wetlands into various combinations of water-limited and temperature-limited regimes. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain tended to be positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) tended to be positively correlated with air temperature. Over the period 1960-2006, emissions increased by 20%, over 90% of which can be attributed to climate change, with summer air temperatures explaining the majority of the variance. We estimated future emissions in response to CMIP5 model projections under the RCP4.5 scenario via two methods: (1) the VIC model and (2) the temperature- and precipitation-dependent sensitivities computed from the historical simulation. The two methods yielded similar projections of emissions, with end-of-century emissions at 142% of present-day levels, accompanied by

  13. Current market for industrial minerals in SO sub 2 emission control in Kentucky

    SciTech Connect

    Dever, G.R. Jr. )

    1989-01-01

    During 1989 and 1990 Congress is expected to consider proposed amendments of the Federal Clean Air Act. One proposal seeks to cut sulfur dioxide (SO{sub 2}) emissions by almost 50 percent from current levels. The enactment of more stringent SO{sub 2} emission standards would affect Kentucky's coal industry and many coal-fired plants in the state. Depending upon selected or legislated emission-control strategies, industrial mineral producers may experience an increased demand for limestone, lime and dolomite. This article outlines the current use of industrial minerals for SO{sub 2} emission control in Kentucky. Flue-gas desulfurization and atmospheric fluidized-bed combustion systems have been installed at 13 coal and gas-fired plants and one research laboratory in the state. Limestone, lime, and dolomite, produced in Kentucky and adjacent states, are the principal SO{sub 2} sorbents in these systems.

  14. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  15. Desiccant humidity control system

    NASA Technical Reports Server (NTRS)

    Amazeen, J. (Editor)

    1973-01-01

    A regenerable sorbent system was investigated for controlling the humidity and carbon dioxide concentration of the space shuttle cabin atmosphere. The sorbents considered for water and carbon dioxide removal were silica gel and molecular sieves. Bed optimization and preliminary system design are discussed along with system optimization studies and weight penalites.

  16. Control Oriented System Identification

    DTIC Science & Technology

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  17. Load Control System Reliability

    SciTech Connect

    Trudnowski, Daniel

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  18. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  19. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  20. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  1. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...) during each portion of the dry cleaning cycle with and without the use of the candidate emission control... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water...

  2. 40 CFR 63.325 - Determination of equivalent emission control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) and their ancillary equipment during each portion of the normal dry cleaning cycle; (2) Information...) during each portion of the dry cleaning cycle with and without the use of the candidate emission control... other than the specific system(s) examined; and (7) Information on the cross-media impacts (to water...

  3. SSRF Beamline Control System

    SciTech Connect

    Zheng, L. F.; Liu, P.; Zhang, Z. H.; Hu, C.; Mi, Q. R.; Wu, Y. F.; Gong, P. R.; Zhu, Z. X.; Li, Z.

    2010-06-23

    There are seven beamlines in the Phase-I of SSRF. Five of them are equipped with Insertion Devices, while two with Bending Magnets. The beamline control system is based on the standard hardware and software architecture. The VME(PowerPC) with VxWorks is used for motion control, while the personal computers with Scientific Linux are the front end controllers of equipment protection and personnel safety systems. The control software is developed under EPICS which makes various experimental programs of Blu-Ice, LabView, VC and SPEC conveniently access Monochromators, mirror chambers and other optical components.

  4. What is system control?

    SciTech Connect

    Hirst, E.; Kirby, B.

    1999-11-01

    Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).

  5. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China.

    PubMed

    Cheng, Ke; Wang, Yan; Tian, Hezhong; Gao, Xiang; Zhang, Yongxin; Wu, Xuecheng; Zhu, Chuanyong; Gao, Jiajia

    2015-01-20

    A bottom-up inventory of atmospheric emissions of five precedent-controlled toxic heavy metals (HMs), including mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), and chromium (Cr), from primary anthropogenic sources in China is established for the period 2000–2010. Total emissions of HMs demonstrate a gradually ascending trend along with the increase of coal consumption and industrial production, which are estimated at approximately 842.22 t for Hg, 4196.31 t for As, 29272.14 t for Pb, 795.29 t for Cd, and 13715.33 t for Cr for 2010. Coal combustion is found to be the primary source of HMs emissions. Owing to the dramatic differences of coal use by industrial and power sectors among provinces, spatial allocation performs remarkably uneven characteristics, and spatial distribution features are demonstrated by allocating the emissions into 0.5° × 0.5° grid cells with GDP and population as surrogate indexes. Further, HMs emissions from specified anthropogenic sources under three different control scenarios for the target year 2015 are projected, and collaborative and specialized control strategies are proposed to meet the demand of emission reduction goals of different regions. In the future, a whole processes control management system will be the most effective way for control of HMs.

  6. Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system.

    PubMed

    Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Hu, Jingnan; Zhang, K Max; Li, Zhenhua; He, Liqiang; Hao, Jiming

    2017-08-30

    Particulate polycyclic aromatic hydrocarbons (p-PAHs) emitted from diesel vehicles are of concern because of their significant health impacts. Laboratory tests, road tunnel and roadside experiments have been conducted to measure p-PAH emissions. While providing valuable information, these methods have limited capabilities of characterizing p-PAH emissions either from individual vehicles or under real-world conditions. We employed a portable emissions measurement (PEMS) to measure real-world emission factors of priority p-PAHs for diesel vehicles representative of an array of emission control technologies. The results indicated over 80% reduction in p-PAH emission factors comparing the China V and China II emission standard groups (113 μg kg(-1) vs. 733 μg kg(-1)). The toxicity abatement in terms of Benzo[a]pyrene equivalent emissions was substantial because of the large reductions in highly toxic components. By assessing real traffic conditions, the p-PAH emission factors on freeways were lower than on local roads by 52% ± 24%. A significant correlation (R(2)~0.85) between the p-PAH and black carbon emissions was identified with a mass ratio of approximately 1/2000. A literature review indicated that diesel p-PAH emission factors varied widely by engine technology, measurement methods and conditions, and the molecular diagnostic ratio method for source apportionment should be used with great caution.

  7. Control for NOx Emissions from Combustion Sources

    NASA Technical Reports Server (NTRS)

    PozodeFernandez, Maria E.; Collins, Michelle M.

    2000-01-01

    The Environmental Program Office at the Kennedy Space Center is interested in finding solutions and to promote research and development (R&D) that could contribute to solve the problems of air, soil, and groundwater contamination. This study is undertaken as part of NASA's environmental stewardship program. The objective of this study involves the removal of nitrogen oxides from the flue gases of the boilers at KSC using hydrogen peroxide. Phase 1 of this study have shown the potential of this process to be used as an alternative to the current methods of treatment used in the power industry. This report summarizes the research done during the ten-week summer program. During this period, support has been given to implement the modifications suggested for Phase 2 of the project, which focus on oxidation reactions carried at lower temperatures using an ultraviolet source. The redesign and assembly of the modifications for the scrubbing system was the main objective of this research.

  8. Liquid additives for particulate emissions control

    SciTech Connect

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  9. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  10. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  11. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  12. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  13. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An emission computed tomography system is a device intended to detect...

  14. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  15. NOx Sensor for Direct Injection Emission Control

    SciTech Connect

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the

  16. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1986-01-01

    This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.

  17. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    Digital techniques are discussed for application to the servo and control systems of large antennas. The tracking loop for an antenna at a STADAN tracking site is illustrated. The augmentation mode is also considered.

  18. Linear Hereditary Control Systems,

    DTIC Science & Technology

    Relationships between external and internal models for systems with time lags are discussed. The use of various canonical forms for the models in solving optimal control problems is considered. (Author)

  19. Controlled drop emission by wetting properties in driven liquid filaments.

    PubMed

    Ledesma-Aguilar, R; Nistal, R; Hernández-Machado, A; Pagonabarraga, I

    2011-05-01

    The controlled formation of micrometre-sized drops is of great importance to many technological applications. Here we present a wetting-based destabilization mechanism of forced microfilaments on either hydrophilic or hydrophobic stripes that leads to the periodic emission of droplets. The drop emission mechanism is triggered above the maximum critical forcing at which wetting, capillarity, viscous friction and gravity can balance to sustain a stable driven contact line. The corresponding critical filament velocity is predicted as a function of the static wetting angle, which can be tuned through the substrate behaviour, and shows a strong dependence on the filament size. This sensitivity explains the qualitative difference in the critical velocity between hydrophilic and hydrophobic stripes, and accounts for previous experimental results of splashing solids. We demonstrate that this mechanism can be used to control independently the drop size and emission period, opening the possibility of highly monodisperse and flexible drop production techniques in open microfluidic geometries.

  20. Development of a numerically controlled elastic emission machining system for fabricating mandrels of ellipsoidal focusing mirrors used in soft x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Takei, Yoshinori; Kume, Takehiro; Motoyama, Hiroto; Hiraguri, Kentaro; Hashizume, Hirokazu; Mimura, Hidekazu

    2013-09-01

    Ellipsoidal mirrors are one of the most promising types of X-ray mirror, because the mirror can focus X-rays to nanometer size with a large aperture and no chromatic aberration. However, so far ideal ellipsoidal mirrors cannot be realized by any manufacturing methods. One of the reasons is there is no fabrication method to process their inside surface with a diameter of several millimeters with nanometer-level accuracy. We propose and develop a manufacturing process of the ellipsoidal mirror. First, a master which has the reversed shape is prepared using grinding, polishing and Elastic Emission Machining (EEM). EEM can finish the surface shape to within 2nm (RMS). Then, the ellipsoidal mirror is produced by replicating the surface using an electroforming deposition method. By conducting the process without any stress at room temperature, replicating the surface roughness and shape with nanometer order accuracy is possible. In this paper, we report the current status of manufacturing of the ellipsoidal mirror.

  1. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  2. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  3. Continuous diesel emissions speciation with a transportable MBMS system

    SciTech Connect

    Ratcliff, M.A.; Gratson, D.A.; Milne, T.A.

    1995-03-01

    A unique transportable molecular beam mass spectrometer (TMBMS) has been developed at the National Renewable Energy Laboratory (NREL) to extend the virtues of MBMS analysis to new applications beyond the traditional laboratory scope and scale. The TMBMS is based on a three stage vacuum system; the transport capability dictated the minimization of size. weight and required utilities. The instrument has demonstrated a dynamic range of at least 10{sup 6} and a limit of detection of 0.5 ppmv, depending on the species and system being investigated. The instrument has been successfully used as a continuous emissions monitor and a chemical process monitor. Continuous, near real-time speciation of diesel exhaust demonstrated the potential of MBMS analysis in the field of emissions monitoring. Controlled steady state and transient tests were conducted with conventional diesel and soybean derived methyl-ester biodiesel fuels. The emissions differences between the two fuels were readily apparent, with the diesel fuel producing higher concentrations of hydrocarbon species. It was statistically demonstrated that many unburned diesel fuel hydrocarbons can be reproducibly detected and followed under a variety of steady state conditions. Carbon dioxide, water, nitric oxide and sulfur dioxide were monitored simultaneously with the unburned hydrocarbons. The transient testing demonstrated the instruments ability to follow changes, on the seconds time scale, of multiple combustion products as a function of engine speed, load and throttle position.

  4. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  5. Liquid Level Control System.

    DTIC Science & Technology

    A system for controlling liquid flow from an inlet into a tank comprising a normally closed poppet valve controlled by dual pressure chambers each...containing a diaphragm movable by the pressure of the liquid in the inlet to cause the valve to close. Pressure against the diaphragms is relieved by

  6. Rotor control system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Maciolek, Joseph R. (Inventor)

    1987-01-01

    A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.

  7. Volatile organic compound emissions from silage systems

    USDA-ARS?s Scientific Manuscript database

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  8. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more......

  9. The effect of two ammonia-emission-reducing pig housing systems on odour emission.

    PubMed

    Mol, G; Ogink, N W M

    2004-01-01

    Odour nuisance from agricultural activities is increasing in densely populated countries like the Netherlands. To develop adequate regulations, a large-scale, government-financed monitoring programme was started in the mid-1990s to establish odour emission levels for both conventional and low ammonia emission housing systems for cattle, pigs and poultry. The results indicate that high- and low-odour emission housing are difficult to distinguish because of the large variation within housing systems. Measurements on different farm locations within the same housing system show both a large variation between locations and within one location (in time). The latter, however, is significantly smaller, which suggests that farm management is an important determinant in odour emission that interferes with the effects of housing systems. The current research was aimed at determining the effect of two common ammonia-reducing pig-housing systems on odour emissions compared to conventional housing systems under similar management conditions. The respective reduction principles of these systems are reducing the emitting surface of the manure pit and cooling of manure in the manure pit (both pits beneath slatted floor). Five farms that combined conventional housing with one low-ammonia system (three reduced emitting surface and two manure cooling) were selected for a direct, pair-wise comparison of (olfactometric) odour emission measurements. The results show a highly significant effect (p < 0.01) for two of the three reduced emitting surface systems and for one of the two manure cooling system. The average odour reduction percentages of these systems are 35% (from 24.9 to 16.0 OUE/s per animal) and 23% (from 30.1 to 24.0 OUE/s per animal) respectively. Although odour emission reduction through the type of housing system is possible, management factors interact with the system and thereby determine whether the system reduces odour emission or not.

  10. 40 CFR 52.1384 - Emission control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Emission control regulations. 52.1384... regulations. (a) Administrative Rules of Montana 17.8.309(5)(b) and 17.8.310(3)(e) of the State's rule... A between the Montana Department of Environmental Quality and Montana Sulphur & Chemical Company...

  11. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  12. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  13. ACCESS Pointing Control System

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; hide

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  14. Quantification and Controls of Wetland Greenhouse Gas Emissions

    SciTech Connect

    McNicol, Gavin

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  15. Water maser emission in the Saturnian system

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Cimo, Giuseppe; Gurvits, Leonid; Pogrebenko, Sergei; Molera Calves, Guifré

    2010-10-01

    Prompted by the recent discovery of a water vapour plume of Enceladus by the Cassini spacecraft, our team started an observational programme to search for possible 22 GHz water vapour maser emission associated with different objects in the Kronian system. The observations have been conducted so far with the 32 m Medicina radio telescope (INAF-IRA, Italy) and the 14 m Metsahovi radio telescope (Aalto University, MRO, Finland). During the 2006-2008 campaigns, more than 300 hours of data have been analysed, and initial results including maser detections up to 7.0 sigma level have been presented. The detections attracted considerable interest and attempts to confirm them and investigate the phenomenon in depth. No confirmations have been published so far. In order to provide critical verification of these detections and study the details of masing conditions efficiently, we request a total of 20 hours on the Tidbinbilla 70 m telescope (DSS43) to observe Saturn and its moons during several, non-consecutive days. Due to natural changes of the planetary target positions, targets' coordinates will be provided after the antenna time is allocated.

  16. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    PubMed

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  17. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  18. Pacific Northwest National Laboratory Facility Radionuclide Emission Points and Sampling Systems

    SciTech Connect

    Barfuss, Brad C.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2009-04-08

    Battelle—Pacific Northwest Division operates numerous research and development laboratories in Richland, Washington, including those associated with the Pacific Northwest National Laboratory (PNNL) on the Department of Energy’s Hanford Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all effluent release points that have the potential for radionuclide emissions. Potential emissions are assessed annually. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission point system performance, operation, and design information. A description of the buildings, exhaust points, control technologies, and sample extraction details is provided for each registered or deregistered facility emission point. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided.

  19. Information Survivability Control Systems

    DTIC Science & Technology

    1999-01-01

    interfaces with higher-level (e.g., Federal Reserve ) and lower-level (e.g., branch) control systems. A hierarchical structure is natural to support...level hierarchical banking system with branch banks at the leaves, money-center banks in the middle, and the Federal Reserve system at the root...center in question, then the check deposit request is routed there. If not, then the check must be routed through the Federal Reserve . Checks for small

  20. Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices

    SciTech Connect

    Parks, II, James E; Kass, Michael D; Huff, Shean P; Barone, Teresa L; Lewis Sr, Samuel Arthur; Prikhodko, Vitaly Y; Storey, John Morse

    2010-01-01

    A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

  1. The ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  2. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  3. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  4. Controlling spontaneous emission with plasmonic optical patch antennas.

    PubMed

    Belacel, C; Habert, B; Bigourdan, F; Marquier, F; Hugonin, J-P; de Vasconcellos, S Michaelis; Lafosse, X; Coolen, L; Schwob, C; Javaux, C; Dubertret, B; Greffet, J-J; Senellart, P; Maitre, A

    2013-04-10

    We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.

  5. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  6. Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis

    SciTech Connect

    Aardahl, C; Rozmiarek, R; Rappe, K; Mendoza, D Park, P

    2003-08-24

    Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

  7. Control of Trace Metal Emissions During Coal Combustion

    SciTech Connect

    Thomas C. Ho

    1997-10-01

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. The project was started on July 1, 1994 and this is the thirteenth quarterly technical progress report. Specifically, the following progress has been made during this performance period from July 1, 1997 through September 30, 1997.

  8. Greenhouse gas emissions from traditional and biofuels cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  9. Carbon footprint and ammonia emissions of California beef production systems

    USDA-ARS?s Scientific Manuscript database

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH3) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH3 ...

  10. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Reichstein, Markus

    2003-04-01

    Volatile (VOC) flux from leaves may be expressed as GSΔP, where GS is stomatal conductance to specific compound and ΔP partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in GS are balanced by increases in ΔP such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m3 mol-1). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 103 have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10-2-101 are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance ΔP in response to a decrease in GS is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase.

  11. Modeling carbon emissions from urban traffic system using mobile monitoring.

    PubMed

    Sun, Daniel Jian; Zhang, Ying; Xue, Rui; Zhang, Yi

    2017-12-01

    Comprehensive analyses of urban traffic carbon emissions are critical in achieving low-carbon transportation. This paper started from the architecture design of a carbon emission mobile monitoring system using multiple sets of equipment and collected the corresponding data about traffic flow, meteorological conditions, vehicular carbon emissions and driving characteristics on typical roads in Shanghai and Wuxi, Jiangsu province. Based on these data, the emission model MOVES was calibrated and used with various sensitivity and correlation evaluation indices to analyze the traffic carbon emissions at microscopic, mesoscopic and macroscopic levels, respectively. The major factors that influence urban traffic carbon emissions were investigated, so that emission factors of CO, CO2 and HC were calculated by taking representative passenger cars as a case study. As a result, the urban traffic carbon emissions were assessed quantitatively, and the total amounts of CO, CO2 and HC emission from passenger cars in Shanghai were estimated as 76.95kt, 8271.91kt, and 2.13kt, respectively. Arterial roads were found as the primary line source, accounting for 50.49% carbon emissions. In additional to the overall major factors identified, the mobile monitoring system and carbon emission quantification method proposed in this study are of rather guiding significance for the further urban low-carbon transportation development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. LSST control system

    NASA Astrophysics Data System (ADS)

    Schumacher, Germán; Warner, Michael; Krabbendam, Victor

    2006-06-01

    The Large Synoptic Survey Telescope (LSST) will be a large, wide-field ground-based telescope designed to obtain sequential images of the entire visible sky every few nights. The LSST, in spite of its large field of view and short 15 second exposures, requires a very accurate pointing and tracking performance. The high efficiency specified for the whole system implies that observations will be acquired in blind pointing mode and tracking demands calculated from blind pointing as well. This paper will provide a high level overview of the LSST Control System (LCS) and details of the Telescope Control System (TCS), explaining the characteristics of the system components and the interactions among them. The LCS and TCS will be designed around a distributed architecture to maximize the control efficiency and to support the highly robotic nature of the LSST System. In addition to its control functions, the LCS will capture, organize and store system wide state information, to make it available for monitoring, evaluation and calibration processes. An evaluation of the potential communications middleware software to be utilized for data transport, is also included.

  13. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  14. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  15. Biofiltration: An innovative air pollution control technology for VOC emissions

    SciTech Connect

    Leson, G. ); Winer, A.M. )

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  16. Air quality assessment and control of emission rates.

    PubMed

    Skiba, Yuri N; Parra-Guevara, David; Belitskaya, Davydova Valentina

    2005-12-01

    Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection-diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

  17. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Quarterly report No. 5, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-05-15

    The DSI system design is approximately eighty percent completed. About eighty percent of the materials have been purchased for erection and setup of the DSI system. Most of the equipment and supply purchases have been made for the DCS. The Unit 4 outage started March 20, 1992 for the installation of the remaining project equipment. overall field construction activities continued on the flyash, boiler, dry sorbent injection and humidification systems. Noell performed startup and testing activities for the urea injection system. FERCO completed baseline urea injection tests March 6, 1992. Preliminary analyses were reviewed at a project review meeting on March 11, 1992. The HVAC platform and duct work for the DCS was installed. B&W mobilized on site. Demolition and construction activities began to support the future installation of the low NO, burners and ports. CSM completed the batch reactor vessel. The sorbent and flyash silos were erected for the DSI system. The humidification building was erected and piping for the fly ash silo started.

  18. SERVOMOTOR CONTROL SYSTEM

    DOEpatents

    MacNeille, S.M.

    1958-12-01

    Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.

  19. Control of several emissions during olive pomace thermal degradation.

    PubMed

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-10-13

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25-750 °C and a heating rate of 20 °C·min⁻¹. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor.

  20. Ozone trends in Atlanta, Georgia - Have emission controls been effective?

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Richardson, Jennifer L.; Chameldes, William L.

    1989-01-01

    Nine years of summertime ozone data from the Atlanta metropolitan area are analyzed and compared to local emissions of volatile organic carbon and nitrogen oxides. Trends from 1979 to 1987 were studied for the number of days per year ozone exceeded the NAAQS standard, the second-highest ozone level observed per year, and the first quartile summertime average ozone observed, as well as the mean difference between the ozone level observed downwind and upwind of the city. Because this last parameter is sensitive to chemical factors but relatively insensitive to the number of days each year with meteorological conditions conducive to ozone formation, its trend may be best suited for determining how effective emission controls have been in reducing O3 in the Atlanta area. In spite of the fact that sizeable reductions have been claimed for volatile organic carbon emissions over the past several years, the data give no indication that ozone levels have decreased and in fact, imply that summertime ozone production may have increased. The results imply that either emissions have not decreased as much as has been claimed or that ozone is not sensitive to anthropogenic volatile organic carbon emissions.

  1. Control of Several Emissions during Olive Pomace Thermal Degradation

    PubMed Central

    Miranda, Teresa; Nogales, Sergio; Román, Silvia; Montero, Irene; Arranz, José Ignacio; Sepúlveda, Francisco José

    2014-01-01

    Biomass plays an important role as an energy source, being an interesting alternative to fossil fuels due to its environment-friendly and sustainable characteristics. However, due to the exposure of customers to emissions during biomass heating, evolved pollutants should be taken into account and controlled. Changing raw materials or mixing them with another less pollutant biomass could be a suitable step to reduce pollution. This work studied the thermal behaviour of olive pomace, pyrenean oak and their blends under combustion using thermogravimetric analysis. It was possible to monitor the emissions released during the process by coupling mass spectrometry analysis. The experiments were carried out under non-isothermal conditions at the temperature range 25–750 °C and a heating rate of 20 °C·min−1. The following species were analysed: aromatic compounds (benzene and toluene), sulphur emissions (sulphur dioxide), 1,4-dioxin, hydrochloric acid, carbon dioxide and nitrogen oxides. The results indicated that pollutants were mainly evolved in two different stages, which are related to the thermal degradation steps. Thus, depending on the pollutant and raw material composition, different emission profiles were observed. Furthermore, intensity of the emission profiles was related, in some cases, to the composition of the precursor. PMID:25314298

  2. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  5. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  6. Real Driving NOx Emissions of European Trucks and Detection of Manipulated Emission Systems

    NASA Astrophysics Data System (ADS)

    Pöhler, Denis; Adler, Tim; Krufczik, Chsristopher; Horbanski, Martin; Lampel, Johannes; Platt, Ulrich

    2017-04-01

    Nitrogen dioxide (NO2) is the most problematic pollutant in Europe and many other countries. NO2 has a negative impact for the health and the environment, and in most European cities the currently allowed mean annual limit of 40μg/m3 is exceeded. Vehicles, especially Diesel, are the most relevant source. They emit NOx (NO + NO2), and NO can also be converted to NO2 in the atmosphere. Thus vehicle NOx emissions are regulated in the EU with the EURO Norm Standard (e.g. EURO 6 since 1.1.2013 for trucks with 400mg/kWh). Trucks achieve these low emissions with complex emission after treatment systems. All EURO 6 trucks and almost all EURO 5 trucks use the SCR system consuming AdBlue to reduce the NOx emissions. Since the diesel emission scandal for cars, it is well known that real driving emissions (RDE) can be several times higher that the EURO Norm Standard. The main problem is that RDE are only randomly investigated. Here we present a study of NOx RDE of more than 250 randomly chosen trucks on German highways. The measurements were performed with a newly developed mobile NOx-ICAD + CO2 -instrument applying the plume chasing measurement principle, where the pollutants are investigated in the emission plume and were converted to emission factors to be compared to the EURO standard. For most trucks the brand, the model name, the country of registration and its EURO class could be determined and used in a statistical analysis. The observed NOx emission data show that typical truck RDE are in the range of the expected EURO Norm or slightly higher. However, almost every fourth truck from Eastern Europe show emissions much higher that the EURO Norm. This was not observed for German trucks. As the emissions increase up to a factor of 5 to 10 these view trucks contribute significantly to the air pollution. These high emissions clearly indicate a defect emission treatment system. Most likely it indicates illegal manipulated emissions systems where the AdBlue injection is

  7. Celsius Control system.

    PubMed

    Badjatia, Neeraj

    2004-01-01

    The Celsius Control system (Innercool Therapies, Inc.) is an intravascular cooling catheter system consisting of the Celsius Control catheter,circulating set, and the Celsius Control console. Based on clinical studies, the system has recently received Food and Drug Administration approval for use as a device to induce, maintain, and reverse mild hypothermia in neurosurgical patients in surgery and recovery/intensive care, and is currently being marketed in the 10.7 Fr and 14 Fr catheter sizes. It works to regulate temperature by circulating sterile saline through the Celsius Control console, which contains an integrated assembly comprising a temperature and pressure sensing block,supply and return lines, and a 20-{m} filter with connective tubing and an independent heat exchanger and pump. The system relies on digital core temperature readings from either esophageal or bladder temperature probes. After the system is turned on, approximately 150 mL of sterile saline solution is pumped through the console and is cooled to achieve the preset temperature. This cooled saline subsequently circulates from the console through the catheter in a closed-loop manner. The distal portion of the catheter incorporates a flexible distal metallic heat transfer element that is designed to allow for direct exchange of thermal energy with blood circulating around the catheter.

  8. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  9. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  10. Optical controlled keyboard system

    NASA Astrophysics Data System (ADS)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  11. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    USGS Publications Warehouse

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  12. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones.

    PubMed

    Olefeldt, David; Turetsky, Merritt R; Crill, Patrick M; McGuire, A David

    2013-02-01

    Methane (CH4 ) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  13. Modern tandem control systems

    NASA Astrophysics Data System (ADS)

    Lutz, J. R.; Marsaudon, J. C.

    1993-04-01

    Nowadays, tandem electrostatic accelerators can benefit greatly from the growing possibilities provided by modern control facilities. Controlling an electrostatic accelerator first requires the solution of technological problems raised by the necessity of fitting inside the tank equipment which is highly stressed by the physical environment. Then, these controls can take advantage of new techniques which appear on the market. Present computer technology provides cheap powerful workstations for efficient operator interfacing, and new modular and distributed control concepts have been developed for general use in experimental physics, in data acquisition and in control systems. The general trend towards standardization is now accepted for both hardware and software and this brings benefits to the designer and the user.

  14. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  15. Engine speed control system

    SciTech Connect

    Otsuka, K.

    1983-02-01

    An idle control system for an automobile internal combustion engine includes an idle control unit for controlling the operation of an electromagnetically operated actuator. While the engine has a combustible mixture intake passage leading to the engine and a throttle valve operatively positioned inside the mixture intake passage for controlling the flow of a combustible air-fuel mixture towards the engine, the actuator is utilized to adjust either the effective cross sectional area of a bypass air passage leading from the air source to the mixture intake passage at a position downstream of the throttle valve or the opening of the throttle valve, to control the engine speed during idling to a predetermined value.

  16. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, Robert R. (Inventor)

    1987-01-01

    A remotely controllable mixing system (210) in which a plurality of mixing assemblies (10a-10e) are arranged in an annular configuration, and wherein each assembly (10) employs a central chamber (16) and two outer, upper and lower, chambers (12, 14). Valves (18, 20) are positioned between chambers, and these valves (18, 20) for a given mixing assembly (10) are operated by upper and lower control rotors (29), which in turn are driven by upper and lower drive rotors (270, 270b). Additionally, a hoop (278) is compressed around upper control rotors (29) and a hoop (278b) is compressed around lower control rotors (29) to thus insure constant frictional engagement between all control rotors (29) and drive rotors (270, 270b). The drive rollers (270, 270b) are driven by a motor (213).

  17. RHIC control system

    NASA Astrophysics Data System (ADS)

    Barton, D. S.; Binello, S.; Buxton, W.; Clifford, T.; D'Ottavio, T.; Hartmann, H.; Hoff, L. T.; Katz, R.; Kennell, S.; Kerner, T.; Laster, J.; Lee, R. C.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B. R.; Olsen, R.; Piacentino, J.; Skelly, J. F.

    2003-03-01

    The RHIC control system architecture is hierarchical and consists of two physical layers with a fiber-optic network connection. The Front-End Level systems consist of VME chassis with processors running a real-time operating system and both VME I/O modules and remote bus interfaces. Accelerator device software interfaces are implemented as objects in C++. The network implementation uses high speed, switched Ethernet technology. Specialized hardware modules were built for waveform control of power supplies, multiplexed signal acquisition, and timing services. The Console Level systems are Unix workstations. A strong emphasis has been given to developing highly reusable, standard software tools for use in building physics and diagnostic application software.

  18. Emissions trading -- Market-based approaches offer pollution control incentives

    SciTech Connect

    Tombach, I.

    1994-06-01

    In the last several years, market-based'' strategies for achieving air quality goals have joined the traditional command-and-control'' approach to air pollution management. The premise behind market approaches is that the right'' to emit air pollutants provided by a permit has monetary value. A market-based approach provides facility operators with incentives to take advantage of the monetary value associated with reducing emissions below permitted levels. It has been recognized for some time that applying such a mechanism can be a cost-effective regional air quality management strategy. To date, economic incentives have been exploited somewhat in emissions reduction credit programs operating in non-attainment areas, but transactions have been tightly controlled by regulatory agencies. Two recently implemented programs have taken to the marketplace the management of emissions from specific sources. One is incorporated in the acid rain mitigation provisions of Title 4 of the Clean Air Act (CAA) Amendments; the other is the Regional Clean Air Incentives Market (RECLAIM), a program based on reducing ozone. Both Title 4 and RECLAIM are intended to achieve substantial reductions during the next decade in emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogens (NO[sub x]) from selected larger sources.

  19. Development of an aeroderivative gas turbine dry low emissions combustion system

    SciTech Connect

    Leonard, G.; Stegmaier, J. )

    1994-07-01

    This paper gives the development status of GE's new aeroderivative premixed combustion system. This system consists of a new fuel staged annular combustor, compressor rear frame, first-stage turbine nozzle, electronic staging controller, and fuel delivery system. Component test results along with a description of the combustion system are presented. This new system will reduce NO[sub x] emissions by 90% relative to the original aircraft engine combustion system while maintaining low emissions of CO and UHCs. Tests of a LM6000 gas turbine equipped with the new system are planned for early 1994.

  20. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  1. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions

    EPA Science Inventory

    In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (sup...

  2. 76 FR 20598 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Control of Emissions of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ...-21-25 ``Control of VOC emissions from reinforced plastic composites production operations,'' which... that the resin delivery system to the doctor box on the SMC manufacturing machine is closed or covered... acceptable because Ohio has adopted OAC 3745-21- 25 for Reinforced Plastics Composites Production Operations...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  5. [VOC emission situation and control measures of gas station in China].

    PubMed

    Shen, Min-Jia; Hao, Ji-Ming; Wang, Li-Tao

    2006-08-01

    The emission factor is used to estimate the volatile organic compound (VOC) emission caused by gas station. After considering the economical, social and population factors, the activity rate was modified, and then the fuel consumption and VOC emission trend in the next 20 years can be predicted. The result shows the VOC emission from gas station in China 2002 was 187.6kt and this number will increase to 1196kt in 2030 if no further control measures will be implemented. And the economic loss caused by gasoline vapor arrived to 0.75 billion RMB in 2002 and will be 4.78 billion RMB in 2030. The cost-benefit approach of the commercially available gasoline vapor recovery technologies in China included Stage I, Stage II and on-board refueling vapor recovery (ORVR) were analyzed, and the result shows introducing these three systems will bring larger reduce of VOC emission, and the combination of them can do a even better job. Compared with Stage II, ORVR is more efficient and cheaper, but it will take long time to implement ORVR. And it will take at least 11 years in China to convert to ORVR above 80%. So Stage II vapor recovery system may be a short term option while ORVR should be treated as the ultimate solution for controlling the vapor emission from gas stations in the future.

  6. Electromagnetic emission experiences using electric propulsion systems: A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  7. Electromagnetic emission experiences using electric propulsion systems - A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  8. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  9. Characterization of emissions from diffusion flare systems.

    PubMed

    Strosher, M T

    2000-10-01

    Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, ethylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions. The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions. Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.

  10. Characterization of Emissions from Diffusion Flare Systems.

    PubMed

    Strosher, Mel T

    2000-10-01

    Emissions from flares typical of those found at oil-field battery sites in Alberta, Canada, were investigated to determine the degree to which the flared gases were burned and to characterize the products of combustion in the emissions. The study consisted of laboratory, pilot-scale, and field-scale investigations. Combustion of all hydrocarbon fuels in both laboratory and pilot-scale tests produced a complex variety of hydrocarbon products within the flame, primarily by pyrolytic reactions. Acetylene, eth-ylene, benzene, styrene, ethynyl benzene, and naphthalene were some of the major constituents produced by conversion of more than 10% of the methane within the flames. The majority of the hydrocarbons produced within the flames of pure gas fuels were effectively destroyed in the outer combustion zone, resulting in combustion efficiencies greater than 98% as measured in the emissions. The addition of liquid hydrocarbon fuels or condensates to pure gas streams had the largest effect on impairing the ability of the resulting flame to destroy the pyrolytically produced hydrocarbons, as well as the original hydrocarbon fuels directed to the flare. Crosswinds were also found to reduce the combustion efficiency (CE) of the co-flowing gas/condensate flames by causing more unburned fuel and the pyrolytically produced hydrocarbons to escape into the emissions. Flaring of solution gas at oil-field battery sites was found to burn with an efficiency of 62-82%, depending on either how much fuel was directed to flare or how much liquid hydrocarbon was in the knockout drum. Benzene, styrene, ethynyl benzene, ethynyl-methyl benzenes, toluene, xylenes, acenaphthalene, biphenyl, and fluorene were, in most cases, the most abundant compounds found in any of the emissions examined in the field flare testing. The emissions from sour solution gas flaring also contained reduced sulfur compounds and thiophenes.

  11. Timing control system

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, Jr., George H. (Inventor)

    1989-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not overshoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  12. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  13. Timing control system

    NASA Astrophysics Data System (ADS)

    Wiker, Gordon A.; Wells, George H., Jr.

    1987-09-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  14. Timing Control System

    NASA Technical Reports Server (NTRS)

    Wiker, Gordon A. (Inventor); Wells, George H., Jr. (Inventor)

    1987-01-01

    A timing control system is disclosed which is particularly useful in connection with simulated mortar shells. Special circuitry is provided to assure that the shell does not over shoot, but rather detonates early in case of an improper condition; this ensures that ground personnel will not be harmed by a delayed detonation. The system responds to an externally applied frequency control code which is configured to avoid any confusion between different control modes. A premature detonation routine is entered in case an improper time-setting signal is entered, or if the shell is launched before completion of the time-setting sequence. Special provisions are also made for very early launch situations and improper detonator connections. An alternate abort mode is provided to discharge the internal power supply without a detonation in a manner that can be externally monitored, thereby providing a mechanism for non-destructive testing. The abort mode also accelerates the timing function for rapid testing.

  15. Tropospheric emission spectrometer for the Earth Observing System's Aura satellite.

    PubMed

    Beer, R; Glavich, T A; Rider, D M

    2001-05-20

    The Tropospheric Emission Spectrometer (TES) is an imaging infrared Fourier-transform spectrometer scheduled to be launched into polar Sun-synchronous orbit aboard the Earth Observing System's Aura satellite in June 2003. The primary objective of the TES is to make global three-dimensional measurements of tropospheric ozone and of the physical-chemical factors that control its formation, destruction, and distribution. Such an ambitious goal requires a highly sophisticated cryogenic instrument operating over a wide frequency range, which, in turn, demands state-of-the-art infrared detector arrays. In addition, the measurements require an instrument that can operate in both nadir and limb-sounding modes with a precision pointing system. The way in which these mission objectives flow down to the specific science and measurement requirements and in turn are implemented in the flight hardware are described. A brief overview of the data analysis approach is provided.

  16. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-10-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV

  17. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-07-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet

  18. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  19. Cryogenic Control System

    SciTech Connect

    Goloborod'ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  20. Solid state carbon nanotube device for controllable trion electroluminescence emission

    NASA Astrophysics Data System (ADS)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-01

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for

  1. Electrohydraulic control system for coke oven back-pressure regulation

    SciTech Connect

    Truett, C.T.; Fohner, D.G.

    1997-11-01

    The concept of automatically reducing the back pressure during charging was developed as part of a program to meet and maintain newly required limits for charging emissions. The electrohydraulic PID back-pressure control system developed has superior performance in operation to older mechanical units. It is a more reliable, stable and integratable system that is remotely controlled via a master plant control system.

  2. Microprocessor control for standardized power control systems

    NASA Technical Reports Server (NTRS)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  3. Nitrogen oxides emission control options for coal-fired electric utility boilers.

    PubMed

    Srivastava, Ravi K; Hall, Robert E; Khan, Sikander; Culligan, Kevin; Lani, Bruce W

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at >150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/10(6) Btu.

  4. Modeling Nitrous Oxide emissions and identifying emission controlling factors for a spruce forest ecosystem on drained organic soil

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Kasimir, Åsa; Jansson, Per-Erik; Svensson, Magnus; Meyer, Astrid; Klemedtsson, Leif

    2015-04-01

    High Nitrous Oxide (N2O) emission has been identified in hemiboreal forests on drained organic soils. However, the controlling factors regulating the emissions have been unclear. To examine the importance of different factors on the N2O emission in a spruce forest on drained organic soil, a process-based model, CoupModel, was calibrated by the generalized likelihood uncertainty estimation (GLUE) method. The calibrated model reproduced most of the high resolution data (total net radiation, soil temperature, groundwater level, net ecosystem exchange, etc.) very well, as well as accumulated measured N2O emissions, but showed difficulties to capture all the measured emission peaks. Parameter uncertainties could be reduced by combining selected criteria with the measurement data. The model showed the N2O emissions during the summer to be controlled mainly by the competition between plants and microbes while during the winter season snow melt periods are important. The simulated N budget shows >100 kg N ha-1 yr-1 to be in circulation between soil and plants and back again. Each year the peat mineralization adds about 60 kg N ha-1 and atmospheric deposition 12 kg N ha-1. Most of the mineralized litter and peat N is directly taken up by the plants but only a part accumulates in the plant biomass. As long as no timber is harvested the main N loss from the system is through nitrate leaching (30 kg N ha-1 yr-1) and gas emissions (20 kg N ha-1 yr-1), 55% as NO, 27% as N2O and 18% as N2. Regarding N2O gas emissions, our modeling indicates denitrification to be the most responsible process, of the size 6 kg N ha-1 yr-1, which could be compared to 0.04 kg N ha-1 yr-1 from nitrification. Our modelling also reveal 88% of the N2O mainly to be produced by denitrification in the capillary fringe (c.a. 40-60 cm below soil surface) of the anaerobic zone using nitrate produced in the upper more aerobic layers. We conclude N2O production/emission to be controlled mainly by the complex

  5. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  6. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; hide

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  7. 21 CFR 892.1200 - Emission computed tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed...

  8. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  9. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  10. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  11. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  12. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  13. Dynamitron control systems

    NASA Astrophysics Data System (ADS)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  14. Modeling of UV Emission Lines in AM HER Systems

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Howell, Steve

    We present preliminary models of the UV emission lines from the accretion streams in AM Her systems. These models are based on the theory that the emission lines are due to reprocessing of the high energy photons from the hot spot and shock regions by the accretion stream. The models were developed using the radiative-collisional equilibrium program CLOUDY. They show the same trends of emission line strength versus magnetic field strength as seen in IUE observations. We have also examined the effects of other parameters on the predicted emission line strengths. The development of more sophisticated models is underway.

  15. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  16. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  17. Impact of the Volkswagen emissions control defeat device on US public health

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Speth, Raymond L.; Eastham, Sebastian D.; Dedoussi, Irene C.; Ashok, Akshay; Malina, Robert; Keith, David W.

    2015-11-01

    The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system ‘defeat devices’ (software) in model year 2009-2015 vehicles with 2.0 litre diesel engines. VW has admitted the inclusion of defeat devices. On-road emissions testing suggests that in-use NOx emissions for these vehicles are a factor of 10 to 40 above the EPA standard. In this paper we quantify the human health impacts and associated costs of the excess emissions. We propagate uncertainties throughout the analysis. A distribution function for excess emissions is estimated based on available in-use NOx emissions measurements. We then use vehicle sales data and the STEP vehicle fleet model to estimate vehicle distance traveled per year for the fleet. The excess NOx emissions are allocated on a 50 km grid using an EPA estimate of the light duty diesel vehicle NOx emissions distribution. We apply a GEOS-Chem adjoint-based rapid air pollution exposure model to produce estimates of particulate matter and ozone exposure due to the spatially resolved excess NOx emissions. A set of concentration-response functions is applied to estimate mortality and morbidity outcomes. Integrated over the sales period (2008-2015) we estimate that the excess emissions will cause 59 (95% CI: 10 to 150) early deaths in the US. When monetizing premature mortality using EPA-recommended data, we find a social cost of ˜450m over the sales period. For the current fleet, we estimate that a return to compliance for all affected vehicles by the end of 2016 will avert ˜130 early deaths and avoid ˜840m in social costs compared to a counterfactual case without recall.

  18. Marginal emissions factors for the U.S. electricity system.

    PubMed

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger

    2012-05-01

    There is growing interest in reducing emissions from electricity generation in the United States (U.S.). Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Both supply- and demand-side interventions will displace energy-and emissions-from conventional generators. Marginal emissions factors (MEFs) give a consistent metric for assessing the avoided emissions resulting from such interventions. This paper presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, we estimate regional MEFs for CO(2), NO(x), and SO(2), as well as the share of marginal generation from coal-, gas-, and oil-fired generators. Trends in MEFs with respect to system load, time of day, and month are explored. We compare marginal and average emissions factors (AEFs), finding that AEFs may grossly misestimate the avoided emissions resulting from an intervention. We find significant regional differences in the emissions benefits of avoiding one megawatt-hour of electricity: compared to the West, an equivalent energy efficiency measure in the Midwest is expected to avoid roughly 70% more CO(2), 12 times more SO(2), and 3 times more NO(x) emissions.

  19. Advanced emissions control development project. Final report, November 1, 1993--February 29, 1996. Phase I

    SciTech Connect

    Farthing, G.A.

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouses), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase I activities were primarily directed at providing a reliable, representative test facility for conducting air toxic emission control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. The AECDP facility consists of an ESP, pulse-jet baghouse, and wet scrubber. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal. In order to successfully apply the results of the program to utility systems, the relationship between the performance of the CEDF/AECDP test equipment and commercial units had to be established. The first step in the verification process was to validate that the flue gas treatment devices - boiler/convection pass simulator, ESP, baghouse, and wet SO{sub 2} scrubber - operate in a manner representative of commercial units.

  20. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    NASA Astrophysics Data System (ADS)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.