Sample records for emissions estimation methodologies

  1. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    EPA Science Inventory

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  2. Hot emission model for mobile sources: application to the metropolitan region of the city of Santiago, Chile.

    PubMed

    Corvalán, Roberto M; Osses, Mauricio; Urrutia, Cristian M

    2002-02-01

    Depending on the final application, several methodologies for traffic emission estimation have been developed. Emission estimation based on total miles traveled or other average factors is a sufficient approach only for extended areas such as national or worldwide areas. For road emission control and strategies design, microscale analysis based on real-world emission estimations is often required. This involves actual driving behavior and emission factors of the local vehicle fleet under study. This paper reports on a microscale model for hot road emissions and its application to the metropolitan region of the city of Santiago, Chile. The methodology considers the street-by-street hot emission estimation with its temporal and spatial distribution. The input data come from experimental emission factors based on local driving patterns and traffic surveys of traffic flows for different vehicle categories. The methodology developed is able to estimate hourly hot road CO, total unburned hydrocarbons (THCs), particulate matter (PM), and NO(x) emissions for predefined day types and vehicle categories.

  3. Statistical Methodology for Assigning Emissions to Industries in the United States, Revised Estimates: 1970 to 1997 (2001)

    EPA Pesticide Factsheets

    This report presents the results of a study that develops a methodology to assign emissions to the manufacturing and nonmanufacturing industries that comprise the industrial sector of the EPA’s national emission estimates for 1970 to 1997.

  4. Universal Approach to Estimate Perfluorocarbons Emissions During Individual High-Voltage Anode Effect for Prebaked Cell Technologies

    NASA Astrophysics Data System (ADS)

    Dion, Lukas; Gaboury, Simon; Picard, Frédéric; Kiss, Laszlo I.; Poncsak, Sandor; Morais, Nadia

    2018-04-01

    Recent investigations on aluminum electrolysis cell demonstrated limitations to the commonly used tier-3 slope methodology to estimate perfluorocarbon (PFC) emissions from high-voltage anode effects (HVAEs). These limitations are greater for smelters with a reduced HVAE frequency. A novel approach is proposed to estimate the specific emissions using a tier 2 model resulting from individual HVAE instead of estimating monthly emissions for pot lines with the slope methodology. This approach considers the nonlinear behavior of PFC emissions as a function of the polarized anode effect duration but also integrates the change in behavior attributed to cell productivity. Validation was performed by comparing the new approach and the slope methodology with measurement campaigns from different smelters. The results demonstrate a good agreement between measured and estimated emissions as well as more accurately reflect individual HVAE dynamics occurring over time. Finally, the possible impact of this approach for the aluminum industry is discussed.

  5. Comparisons between vehicular emissions from real-world in-use testing and EPA moves estimation.

    DOT National Transportation Integrated Search

    2012-07-01

    "This research study developed a methodology to perform mandatory dynamometer vehicular emissions tests : on real roads, performed on-road emissions tests, and compared the test results to the estimates using the : current EPA emissions estimation mo...

  6. Reduction of CO2 Emissions Due to Wind Energy - Methods and Issues in Estimating Operational Emission Reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holttinen, Hannele; Kiviluoma, Juha; McCann, John

    2015-10-05

    This paper presents ways of estimating CO2 reductions of wind power using different methodologies. Estimates based on historical data have more pitfalls in methodology than estimates based on dispatch simulations. Taking into account exchange of electricity with neighboring regions is challenging for all methods. Results for CO2 emission reductions are shown from several countries. Wind power will reduce emissions for about 0.3-0.4 MtCO2/MWh when replacing mainly gas and up to 0.7 MtCO2/MWh when replacing mainly coal powered generation. The paper focuses on CO2 emissions from power system operation phase, but long term impacts are shortly discussed.

  7. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    PubMed

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  8. VALIDATION OF A METHOD FOR ESTIMATING POLLUTION EMISSION RATES FROM AREA SOURCES USING OPEN-PATH FTIR SEPCTROSCOPY AND DISPERSION MODELING TECHNIQUES

    EPA Science Inventory

    The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...

  9. Different approaches to assess the environmental performance of a cow manure biogas plant

    NASA Astrophysics Data System (ADS)

    Torrellas, Marta; Burgos, Laura; Tey, Laura; Noguerol, Joan; Riau, Victor; Palatsi, Jordi; Antón, Assumpció; Flotats, Xavier; Bonmatí, August

    2018-03-01

    In intensive livestock production areas, farmers must apply manure management systems to comply with governmental regulations. Biogas plants, as a source of renewable energy, have the potential to reduce environmental impacts comparing with other manure management practices. Nevertheless, manure processing at biogas plants also incurs in non-desired gas emissions that should be considered. At present, available emission calculation methods cover partially emissions produced at a biogas plant, with the subsequent difficulty in the preparation of life cycle inventories. The objective of this study is to characterise gaseous emissions: ammonia (NH3-N), methane (CH4), nitrous oxide (N2Oindirect, and N2Odirect) and hydrogen sulphide (H2S) from the anaerobic co-digestion of cow manure by using different approaches for preparing gaseous emission inventories, and to compare the different methodologies used. The chosen scenario for the study is a biogas plant located next to a dairy farm in the North of Catalonia, Spain. Emissions were calculated by two methods: field measurements and estimation, following international guidelines. International Panel on Climate Change (IPCC) guidelines were adapted to estimate emissions for the specific situation according to Tier 1, Tier 2 and Tier 3 approaches. Total air emissions at the biogas plant were calculated from the emissions produced at the three main manure storage facilities on the plant: influent storage, liquid fraction storage, and the solid fraction storage of the digestate. Results showed that most of the emissions were produced in the liquid fraction storage. Comparing measured emissions with estimated emissions, NH3, CH4, N2Oindirect and H2S total emission results were in the same order of magnitude for both methodologies, while, N2Odirect total measured emissions were one order of magnitude higher than the estimates. A Monte Carlo analysis was carried out to examine the uncertainties of emissions determined from experimental data, providing probability distribution functions. Four emission inventories were developed with the different methodologies used. Estimation methods proved to be a useful tool to determine emissions when field sampling is not possible. Nevertheless, it was not possible to establish which methodology is more reliable. Therefore, more measurements at different biogas plants should be evaluated to validate the methodologies more precisely.

  10. Statistical Methodology for Assigning Emissions to Industries in the United States: 1970 to 1990 (2001)

    EPA Pesticide Factsheets

    This report presents the results of a study that develops a methodology to assign emissions to the manufacturing and nonmanufacturing industries that comprise the industrial sector of the EPA’s national emission estimates for 1970 to 1990.

  11. Verifying the UK agricultural N2O emission inventory with tall tower measurements

    NASA Astrophysics Data System (ADS)

    Carnell, E. J.; Meneguz, E.; Skiba, U. M.; Misselbrook, T. H.; Cardenas, L. M.; Arnold, T.; Manning, A.; Dragosits, U.

    2016-12-01

    Nitrous oxide (N2O) is a key greenhouse gas (GHG), with a global warming potential 300 times greater than that of CO2. N2O is emitted from a variety of sources, predominantly from agriculture. Annual UK emission estimates are reported, to comply with government commitments under the United Nations Framework Convention on Climate Change (UNFCCC). The UK N2O inventory follows internationally agreed protocols and emission estimates are derived by applying emission factors to estimates of (anthropogenic) emission sources. This approach is useful for comparing anthropogenic emissions from different countries, but does not capture regional differences and inter-annual variability associated with environmental factors (such as climate and soils) and agricultural management. In recent years, the UK inventory approach has been refined to include regional information into its emissions estimates, in an attempt to reduce uncertainty. This study attempts to assess the difference between current published inventory methodology (default IPCC methodology) and an alternative approach, which incorporates the latest thinking, using data from recent work. For 2013, emission estimates made using the alternative approach were 30 % lower than those made using default IPCC methodology, due to the use of lower emission factors suggested by recent projects (Defra projects: AC0116, AC0213 and MinNO). The 2013 emissions estimates were disaggregated on a monthly basis using agricultural management (e.g. sowing dates), climate data and soil properties. The temporally disaggregated emission maps were used as input to the Met Office atmospheric dispersion model NAME, for comparison with measured N2O concentrations, at three observation stations (Tacolneston, E. England; Ridge Hill, W. England; Mace Head, W. Ireland) in the UK DECC network (Deriving Emissions linked to Climate Change). The Mace Head site, situated on the west coast of Ireland, was used to establish baseline concentrations. The trends in the modelled data were found to correspond with the observational data trends, with concentration peaks coinciding with periods of land spreading of manures and fertiliser application. The model run using the default IPCC methodology was found to correspond with the observed data more closely than the alternative approach.

  12. REVISED EMISSIONS ESTIMATION METHODOLOGIES FOR INDUSTRIAL, RESIDENTIAL, AND ELECTRIC UTILITY STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report describes the development of improved and streamlined EPA emission estimation methods for stationary combustion area sources by the Joint Emissions Inventory Oversight Group (JEIOG) research program. These sources include categories traditionally labeled "other statio...

  13. Estimating Agricultural Nitrous Oxide Emissions

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide emissions are highly variable in space and time and different methodologies have not agreed closely, especially at small scales. However, as scale increases, so does the agreement between estimates based on soil surface measurements (bottom up approach) and estimates derived from chang...

  14. How to estimate green house gas (GHG) emissions from an excavator by using CAT's performance chart

    NASA Astrophysics Data System (ADS)

    Hajji, Apif M.; Lewis, Michael P.

    2017-09-01

    Construction equipment activities are a major part of many infrastructure projects. This type of equipment typically releases large quantities of green house gas (GHG) emissions. GHG emissions may come from fuel consumption. Furthermore, equipment productivity affects the fuel consumption. Thus, an estimating tool based on the construction equipment productivity rate is able to accurately assess the GHG emissions resulted from the equipment activities. This paper proposes a methodology to estimate the environmental impact for a common construction activity. This paper delivers sensitivity analysis and a case study for an excavator based on trench excavation activity. The methodology delivered in this study can be applied to a stand-alone model, or a module that is integrated with other emissions estimators. The GHG emissions are highly correlated to diesel fuel use, which is approximately 10.15 kilograms (kg) of CO2 per gallon of diesel fuel. The results showed that the productivity rate model as the result from multiple regression analysis can be used as the basis for estimating GHG emissions, and also as the framework for developing emissions footprint and understanding the environmental impact from construction equipment activities introduction.

  15. Quantifying automobile refinishing VOC air emissions - a methodology with estimates and forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.P.; Rubick, C.

    1996-12-31

    Automobile refinishing coatings (referred to as paints), paint thinners, reducers, hardeners, catalysts, and cleanup solvents used during their application, contain volatile organic compounds (VOCs) which are precursors to ground level ozone formation. Some of these painting compounds create hazardous air pollutants (HAPs) which are toxic. This paper documents the methodology, data sets, and the results of surveys (conducted in the fall of 1995) used to develop revised per capita emissions factors for estimating and forecasting the VOC air emissions from the area source category of automobile refinishing. Emissions estimates, forecasts, trends, and reasons for these trends are presented. Future emissionsmore » inventory (EI) challenges are addressed in light of data availability and information networks.« less

  16. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    NASA Astrophysics Data System (ADS)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  17. A methodology to estimate uncertainty for emission projections through sensitivity analysis.

    PubMed

    Lumbreras, Julio; de Andrés, Juan Manuel; Pérez, Javier; Borge, Rafael; de la Paz, David; Rodríguez, María Encarnación

    2015-04-01

    Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the "with measures" scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.

  18. Greenhouse gas emissions from reservoir water surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we synthesize worldwide reservoir methane,carbon dioxide, and nitrous oxide emission data with three main objectives: (1) togenerate a global estimate of GHG emissions from reservoirs, (2) to identify the bestpredictors of these emissions, and (3) to consider the effect of methodology onemission estimates. We estimate that GHG emission from reservoir water surfacesaccount for 0.8 (0.5-1.2) Pg CO2-equivalents per year, equal to ~1.3 % of allanthropogenic GHG emissions, with the majority (79%) of this forcing due tomethane. We also discuss the potential for several alternative pathways such as damdegassing and downstream emissions to contribute significantly to overall GHGemissions. Although prior studies have linked reservoir GHG emissions to systemage and latitude, we find that factors related to reservoir productivity are betterpredictors of emission. Finally, as methane contributed the most to total reservoirGHG emissions, it is important that future monitoring campaigns incorporatemethane emission pathways, especially ebullition. To inform the public.

  19. METHODOLOGIES FOR ESTIMATING AIR EMISSIONS FROM THREE NON-TRADITIONAL SOURCE CATEGORIES: OIL SPILLS, PETROLEUM VESSEL LOADING & UNLOADING, AND COOLING TOWERS

    EPA Science Inventory

    The report discusses part of EPA's program to identify and characterize emissions sources not currently accounted for by either the existing Aerometric Information Retrieval System (AIRS) or State Implementation Plan (sip) area source methodologies and to develop appropriate emis...

  20. Verifying the UK N_{2}O emission inventory with tall tower measurements

    NASA Astrophysics Data System (ADS)

    Carnell, Ed; Meneguz, Elena; Skiba, Ute; Misselbrook, Tom; Cardenas, Laura; Arnold, Tim; Manning, Alistair; Dragosits, Ulli

    2016-04-01

    Nitrous oxide (N2O) is a key greenhouse gas (GHG), with a global warming potential ˜300 times greater than that of CO2. N2O is emitted from a variety of sources, predominantly from agriculture. Annual UK emission estimates are reported, to comply with government commitments under the United Nations Framework Convention on Climate Change (UNFCCC). The UK N2O inventory follows internationally agreed protocols and emission estimates are derived by applying emission factors to estimates of (anthropogenic) emission sources. This approach is useful for comparing anthropogenic emissions from different countries, but does not capture regional differences and inter-annual variability associated with environmental factors (such as climate and soils) and agricultural management. In recent years, the UK inventory approach has been refined to include regional information into its emissions estimates (e.g. agricultural management data), in an attempt to reduce uncertainty. This study attempts to assess the difference between current published inventory methodology (default IPCC methodology) and a revised approach, which incorporates the latest thinking, using data from recent work. For 2013, emission estimates made using the revised approach were 30 % lower than those made using default IPCC methodology, due to the use of lower emission factors suggested by recent projects (www.ghgplatform.org.uk, Defra projects: AC0116, AC0213 and MinNO). The 2013 emissions estimates were disaggregated on a monthly basis using agricultural management (e.g. sowing dates), climate data and soil properties. The temporally disaggregated emission maps were used as input to the Met Office atmospheric dispersion model NAME, for comparison with measured N2O concentrations, at three observation stations (Tacolneston, E England; Ridge Hill, W England; Mace Head, W Ireland) in the UK DECC network (Deriving Emissions linked to Climate Change). The Mace Head site, situated on the west coast of Ireland, was used to establish baseline concentrations. The trends in the modelled data were found to fit with the observational data trends, with concentration peaks coinciding with periods of fertiliser application and land spreading of manures. The model run using the 'experimental' approach was found to give a closer agreement with the observed data.

  1. Spatial and temporal disaggregation of transport-related carbon dioxide emissions in Bogota - Colombia

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, L. A.; Jimenez Pizarro, R.; Néstor Y. Rojas, N. Y.

    2011-12-01

    As a result of rapid urbanization during the last 60 years, 75% of the Colombian population now lives in cities. Urban areas are net sources of greenhouse gases (GHG) and contribute significantly to national GHG emission inventories. The development of scientifically-sound GHG mitigation strategies require accurate GHG source and sink estimations. Disaggregated inventories are effective mitigation decision-making tools. The disaggregation process renders detailed information on the distribution of emissions by transport mode, and the resulting a priori emissions map allows for optimal definition of sites for GHG flux monitoring, either by eddy covariance or inverse modeling techniques. Fossil fuel use in transportation is a major source of carbon dioxide (CO2) in Bogota. We present estimates of CO2 emissions from road traffic in Bogota using the Intergovernmental Panel on Climate Change (IPCC) reference method, and a spatial and temporal disaggregation method. Aggregated CO2 emissions from mobile sources were estimated from monthly and annual fossil fuel (gasoline, diesel and compressed natural gas - CNG) consumption statistics, and estimations of bio-ethanol and bio-diesel use. Although bio-fuel CO2 emissions are considered balanced over annual (or multi-annual) agricultural cycles, we included them since CO2 generated by their combustion would be measurable by a net flux monitoring system. For the disaggregation methodology, we used information on Bogota's road network classification, mean travel speed and trip length for each vehicle category and road type. The CO2 emission factors were taken from recent in-road measurements for gasoline- and CNG-powered vehicles and also estimated from COPERT IV. We estimated emission factors for diesel from surveys on average trip length and fuel consumption. Using IPCC's reference method, we estimate Bogota's total transport-related CO2 emissions for 2008 (reference year) at 4.8 Tg CO2. The disaggregation method estimation is 16% lower, mainly due to uncertainty in activity factors. With only 4% of Bogota's fleet, diesel use accounts for 42% of the CO2 emissions. The emissions are almost evenly shared between public (9% of the fleet) and private transport. Peak emissions occur at 8 a.m. and 6 p.m. with maximum values over a densely industrialized area at the northwest of Bogota. This investigation allowed estimating the relative contribution of fuel and vehicle categories to spatially- and temporally-resolved CO2 emissions. Fuel consumption time series indicate a near-stabilization trend on energy consumption for transportation, which is unexpected taking into account the sustained economic and vehicle fleet growth in Bogota. The comparison of the disaggregation methodology with the IPCC methodology contributes to the analysis of possible error sources on activity factor estimations. This information is very useful for uncertainty estimation and adjustment of primary air pollutant emissions inventories.

  2. Uncertainties in Emissions In Emissions Inputs for Near-Road Assessments

    EPA Science Inventory

    Emissions, travel demand, and dispersion models are all needed to obtain temporally and spatially resolved pollutant concentrations. Current methodology combines these three models in a bottom-up approach based on hourly traffic and emissions estimates, and hourly dispersion conc...

  3. The activity-based methodology to assess ship emissions - A review.

    PubMed

    Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2017-12-01

    Several studies tried to estimate atmospheric emissions with origin in the maritime sector, concluding that it contributed to the global anthropogenic emissions through the emission of pollutants that have a strong impact on hu' health and also on climate change. Thus, this paper aimed to review published studies since 2010 that used activity-based methodology to estimate ship emissions, to provide a summary of the available input data. After exclusions, 26 articles were analysed and the main information were scanned and registered, namely technical information about ships, ships activity and movement information, engines, fuels, load and emission factors. The larger part of studies calculating in-port ship emissions concluded that the majority was emitted during hotelling and most of the authors allocating emissions by ship type concluded that containerships were the main pollutant emitters. To obtain technical information about ships the combined use of data from Lloyd's Register of Shipping database with other sources such as port authority's databases, engine manufactures and ship-owners seemed the best approach. The use of AIS data has been growing in recent years and seems to be the best method to report activities and movements of ships. To predict ship powers the Hollenbach (1998) method which estimates propelling power as a function of instantaneous speed based on total resistance and use of load balancing schemes for multi-engine installations seemed to be the best practices for more accurate ship emission estimations. For emission factors improvement, new on-board measurement campaigns or studies should be undertaken. Regardless of the effort that has been performed in the last years to obtain more accurate shipping emission inventories, more precise input data (technical information about ships, engines, load and emission factors) should be obtained to improve the methodology to develop global and universally accepted emission inventories for an effective environmental policy plan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: emission estimate, uncertainty and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Brown, L.; Armstrong Brown, S.; Jarvis, S. C.; Syed, B.; Goulding, K. W. T.; Phillips, V. R.; Sneath, R. W.; Pain, B. F.

    Nitrous oxide emission from UK agriculture was estimated, using the IPCC default values of all emission factors and parameters, to be 87 Gg N 2O-N in both 1990 and 1995. This estimate was shown, however, to have an overall uncertainty of 62%. The largest component of the emission (54%) was from the direct (soil) sector. Two of the three emission factors applied within the soil sector, EF1 (direct emission from soil) and EF3 PRP (emission from pasture range and paddock) were amongst the most influential on the total estimate, producing a ±31 and +11% to -17% change in emissions, respectively, when varied through the IPCC range from the default value. The indirect sector (from leached N and deposited ammonia) contributed 29% of the total emission, and had the largest uncertainty (126%). The factors determining the fraction of N leached (Frac LEACH) and emissions from it (EF5), were the two most influential. These parameters are poorly specified and there is great potential to improve the emission estimate for this component. Use of mathematical models (NCYCLE and SUNDIAL) to predict Frac LEACH suggested that the IPCC default value for this parameter may be too high for most situations in the UK. Comparison with other UK-derived inventories suggests that the IPCC methodology may overestimate emission. Although the IPCC approach includes additional components to the other inventories (most notably emission from indirect sources), estimates for the common components (i.e. fertiliser and animals), and emission factors used, are higher than those of other inventories. Whilst it is recognised that the IPCC approach is generalised in order to allow widespread applicability, sufficient data are available to specify at least two of the most influential parameters, i.e. EF1 and Frac LEACH, more accurately, and so provide an improved estimate of nitrous oxide emissions from UK agriculture.

  5. Methane emission estimation from landfills in Korea (1978-2004): quantitative assessment of a new approach.

    PubMed

    Kim, Hyun-Sun; Yi, Seung-Muk

    2009-01-01

    Quantifying methane emission from landfills is important to evaluating measures for reduction of greenhouse gas (GHG) emissions. To quantify GHG emissions and identify sensitive parameters for their measurement, a new assessment approach consisting of six different scenarios was developed using Tier 1 (mass balance method) and Tier 2 (the first-order decay method) methodologies for GHG estimation from landfills, suggested by the Intergovernmental Panel on Climate Change (IPCC). Methane emissions using Tier 1 correspond to trends in disposed waste amount, whereas emissions from Tier 2 gradually increase as disposed waste decomposes over time. The results indicate that the amount of disposed waste and the decay rate for anaerobic decomposition were decisive parameters for emission estimation using Tier 1 and Tier 2. As for the different scenarios, methane emissions were highest under Scope 1 (scenarios I and II), in which all landfills in Korea were regarded as one landfill. Methane emissions under scenarios III, IV, and V, which separated the dissimilated fraction of degradable organic carbon (DOC(F)) by waste type and/or revised the methane correction factor (MCF) by waste layer, were underestimated compared with scenarios II and III. This indicates that the methodology of scenario I, which has been used in most previous studies, may lead to an overestimation of methane emissions. Additionally, separate DOC(F) and revised MCF were shown to be important parameters for methane emission estimation from landfills, and revised MCF by waste layer played an important role in emission variations. Therefore, more precise information on each landfill and careful determination of parameter values and characteristics of disposed waste in Korea should be used to accurately estimate methane emissions from landfills.

  6. 77 FR 14716 - Notice of Availability: Draft Documents Related to the Development of Emissions Estimating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... methodologies for determining daily and annual emissions from a broiler chicken animal feeding operation and... broiler chicken, egg-layer, swine and dairy industries. The study's purpose was to gather emissions data...

  7. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    PubMed

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil Aviation Organization endorsed the use of FOA3.0 in February 2007. Further commitment was made to improve the FOA as new data become available, until such time the methodology is rendered obsolete by a fully validated database of PM emission indices for today's certified commercial fleet. This paper discusses related assumptions and derived equations for the FOA3.0 methodology used worldwide to estimate PM emissions from certified commercial aircraft engines within the vicinity of airports.

  8. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators.

    PubMed

    Ye, Liu; Ni, Bing-Jie; Law, Yingyu; Byers, Craig; Yuan, Zhiguo

    2014-01-01

    The quantification of nitrous oxide (N2O) emissions from open-surface wastewater treatment systems with surface aerators is difficult as emissions from the surface aerator zone cannot be easily captured by floating hoods. In this study, we propose and demonstrate a novel methodology to estimate N2O emissions from such systems through determination of the N2O transfer coefficient (kLa) induced by surface aerators based on oxygen balance for the entire system. The methodology is demonstrated through its application to a full-scale open oxidation ditch wastewater treatment plant with surface aerators. The estimated kLa profile based on a month-long measurement campaign for oxygen balance, intensive monitoring of dissolved N2O profiles along the oxidation ditch over a period of four days, together with mathematical modelling, enabled to determine the N2O emission factor from this treatment plant (0.52 ± 0.16%). Majority of the N2O emission was found to occur in the surface aerator zone, which would be missed if the gas hood method was applied alone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. REVIEW OF EMISSION FACTORS AND METHODOLOGIES TO ESTIMATE AMMONIA EMISSIONS FROM ANIMAL WASTE HANDLING

    EPA Science Inventory

    Currently, approximately 80% of ammonia (NH3) emissions in the United States (U.S.) originate from livestock waste. This report summarizes and discusses recent available U.S. and European information on NH3 emissions from swine farms and assesses the applicability for general use...

  10. REVIEW OF EMISSION FACTORS AND METHODOLOGIES TO ESTIMATE AMMONIA EMISSIONS FROM ANIMAL WASTE HANDLING

    EPA Science Inventory

    The report summarizes and discusses recent available U.S. and European information on ammonia (NH3) emissions from swine farms and assesses its applicability for general use in the U.S., particularly in North Carolina. Emission rates for the houses calculated by various methods s...

  11. Methodology of Estimation of Methane Emissions from Coal Mines in Poland

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2014-03-01

    Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.

  12. New methodology for modeling annual-aircraft emissions at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodmansey, B.G.; Patterson, J.G.

    An as-accurate-as-possible estimation of total-aircraft emissions are an essential component of any environmental-impact assessment done for proposed expansions at major airports. To determine the amount of emissions generated by aircraft using present models it is necessary to know the emission characteristics of all engines that are on all planes using the airport. However, the published data base does not cover all engine types and, therefore, a new methodology is needed to assist in estimating annual emissions from aircraft at airports. Linear regression equations relating quantity of emissions to aircraft weight using a known-fleet mix are developed in this paper. Total-annualmore » emissions for CO, NO[sub x], NMHC, SO[sub x], CO[sub 2], and N[sub 2]O are tabulated for Toronto's international airport for 1990. The regression equations are statistically significant for all emissions except for NMHC from large jets and NO[sub x] and NMHC for piston-engine aircraft. This regression model is a relatively simple, fast, and inexpensive method of obtaining an annual-emission inventory for an airport.« less

  13. A new method for estimating greenhouse gases and ammonia emissions from livestock buildings

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.

    2013-08-01

    It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.

  14. UW Inventory of Freight Emissions (WIFE3) heavy duty diesel vehicle web calculator methodology.

    DOT National Transportation Integrated Search

    2013-09-01

    This document serves as an overview and technical documentation for the University of Wisconsin Inventory of : Freight Emissions (WIFE3) calculator. The WIFE3 web calculator rapidly estimates future heavy duty diesel : vehicle (HDDV) roadway emission...

  15. An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet

    NASA Astrophysics Data System (ADS)

    Coello, Jonathan; Williams, Ian; Hudson, Dominic A.; Kemp, Simon

    2015-08-01

    The fishing industry is heavily reliant on the use of fossil fuel and emits large quantities of greenhouse gases and other atmospheric pollutants. Methods used to calculate fishing vessel emissions inventories have traditionally utilised estimates of fuel efficiency per unit of catch. These methods have weaknesses because they do not easily allow temporal and geographical allocation of emissions. A large proportion of fishing and other small commercial vessels are also omitted from global shipping emissions inventories such as the International Maritime Organisation's Greenhouse Gas Studies. This paper demonstrates an activity-based methodology for the production of temporally- and spatially-resolved emissions inventories using data produced by Automatic Identification Systems (AIS). The methodology addresses the issue of how to use AIS data for fleets where not all vessels use AIS technology and how to assign engine load when vessels are towing trawling or dredging gear. The results of this are compared to a fuel-based methodology using publicly available European Commission fisheries data on fuel efficiency and annual catch. The results show relatively good agreement between the two methodologies, with an estimate of 295.7 kilotons of fuel used and 914.4 kilotons of carbon dioxide emitted between May 2012 and May 2013 using the activity-based methodology. Different methods of calculating speed using AIS data are also compared. The results indicate that using the speed data contained directly in the AIS data is preferable to calculating speed from the distance and time interval between consecutive AIS data points.

  16. REAL-TIME MODELING OF MOTOR VEHICLE EMISSIONS FOR ESTIMATING HUMAN EXPOSURES NEAR ROADWAYS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory is developing a real-time model of motor vehicle emissions to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop ...

  17. Accouting for Greenhouse Gas Emissions from Reservoirs

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  18. Accounting For Greenhouse Gas Emissions From Flooded ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  19. "Peer Review: Nonroad (NR) Updates to Population Growth, Compression Ignition (CI) Criteria, Toxic Emission Factors and Speciation Profiles"

    EPA Science Inventory

    This report focuses on the methodology for estimating growth in NR engine populations as used in the MOVES201X-NONROAD emission inventory model. MOVES NR growth rates start with base year engine populations and estimate growth in the populations of NR engines, while applying cons...

  20. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  1. Air quality assessment of benzo(a)pyrene from asphalt plant operation.

    PubMed

    Gibson, Nigel; Stewart, Robert; Rankin, Erika

    2012-01-01

    A study has been carried out to assess the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) from asphalt plant operation, utilising Benzo(a)pyrene (BaP) as a marker for PAHs, to the background air concentration around asphalt plants in the UK. The purpose behind this assessment was to determine whether the use of published BaP emission factors based on the US Environmental Protection Agency (EPA) methodology is appropriate in the context of the UK, especially as the EPA methodology does not give BaP emission factors for all activities. The study also aimed to improve the overall understanding of BaP emissions from asphalt plants in the UK, and determine whether site location and operation is likely to influence the contribution of PAHs to ambient air quality. In order to establish whether the use of US EPA emissions factors is appropriate, the study has compared the BaP emissions measured and calculated emissions rates from two UK sites with those estimated using US EPA emission factors. A dispersion modelling exercise was carried out to show the BaP contribution to ambient air around each site. This study showed that, as the US EPA methodology does not provide factors for all emission sources on asphalt plants, their use may give rise to over- or under-estimations, particularly where sources of BaP are temperature dependent. However, the contribution of both the estimated and measured BaP concentrations to environmental concentration were low, averaging about 0.05 ng m(-3) at the boundary of the sites, which is well below the UK BaP assessment threshold of 0.25 ng m(-3). Therefore, BaP concentrations, and hence PAH concentrations, from similar asphalt plant operations are unlikely to contribute negatively to ambient air quality.

  2. RERANKING OF AREA SOURCES IN LIGHT OF SEASONAL/ REGIONAL EMISSION FACTORS AND STATE/LOCAL NEEDS

    EPA Science Inventory

    The report gives results of an effort to provide a better understanding of air pollution area sources and their emissions, to prioritize their importance as emitters of volatile organic compounds (VOCs), and to identify sources for which better emission estimation methodologies a...

  3. Valuing Non-CO2 GHG Emission Changes in Benefit-Cost Analysis

    EPA Science Inventory

    The climate impacts of greenhouse gas (GHG) emissions impose social costs on society. To date, EPA has not had an approach to estimate the economic benefits of reducing emissions of non-CO2 GHGs (or the costs of increasing them) that is consistent with the methodology underlying...

  4. Emission Database for Global Atmospheric Research (EDGAR).

    ERIC Educational Resources Information Center

    Olivier, J. G. J.; And Others

    1994-01-01

    Presents the objective and methodology chosen for the construction of a global emissions source database called EDGAR and the structural design of the database system. The database estimates on a regional and grid basis, 1990 annual emissions of greenhouse gases, and of ozone depleting compounds from all known sources. (LZ)

  5. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    EPA Pesticide Factsheets

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  6. Valuing Non-CO2 GHG Emission Changes in Benefit-Cost ...

    EPA Pesticide Factsheets

    The climate impacts of greenhouse gas (GHG) emissions impose social costs on society. To date, EPA has not had an approach to estimate the economic benefits of reducing emissions of non-CO2 GHGs (or the costs of increasing them) that is consistent with the methodology underlying the U.S. Government’s current estimates of the social cost of carbon (SCC). A recently published paper presents estimates of the social cost of methane that are consistent with the SCC estimates. The Agency is seeking review of the potential application of these new benefit estimates to benefit cost analysis in relation to current practice in this area. The goal of this project is to improve upon the current treatment of non-CO2 GHG emission impacts in benefit-cost analysis.

  7. Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region - development using current knowledge and evaluation with passive sampling and air dispersion modelling data

    NASA Astrophysics Data System (ADS)

    Qiu, Xin; Cheng, Irene; Yang, Fuquan; Horb, Erin; Zhang, Leiming; Harner, Tom

    2018-03-01

    Two speciated and spatially resolved emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region (AOSR) were developed. The first database was derived from volatile organic compound (VOC) emissions data provided by the Cumulative Environmental Management Association (CEMA) and the second database was derived from additional data collected within the Joint Canada-Alberta Oil Sands Monitoring (JOSM) program. CALPUFF modelling results for atmospheric polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes (DBTs), obtained using each of the emissions databases, are presented and compared with measurements from a passive air monitoring network. The JOSM-derived emissions resulted in better model-measurement agreement in the total PAH concentrations and for most PAH species concentrations compared to results using CEMA-derived emissions. At local sites near oil sands mines, the percent error of the model compared to observations decreased from 30 % using the CEMA-derived emissions to 17 % using the JOSM-derived emissions. The improvement at local sites was likely attributed to the inclusion of updated tailings pond emissions estimated from JOSM activities. In either the CEMA-derived or JOSM-derived emissions scenario, the model underestimated PAH concentrations by a factor of 3 at remote locations. Potential reasons for the disagreement include forest fire emissions, re-emissions of previously deposited PAHs, and long-range transport not considered in the model. Alkylated PAH and DBT concentrations were also significantly underestimated. The CALPUFF model is expected to predict higher concentrations because of the limited chemistry and deposition modelling. Thus the model underestimation of PACs is likely due to gaps in the emissions database for these compounds and uncertainties in the methodology for estimating the emissions. Future work is required that focuses on improving the PAC emissions estimation and speciation methodologies and reducing the uncertainties in VOC emissions which are subsequently used in PAC emissions estimation.

  8. Verification of Agricultural Methane Emission Inventories

    NASA Astrophysics Data System (ADS)

    Desjardins, R. L.; Pattey, E.; Worth, D. E.; VanderZaag, A.; Mauder, M.; Srinivasan, R.; Worthy, D.; Sweeney, C.; Metzger, S.

    2017-12-01

    It is estimated that agriculture contributes more than 40% of anthropogenic methane (CH4) emissions in North America. However, these estimates, which are either based on the Intergovernmental Panel on Climate Change (IPCC) methodology or inverse modeling techniques, are poorly validated due to the challenges of separating interspersed CH4 sources within agroecosystems. A flux aircraft, instrumented with a fast-response Picarro CH4 analyzer for the eddy covariance (EC) technique and a sampling system for the relaxed eddy accumulation technique (REA), was flown at an altitude of about 150 m along several 20-km transects over an agricultural region in Eastern Canada. For all flight days, the top-down CH4 flux density measurements were compared to the footprint adjusted bottom-up estimates based on an IPCC Tier II methodology. Information on the animal population, land use type and atmospheric and surface variables were available for each transect. Top-down and bottom-up estimates of CH4 emissions were found to be poorly correlated, and wetlands were the most frequent confounding source of CH4; however, there were other sources such as waste treatment plants and biodigesters. Spatially resolved wavelet covariance estimates of CH4 emissions helped identify the contribution of wetlands to the overall CH4 flux, and the dependence of these emissions on temperature. When wetland contribution in the flux footprint was minimized, top-down and bottom-up estimates agreed to within measurement error. This research demonstrates that although existing aircraft-based technology can be used to verify regional ( 100 km2) agricultural CH4 emissions, it remains challenging due to diverse sources of CH4 present in many regions. The use of wavelet covariance to generate spatially-resolved flux estimates was found to be the best way to separate interspersed sources of CH4.

  9. Estimation of carbon dioxide emissions per urban center link unit using data collected by the Advanced Traffic Information System in Daejeon, Korea

    NASA Astrophysics Data System (ADS)

    Ryu, B. Y.; Jung, H. J.; Bae, S. H.; Choi, C. U.

    2013-12-01

    CO2 emissions on roads in urban centers substantially affect global warming. It is important to quantify CO2 emissions in terms of the link unit in order to reduce these emissions on the roads. Therefore, in this study, we utilized real-time traffic data and attempted to develop a methodology for estimating CO2 emissions per link unit. Because of the recent development of the vehicle-to-infrastructure (V2I) communication technology, data from probe vehicles (PVs) can be collected and speed per link unit can be calculated. Among the existing emission calculation methodologies, mesoscale modeling, which is a representative modeling measurement technique, requires speed and traffic data per link unit. As it is not feasible to install fixed detectors at every link for traffic data collection, in this study, we developed a model for traffic volume estimation by utilizing the number of PVs that can be additionally collected when the PV data are collected. Multiple linear regression and an artificial neural network (ANN) were used for estimating the traffic volume. The independent variables and input data for each model are the number of PVs, travel time index (TTI), the number of lanes, and time slots. The result from the traffic volume estimate model shows that the mean absolute percentage error (MAPE) of the ANN is 18.67%, thus proving that it is more effective. The ANN-based traffic volume estimation served as the basis for the calculation of emissions per link unit. The daily average emissions for Daejeon, where this study was based, were 2210.19 ton/day. By vehicle type, passenger cars accounted for 71.28% of the total emissions. By road, Gyeryongro emitted 125.48 ton/day, accounting for 5.68% of the total emission, the highest percentage of all roads. In terms of emissions per kilometer, Hanbatdaero had the highest emission volume, with 7.26 ton/day/km on average. This study proves that real-time traffic data allow an emissions estimate in terms of the link unit. Furthermore, an analysis of CO2 emissions can support traffic management to make decisions related to the reduction of carbon emissions.

  10. Estimating national landfill methane emissions: an application of the 2006 Intergovernmental Panel on Climate Change Waste Model in Panama.

    PubMed

    Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar

    2008-05-01

    This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.

  11. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang

    Here, we present a new data set of annual historical (1750–2014) anthropogenic chemically reactive gases (CO, CH 4, NH 3, NO x, SO 2, NMVOCs), carbonaceous aerosols (black carbon – BC, and organic carbon – OC), and CO 2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the samemore » activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.« less

  12. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    DOE PAGES

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang; ...

    2018-01-29

    Here, we present a new data set of annual historical (1750–2014) anthropogenic chemically reactive gases (CO, CH 4, NH 3, NO x, SO 2, NMVOCs), carbonaceous aerosols (black carbon – BC, and organic carbon – OC), and CO 2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the samemore » activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.« less

  13. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    NASA Astrophysics Data System (ADS)

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, June-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang

    2018-01-01

    We present a new data set of annual historical (1750-2014) anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs), carbonaceous aerosols (black carbon - BC, and organic carbon - OC), and CO2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  14. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2016

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachian State University, Boone, NC (United States)

    2016-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  15. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2015

    DOE Data Explorer

    Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, J. [Appalachian State University, Boone, NC (United States)

    2015-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2011 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2015), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  16. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2010) (V.2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2010-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  17. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2011) (1950 - 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA_; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2011-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  18. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude - 2013

    DOE Data Explorer

    Andres, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachain State University, Boone, NC (United States)

    1996-01-01

    The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  19. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  20. Estimation of radionuclide (137Cs) emission rates from a nuclear power plant accident using the Lagrangian Particle Dispersion Model (LPDM).

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Ju, Jae-Won; Joo, Seung Jin

    2016-10-01

    A methodology for the estimation of the emission rate of 137 Cs by the Lagrangian Particle Dispersion Model (LPDM) with the use of monitored 137 Cs concentrations around a nuclear power plant has been developed. This method has been employed with the MM5 meteorological model in the 600 km × 600 km model domain with the horizontal grid scale of 3 km × 3 km centered at the Fukushima nuclear power plant to estimate 137 Cs emission rate for the accidental period from 00 UTC 12 March to 00 UTC 6 April 2011. The Lagrangian Particles are released continuously with the rate of one particle per minute at the first level modelled, about 15 m above the power plant site. The presently developed method was able to simulate quite reasonably the estimated 137 Cs emission rate compared with other studies, suggesting the potential usefulness of the present method for the estimation of the emission rate from the accidental power plant without detailed inventories of reactors and fuel assemblies and spent fuels. The advantage of this method is not so complicated but can be applied only based on one-time forward LPDM simulation with monitored concentrations around the power plant, in contrast to other inverse models. It was also found that continuously monitored radionuclides concentrations from possibly many sites located in all directions around the power plant are required to get accurate continuous emission rates from the accident power plant. The current methodology can also be used to verify the previous version of radionuclides emissions used among other modeling groups for the cases of intermittent or discontinuous samplings. Copyright © 2016. Published by Elsevier Ltd.

  1. Valuing the Ozone-Related Health Benefits of Methane Emission Controls

    EPA Science Inventory

    A recently published paper presented a range of estimates of the monetized ozone-related mortality benefits of reducing methane emissions (Sarofim et al. 2015). This peer review regards the application of the Sarofim et al. methodology to regulatory impact assessments. Sarofim...

  2. Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds.

    PubMed

    Vasanth, Muthuraman; Muralidhar, Moturi; Saraswathy, Ramamoorthy; Nagavel, Arunachalam; Dayal, Jagabattula Syama; Jayanthi, Marappan; Lalitha, Natarajan; Kumararaja, Periyamuthu; Vijayan, Koyadan Kizhakkedath

    2016-12-01

    Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha -1  day -1 during the culture was comparatively high in P.vannamei culture ponds.

  3. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture

    NASA Astrophysics Data System (ADS)

    Brown, L.; Syed, B.; Jarvis, S. C.; Sneath, R. W.; Phillips, V. R.; Goulding, K. W. T.; Li, C.

    A mechanistic model of N 2O emission from agricultural soil (DeNitrification-DeComposition—DNDC) was modified for application to the UK, and was used as the basis of an inventory of N 2O emission from UK agriculture in 1990. UK-specific input data were added to DNDC's database and the ability to simulate daily C and N inputs from grazing animals and applied animal waste was added to the model. The UK version of the model, UK-DNDC, simulated emissions from 18 different crop types on the 3 areally dominant soils in each county. Validation of the model at the field scale showed that predictions matched observations well. Emission factors for the inventory were calculated from estimates of N 2O emission from UK-DNDC, in order to maintain direct comparability with the IPCC approach. These, along with activity data, were included in a transparent spreadsheet format. Using UK-DNDC, the estimate of N 2O-N emission from UK current agricultural practice in 1990 was 50.9 Gg. This total comprised 31.7 Gg from the soil sector, 5.9 Gg from animals and 13.2 Gg from the indirect sector. The range of this estimate (using the range of soil organic C for each soil used) was 30.5-62.5 Gg N. Estimates of emissions in each sector were compared to those calculated using the IPCC default methodology. Emissions from the soil and indirect sectors were smaller with the UK-DNDC approach than with the IPCC methodology, while emissions from the animal sector were larger. The model runs suggested a relatively large emission from agricultural land that was not attributable to current agricultural practices (33.8 Gg in total, 27.4 Gg from the soil sector). This 'background' component is partly the result of historical agricultural land use. It is not normally included in inventories of emission, but would increase the total emission of N 2O-N from agricultural land in 1990 to 78.3 Gg.

  4. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2007) (V. 2010)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy, and Economics Appalachian State University Boone, NC 28608-2131 USA

    2010-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2013.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996) for years prior to 1990 and a variable population distribution for later years (Andres et al. 2016). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production). The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  5. Assessing methane emission estimation methods based on atmospheric measurements from oil and gas production using LES simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.

    2017-12-01

    There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation results from advanced methods such as variational inverse modeling, and Bayesian inference and stochastic sampling techniques. Future directions including other types of observations, other hydrocarbons being considered, and assessment of additional emission estimation methods will be discussed.

  6. A Sub-category Disaggregated Greenhouse Gas Emission Inventory for the Bogota Region, Colombia

    NASA Astrophysics Data System (ADS)

    Pulido-Guio, A. D.; Rojas, A. M.; Ossma, L. J.; Jimenez-Pizarro, R.

    2012-12-01

    Several international organizations, such as UNDP and UNEP, have recently recognized the importance of empowering sub-national decision levels on climatic governance according to the subsidiarity principle. Regional and municipal authorities are directly responsible for land use management and for regulating economic sectors that emit greenhouse gases (GHG) and are vulnerable to climate change. Sub-national authorities are also closer to the population, which make them better suited for educating the public and for achieving commitment among stakeholders. This investigation was developed within the frame of the Regional Integrated Program on Climate Change for the Cundinamarca-Bogota Region (PRICC), an initiative aimed at incorporating the climate dimension into the regional and local decision making. The region composed by Bogota and its nearest, semi-rural area of influence (Province of Cundinamarca) is the most important population and economic center of Colombia. Our investigation serves two purposes: a) to establish methodologies for estimating regional GHG emissions appropriate to the Colombian context, and b) to disaggregate GHG emissions by economic sector as a mitigation decision-making tool. GHG emissions were calculated using IPCC 1996 - Tier 1 methodologies, as there are no regional- or country-specific emission factors available for Colombia. Top-Down (TD) methodologies, based on national and regional energy use intensity, per capita consumption and fertilizer use, were developed and applied to estimate activities for following categories: fuel use in industrial, commercial and residential sectors (excepting NG and LPG), use of ozone depleting substances (ODS) and substitutes, and fertilizer use (for total emissions of agricultural soils). The emissions from the remaining 22 categories were calculated using Bottom-Up (BU) methodologies given the availability of regional information. The total GHG emissions in the Cundinamarca-Bogota Region on 2008 are estimated at 22.96±1.25 (1-sigma) Tg of CO2 equivalent (10.46±0.93 Tg CO2-e from Cundinamarca and 12.51±0.83 Tg CO2-eq from Bogota). 63% of Cundinamarca's GHG emissions are due to road transportation, agricultural soil management, enteric fermentation and fuel use in the cement industry. The road transportation and waste disposal sectors share 62% of emissions in Bogota. These activity sectors are considered to be the main GHG mitigation assessment targets. The calculated per capita emissions, 1.7 ton CO2-eq/hab-year for Bogota and 4.4 ton CO2-eq/hab-year for Cundinamarca (excluding emissions due to land-use change), do not reflect the fact that Cundinamarca provides goods and services to the city of Bogota. A deeper analysis is thus required to quantitatively account for Bogota's urban metabolism, including GHG emissions associated with consumption patterns. It is expected that the developed and applied methodologies, and the systematic compilation of the gathered information, will facilitate the development of GHG inventories for other regions of Colombia.

  7. Methods for monitoring emissions and removals from forest harvesting for timber and fuelwood: Lessons from Guyana

    Treesearch

    Sandra Brown

    2013-01-01

    Two methodologies for estimating net emissions from forest harvesting practices (for timber and possibly fuel) are presented: (1) a standard approach of using medium resolution imagery to monitor the expansion of logging infrastructure into non-logged areas for activity data combined with ground plots and the stock-change method for emission factors; and (2) a...

  8. Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.

    PubMed

    Farrell, Alexander E; Corbett, James J; Winebrake, James J

    2002-12-01

    Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system.

  9. Contribution of milk production to global greenhouse gas emissions. An estimation based on typical farms.

    PubMed

    Hagemann, Martin; Ndambi, Asaah; Hemme, Torsten; Latacz-Lohmann, Uwe

    2012-02-01

    Studies on the contribution of milk production to global greenhouse gas (GHG) emissions are rare (FAO 2010) and often based on crude data which do not appropriately reflect the heterogeneity of farming systems. This article estimates GHG emissions from milk production in different dairy regions of the world based on a harmonised farm data and assesses the contribution of milk production to global GHG emissions. The methodology comprises three elements: (1) the International Farm Comparison Network (IFCN) concept of typical farms and the related globally standardised dairy model farms representing 45 dairy regions in 38 countries; (2) a partial life cycle assessment model for estimating GHG emissions of the typical dairy farms; and (3) standard regression analysis to estimate GHG emissions from milk production in countries for which no typical farms are available in the IFCN database. Across the 117 typical farms in the 38 countries analysed, the average emission rate is 1.50 kg CO(2) equivalents (CO(2)-eq.)/kg milk. The contribution of milk production to the global anthropogenic emissions is estimated at 1.3 Gt CO(2)-eq./year, accounting for 2.65% of total global anthropogenic emissions (49 Gt; IPCC, Synthesis Report for Policy Maker, Valencia, Spain, 2007). We emphasise that our estimates of the contribution of milk production to global GHG emissions are subject to uncertainty. Part of the uncertainty stems from the choice of the appropriate methods for estimating emissions at the level of the individual animal.

  10. REVIEW AND EVALUATION OF CURRENT METHODS AND USER NEEDS FOR OTHER STATIONARY COMBUSTION SOURCES

    EPA Science Inventory

    The report gives results of Phase 1 of an effort to develop improved methodologies for estimating area source emissions of air pollutants from stationary combustion sources. The report (1) evaluates Area and Mobile Source (AMS) subsystem methodologies; (2) compares AMS results w...

  11. Black carbon emissions in Russia: A critical review

    NASA Astrophysics Data System (ADS)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  12. The challenge of modelling nitrogen management at the field scale: simulation and sensitivity analysis of N2O fluxes across nine experimental sites using DailyDayCent

    NASA Astrophysics Data System (ADS)

    Fitton, N.; Datta, A.; Hastings, A.; Kuhnert, M.; Topp, C. F. E.; Cloy, J. M.; Rees, R. M.; Cardenas, L. M.; Williams, J. R.; Smith, K.; Chadwick, D.; Smith, P.

    2014-09-01

    The United Kingdom currently reports nitrous oxide emissions from agriculture using the IPCC default Tier 1 methodology. However Tier 1 estimates have a large degree of uncertainty as they do not account for spatial variations in emissions. Therefore biogeochemical models such as DailyDayCent (DDC) are increasingly being used to provide a spatially disaggregated assessment of annual emissions. Prior to use, an assessment of the ability of the model to predict annual emissions should be undertaken, coupled with an analysis of how model inputs influence model outputs, and whether the modelled estimates are more robust that those derived from the Tier 1 methodology. The aims of the study were (a) to evaluate if the DailyDayCent model can accurately estimate annual N2O emissions across nine different experimental sites, (b) to examine its sensitivity to different soil and climate inputs across a number of experimental sites and (c) to examine the influence of uncertainty in the measured inputs on modelled N2O emissions. DailyDayCent performed well across the range of cropland and grassland sites, particularly for fertilized fields indicating that it is robust for UK conditions. The sensitivity of the model varied across the sites and also between fertilizer/manure treatments. Overall our results showed that there was a stronger correlation between the sensitivity of N2O emissions to changes in soil pH and clay content than the remaining input parameters used in this study. The lower the initial site values for soil pH and clay content, the more sensitive DDC was to changes from their initial value. When we compared modelled estimates with Tier 1 estimates for each site, we found that DailyDayCent provided a more accurate representation of the rate of annual emissions.

  13. 76 FR 3060 - Call for Information: Information Related to the Development of Emission-Estimating Methodologies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... approach that incorporates ``mass balance'' constraints to determine emissions from AFOs. Unfortunately... ventilation rate of the monitored confinement structure. Nitrogen content of process inputs and outputs (e.g., feed, water, bedding, eggs, milk). Nitrogen content of manure excreted. Description of any control...

  14. Considerations in linking energy scenario modeling and Life Cycle Analysis

    EPA Science Inventory

    The U.S. EPA Office of Research and Development (ORD) has been exploring approaches for estimating U.S. anthropogenic air pollutant emissions through the mid-21st century. As a result, we have developed the Emission Scenario Projection methodology, or ESP. In this document, we pr...

  15. Estimation of effect of hydrogen on the parameters of magnetoacoustic emission signals

    NASA Astrophysics Data System (ADS)

    Skalskyi, Valentyn; Stankevych, Olena; Dubytskyi, Olexandr

    2018-05-01

    The features of the magnetoacoustic emission (MAE) signals during magnetization of structural steels with the different degree of hydrogenating were investigated by the wavelet transform. The dominant frequency ranges of MAE signals for the different magnetic field strength were determined using Discrete Wavelet Transform (DWT), and the energy and spectral parameters of MAE signals were determined using Continuous Wavelet Transform (CWT). The characteristic differences of the local maximums of signals according to energy, bandwidth, duration and frequency were found. The methodology of estimation of state of local degradation of materials by parameters of wavelet transform of MAE signals was proposed. This methodology was approbated for investigate of state of long-time exploitations structural steels of oil and gas pipelines.

  16. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    PubMed

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.

  17. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleummore » gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  18. 40 CFR 98.295 - Procedures for estimating missing data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Procedures for estimating missing data... estimating missing data. For the emission calculation methodologies in § 98.293(b)(2) and (b)(3), a complete... unavailable, a substitute data value for the missing parameter shall be used in the calculations as specified...

  19. 40 CFR 98.295 - Procedures for estimating missing data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Procedures for estimating missing data... estimating missing data. For the emission calculation methodologies in § 98.293(b)(2) and (b)(3), a complete... unavailable, a substitute data value for the missing parameter shall be used in the calculations as specified...

  20. 40 CFR 98.295 - Procedures for estimating missing data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Procedures for estimating missing data... estimating missing data. For the emission calculation methodologies in § 98.293(b)(2) and (b)(3), a complete... unavailable, a substitute data value for the missing parameter shall be used in the calculations as specified...

  1. 40 CFR 98.295 - Procedures for estimating missing data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Procedures for estimating missing data... estimating missing data. For the emission calculation methodologies in § 98.293(b)(2) and (b)(3), a complete... unavailable, a substitute data value for the missing parameter shall be used in the calculations as specified...

  2. Use of a land-use-based emissions inventory in delineating clean-air zones

    Treesearch

    Victor S. Fahrer; Howard A. Peters

    1977-01-01

    Use of a land-use-based emissions inventory from which air-pollution estimates can be projected was studied. First the methodology used to establish a land-use-based emission inventory is described. Then this inventory is used as input in a simple model that delineates clean air and buffer zones. The model is applied to the town of Burlington, Massachusetts....

  3. Estimation and projection of nitrous oxide (N2O) emissions from anthropogenic sources in Taiwan.

    PubMed

    Tsai, Wen-Tien; Chyan, Jih-Ming

    2006-03-01

    Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.

  4. Estimating historical anthropogenic global sulfur emission patterns for the period 1850-1990

    NASA Astrophysics Data System (ADS)

    Lefohn, Allen S.; Husar, Janja D.; Husar, Rudolf B.

    It is important to establish a reliable regional emission inventory of sulfur as a function of time when assessing the possible effects of global change and acid rain. This study developed a database of annual estimates of national sulfur emissions from 1850 to 1990. A common methodology was applied across all years and countries allowing for global totals to be produced by adding estimates from all countries. The consistent approach facilitates the modification of the database and the observation of changes at national, regional, or global levels. The emission estimates were based on net production (i.e., production plus imports minus exports), sulfur content, and sulfur retention for each country's production activities. Because the emission estimates were based on the above considerations, our database offers an opportunity to independently compare our results with those estimates based on individual country estimates. Fine temporal resolution clearly shows emission changes associated with specific historical events (e.g., wars, depressions, etc.) on a regional, national, or global basis. The spatial pattern of emissions shows that the US, the USSR, and China were the main sulfur emitters (i.e., approximately 50% of the total) in the world in 1990. The USSR and the US appear to have stabilized their sulfur emissions over the past 20 yr, and the recent increases in global sulfur emissions are linked to the rapid increases in emissions from China. Sulfur emissions have been reduced in some cases by switching from high- to low-sulfur coals. Flue gas desulfurization (FGD) has apparently made important contributions to emission reductions in only a few countries, such as Germany.

  5. Spatially-resolved aircraft-based quantification of methane emissions from the Fayetteville Shale Gas Play

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Petron, G.; Conley, S. A.; Karion, A.; Tans, P. P.; Wolter, S.; King, C. W.; White, A. B.; Coleman, T.; Bianco, L.; Schnell, R. C.

    2016-12-01

    Confidence in basin scale oil and gas industry related methane (CH4) emission estimates hinges on an in-depth understanding, objective evaluation, and continued improvements of both top-down (e.g. aircraft measurement based) and bottom-up (e.g. emission inventories using facility- and/or component-level measurements) approaches. Systematic discrepancies of CH4 emission estimates between both approaches in the literature have highlighted research gaps. This paper is part of a more comprehensive study to expand and improve this reconciliation effort for a US dry shale gas play. This presentation will focus on refinements of the aircraft mass balance method to reduce the number of potential methodological biases (e.g. data and methodology). The refinements include (i) an in-depth exploration of the definition of upwind conditions and their impact on calculated downwind CH4 enhancements and total CH4 emissions, (ii) taking into account small but non-zero vertical and horizontal wind gradients in the boundary layer, and (iii) characterizing the spatial distribution of CH4 emissions in the study area using aircraft measurements. For the first time to our knowledge, we apply the aircraft mass balance method to calculate spatially resolved total CH4 emissions for 10 km x 60 km sub-regions within the study area. We identify higher-emitting sub-regions and localize repeating emission patterns as well as differences between days. The increased resolution of the top-down calculation will for the first time allow for an in-depth comparison with a spatially and temporally resolved bottom-up emission estimate based on measurements, concurrent activity data and other data sources.

  6. Application of inverse dispersion model for estimating volatile organic compounds emitted from the offshore industrial park

    NASA Astrophysics Data System (ADS)

    Tsai, M.; Lee, C.; Yu, H.

    2013-12-01

    In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will give a better understanding about the uncertainty of regulatory methodology. The model results will be discussed with the importance of evaluating air pollution exposure in risk assessment.

  7. Black carbon emissions in Russia: A critical review

    DOE PAGES

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; ...

    2017-05-18

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  8. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  9. Top-down NOX emissions over European cities from LOTOS-EUROS simulated and OMI observed tropospheric NO2 columns using the Exponentially Modified Gaussian approach

    NASA Astrophysics Data System (ADS)

    Verstraeten, Willem W.; Folkert Boersma, K.; Douros, John; Williams, Jason E.; Eskes, Henk H.; Delcloo, Andy

    2017-04-01

    High nitrogen oxides concentrations at the surface (NOX = NO + NO2) impact humans and ecosystem badly and play a key role in tropospheric chemistry. Surface NOX emissions drive major processes in regional and global chemistry transport models (CTM). NOX contributes to the formation of acid rain, act as aerosol precursors and is an important trace gas for the formation of tropospheric ozone (O3). Via tropospheric O3, NOX indirectly affects the production of the hydroxyl radical which controls the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. High NOX emissions are mainly observed in polluted regions produced by anthropogenic combustion from industrial, traffic and household activities typically observed in large and densely populated urban areas. Accurate NOX inventories are essential, but state-of the- art emission databases may vary substantially and uncertainties are high since reported emissions factors may differ in order of magnitude and more. To date, the modelled NO2 concentrations and lifetimes have large associated uncertainties due to the highly non-linear small-scale chemistry that occurs in urban areas and uncertainties in the reaction rate data, missing nitrogen (N) species and volatile organic compounds (VOC) emissions, and incomplete knowledge of nitrogen oxides chemistry. Any overestimation in the chemical lifetime may mask missing NOX chemistry in current CTM's. By simultaneously estimating both the NO2 lifetime and concentrations, for instance by using the Exponentially Modified Gaussian (EMG), a better surface NOX emission flux estimate can be obtained. Here we evaluate if the EMG methodology can reproduce the emissions input from the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM model. We apply the EMG methodology on LOTOS-EUROS simulated tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (surface wind speeds > 3 m s-1). We then compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the LOTOS-EUROS model as input to simulate the NO2 columns. We also apply the EMG methodology on OMI (Ozone Monitoring Instrument) tropospheric NO2 column data, providing us with real-time observation-based estimates of midday NO2 lifetime and NOX emissions over 21 European cities in 2013. Results indicate that the top-down derived NOX emissions from LOTOS-EUROS (respectively OMI) are comparable with the MACC-III inventory with a R2 of 0.99 (respectively R2 = 0.79). For St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.

  10. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniawan, Jermanto S., E-mail: Jermanto.kurniawan@inrets.fr; Khardi, S., E-mail: Salah.khardi@inrets.f

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly ormore » indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.« less

  11. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950-2008) (V. 2011)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2011-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  12. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2015)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA)

    2015-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  13. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2010) (V. 2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2013-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  14. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2009) (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2012-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  15. Annual Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree latitude by One Degree Longitude (V. 2013)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA).

    2013-01-01

    The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  16. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    PubMed

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  17. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of themore » transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.« less

  18. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (1950 - 2006) (V.2009)

    DOE Data Explorer

    Andres, R. J. [.; Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory Oak Ridge, TN (USA).; Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory Oak Ridge, TN (USA).; Marland, Greg [Appalachian State University, Boone, North Carolina (USA)

    2009-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2006.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  19. Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (V. 2012)

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marland, G. [Appalachian State University, Boone, North Caroline (USA)

    2012-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2009.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html Q10 for a description why emission totals based upon consumption differ from those based upon production).

  20. Standardized emissions inventory methodology for open-pit mining areas.

    PubMed

    Huertas, Jose I; Camacho, Dumar A; Huertas, Maria E

    2011-08-01

    There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10 μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (∼70 Mt/year). The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180 kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148 m(2) of land per ton of coal produced per year.

  1. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates

    NASA Astrophysics Data System (ADS)

    Grassi, Giacomo; Monni, Suvi; Federici, Sandro; Achard, Frederic; Mollicone, Danilo

    2008-07-01

    A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data—i.e., area change and C stock change/area—may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools—already existing in UNFCCC decisions and IPCC guidance documents—may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.

  2. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es; Hospido, A., E-mail: almudena.hospido@usc.es; Bagley, D.M., E-mail: bagley@uwyo.edu

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity usemore » and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.« less

  3. Assessment of on-road transportation demand and CO2 emissions for determination of air quality impacts from the Megacity of São Paulo

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, P. J.; Miranda, R. M.; Andrade, M. D. F.

    2017-12-01

    In this manuscript we assess the capability of using mobility surveys and a high-scale assignment and emission model to study climate change and air quality impacts related to on-road transportation in the Megacity of São Paulo (MSP). Initially, we estimate CO2 emissions of light and heavy vehicles (LVs and HVs) at a spatial scale of 500m and temporal scale of an hour, using transport demand modeling. The estimates are based on origin and destination trip pairs and the height of the planetary boundary layer (PBL). These estimates, performed for the years 2007 and 2012, depend also on intermediate variables as dilution rates (D) and surface particulate-matter concentrations (PM). Secondly, we assess the changes in CO2 vehicle emissions from the MRSP over the period 2007-2012 (4% year-1). Consequently, CO2 emission inventories merge trip-based surveys, traffic assignments and road network database with air pollution monitoring data. Despite the difference of the methodologies, we use a road link bottom up vehicle activity based approach, the assessed emissions agree with the State's Emission Inventory. This paper shows that the CO2 emissions from LDVs and HDVs in the MSP in 2007 and 2012 were 8,477 and 10,075 tCeq day-1 (58% LVs and 42% HVs), respectively. CO2 emissions from vehicles show spatial patterns consistent with passenger and freight transport trips and road network assignments. Temporal profiles (diurnal, weekly and monthly) were estimated using traffic counts and congestion surrogates. The profiles were compared with average road-site (Western of MSP) and background (Jaraguá Peak) CO2 measurements available for 2014. On-road measurements showed one peak associated to the morning peak hour of vehicles (437±45 ppm) and another night peak (435±49 ppm) related to the low PBL (313 m) and D (329 m2 h-1). From on-road measurements, background values (414±2 ppm) were subtracted to estimate excess CO2 (12±8 ppm) directly attributed to vehicles. The inventory reflects the relationships between traffic patterns and emissions, and the developed methodology could be used to evaluate the impacts of forthcoming urban transport and emission control policies. In the future, our estimates will be verified with ground measurements of CO2 concentrations over a bigger monitoring network in the MSP.

  4. Procedures for the estimation of regional scale atmospheric emissions—An example from the North West Region of England

    NASA Astrophysics Data System (ADS)

    Lindley, S. J.; Longhurst, J. W. S.; Watson, A. F. R.; Conlan, D. E.

    This paper considers the value of applying an alternative pro rata methodology to the estimation of atmospheric emissions from a given regional or local area. Such investigations into less time and resource intensive means of providing estimates in comparison to traditional methods are important due to the potential role of new methods in the development of air quality management plans. A pro rata approach is used here to estimate emissions of SO 2, NO x, CO, CO 2, VOCs and black smoke from all sources and Pb from transportation for the North West region of England. This method has the advantage of using readily available data as well as being an easily repeatable procedure which provides a good indication of emissions to be expected from a particular geographical region. This can then provide the impetus for further emission studies and ultimately a regional/local air quality management plan. Results suggest that between 1987 and 1991 trends in the emissions of the pollutants considered have been less favourable in the North West region than in the nation as a whole.

  5. Advancing Methods for Estimating Soil Nitrous Oxide Emissions by Incorporating Freeze-Thaw Cycles into a Tier 3 Model-Based Assessment

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; DelGrosso, S.; Parton, W. J.

    2017-12-01

    Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.

  6. Quantification of Shipping Emissions in the Eastern Mediterranean and Comparison with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kilic, A.; Unal, A.; Kindap, T.; Karaca, M.; Khan, M. N.

    2010-12-01

    Shipping is considered as one of the main emission sources worldwide. Recent studies suggest that, in the Mediterrenean, ship emissions are responsible for 10-50% of black carbon, 2-12% ozone in the surface layer and 5-20% for nitrogen dioxide atmospheric column burden (Marmer et al., 2009). It is, therefore, essential to have an accurate emissions estimation for ships. Marmara Sea, an inland sea connecting the Mediterrenean to the Black Sea, has significant marine activity. Marmara region, surrounding the Marmara Sea, has over 30 million population (including Istanbul megacity) with significant emission sources (e.g., on-road traffic, industry). Emission amounts from ships can be calculated based on two different methodologies, one is according to the total amount of bunker fuels for maritime transport sold which is called top down approach and the other is shipping activity-based bottom-up approach. The top-down estimation method is not suitable for calculations of shipping emissions in Turkey since fuel sales cannot be accurately obtained. Also, top-down approaches possibly have some errors, since data assumptions for the average engine power, engine operating hours and emission factors are the most important uncertain inputs. Previously, a few studies based on bottom-up aproach have been carried on about shipping emissions in Marmara Sea according to the shipping statistics belong to Istanbul and Canakkale Straits and port regions. These studies were mainly depending on very rough assumptions such as avearage ship speed, fixed ships routes, generalized engine types and average fuel consumptions. Deniz C. (2008) estimated shipping emissions in 2003, for Marmara Sea and Turkish Straits as 111,000 tons for NOx, 87,000 tons for SO2, 5,451,000 tons for CO2, 4762 tons for PM. Although- between 2003 and 2008- there is approximately 15% increase in number of ships passsing through Turkish Straits, this study shows that, shippings emissions for the same region are estimated to be more than 3 times of previous studies. In this study, Automatic Information System (AIS) records of marine vessels (having 1 minute temporal resolution) for over 10,000 ships operating at the study area (including Marmara Sea, Istanbul and Canakkale Straits and some parts of Black Sea and Aegian Sea) were obtained from Turkish Undersecretariat for Maritime Affairs for the period between August 2008 and August 2009. These records include the position of the ships, gross tonnage and ship types. Using energy based emission factors for each operation mode, minute-by-minute emissions were estimated. Annual emission totals for merchant ships were estimated as 605,000 tons for NOX; 495,000 tons for SO2; 25,600 tons for HC; 53,300 tons for PM and 29,630,000 tons for CO2. This paper presents the methodology and the findings of the emissions estimates for ships. The results will also be compared to satellite observations. For this purpose, CO measurements from MOPITT and SO2 measurements from OMI will be utilized.

  7. Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources

    NASA Astrophysics Data System (ADS)

    Miola, Apollonia; Ciuffo, Biagio

    2011-04-01

    Maritime transport plays a central role in the transport sector's sustainability debate. Its contribution to air pollution and greenhouse gases is significant. An effective policy strategy to regulate air emissions requires their robust estimation in terms of quantification and location. This paper provides a critical analysis of the ship emission modelling approaches and data sources available, identifying their limits and constraints. It classifies the main methodologies on the basis of the approach followed (bottom-up or top-down) for the evaluation and geographic characterisation of emissions. The analysis highlights the uncertainty of results from the different methods. This is mainly due to the level of uncertainty connected with the sources of information that are used as inputs to the different studies. This paper describes the sources of the information required for these analyses, paying particular attention to AIS data and to the possible problems associated with their use. One way of reducing the overall uncertainty in the results could be the simultaneous use of different sources of information. This paper presents an alternative methodology based on this approach. As a final remark, it can be expected that new approaches to the problem together with more reliable data sources over the coming years could give more impetus to the debate on the global impact of maritime traffic on the environment that, currently, has only reached agreement via the "consensus" estimates provided by IMO (2009).

  8. Annual Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (1950-2013) (V. 2016)

    DOE Data Explorer

    Andres, R. J. [CDIAC; Boden, T. A. [CDIAC

    2016-01-01

    The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  9. Monthly Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (Uncertainties, V.2016)

    DOE Data Explorer

    Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurten Vardar; Zehra Yumurtaci

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology ismore » used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.« less

  11. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any other basin using a top-down methodology, and may be indicative of some characteristics of the basin that make sources from the north-eastern Marcellus region unique.

  12. Top-down NOX Emissions of European Cities Derived from Modelled and Spaceborne Tropospheric NO2 Columns

    NASA Astrophysics Data System (ADS)

    Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.

    2017-12-01

    High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived NOX emissions from CTM and OMI with the MACC-III inventory. For cities where multiple sources of NOX are observed (e.g. Brussels, London), an adapted methodology is required. For some cities such as St-Petersburg and Moscow the top-down NOX estimates from 2013 OMI data are biased low compared to the MACC-III inventory which uses a 2011 NOX emissions update.

  13. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  14. A model to calculate consistent atmospheric emission projections and its application to Spain

    NASA Astrophysics Data System (ADS)

    Lumbreras, Julio; Borge, Rafael; de Andrés, Juan Manuel; Rodríguez, Encarnación

    Global warming and air quality are headline environmental issues of our time and policy must preempt negative international effects with forward-looking strategies. As part of the revision of the European National Emission Ceilings Directive, atmospheric emission projections for European Union countries are being calculated. These projections are useful to drive European air quality analyses and to support wide-scale decision-making. However, when evaluating specific policies and measures at sectoral level, a more detailed approach is needed. This paper presents an original methodology to evaluate emission projections. Emission projections are calculated for each emitting activity that has emissions under three scenarios: without measures (business as usual), with measures (baseline) and with additional measures (target). The methodology developed allows the estimation of highly disaggregated multi-pollutant, consistent emissions for a whole country or region. In order to assure consistency with past emissions included in atmospheric emission inventories and coherence among the individual activities, the consistent emission projection (CEP) model incorporates harmonization and integration criteria as well as quality assurance/quality check (QA/QC) procedures. This study includes a sensitivity analysis as a first approach to uncertainty evaluation. The aim of the model presented in this contribution is to support decision-making process through the assessment of future emission scenarios taking into account the effect of different detailed technical and non-technical measures and it may also constitute the basis for air quality modelling. The system is designed to produce the information and formats related to international reporting requirements and it allows performing a comparison of national results with lower resolution models such as RAINS/GAINS. The methodology has been successfully applied and tested to evaluate Spanish emission projections up to 2020 for 26 pollutants but the methodology could be adopted for any particular region for different purposes, especially for European countries.

  15. Greenhouse gas emissions from vegetation fires in Southern Africa.

    PubMed

    Scholes, R J

    1995-01-01

    Methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx), volatile organic carbon, and aerosols emitted as a result of the deliberate or accidental burning of natural vegetation constitute a large component of the greenhouse gas emissions of many African countries, but the data needed for calculating these emissions by the IPCC methodology is sparse and subject to estimation errors. An improved procedure for estimating emissions from fires in southern Africa has been developed. The proposed procedure involves reclassifying existing vegetation maps into one of eleven broad, functional vegetation classes. Fuel loads are calculated within each 0.5 × 0.5° cell based on empirical relationships to climate data for each class. The fractional area of each class that burns is estimated by using daily low-resolution satellite fire detection, which is calibrated against a subsample of pre- and post-fire high-resolution satellite images. The emission factors that relate the quantity of gas released to the mass of fuel burned are based on recent field campaigns in Africa and are related to combustion efficiency, which is in turn related to the fuel mix. The emissions are summed over the 1989 fire season for Africa south of the equator. The estimated emissions from vegetation burning in the subcontinent are 0.5 Tg CH4, 14.9 Tg CO, 1.05 Tg NOx, and 1.08 Tg of particles smaller than 2.5µm. The 324 Tg CO2 emitted is expected to be reabsorbed in subsequent years. These estimates are smaller than previous estimates.

  16. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology.

    PubMed

    Kouazounde, J B; Gbenou, J D; Babatounde, S; Srivastava, N; Eggleston, S H; Antwi, C; Baah, J; McAllister, T A

    2015-03-01

    The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.

  17. ACID RAIN MODELING

    EPA Science Inventory

    This paper provides an overview of existing statistical methodologies for the estimation of site-specific and regional trends in wet deposition. The interaction of atmospheric processes and emissions tend to produce wet deposition data patterns that show large spatial and tempora...

  18. Monthly Fossil-Fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude

    DOE Data Explorer

    Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.

    2015-01-01

    The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2011.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).

  19. Nitrogen excretion factors of livestock in the European Union: a review.

    PubMed

    Velthof, Gerard L; Hou, Yong; Oenema, Oene

    2015-12-01

    Livestock manures are major sources of nutrients, used for the fertilisation of cropland and grassland. Accurate estimates of the amounts of nutrients in livestock manures are required for nutrient management planning, but also for estimating nitrogen (N) budgets and emissions to the environment. Here we report on N excretion factors for a range of animal categories in policy reports by member states of the European Union (EU). Nitrogen excretion is defined in this paper as the total amount of N excreted by livestock per year as urine and faeces. We discuss the guidelines and methodologies for the estimation of N excretion factors by the EU Nitrates Directive, the OECD/Eurostat gross N balance guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. Our results show that N excretion factors for dairy cattle, other cattle, pigs, laying hens, broilers, sheep, and goats differ significantly between policy reports and between countries. Part of these differences may be related to differences in animal production (e.g. production of meat, milk and eggs), size/weight of the animals, and feed composition, but partly also to differences in the aggregation of livestock categories and estimation procedures. The methodologies and data used by member states are often not well described. There is a need for a common, harmonised methodology and procedure for the estimation of N excretion factors, to arrive at a common basis for the estimation of the production of manure N and N balances, and emissions of ammonia (NH3 ) and nitrous oxide (N2 O) across the EU. © 2015 Society of Chemical Industry.

  20. A review of land-based greenhouse gas flux estimates in Indonesia

    NASA Astrophysics Data System (ADS)

    Austin, Kemen G.; Harris, Nancy L.; Wijaya, Arief; Murdiyarso, Daniel; Harvey, Tom; Stolle, Fred; Kasibhatla, Prasad S.

    2018-05-01

    This study examines underlying reasons for differences among land-based greenhouse gas flux estimates in Indonesia, where six national inventories reported average emissions of between 0.4 and 1.1 Gt CO2e yr‑1 over the 2000–2012 period. The large range among estimates is only somewhat smaller than Indonesia’s GHG mitigation commitment. To determine the reasons for these differences, we compared input data and estimation methods, including the definitions and assumptions used for setting accounting boundaries, including emitting activities, incorporating fluxes from various carbon pools, and handling legacy fluxes. We also tested the sensitivity of methodological differences by generating our own reference emissions estimate and iteratively modifying individual components of the inventory. We found that the largest changes stem from the inclusion of legacy GHG emissions due to peat drainage (which increased emissions by at least +94% compared to the reference), methane emissions due to peat fires (+35%), and GHG emissions from belowground biomass and necromass carbon pools (+61%), modifications to assumptions of the mass of fuel burnt in peat fire events (+88%), and accounting for regrowth following a deforestation event (‑31%). These differences cumulatively explain more than half of the observed difference among inventory estimates. Understanding the various approaches to emissions estimation, and how these influence the magnitude of component GHG fluxes, is an important first step towards reconciling GHG inventories. The Indonesian government’s success in achieving its mitigation goal will depend on its ability to measure progress and evaluate the effectiveness of abatement actions, for which reliable harmonized greenhouse gas inventories are an essential foundation.

  1. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    PubMed Central

    Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B

    2012-01-01

    Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.

  2. Estimation of snow emissivity via assimilation of multi-frequency passive microwave data into an ensemble-based data assimilation system

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Bateni, S. M.; Auligne, T.; Navari, M.

    2017-12-01

    Snow emissivity is a key parameter for the estimation of snow surface temperature, which is needed as an initial value in climate models and determination of the outgoing long-wave radiation. Moreover, snow emissivity is required for retrieval of atmospheric parameters (e.g., temperature and humidity profiles) from satellite measurements and satellite data assimilations in numerical weather prediction systems. Microwave emission models and remote sensing data cannot accurately estimate snow emissivity due to limitations attributed to each of them. Existing microwave emission models introduce significant uncertainties in their snow emissivity estimates. This is mainly due to shortcomings of the dense media theory for snow medium at high frequencies, and erroneous forcing variables. The well-known limitations of passive microwave data such as coarse spatial resolution, saturation in deep snowpack, and signal loss in wet snow are the major drawbacks of passive microwave retrieval algorithms for estimation of snow emissivity. A full exploitation of the information contained in the remote sensing data can be achieved by merging them with snow emission models within a data assimilation framework. Such an optimal merging can overcome the specific limitations of models and remote sensing data. An Ensemble Batch Smoother (EnBS) data assimilation framework was developed in this study to combine the synthetically generated passive microwave brightness temperatures at 1.4-, 18.7-, 36.5-, and 89-GHz frequencies with the MEMLS microwave emission model to reduce the uncertainty of the snow emissivity estimates. We have used the EnBS algorithm in the context of observing system simulation experiment (or synthetic experiment) at the local scale observation site (LSOS) of the NASA CLPX field campaign. Our findings showed that the developed methodology significantly improves the estimates of the snow emissivity. The simultaneous assimilation of passive microwave brightness temperatures at all frequencies (i.e., 1.4-, 18.7-, 36.5-, and 89-GHz) reduce the root-mean-square-error (RMSE) of snow emissivity at 1.4-, 18.7-, 36.5-, and 89-GHz (H-pol.) by 80%, 42%, 52%, 40%, respectively compared to the corresponding snow emissivity estimates from the open-loop model.

  3. Recent Approaches to Estimate Associations Between Source-Specific Air Pollution and Health.

    PubMed

    Krall, Jenna R; Strickland, Matthew J

    2017-03-01

    Estimating health effects associated with source-specific exposure is important for better understanding how pollution impacts health and for developing policies to better protect public health. Although epidemiologic studies of sources can be informative, these studies are challenging to conduct because source-specific exposures (e.g., particulate matter from vehicles) often are not directly observed and must be estimated. We reviewed recent studies that estimated associations between pollution sources and health to identify methodological developments designed to address important challenges. Notable advances in epidemiologic studies of sources include approaches for (1) propagating uncertainty in source estimation into health effect estimates, (2) assessing regional and seasonal variability in emissions sources and source-specific health effects, and (3) addressing potential confounding in estimated health effects. Novel methodological approaches to address challenges in studies of pollution sources, particularly evaluation of source-specific health effects, are important for determining how source-specific exposure impacts health.

  4. Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections

    EPA Pesticide Factsheets

    Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.

  5. TRENDS IN RURAL SULFUR CONCENTRATIONS

    EPA Science Inventory

    As the focus of environmental management has shifted toward regional- scale strategies, there is a growing need to develop statistical methodology for the estimation of regional trends in air pollution. This information is critical to assessing the effects of legislated emission ...

  6. The leverage of demographic dynamics on carbon dioxide emissions: does age structure matter?

    PubMed

    Zagheni, Emilio

    2011-02-01

    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO(2)) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO(2) emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO(2) emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO(2) emissions.

  7. Assessing global radiative forcing due to regional emissions of tropospheric ozone precursors: a step towards climate credit for ozone reductions

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2005-05-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  8. Estimation of waste water treatment plant methane emissions: methodology and results from a short campaign

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebegue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2013-10-01

    This paper describes different methods to estimate methane emissions at different scales. These methods are applied to a waste water treatment plant (WWTP) located in Valence, France. We show that Fourier Transform Infrared (FTIR) measurements as well as Cavity Ring Down Spectroscopy (CRDS) can be used to measure emissions from the process to the regional scale. To estimate the total emissions, we investigate a tracer release method (using C2H2) and the Radon tracer method (using 222Rn). For process-scale emissions, both tracer release and chamber techniques were used. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the Radon tracer method encompasses not only the treatment station but also a large area around. Thus the Radon tracer method is more representative of the regional emissions around the city. Uncertainties for each method are described. Applying the methods to CH4 emissions, we find that the main source of emissions of the plant was not identified with certainty during this short campaign, although the primary source of emissions is likely to be from solid sludge. Overall, the waste water treatment plant represents a small part (3%) of the methane emissions of the city of Valence and its surroundings,which is in agreement with the national inventories.

  9. Spatial indeterminacy and power sector carbon emissions accounting

    NASA Astrophysics Data System (ADS)

    Jiusto, J. Scott

    Carbon emission indicators are essential for understanding climate change processes, and for motivating and measuring the effectiveness of carbon reduction policy at multiple scales. Carbon indicators also play an increasingly important role in shaping cultural discourses and politics about nature-society relations and the roles of the state, markets and civil society in creating sustainable natural resource practices and just societies. The analytical and political significance of indicators is tied closely to their objective basis: how accurately they account for the places, people, and processes responsible for emissions. In the electric power sector, however, power-trading across geographic boundaries prevents a simple, purely objective spatial attribution of emissions. Using U.S. states as the unit of analysis, three alternative methods of accounting for carbon emissions from electricity use are assessed, each of which is conceptually sound and methodologically rigorous, yet produces radically different estimates of individual state emissions. Each method also implicitly embodies distinctly different incentive structures for states to enact carbon reduction policies. Because none of the three methods can be said to more accurately reflect "true" emissions levels, I argue the best method is that which most encourages states to reduce emissions. Energy and carbon policy processes are highly contested, however, and thus I examine competing interests and perspectives shaping state energy policy. I explore what it means, philosophically and politically, to predicate emissions estimates on both objectively verifiable past experience and subjectively debatable policy prescriptions for the future. Although developed here at the state scale, the issues engaged and the carbon accounting methodology proposed are directly relevant to carbon analysis and policy formation at scales ranging from the local to the international.

  10. Assessing Satellite-Based Fire Data for use in the National Emissions Inventory

    NASA Technical Reports Server (NTRS)

    Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.; hide

    2009-01-01

    Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.

  11. Global carbon monoxide cycle: Modeling and data analysis

    NASA Astrophysics Data System (ADS)

    Arellano, Avelino F., Jr.

    The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other atmospheric observations but differ with satellite area-burned observations, is a significant overestimation in southern Africa for June/July relative to satellite-and-model-constrained BIOM emissions of CO. Sensitivity inverse analyses on observation error covariance and structure, and sequential inversion using NOAA CMDL to fully exploit available information, confirm the robustness of the estimates and further recognize the limitations of the approach, implying the need to further improve the methodology and to reconcile discrepancies.

  12. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    PubMed

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  13. Methodology for Airborne Quantification of NOx fluxes over Central London and Comparison to Emission Inventories

    NASA Astrophysics Data System (ADS)

    Vaughan, A. R.; Lee, J. D.; Lewis, A. C.; Purvis, R.; Carslaw, D.; Misztal, P. K.; Metzger, S.; Beevers, S.; Goldstein, A. H.; Hewitt, C. N.; Shaw, M.; Karl, T.; Davison, B.

    2015-12-01

    The emission of pollutants is a major problem in today's cities. Emission inventories are a key tool for air quality management, with the United Kingdom's National and London Atmospheric Emission Inventories (NAEI & LAEI) being good examples. Assessing the validity of such inventoried is important. Here we report on the technical methodology of matching flux measurements of NOx over a city to inventory estimates. We used an eddy covariance technique to directly measure NOx fluxes from central London on an aircraft flown at low altitude. NOx mixing ratios were measured at 10 Hz time resolution using chemiluminescence (to measure NO) and highly specific photolytic conversion of NO2 to NO (to measure NO2). Wavelet transformation was used to calculate instantaneous fluxes along the flight track for each flight leg. The transformation allows for both frequency and time information to be extracted from a signal, where we quantify the covariance between the de-trended vertical wind and concentration to derive a flux. Comparison between the calculated fluxes and emission inventory data was achieved using a footprint model, which accounts for contributing source. Using both a backwards lagrangian model and cross-wind dispersion function, we find the footprint extent ranges from 5 to 11 Km in distance from the sample point. We then calculate a relative weighting matrix for each emission inventory within the calculated footprint. The inventories are split into their contributing source sectors with each scaled using up to date emission factors, giving a month; day and hourly scaled estimate which is then compared to the measurement.

  14. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates.

    PubMed

    Richardson, Claire; Rutherford, Shannon; Agranovski, Igor

    2018-06-01

    Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.

  15. Emissions from ships in the northwestern United States.

    PubMed

    Corbett, James J

    2002-03-15

    Recent inventory efforts have focused on developing nonroad inventories for emissions modeling and policy insights. Characterizing these inventories geographically and explicitly treating the uncertaintiesthat result from limited emissions testing, incomplete activity and usage data, and other important input parameters currently pose the largest methodological challenges. This paper presents a commercial marine vessel (CMV) emissions inventory for Washington and Oregon using detailed statistics regarding fuel consumption, vessel movements, and cargo volumes for the Columbia and Snake River systems. The inventory estimates emissions for oxides of nitrogen (NOx), particulate matter (PM), and oxides of sulfur (SOx). This analysis estimates that annual NOx emissions from marine transportation in the Columbia and Snake River systems in Washington and Oregon equal 6900 t of NOx (as NO2) per year, 2.6 times greater than previous NO, inventories for this region. Statewide CMV NO, emissions are estimated to be 9,800 t of NOx per year. By relying on a "bottom-up" fuel consumption model that includes vessel characteristics and transit information, the river system inventory may be more accurate than previous estimates. This inventory provides modelers with bounded parametric inputs for sensitivity analysis in pollution modeling. The ability to parametrically model the uncertainty in commercial marine vessel inventories also will help policy-makers determine whether better policy decisions can be enabled through further vessel testing and improved inventory resolution.

  16. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC fossil-fuel CO2 emissions data. This presentation introduces the architecture and design of the new relational database and web interface, summarizes the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System, and highlights future plans for expansion of the relational database and interface.

  17. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions

    PubMed Central

    Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893

  18. Analysis of travel-time reliability for freight corridors connecting the Pacific Northwest.

    DOT National Transportation Integrated Search

    2012-11-01

    A new methodology and algorithms were developed to combine diverse data sources and to estimate the impacts of recurrent and non-recurrent : congestion on freight movements reliability and delays, costs, and emissions. The results suggest that tra...

  19. GHG emissions inventory for on-road transportation in the town of Sassari (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2016-04-01

    The IPCC Fifth Assessment Report (AR5) accounts an increase of the total annual anthropogenic GHG emissions between 2000 and 2010 that directly came from the transport sector. In 2010, 14% of GHG emissions were released by transport and fossil-fuel-related CO2 emissions reached about 32 GtCO2 per year. The report also considers adaptation and mitigation as complementary strategies for reducing the risks of climate change for sustainable development of urban areas. This paper describes the on-road traffic emission estimated in the framework of a Sardinian regional project [1] for the town of Sassari (Sardinia, Italy), one of the Sardinian areas where the fuel consumption for on-road transportation purposes is higher [2]. The GHG emissions have been accounted (a) by a calculation-based methodology founded on a linear relationship between source activity and emission, and (b) by the COPERT IV methodology through the EMITRA (EMIssions from road TRAnsport) software tool [3]. Inventory data for annual fossil fuel consumption associated with on-road transportation (diesel, gasoline, gas) have been collected through the Dogane service, the ATP and ARST public transport services and vehicle fleet data are available from the Public Vehicle Database (PRA), using 2010 as baseline year. During this period, the estimated CO2 emissions accounts for more than 180,000 tCO2. The calculation of emissions due to on-road transport quantitatively estimates CO2 and other GHG emissions and represents a useful baseline to identify possible adaptation and mitigation strategies to face the climate change risks at municipal level. Acknowledgements This research was funded by the Sardinian Regional Project "Development, functional checking and setup of an integrated system for the quantification of CO2 net exchange and for the evaluation of mitigation strategies at urban and territorial scale", (Legge Regionale 7 agosto 2007, No. 7). References [1] Sanna L., Ferrara R., Zara P. & Duce P. (2014), GHG emissions inventory at urban scale: the Sassari case study, Energy Procedia, No. 59, pp. 344 - 350. [2] Bellasio R, Bianconi R, Corda G, Cucca P. (2007), Emission inventory for the road transport sector in Sardinia (Italy), Atmospheric Environment, No. 41, pp. 677-691. [3] Gkatzoflias D., Kouridis C., Ntziachristos L. & Samaras Z. (2012), COPERT 4, Computer programme to calculate emissions from road transport, User manual (version 9.0), Emisia.

  20. Different methodologies to quantify uncertainties of air emissions.

    PubMed

    Romano, Daniela; Bernetti, Antonella; De Lauretis, Riccardo

    2004-10-01

    Characterization of the uncertainty associated with air emission estimates is of critical importance especially in the compilation of air emission inventories. In this paper, two different theories are discussed and applied to evaluate air emissions uncertainty. In addition to numerical analysis, which is also recommended in the framework of the United Nation Convention on Climate Change guidelines with reference to Monte Carlo and Bootstrap simulation models, fuzzy analysis is also proposed. The methodologies are discussed and applied to an Italian example case study. Air concentration values are measured from two electric power plants: a coal plant, consisting of two boilers and a fuel oil plant, of four boilers; the pollutants considered are sulphur dioxide (SO(2)), nitrogen oxides (NO(X)), carbon monoxide (CO) and particulate matter (PM). Monte Carlo, Bootstrap and fuzzy methods have been applied to estimate uncertainty of these data. Regarding Monte Carlo, the most accurate results apply to Gaussian distributions; a good approximation is also observed for other distributions with almost regular features either positive asymmetrical or negative asymmetrical. Bootstrap, on the other hand, gives a good uncertainty estimation for irregular and asymmetrical distributions. The logic of fuzzy analysis, where data are represented as vague and indefinite in opposition to the traditional conception of neatness, certain classification and exactness of the data, follows a different description. In addition to randomness (stochastic variability) only, fuzzy theory deals with imprecision (vagueness) of data. Fuzzy variance of the data set was calculated; the results cannot be directly compared with empirical data but the overall performance of the theory is analysed. Fuzzy theory may appear more suitable for qualitative reasoning than for a quantitative estimation of uncertainty, but it suits well when little information and few measurements are available and when distributions of data are not properly known.

  1. Integrating risk assessment and life cycle assessment: a case study of insulation.

    PubMed

    Nishioka, Yurika; Levy, Jonathan I; Norris, Gregory A; Wilson, Andrew; Hofstetter, Patrick; Spengler, John D

    2002-10-01

    Increasing residential insulation can decrease energy consumption and provide public health benefits, given changes in emissions from fuel combustion, but also has cost implications and ancillary risks and benefits. Risk assessment or life cycle assessment can be used to calculate the net impacts and determine whether more stringent energy codes or other conservation policies would be warranted, but few analyses have combined the critical elements of both methodologies In this article, we present the first portion of a combined analysis, with the goal of estimating the net public health impacts of increasing residential insulation for new housing from current practice to the latest International Energy Conservation Code (IECC 2000). We model state-by-state residential energy savings and evaluate particulate matter less than 2.5 microm in diameter (PM2.5), NOx, and SO2 emission reductions. We use past dispersion modeling results to estimate reductions in exposure, and we apply concentration-response functions for premature mortality and selected morbidity outcomes using current epidemiological knowledge of effects of PM2.5 (primary and secondary). We find that an insulation policy shift would save 3 x 10(14) British thermal units or BTU (3 x 10(17) J) over a 10-year period, resulting in reduced emissions of 1,000 tons of PM2.5, 30,000 tons of NOx, and 40,000 tons of SO2. These emission reductions yield an estimated 60 fewer fatalities during this period, with the geographic distribution of health benefits differing from the distribution of energy savings because of differences in energy sources, population patterns, and meteorology. We discuss the methodology to be used to integrate life cycle calculations, which can ultimately yield estimates that can be compared with costs to determine the influence of external costs on benefit-cost calculations.

  2. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  3. Methods to assess geological CO2 storage capacity: Status and best practice

    USGS Publications Warehouse

    Heidug, Wolf; Brennan, Sean T.; Holloway, Sam; Warwick, Peter D.; McCoy, Sean; Yoshimura, Tsukasa

    2013-01-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  4. Scientific activities of Euro Chlor in monitoring and assessing naturally and man-made organohalogens.

    PubMed

    Lecloux, A J

    2003-07-01

    In this paper a review of the scientific activities and research programmes carried out by Euro Chlor, the European Federation of chlor-alkali producers is presented according to two main axes: marine risk assessments with statistical analysis of monitoring data, temporal trends of emission levels and environmental concentrations. The methodology applied in each field is briefly presented and then illustrated by several practical examples. As a large part of the uncertainties in assessing the risk of a chemical to a given species or ecosystem often comes from the difficulty in evaluating the exposure level, Euro Chlor has chosen to use a monitoring approach, the exposure level being estimated from a statistical analysis of measured concentrations levels in water and sediment from rivers, estuaries and coastal areas. As the modelling approach often used by the authorities to estimate the predicted environmental concentration value is starting from roughly estimated emission levels, Euro Chlor collated emissions data from about 80 production plants in order to reduce the uncertainty associated with the default values introduced in the modelling approach.A brief review of the European emission levels for chlorinated organic substances is given as well as the temporal trends of both emission and environmental levels. A methodology to quantify the trends in measured concentrations at local and regional scales is briefly described. The observed decreasing trends demonstrate the continuous progress made by the Euro Chlor member companies in protecting the environment.Finally, the problems linked to the simultaneous presence in the environment of naturally and man-made chlorinated substances are briefly reviewed. To stimulate further research in the field, two key questions are raised which have not yet found a satisfactory answer: how to quantify natural background levels and how to quantify global persistence in the environment?

  5. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    PubMed

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible. © 2014 John Wiley & Sons Ltd.

  6. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    DOT National Transportation Integrated Search

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, : including 41 of the busiest 50, are either in nonattainment : or maintenance areas per the National Ambient : Air Quality Standards. U.S. aviation activity is forecasted : to triple by 20...

  7. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.; Bergevin, Christopher; Kalluri, Radha; Mc Laughlin, Myles; Michelet, Pascal; van der Heijden, Marcel; Joris, Philip X.

    2011-11-01

    Otoacoustic estimates of cochlear frequency selectivity suggest substantially sharper tuning in humans. However, the logic and methodology underlying these estimates remain untested by direct measurements in primates. We report measurements of frequency tuning in macaque monkeys, Old-World primates phylogenetically closer to humans than the small laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, and chinchillas). We find that measurements of tuning obtained directly from individual nerve fibers and indirectly using otoacoustic emissions both indicate that peripheral frequency selectivity in macaques is significantly sharper than in small laboratory animals, matching that inferred for humans at high frequencies. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharper tuning in humans.

  8. Air Contamination by Mercury, Emissions and Transformations-a Review.

    PubMed

    Gworek, Barbara; Dmuchowski, Wojciech; Baczewska, Aneta H; Brągoszewska, Paulina; Bemowska-Kałabun, Olga; Wrzosek-Jakubowska, Justyna

    2017-01-01

    The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg 0 -GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its Hg II -GOM and that in Hg p -TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.

  9. Global Impact Estimation of ISO 50001 Energy Management System for Industrial and Service Sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Therkelsen, Peter L.; Rao, Prakash

    A methodology has been developed to determine the impacts of ISO 50001 Energy Management System (EnMS) at a region or country level. The impacts of ISO 50001 EnMS include energy, CO2 emissions, and cost savings. This internationally recognized and transparent methodology has been embodied in a user friendly Microsoft Excel® based tool called ISO 50001 Impact Estimator Tool (IET 50001). However, the tool inputs are critical in order to get accurate and defensible results. This report is intended to document the data sources used and assumptions made to calculate the global impact of ISO 50001 EnMS.

  10. Ammonia Emissions from Agriculture in China

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, L.; Zhao, Y.; Huang, B.

    2016-12-01

    Ammonia (NH3) is an important alkaline pollutant in the atmosphere and it has various environmental and climatic effects. We will present an improved bottom-up estimate of ammonia emissions from agriculture in China at 0.5°×0.5° horizontal resolution and monthly variability. Ammonia emissions from fertilizer use are derived using data of crop planting area, fertilizer application time and rate for 18 main crops. Ammonia emission factors from fertilizer use are estimated as a function of soil properties such as soil pH, cation exchange capacity (CEC), and agricultural activity information such as crop type, fertilizer type, and application mode. We further consider ambient temperature and wind speed to account for the meteorological influences on ammonia emission factors of fertilizer use. We also estimate the ammonia emission from livestock over China using the mass-flow methodology. The derived ammonia emissions in China for the year 2005 are 4.55 Tg NH3 from fertilizer use and 6.96 Tg from livestock. Henan and Jiangsu provinces are the two largest emitting areas for ammonia from fertilizer use (470 Gg NH3 and 365 Gg NH3). Henan (621 Gg NH3) and Shandong (533 Gg NH3) have the largest ammonia emissions from livestock. Both ammonia emissions from fertilizer use and livestock have distinct seasonal variations; peaking in June for fertilizer use (822 Gg NH3) and in July for livestock (1244 Gg NH3), and are both lowest in January (80 Gg and 241 Gg, respectively). Combining with other ammonia source (eg. human waste and transport) estimates from the REAS v2.1 emission inventory, we show that total ammonia emissions in China for the year 2005 are 14.0 Tg NH3 a-1. Comparisons with satellite measurements of ammonia columns will also be presented.

  11. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP

    DOE PAGES

    Li, Meng; Zhang, Qiang; Kurokawa, Jun-ichi; ...

    2017-01-20

    Here, the MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the totalmore » Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO 2, 52.1 Tg NO x, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH 3, 31.7 Tg PM 10, 22.7 Tg PM 2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO 2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: –8.1 % for SO 2, +19.2 % for NO x, +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH 3, –3.4 % for PM 10, –1.6 % for PM 2.5, +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO 2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach.« less

  12. Identification and characterization of high methane-emitting abandoned oil and gas wells

    PubMed Central

    Kang, Mary; Christian, Shanna; Celia, Michael A.; Mauzerall, Denise L.; Bill, Markus; Miller, Alana R.; Chen, Yuheng; Conrad, Mark E.; Darrah, Thomas H.; Jackson, Robert B.

    2016-01-01

    Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000–750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04–0.07 Mt (1012 g) CH4 per year. This estimate represents 5–8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond. PMID:27849603

  13. EVALUATION AND REPORTING OF COUNTY GASOLINE USE METHODOLOGIES

    EPA Science Inventory

    The report reviews two EPA studies that investigated improvements in the allocation of state-level gasoline sales to the county level in order to improve annual county-level emissions estimates from this source category. The approaches taken in these studies are compared with the...

  14. GREET 1.5 : transportation fuel-cycle model. Vol. 1 : methodology, development, use, and results.

    DOT National Transportation Integrated Search

    1999-10-01

    This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel...

  15. Benzene Case Study Final Report - Second Prospective Report Study Science Advisory Board Review, July 2009

    EPA Pesticide Factsheets

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  16. Draft Benzene Case Study Review - Second Prospective Report Study Science Advisory Board Review, March 2008

    EPA Pesticide Factsheets

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  17. Estimating National-scale Emissions using Dense Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Manning, A.; Grant, A.; Young, D.; Oram, D.; Sturges, W. T.; Moncrieff, J. B.; O'Doherty, S.

    2014-12-01

    The UK's DECC (Deriving Emissions linked to Climate Change) network consists of four greenhouse gas measurement stations that are situated to constrain emissions from the UK and Northwest Europe. These four stations are located in Mace Head (West Coast of Ireland), and on telecommunication towers at Ridge Hill (Western England), Tacolneston (Eastern England) and Angus (Eastern Scotland). With the exception of Angus, which currently only measures carbon dioxide (CO2) and methane (CH4), the remaining sites are additionally equipped to monitor nitrous oxide (N2O). We present an analysis of the network's CH4 and N2O observations from 2011-2013 and compare derived top-down regional emissions with bottom-up inventories, including a recently produced high-resolution inventory (UK National Atmospheric Emissions Inventory). As countries are moving toward national-level emissions estimation, we also address some of the considerations that need to be made when designing these national networks. One of the novel aspects of this work is that we use a hierarchical Bayesian inversion framework. This methodology, which has newly been applied to greenhouse gas emissions estimation, is designed to estimate temporally and spatially varying model-measurement uncertainties and correlation scales, in addition to fluxes. Through this analysis, we demonstrate the importance of characterizing these covariance parameters in order to properly use data from high-density monitoring networks. This UK case study highlights the ways in which this new inverse framework can be used to address some of the limitations of traditional Bayesian inverse methods.

  18. Predicting the quantifiable impacts of ISO 50001 on climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Therkelsen, Peter; Scodel, Anna

    The ISO 50001-Energy management standard provides a continual improvement framework for organizations to reduce their energy consumption, which in the industrial and commercial (service) sectors, accounts for nearly 40% of global greenhouse gas emissions. Reducing this energy consumption will be critical for countries to achieve their national greenhouse gas reduction commitments. Several national policies already support ISO 50001; however, there is no transparent, consistent process to estimate the potential impacts of its implementation. This paper presents the ISO 50001 Impacts Methodology, an internationally-developed methodology to calculate these impacts at a national, regional, or global scale suitable for use by policymakers.more » The recently-formed ISO 50001 Global Impacts Research Network provides a forum for policymakers to refine and encourage use of the methodology. Using this methodology, a scenario with 50% of projected global industrial and service sector energy consumption under ISO 50001 management by 2030 would generate cumulative primary energy savings of approximately 105 EJ, cost savings of nearly US $700 billion (discounted to 2016 net present value), and 6500 million metric tons (Mt) of avoided CO 2 emissions. The avoided annual CO 2 emissions in 2030 alone are equivalent to removing 210 million passenger vehicles from the road.« less

  19. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Zhang, Qiang; Kurokawa, Jun-ichi

    Here, the MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the totalmore » Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO 2, 52.1 Tg NO x, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH 3, 31.7 Tg PM 10, 22.7 Tg PM 2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO 2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006–2010 are estimated as follows: –8.1 % for SO 2, +19.2 % for NO x, +3.9 % for CO, +15.5 % for NMVOC, +1.7 % for NH 3, –3.4 % for PM 10, –1.6 % for PM 2.5, +5.5 % for BC, +1.8 % for OC, and +19.9 % for CO 2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach.« less

  1. Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals

    NASA Astrophysics Data System (ADS)

    Losey, L. M.; Andres, R. J.

    2003-12-01

    Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that emissions from Mexico are a focus of the North American Carbon Program, Mexico was selected for this study. Mexican monthly inland sales volumes for January 1988-May 2003 were collected on natural gas and liquid fuels from the Energy Information Agency in the United States Department of Energy. These sales figures represent a major portion of the total fossil fuel consumption in Mexico. The fraction of a particular fossil fuel consumed in a given month was determined by dividing the monthly sales volumes by the annual sum of monthly sales volumes for a given year. This fraction was then multiplied by the annual carbon dioxide values reported by the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) to estimate the monthly carbon dioxide emissions from the respective fuels. The advantages of this methodology are: 1) monthly fluxes are consistent with the annual flux as determined by the widely-accepted CDIAC values, and 2) its general application can be easily adapted to other nations for determining their sub-annual time scale emissions. The major disadvantage of this methodology is the proxy nature inherent to it. Only a fraction of the total emissions are used as an estimate in determining the seasonal cycle. The error inherent in this approach increases as the fraction of total emissions represented by the proxy decreases. These data are part of a long-term project between researchers at the University of North Dakota and ORNL which attempts to identify and understand the source(s) of seasonal variations of global, fossil-fuel derived, carbon dioxide emissions. Better knowledge of the temporal variation of the annual fossil fuel flux will lead to a better understanding of the global carbon cycle. This research will be archived at CDIAC for public access.

  2. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.

    PubMed

    Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu

    2016-12-15

    Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO 2 , NO X , CO, PM 10 , PM 2.5 , and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Practical guide: Tools and methodologies for an oil and gas industry emission inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.C.; Killian, T.L.

    1996-12-31

    During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results ofmore » this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.« less

  4. Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.

    PubMed

    Tartakovsky, Dmitry; Stern, Eli; Broday, David M

    2016-06-15

    To date, phosphate surface mining suffers from lack of reliable emission factors. Due to complete absence of data to derive emissions factors, we developed a methodology for estimating them indirectly by studying a range of possible emission factors for surface phosphate mining operations and comparing AERMOD calculated concentrations to concentrations measured around the mine. We applied this approach for the Khneifiss phosphate mine, Syria, and the Al-Hassa and Al-Abyad phosphate mines, Jordan. The work accounts for numerous model unknowns and parameter uncertainties by applying prudent assumptions concerning the parameter values. Our results suggest that the net mining operations (bulldozing, grading and dragline) contribute rather little to ambient TSP concentrations in comparison to phosphate processing and transport. Based on our results, the common practice of deriving the emission rates for phosphate mining operations from the US EPA emission factors for surface coal mining or from the default emission factor of the EEA seems to be reasonable. Yet, since multiple factors affect dispersion from surface phosphate mines, a range of emission factors, rather than only a single value, was found to satisfy the model performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Whole farm quantification of GHG emissions within smallholder farms in developing countries

    NASA Astrophysics Data System (ADS)

    Seebauer, Matthias

    2014-03-01

    The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO2 ha-1 yr-1 with significantly different mitigation benefits depending on typologies of the crop-livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms.

  6. Airborne Quantification of Methane Emissions in the San Francisco Bay Area of California

    NASA Astrophysics Data System (ADS)

    Guha, A.; Newman, S.; Martien, P. T.; Young, A.; Hilken, H.; Faloona, I. C.; Conley, S.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate protection goal. The Air District maintains a regional GHG emissions inventory that includes emissions estimates and projections which influence the agency's programs and regulatory activities. The Air District is currently working to better characterize methane emissions in the GHG inventory through source-specific measurements, to resolve differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the bottom-up inventory. The Air District funded and participated in a study in Fall 2016 to quantify methane emissions from a variety of sources from an instrumented Mooney aircraft. This study included 40 hours of cylindrical vertical profile flights that combined methane and wind measurements to derive mass emission rates. Simultaneous measurements of ethane provided source-apportionment between fossil-based and biological methane sources. The facilities sampled included all five refineries in the region, five landfills, two dairy farms and three wastewater treatment plants. The calculated mass emission rates were compared to bottom-up rates generated by the Air District and to those from facility reports to the US EPA as part of the mandatory GHG reporting program. Carbon dioxide emission rates from refineries are found to be similar to bottom-up estimates for all sources, supporting the efficacy of the airborne measurement methodology. However, methane emission estimates from the airborne method showed significant differences for some source categories. For example, methane emission estimates based on airborne measurements were up to an order of magnitude higher for refineries, and up to five times higher for landfills compared to bottom-up methods, suggesting significant underestimation in the inventories and self-reported estimates. Future measurements over the same facilities will reveal if we have seasonal and process-dependent trends in emissions. This will provide a basis for rule making and for designing mitigation and control actions.

  7. Assessment of Component-level Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and natural gas (ONG) production facilities have the potential to emit a substantial amount of greenhouse gasses, hydrocarbons and hazardous air pollutants into the atmosphere. These emissions come from a wide variety of sources including engine exhaust, combustor gases, atmospheric venting from uncontrolled tanks and leaks. Engine exhaust, combustor gases and atmospheric tank venting are included in the initial estimation of a production facilities cumulative emissions. However, there is a large amount of uncertainty associated with magnitude and composition of leaks at these facilities. In order to understand the environmental impacts of these emissions we must first be able characterize the emission flow rate and chemical composition of these leaks/venting. A number of recent publications regarding emission flow rate measurements of components at ONG production facilities have brought into question the validity of such measurements and the sampling methodology. An accurate methodology for quantifying hydrocarbon leaks/venting is needed to support both emission inventories and environmental compliance. This interim report will summarize recent results from a small leak survey completed at ONG production facilities in Utah to characterize their flow rate and chemical composition using a suite of instruments using a high volume sampler (Bacharach Hi Flow Sampler; Bacharach, Inc.), as well as infrared (IR) cameras, a photoionization detector (PID), a fl

  8. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-10-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.

  9. Global Carbon Project: the Global Carbon Budget 2015 (V.1.0., issued Nov. 2015 and V.1.1, issued Dec. 2015)

    DOE Data Explorer

    Le Quere, C. [University of East Anglia, Norwich UK; Moriarty, R. [University of East Anglia, Norwich UK; Andrew, R. M. [Univ. of Oslo (Norway); Canadell, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO) Oceans and Atmosphere, Canberra ACT (Australia); Sitch, S. [University of Exeter, Exter UK; Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Carbon Dioxide Information Analysis Center (CDIAC); al., et

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations.

  10. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  11. Estimating the electron energy distribution during ionospheric modification from spectrographic airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Varney, R. H.; Vlasov, M. N.; Nossa, E.; Watkins, B.; Pedersen, T.; Huba, J. D.

    2012-02-01

    The electron energy distribution during an F region ionospheric modification experiment at the HAARP facility near Gakona, Alaska, is inferred from spectrographic airglow emission data. Emission lines at 630.0, 557.7, and 844.6 nm are considered along with the absence of detectable emissions at 427.8 nm. Estimating the electron energy distribution function from the airglow data is a problem in classical linear inverse theory. We describe an augmented version of the method of Backus and Gilbert which we use to invert the data. The method optimizes the model resolution, the precision of the mapping between the actual electron energy distribution and its estimate. Here, the method has also been augmented so as to limit the model prediction error. Model estimates of the suprathermal electron energy distribution versus energy and altitude are incorporated in the inverse problem formulation as representer functions. Our methodology indicates a heater-induced electron energy distribution with a broad peak near 5 eV that decreases approximately exponentially by 30 dB between 5-50 eV.

  12. Kyoto-Related Fossil-Fuel CO2 Emission Totals (1990 - 2009) (Version 2012) (Updated 01/16/2013)

    DOE Data Explorer

    Marland, Greg [Appalachian State University, Boone, NC (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN

    2013-01-16

    This table shows the total of CO2 emissions from fossil-fuel use and cement manufacture for those countries listed in Annex B of the Kyoto Protocol and for those countries not listed in Annex B. In keeping with the convention of the IPCC methodology for calculating national greenhouse gas emissions, emissions from international bunker fuels (fuels used in international commerce) are not included in the country totals but are shown separately under the country group in which final fuel loading occurred. Note, that the list of countries in Annex B of the Kyoto Protocol differs from the list of countries in Annex I of the Framework Convention on Climate Change by the addition of Croatia, Liechtenstein, Monaco, and Slovenia and the removal of Belarus and Turkey. We have estimated emissions for 1990 and 1991 from the republics that were formerly part of the USSR and of Yugoslavia by taking total emissions from the USSR (and Yugoslavia) for 1990 and 1991 and distributing them among the new republics in the same ratio as emissions from those republics in 1992. Because of minor differences in the method of estimating the global total of emissions and the national totals of emissions, the sum of emissions from all countries produces a number that is less than the global total by about 2%. Consequently we have inflated the sum of emissions from all Annex B countries and the sum of emissions from all non-Annex B countries by about 2% (the value differs from year to year) so that the sum of the two values plus emissions from bunker fuels is equal to our best estimate of the global total of emissions.

  13. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  14. Estimating Full IM240 Emissions from Partial Test Results: Evidence from Arizona.

    PubMed

    Ando, Amy W; Harrington, Winston; McConnell, Virginia

    1999-10-01

    The expense and inconvenience of enhanced-vehicle-emissions testing using the full 240-second dynamometer test has led states to search for ways to shorten the test process. In fact, all states that currently use the IM240 allow some type of fast-pass, usually as early in the test as second 31, and Arizona has allowed vehicles to fast-fail after second 93. While these shorter tests save states millions of dollars in inspection lanes and driver costs, there is a loss of information since test results are no longer comparable across vehicles. This paper presents a methodology for estimating full 240-second results from partial-test results for three pollutants: HC, CO, and NO x . If states can convert all tests to consistent IM240 readings, they will be able to better characterize fleet emissions and to evaluate the impact of inspection and maintenance and other programs on emissions over time. Using a random sample of vehicles in Arizona which received full 240-second tests, we use regression analysis to estimate the relationship between emissions at second 240 and emissions at earlier seconds in the test. We examine the influence of other variables such as age, model-year group, and the pollution level itself on this relationship. We also use the estimated coefficients in several applications. First, we try to shed light on the frequent assertion that the results of the dynamometer test provide guidance for vehicle repair of failing vehicles. Using a probit analysis, we find that the probability that a failing vehicle will pass the test on the first retest is greater the longer the test has progressed. Second, we test the accuracy of our estimates for forecasting fleet emissions from partial-test emissions results in Arizona. We find forecasted fleet average emissions to be very close to the actual fleet averages for light-duty vehicles, but not quite as good for trucks, particularly when NO x emissions are forecast.

  15. Historical Responsibility for Climate Change - from countries emissions to contribution to temperature increase

    NASA Astrophysics Data System (ADS)

    Krapp, Mario; Gütschow, Johannes; Rocha, Marcia; Schaeffer, Michiel

    2016-04-01

    The notion of historical responsibility is central to the equity debate and the measure of responsibility as a countries' share of historical global emissions remains one of the essential parameters in so-called equity proposals, which attempt to distribute effort among countries in an equitable manner. The focus of this contribution is on the historical contribution of countries, but it takes it one step further: its general objective lies on estimating countries' contribution directly to the change in climate. The historical responsibility is not based on cumulative emissions but instead measured in terms of the countries' estimated contribution to the increase in global-mean surface-air temperature. This is achieved by (1) compiling a historical emissions dataset for the period from 1850 until 2012 for each individual Kyoto-greenhouse gas and each UNFCCC Party using a consistent methodology and (2) applying those historical emissions to a revised version of the so-called Policy-maker Model put forward by the Ministry of Science and Technology of the Federative Republic of Brazil, which is a simple, yet powerful tool that allows historical GHG emissions of individual countries to be directly related to their effect on global temperature changes. We estimate that the cumulative GHG emissions until 2012 from the USA, the European Union and China contribute to a total temperature increase of about 0.50°C in 2100, which is equivalent to about 50% of the temperature increase from total global GHG emissions by that year (of about 1.0°C). Respectively, the USA, the European Union, and China are responsible for 20.2%, 17.3%, and 12.1% of global temperature increase in 2100. Russian historical emissions are responsible for 0.06°C temperature increase by 2100, ranking as the fourth largest contributor to temperature increase with 6.2% of the total contribution. India ranks fifth: Indian emissions to date would contribute to roughly 0.05°C of global mean temperature increase by 2100, or about 5.3%. Brazilian historical emissions would contribute to 0.04°C to global temperature increase by 2100 or 4.4% to total temperature increase. If the European Union countries were considered independently, Germany and Great Britain would be responsible respectively to 3.9% and 3.4% of global temperature increase in 2100. We present the results on countries' historical responsibilities and then outline in detail the methodology employed to obtain the historical emissions dataset and final temperature contributions including the different approaches to derive a revised version of the Policy-maker Model, its underlying assumptions, advantages, and limitations for estimating countries' historical contribution to temperature increase.

  16. A NEW APPROACH FOR ESTIMATING VOLATILE ORGANIC COMPOUND EMISSIONS FROM SEWERS: METHODOLOGY AND ASSOCIATED ERRORS. (R823335)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Towards a Novel Integrated Approach for Estimating Greenhouse Gas Emissions in Support of International Agreements

    NASA Astrophysics Data System (ADS)

    Reimann, S.; Vollmer, M. K.; Henne, S.; Brunner, D.; Emmenegger, L.; Manning, A.; Fraser, P. J.; Krummel, P. B.; Dunse, B. L.; DeCola, P.; Tarasova, O. A.

    2016-12-01

    In the recently adopted Paris Agreement the community of signatory states has agreed to limit the future global temperature increase between +1.5 °C and +2.0 °C, compared to pre-industrial times. To achieve this goal, emission reduction targets have been submitted by individual nations (called Intended Nationally Determined Contributions, INDCs). Inventories will be used for checking progress towards these envisaged goals. These inventories are calculated by combining information on specific activities (e.g. passenger cars, agriculture) with activity-related, typically IPCC-sanctioned, emission factors - the so-called bottom-up method. These calculated emissions are reported on an annual basis and are checked by external bodies by using the same method. A second independent method estimates emissions by translating greenhouse gas measurements made at regionally representative stations into regional/global emissions using meteorologically-based transport models. In recent years this so-called top-down approach has been substantially advanced into a powerful tool and emission estimates at the national/regional level have become possible. This method is already used in Switzerland, in the United Kingdom and in Australia to estimate greenhouse gas emissions and independently support the national bottom-up emission inventories within the UNFCCC framework. Examples of the comparison of the two independent methods will be presented and the added-value will be discussed. The World Meteorological Organization (WMO) and partner organizations are currently developing a plan to expand this top-down approach and to expand the globally representative GAW network of ground-based stations and remote-sensing platforms and integrate their information with atmospheric transport models. This Integrated Global Greenhouse Gas Information System (IG3IS) initiative will help nations to improve the accuracy of their country-based emissions inventories and their ability to evaluate the success of emission reductions strategies. This could foster trans-national collaboration on methodologies for estimation of emissions. Furthermore, more accurate emission knowledge will clarify the value of emission reduction efforts and could encourage countries to strengthen their reduction pledges.

  18. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact

    NASA Astrophysics Data System (ADS)

    Permadi, Didin Agustian; Kim Oanh, Nguyen Thi

    2013-10-01

    This paper presents an emission inventory (EI) for biomass open burning (OB) sources including forest, agro-residue and municipal solid waste (MSW) in Indonesia for year 2007. The EI covered toxic air pollutants and greenhouse gases (GHGs) and was presented as annual and monthly average for every district, and further on a grid of 0.25° × 0.25°. A rigorous analysis of activity data and emission factor ranges was done to produce the low, best and high emission estimates for each species. Development of EI methodology for MSW OB which, to our best knowledge, has not been presented in detail in the literature was a focus of this paper. The best estimates of biomass OB emission of toxic air pollutants for the country, in Gg, were: 9.6 SO2; 98 NOx; 7411 CO; 335 NMVOC; 162 NH3; 439 PM10; 357 PM2.5; 24 BC; and 147 OC. The best emission estimates of GHGs, in Gg, were: 401 CH4, 57,247 CO2; and 3.6 N2O. The low and high values of the emission estimates for different species were found to range from -86% to +260% of the corresponding best estimates. Crop residue OB contributed more than 80% of the total biomass OB emissions, followed by forest fire of 2-12% (not including peat soil fire emission) and MSW (1-8%). An inter-annual active fires count for Indonesia showed relatively low values in 2007 which may be attributed to the high rainfall intensity under the influence of La Niña climate pattern in the year. Total estimated net climate forcing from OB in Indonesia was 110 (20 year horizon) and 73 (100 year horizon) Tg CO2 equivalents which is around 0.9-1.1% of that reported for the global biomass OB for both time horizons. The spatial distribution showed higher emissions in large urban areas in Java and Sumatra Island, while the monthly emissions indicated higher values during the dry months of August-October.

  19. Diver Down: Remote Sensing of Carbon Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Chatterjee, A.; Baker, D. F.; Basu, S.; Denning, A. S.; Schuh, A. E.; Crowell, S.; Jacobson, A. R.; Bowman, K. W.; Liu, J.; O'Dell, C.

    2016-12-01

    What controls the rate of increase of CO2 and CH4 in the atmosphere? It may seem self-evident but actually remains mysterious. The increases of CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that dampen or amplify the effects of those emissions on atmospheric concentrations. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 59 years but has shown recent dynamics and if it changes in the future, will affect the climate impact of any given fossil fuel regime. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably heterogeneous in time and space, and traditional in situ observing systems do not provide the coverage and resolution to quantify carbon-climate feedbacks or reduce the uncertainty of model predictions. Here we describe an methodology for estimating critical carbon-climate feedback effects of current spaceborne XCO2 measurements, developed by the OCO-2 Flux Group, and applied to OCO-2 and GOSAT data. The methodology allows integration of the space-based carbon budgets with other global data sets, and exposes the impact of residual bias error on the estimated fluxes, allowing the uncertainty of the estimated feedbacks to be quantified. The approach is limited by the short timeseries currently available, but suggests dramatic changes to the carbon cycle over the recent past. We present the methodology, early results and implications for a future, sustained carbon observing system.

  20. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  1. Emission from open burning of municipal solid waste in India.

    PubMed

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  2. A spatial modeling framework to evaluate domestic biofuel-induced potential land use changed and emissions

    USGS Publications Warehouse

    Elliot, Joshua; Sharma, Bhavna; Best, Neil; Glotter, Michael; Dunn, Jennifer B.; Foster, Ian; Miguez, Fernando; Mueller, Steffen; Wang, Michael

    2014-01-01

    We present a novel bottom-up approach to estimate biofuel-induced land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022, based on a consistent methodology across four essential components: land availability, land suitability, LUC decision-making, and induced CO2 emissions. Using highresolution geospatial data and modeling, we construct probabilistic assessments of county-, state-, and national-level LUC and emissions for macroeconomic scenarios. We use the Cropland Data Layer and the Protected Areas Database to characterize availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro biophysical crop growth models to estimate the suitability (yield potential) of available lands for biofuel crops. For LUC decisionmaking, we use a county-level stochastic partial-equilibrium modeling framework and consider five scenarios involving annual ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn providing feedstock for the first 15 BG and the remainder coming from one of two dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG), Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Heeter, Jenny; Keyser, David

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy’s City Energy Profile tool. The analysismore » estimates the national carbon abatement potential of the most commonly implemented actions in six specific policy areas. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO 2) per year in a "moderate abatement scenario" by 2035 and 480 MMT CO 2/year in a "high abatement scenario" by 2035 through these common actions typically within a city’s control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. City carbon abatement potential is sensitive to national and state policies that affect the carbon intensity of electricity and transportation. Specifically, the U.S. Clean Power Plan and further renewable energy cost reductions could reduce city carbon emissions overall, helping cities achieve their carbon reduction goals.« less

  4. Impact of road traffic emissions on ambient air quality in an industrialized area.

    PubMed

    Garcia, Sílvia M; Domingues, Gonçalo; Gomes, Carla; Silva, Alexandra V; Almeida, S Marta

    2013-01-01

    Several epidemiological studies showed a correlation between airborne particulate matter(PM) and the incidence of several diseases in exposed populations. Consequently, the European Commission reinforced the need and obligation of member-states to monitor exposure levels of PM and adopt measures to reduce this exposure. However, in order to plan appropriate actions, it is necessary to understand the main sources of air pollution and their relative contributions to the formation of the ambient aerosol. The aim of this study was to develop a methodology to assess the contribution of vehicles to the atmospheric aerosol,which may constitute a useful tool to assess the effectiveness of planned mitigation actions.This methodology is based on three main steps: (1) estimation of traffic emissions provided from the vehicles exhaust and resuspension; (2) use of the dispersion model TAPM (“The Air Pollution Model”) to estimate the contribution of traffic for the atmospheric aerosol; and(3) use of geographic information system (GIS) tools to map the PM10 concentrations provided from traffic in the surroundings of a target area. The methodology was applied to an industrial area, and results showed that the highest contribution of traffic for the PM10 concentrations resulted from dust resuspension and that heavy vehicles were the type that most contributed to the PM10 concentration.

  5. An observationally constrained estimate of global dust aerosol optical depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  6. An observationally constrained estimate of global dust aerosol optical depth

    DOE PAGES

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.; ...

    2016-12-06

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  7. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    NASA Astrophysics Data System (ADS)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  8. Modelling the spatial distribution of ammonia emissions in the UK.

    PubMed

    Hellsten, S; Dragosits, U; Place, C J; Vieno, M; Dore, A J; Misselbrook, T H; Tang, Y S; Sutton, M A

    2008-08-01

    Ammonia emissions (NH3) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH3 emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH3 emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH3 emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996.

  9. Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites.

    PubMed

    Jha, Arvind K; Sharma, C; Singh, Nahar; Ramesh, R; Purvaja, R; Gupta, Prabhat K

    2008-03-01

    Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.

  10. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    NASA Astrophysics Data System (ADS)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated with current legislations. Health related co-benefits of combined policies are also found to be large, especially in developing countries- a reduction of more than 50% in terms of pollution related mortality impacts as compared to today.

  11. High-resolution mapping of vehicle emissions in China in 2008

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2014-09-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  12. Air quality impacts of distributed energy resources implemented in the northeastern United States.

    PubMed

    Carreras-Sospedra, Marc; Dabdub, Donald; Brouwer, Jacob; Knipping, Eladio; Kumar, Naresh; Darrow, Ken; Hampson, Anne; Hedman, Bruce

    2008-07-01

    Emissions from the potential installation of distributed energy resources (DER) in the place of current utility-scale power generators have been introduced into an emissions inventory of the northeastern United States. A methodology for predicting future market penetration of DER that considers economics and emission factors was used to estimate the most likely implementation of DER. The methodology results in spatially and temporally resolved emission profiles of criteria pollutants that are subsequently introduced into a detailed atmospheric chemistry and transport model of the region. The DER technology determined by the methodology includes 62% reciprocating engines, 34% gas turbines, and 4% fuel cells and other emerging technologies. The introduction of DER leads to retirement of 2625 MW of existing power plants for which emissions are removed from the inventory. The air quality model predicts maximum differences in air pollutant concentrations that are located downwind from the central power plants that were removed from the domain. Maximum decreases in hourly peak ozone concentrations due to DER use are 10 ppb and are located over the state of New Jersey. Maximum decreases in 24-hr average fine particulate matter (PM2.5) concentrations reach 3 microg/m3 and are located off the coast of New Jersey and New York. The main contribution to decreased PM2.5 is the reduction of sulfate levels due to significant reductions in direct emissions of sulfur oxides (SO(x)) from the DER compared with the central power plants removed. The scenario presented here represents an accelerated DER penetration case with aggressive emission reductions due to removal of highly emitting power plants. Such scenario provides an upper bound for air quality benefits of DER implementation scenarios.

  13. Trace gas emissions following deposition of excreta by grazing dairy cows in eastern Canada

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Pelster, D. E.; Chantigny, M. H.; Angers, D. A.; Liang, C.; Belanger, G.; Ziadi, N.; Charbonneau, E.; Pellerin, D.

    2012-04-01

    The N2O emission factor proposed for cattle excreta N by the Tier I IPCC methodology (EF3) is 2% (IPCC, 2006). While N2O emissions from excreta deposited by grazing animals have been reported in several publications, relatively few estimated EF3 values because measurements did not cover the entire year. This study measured N2O and CH4 flux and crop dry matter (DM) yield over two years (2009 to 2011) from a clay and a sandy loam soil cultivated with Timothy grass (Phleum pratense L.). A split-plot design was used on each soil type, with different application dates (either spring, summer or autumn application) as main plots and treatment (U-50: urine 50 g N m-2, U-100: urine 100 g N m-2, dung: 60 g N m-2, and control) as the sub-plots. Regardless of application time, annual DM yield increased in all treated plots when compared to the control. Also, DM yields were generally greater when urine as opposed to dung was applied suggesting greater N-availability from the urine application. The CH4 flux from the dung plots increased for only the first two weeks after treatment while the flux from the urine plots was similar to the control plots. Cumulative N2O emissions on the U-50 and U-100 plots increased linearly with urine N rate on both soils, resulting in nearly identical mean emission factors for both urine rates. The emission factor for the urine was three times greater on the clay (1.02% of applied N on both rates) than on the sandy loam soil (0.26% (U100) and 0.31% (U50) of applied N). Cumulative N2O emissions from dung plots also differed between soil types; however the impact of soil type on N2O emissions was opposite to that of urine, with greater losses from the sandy loam (0.15%) compared with the clay soil (0.07%). These results suggest that estimates of soil N2O emissions by grazing cattle in Eastern Canada obtained using the IPCC default methodology are overestimates of actual values and that these estimates for should include a stratification according to soil type.

  14. A comprehensive approach for the evaluation and comparison of emission inventories in Madrid

    NASA Astrophysics Data System (ADS)

    Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Rodríguez, María Encarnación; de la Paz, David; Pérez, Javier; Manuel de Andrés, Juan; Quaassdorff, Christina

    2016-11-01

    Emission inventories provide a description of the polluting activities that occur across a specific geographic domain, and are widely used as input for air quality modelling for the assessment of compliance with environmental legislation. The spatial scale to which these inventories are referred has an influence in the representativeness of the emission estimates, as these are underpinned by a number of considerations and data with different levels of granularity. This study proposes a comprehensive framework for the evaluation of emission inventories that allows identifying methodological issues by examining differences in performance to a chemical transport model (CTM) when such inventories are used as input. To demonstrate the approach, a comparison between the national and regional emissions inventories for the Autonomous Community of Madrid (ACM) was carried out (NEI and REI respectively). The analysis revealed discrepancies in compilation methodologies for the domestic sector (SNAP 02), industrial combustion (SNAP 03), road traffic (SNAP 07) and other mobile sources (SNAP 08); most of the differences were originally caused by taking into account different activity variables, fuel mixes, and spatial disaggregation and allocation proxies. The granularity of the base data (statistics, fuel consumption, facilities, etc.) proved to be an essential limiting factor, which means that whenever bottom-up approaches were followed, the description of emission sectors tended to be more accurate.

  15. Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study.

    PubMed

    Ding, Luyu; Lu, Qikun; Xie, Lina; Liu, Jie; Cao, Wei; Shi, Zhengxiang; Li, Baoming; Wang, Chaoyuan; Zhang, Guoqiang; Ren, Shixi

    2016-03-01

    The open lots and manure stockpiles of dairy farm are major sources of greenhouse gas (GHG) emissions in typical dairy cow housing and manure management system in China. GHG (CO(2), CH(4) and N(2)O) emissions from the ground level of brick-paved open lots and uncovered manure stockpiles were estimated according to the field measurements of a typical dairy farm in Beijing by closed chambers in four consecutive seasons. Location variation and manure removal strategy impacts were assessed on GHG emissions from the open lots. Estimated CO(2), CH(4) and N(2)O emissions from the ground level of the open lots were 137.5±64.7 kg hd(-1) yr(-1), 0.45±0.21 kg hd(-1) yr(-1) and 0.13±0.08 kg hd(-1) yr(-1), respectively. There were remarkable location variations of GHG emissions from different zones (cubicle zone vs. aisle zone) of the open lot. However, the emissions from the whole open lot were less affected by the locations. After manure removal, lower CH(4) but higher N(2)O emitted from the open lot. Estimated CO(2), CH(4) and N(2)O emissions from stockpile with a stacking height of 55±12 cm were 858.9±375.8 kg hd(-1) yr(-1), 8.5±5.4 kg hd(-1) yr(-1) and 2.3±1.1 kg hd(-1) yr(-1), respectively. In situ storage duration, which estimated by manure volatile solid contents (VS), would affect GHG emissions from stockpiles. Much higher N(2)O was emitted from stockpiles in summer due to longer manure storage. This study deals with greenhouse gas (GHG) emissions from open lots and stockpiles. It's an increasing area of concern in some livestock producing countries. The Intergovernmental Panel on Climate Change (IPCC) methodology is commonly used for estimation of national GHG emission inventories. There is a shortage of on-farm information to evaluate the accuracy of these equations and default emission factors. This work provides valuable information for improving accounting practices within China or for similar manure management practice in other countries.

  16. Valuing the Ozone-Related Health Benefits of Methane Emission Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the U.S. Government to estimate the Social Cost of Carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011)$790 and $1775 per tonne methane,more » respectively. These correspond to approximately 70% and 150% of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using Global Warming Potential (GWP) estimates. Results are most sensitive to the choice of VSL and increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10% accrue in the United States. This methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  17. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    NASA Astrophysics Data System (ADS)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability. The current model also does not distinguish between natural gas emissions during the different stages of transportation. We finally discuss the use of additional tracers such as the 13CH4 isotopic ratio and ethane concentrations to separate the various contributors to the regional atmospheric CH4 enhancement.

  18. A methodology for estimating health benefits of electricity generation using renewable technologies.

    PubMed

    Partridge, Ian; Gamkhar, Shama

    2012-02-01

    At Copenhagen, the developed countries agreed to provide up to $100 bn per year to finance climate change mitigation and adaptation by developing countries. Projects aimed at cutting greenhouse gas (GHG) emissions will need to be evaluated against dual criteria: from the viewpoint of the developed countries they must cut emissions of GHGs at reasonable cost, while host countries will assess their contribution to development, or simply their overall economic benefits. Co-benefits of some types of project will also be of interest to host countries: for example some projects will contribute to reducing air pollution, thus improving the health of the local population. This paper uses a simple damage function methodology to quantify some of the health co-benefits of replacing coal-fired generation with wind or small hydro in China. We estimate the monetary value of these co-benefits and find that it is probably small compared to the added costs. We have not made a full cost-benefit analysis of renewable energy in China as some likely co-benefits are omitted from our calculations. Our results are subject to considerable uncertainty however, after careful consideration of their likely accuracy and comparisons with other studies, we believe that they provide a good first cut estimate of co-benefits and are sufficiently robust to stand as a guide for policy makers. In addition to these empirical results, a key contribution made by the paper is to demonstrate a simple and reasonably accurate methodology for health benefits estimation that applies the most recent academic research in the field to the solution of an increasingly important problem. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Greenhouse gases inventory and carbon balance of two dairy systems obtained from two methane-estimation methods.

    PubMed

    Cunha, C S; Lopes, N L; Veloso, C M; Jacovine, L A G; Tomich, T R; Pereira, L G R; Marcondes, M I

    2016-11-15

    The adoption of carbon inventories for dairy farms in tropical countries based on models developed from animals and diets of temperate climates is questionable. Thus, the objectives of this study were to estimate enteric methane (CH4) emissions through the SF6 tracer gas technique and through equations proposed by the Intergovernmental Panel on Climate Change (IPCC) Tier 2 and to calculate the inventory of greenhouse gas (GHG) emissions from two dairy systems. In addition, the carbon balance of these properties was estimated using enteric CH4 emissions obtained using both methodologies. In trial 1, the CH4 emissions were estimated from seven Holstein dairy cattle categories based on the SF6 tracer gas technique and on IPCC equations. The categories used in the study were prepubertal heifers (n=6); pubertal heifers (n=4); pregnant heifers (n=5); high-producing (n=6); medium-producing (n=5); low-producing (n=4) and dry cows (n=5). Enteric methane emission was higher for the category comprising prepubertal heifers when estimated by the equations proposed by the IPCC Tier 2. However, higher CH4 emissions were estimated by the SF6 technique in the categories including medium- and high-producing cows and dry cows. Pubertal heifers, pregnant heifers, and low-producing cows had equal CH4 emissions as estimated by both methods. In trial 2, two dairy farms were monitored for one year to identify all activities that contributed in any way to GHG emissions. The total emission from Farm 1 was 3.21t CO2e/animal/yr, of which 1.63t corresponded to enteric CH4. Farm 2 emitted 3.18t CO2e/animal/yr, with 1.70t of enteric CH4. IPCC estimations can underestimate CH4 emissions from some categories while overestimate others. However, considering the whole property, these discrepancies are offset and we would submit that the equations suggested by the IPCC properly estimate the total CH4 emission and carbon balance of the properties. Thus, the IPCC equations should be utilized with caution, and the herd composition should be analysed at the property level. When the carbon stock in pasture and other crops was considered, the carbon balance suggested that both farms are sustainable for GHG, by both methods. On the other hand, carbon balance without carbon stock, by both methods, suggests that farms emit more carbon than the system is capable of stock. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A methodology to estimate vehicle miles traveled (VMT) fractions as an input to the mobile emission model.

    DOT National Transportation Integrated Search

    2006-01-01

    Air quality has been an issue of growing importance to the transportation sector since the enactment of the Clean Air Act Amendments of 1990 and the Transportation Equity Act for the 21st Century in 1998. According to these acts, states and local gov...

  1. Coupling Computer-Aided Process Simulation and Estimations of Emissions and Land Use for Rapid Life Cycle Inventory Modeling

    EPA Science Inventory

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying proces...

  2. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    PubMed

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  3. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.

    PubMed

    Santos, M M O; van Elk, A G P; Romanel, C

    2015-12-01

    Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same amount of waste for 20 years -, the error would be an overestimation of 25% if the CDM project activity starts from the very first year or an underestimation of 15% if it starts just after the landfill closure. Therefore, a correction in the tool to calculate emissions from landfills as adopted by the CDM Executive Board is needed. Moreover, in countries not using the latest IPCC guidelines, which provides clear formulas to prevent misunderstandings, inventory compilers can also benefit from this paper by having more accurate results in national GHG inventories related to solid waste disposal, especially when increasing amounts of waste are landfilled, which is the case of the developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Towards a global historical emission inventory for selected PCB congeners--a mass balance approach 3. An update.

    PubMed

    Breivik, Knut; Sweetman, Andy; Pacyna, Jozef M; Jones, Kevin C

    2007-05-15

    Previously published estimates of the global production, consumption and atmospheric emissions of 22 individual PCB congeners [Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for selected PCB congeners - a mass balance approach. 1. Global production and consumption. Sci Total Environ 2002a; 290: 181-198.; Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for selected PCB congeners--a mass balance approach. 2. Emissions. Sci Total Environ 2002b; 290: 181-198.] have provided useful information for later studies attempting to interpret contaminant levels in remote areas as well as in the global environment. As a result of the need for more contemporary emission data (following the year 2000), an update of this emission database is presented. This exercise takes into account new information on PCB production in Poland, as well as new data on the chemical composition of various technical mixtures for which less information had been available. The methodology to estimate temporal trends of PCB emissions associated with various types of PCB usage is improved. Projected emissions up to year 2100 are presented to facilitate predictions of future environmental exposure. The national emission data for each of the 114 countries considered is spatially resolved on a 1 degrees x1 degrees grid for each congener and year, using population density as a surrogate.

  5. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    NASA Astrophysics Data System (ADS)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  6. Time value of emission and technology discounting rate for off-grid electricity generation in India using intermediate pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Amit, E-mail: amitrp@iitrpr.ac.in; Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat; Sarkar, Prabir

    The environmental impact assessment of a process over its entire operational lifespan is an important issue. Estimation of life cycle emission helps in predicting the contribution of a given process to abate (or to pollute) the environmental emission scenario. Considering diminishing and time-dependent effect of emission, assessment of the overall effect of emissions is very complex. The paper presents a generalized methodology for arriving at a single emission discounting number for a process option, using the concept of time value of carbon emission flow. This number incorporates the effect of the emission resulting from the process over the entire operationalmore » lifespan. The advantage of this method is its quantitative aspect as well as its flexible nature. It can be applied to any process. The method is demonstrated with the help of an Intermediate Pyrolysis process when used to generate off-grid electricity and opting biochar route for disposing straw residue. The scenarios of very high net emission to very high net carbon sequestration is generated using process by careful selection of process parameters for different scenarios. For these different scenarios, the process discounting rate was determined and its outcome is discussed. The paper also proposes a process specific eco-label that mentions the discounting rates. - Highlight: • Methodology to obtain emission discounting rate for a process is proposed. • The method includes all components of life cycle emission converts into a time dependent discounting number. • A case study of Intermediate Pyrolysis is used to obtain such number for a range of processes. • The method is useful to determine if the effect from the operation of a process will lead to a net absorption of emission or net accumulation of emission in the environment.« less

  7. Agricultural soil greenhouse gas emissions: a review of national inventory methods.

    PubMed

    Lokupitiya, Erandathie; Paustian, Keith

    2006-01-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit national greenhouse gas (GHG) inventories, together with information on methods used in estimating their emissions. Currently agricultural activities contribute a significant portion (approximately 20%) of global anthropogenic GHG emissions, and agricultural soils have been identified as one of the main GHG source categories within the agricultural sector. However, compared to many other GHG sources, inventory methods for soils are relatively more complex and have been implemented only to varying degrees among member countries. This review summarizes and evaluates the methods used by Annex 1 countries in estimating CO2 and N2O emissions in agricultural soils. While most countries utilize the Intergovernmental Panel on Climate Change (IPCC) default methodology, several Annex 1 countries are developing more advanced methods that are tailored for specific country circumstances. Based on the latest national inventory reporting, about 56% of the Annex 1 countries use IPCC Tier 1 methods, about 26% use Tier 2 methods, and about 18% do not estimate or report N2O emissions from agricultural soils. More than 65% of the countries do not report CO2 emissions from the cultivation of mineral soils, organic soils, or liming, and only a handful of countries have used country-specific, Tier 3 methods. Tier 3 methods usually involve process-based models and detailed, geographically specific activity data. Such methods can provide more robust, accurate estimates of emissions and removals but require greater diligence in documentation, transparency, and uncertainty assessment to ensure comparability between countries. Availability of detailed, spatially explicit activity data is a major constraint to implementing higher tiered methods in many countries.

  8. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local emission inventory, together with the mobile source's parameters and the disaggregated transport activity data. The paper will also identify emission and concentration differences and gradients of certain magnitude/factor (e.g. comparison between estimated ATPs hourly concentrations in Madrid City Center and in the peripheries). Furthermore, because of the higher contribution of road mobile sources to GHGs and ATPs emissions in Madrid, small gradients between urban highways and residential areas will be expected. Second, the paper objectives are to develop valid methods and approaches to measure air quality and to develop valid road transport emission inventories to assess correlations between external costs, epidemiology and emissions in order to reveal how traffic pollution affects people exposure to key contaminants and disease development, and identify susceptible emission scenarios and health impacts. We have conducted general emission inventory studies providing preliminary evidence of regional road transport air pollution impacts on external cost growth and disease development. Third, we also aim to demonstrate short and long-term impacts of road transport emissions on external costs development using innovative multi-methodological methods interfaced with environmental chemistry and meteorology following meteorological and chemical fields with contrasting high/low traffic emissions in several linked components involving: air pollutant assessment using local measurements, height of the boundary layer, meteorological environment interactions on external costs and epidemiology, mapping of Madrid (identifying gradients of emissions), integrative causal modeling using statistical models, and trend and scenario analyses on external costs and impacts on human health. Meteorological and chemical fields will be obtained from local records collected by surface meteorological and air quality stations. These two sets of fields define the horizontal and vertical profiles of GHGs and ATPs of Madrid based on air quality ground (initial conditions) and vertical (boundary conditions) measurements and modulate air concentration estimates

  9. A new vehicle emission inventory for China with high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2013-12-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions (CO, NMHC, NOx, and PM2.5) for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  10. Top-down Estimate of Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft and Tower Observations

    NASA Astrophysics Data System (ADS)

    Barkley, Z.; Lauvaux, T.; Davis, K. J.; Deng, A.; Miles, N. L.; Richardson, S.; Martins, D. K.; Cao, Y.; Sweeney, C.; McKain, K.; Schwietzke, S.; Smith, M. L.; Kort, E. A.

    2016-12-01

    Leaks in natural gas infrastructure release CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of the energy's greenhouse footprint. This study presents two applications of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in northeastern Pennsylvania. First, we used the WRF-Chem mesoscale model at 3km resolution to simulate CH4 enhancements and compared them to observations obtained from a three-week flight campaign in May 2015 over the Marcellus shale region. Methane emission rates were adjusted to minimize the errors between aircraft observations and the model-simulated concentrations for each flight. Second, we present the first tower-based high resolution atmospheric inversion of CH4 emission rates from unconventional natural gas production activities. A year of continuous CH4 and calibrated δ13C isotope measurements were collected at four tower locations in northeastern Pennsylvania. The adjoint model used here combines a backward-in-time Lagrangian Particle Dispersion Model coupled with the WRF-Chem model at the same resolution. The prior for both optimization systems was compiled for major sources of CH4 within the Mid-Atlantic states, accounting for emissions from natural gas sources as well as emissions related to farming, waste management, coal, and other sources. Optimized natural gas emission rates are found to be 0.36% of total gas production, with a 2σ confidence interval between 0.27-0.45% of production. We present the results from the tower inversion over one year at 3km resolution providing additional information on spatial and temporal variability of emission rates from production and gathering facilities within the natural gas industry in comparison to flux estimates from the aircraft campaign.

  11. Sensitivity analysis of biodiesel blends on Benzo[a]pyrene and main emissions using MOVES: A case study in Temuco, Chile.

    PubMed

    Pino-Cortés, Ernesto; Díaz-Robles, Luis A; Cubillos, Francisco; Fu, Joshua S; Vergara-Fernández, Alberto

    2015-12-15

    Temuco is one of the most highly wood-smoke polluted cities in Chile; however, the diesel mobile sources are growing very fast in the past 10 years and so far very few studies have been done. The main goal of this research was to develop a 2013 emission inventory of criteria pollutants and Benzo[a]pyrene (BaP) and to evaluate the use of six biodiesel blends of 0%, 1%, 4%, 8%, 12%, and 20% by volume of fuel in diesel motors from the vehicle fleet within the mentioned areas using the Motor Vehicle Emission Simulator (MOVES). Input parameters for the base year 2005 were estimated to implement and adapt the model in Chile, while results of NOx, PM10, PM2.5, NH3, CO2 equivalent and SO2 were compared with the Chilean Emission Inventory estimated by the model "Methodology for the Calculation of Vehicle Emissions." The 2013 emissions reduced with respect to 2005, in the majority of the contaminants analyzed, despite the 47% increase in the annual miles traveled. Using biodiesel blends, an emission reduction was estimated at up to 15% in particulate matter, BaP, and CO for the year 2013, as well as an increment of 2% in NOx emissions, attributed to low sulfur content (50 ppm) in the diesel and the antiquity of the vehicle fleet. The results obtained gave evidence of the influence of the biodiesel use in the pollutant emissions to improve the Chilean air quality, as well as providing a strategy for this air quality management. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Valuing the ozone-related health benefits of methane emission controls

    DOE PAGES

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  13. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  14. Valuing the ozone-related health benefits of methane emission controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  15. Developing methodologies for estimation of manure across livestock systems using agricultural census data

    NASA Astrophysics Data System (ADS)

    Khalil, Mohammad I.; Muldowney, John; Osborne, Bruce

    2017-04-01

    Livestock production and management-induced emissions of greenhouse gases (GHGs), comprising 18% of total global anthropogenic emissions together with air pollutants, have major atmospheric and ecosystem-related impacts. Identification of categorical/sub-categorical hotspots associated with these emissions and the estimation of emissions factors (EFs), including the use of the Intergovernmental Panel on Climate Change defaults (Tier 1), are key objectives in the preparation of reasonable, and transparent national reporting inventories (Tier 2). They also provide a basis for assessment of technological/management approaches for emissions reduction. For this, data on manure (solid/FYM and slurry/liquid) production across livestock categories, housing types and periods, storage types and application methodologies are required. However, relevant agricultural activity data are not sufficient to quantify the proportion and timing of the amounts of manure applied to major land use types and for different seasons. We have used the recent Census of Agriculture survey data 2010, collected by the Central Statistics Office, Ireland. Based on the compiled datasheets, several steps have been taken to generate missing information (e.g., number of individual livestock categories/subcategories) and to develop methodologies for calculating the proportion of slurry and manure production and application across farm categories. Among livestock categories, the proportion (%) of slurry over solids was higher for pigs (99:1) than the proportion derived from cattle (61:39). Solid manure production from other livestock systems derived mostly from loose-bedded houses. There were large differences between the proportions estimated using the number of farms and the livestock population. A major proportion of the slurry was applied to grassland (97 vs. 73) and the amounts applied in spring and summer were similar (40-42 vs. 36-39), but significantly higher than the autumn application (18 vs. 24). Similarly, most solid manure was applied to grassland (90 vs.77) with more applied during autumn (49 vs. 26), and the spring application was larger (31 vs. 61) than the summer application (21 vs. 13). Among the application methods used for slurry and solid manure, farmers mostly used splash plate and side discharge (90 and 60%, respectively) methods. Nationally, the total estimated (no. of places vs. population) amount of slurry from cattle and pigs for 2010 was 30.9 vs. 32.1 Mm3 and for solid manure was 319.8 vs. 320.3 Mm3 included sheep, poultry, goats and horses. The analysis indicates significant deficiencies in the available information, including discrepancies in the number of available places in relation to the total population during the housing period (key categories vs. poultry), and the methods of slurry, and solid manure application. Expert advice and the collection of information from other verifiable sources will be required before the information can be made acceptable to users.

  16. A review on black carbon emissions, worldwide and in China.

    PubMed

    Ni, Mingjiang; Huang, Jianxin; Lu, Shengyong; Li, Xiaodong; Yan, Jianhua; Cen, Kefa

    2014-07-01

    Black carbon (BC) produced from open burning (OB) and controlled combustion (CC) is a range of carbonaceous products of incomplete combustion of biomass and fossil fuel, and is deemed as one of the major contributors to impact global environment and human health. BC has a strong relationship with POPs, in waste combustion, BC promotes the formation of POPs, and then the transport of POPs in the environment is highly influenced by BC. However less is known about BC formation, measurement and emissions estimation especially in developing countries such as China. Different forms of BC are produced both in CC and OB. BC emission characteristics and combustion parameters which determine BC emissions from CC and OB are discussed. Recent studies showed a lack of common methodology and the resulting data for describing the mechanisms related to BC formation during combustion processes. Because BC is a continuum carbonaceous combustion product, different sampling and measuring methods are used for measuring their emissions with great quantitative uncertainty. We discuss the commonly used BC sampling and measuring methods along with the causes for uncertainty and measures to minimizing the uncertainty. Then, we discuss the estimations of BC emission factors and emission inventory for CC and OB sources. The total emissions of BC from CC and OB in China are also estimated and compared with previous BC emission inventories in this review and we find the inventories tend to be overestimated. As China becomes the largest contributor to global BC emissions, studies for characterizing BC emissions from OB and CC sources are absent in China. Finally, we comment on the current state of BC emission research and identify major deficiencies that need to overcome. Moreover, the advancement in research tools, measuring technique in particular, as discussed in this review is critical for researchers in developing countries to improve their capability to study BC emissions for addressing the growing climate change and public health concerns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Use of a methodology to assess a risk at the stage of substantiating the choice of a ground area for placing industrial enterprises].

    PubMed

    Perminova, L A; Karpenko, I L; Barkhatova, L A; Chekryzhov, I V

    2009-01-01

    Human health risk was screened at the stage of supporting the choice of a building site for a petroleum refinery. Based on the calculated exposure levels, the risk to the Buguruslan population was characterized under different conditions: without consideration for the impact of the projected enterprise; with consideration for the pollutants contained in the emissions of the projected enterprise; at the border of an apartment block and at that of an estimated control area in five receptor points. The assessment of a human risk has revealed that the industrial enterprise cannot be sited on this territory and the estimated control area is inadequate due to the high carcinogenic and toxic risk from the formed emission of the projected enterprise.

  18. Discussion of and reply to ``Waste-to-energy: The next step in the hierarchy after the 3-Rs``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, W.R.; Hahn, J.L.; Jones, K.H.

    1995-11-01

    In their paper Jeffrey L. Hahn and Kay H. Jones addressed the issue of what the next step should be in the hierarchy after reduction, reuse and recycling (the 3-Rs) with regards to communities managing their solid wastes. The author believes Mr. Hahn and Ms. Jones should provide literature citations or their estimation methodology and assumptions. The author questions the apparent assertion by Mr. Hahn and Ms. Jones that the greenhouse gas emission of WTE are much less than that of landfills. The relative magnitude of the maximum year and average year non-methane organic carbon emission estimates for landfills ismore » questioned. This article also contains the original authors` reply to the comments and questions.« less

  19. Assessment of shipping emissions on four ports of Portugal.

    PubMed

    Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2017-12-01

    In the last few years, ship emissions have attracted growing attention in the scientific community. The main reason is the constant increase of marine emissions over the last twenty years due to the intensification of port traffic. Thus, this study aimed to evaluate ship emissions (PM 10 , PM 2.5 , NO x , SO 2 , CO, CO 2 , N 2 O CH 4 , NMVOC, and HC) through the activity-based methodology in four of the main ports of Portugal (Leixões, Setúbal, Sines and Viana do Castelo) during 2013 and 2014. The analysis was performed according to ship types (bulk carrier, container, general cargo, passenger, Ro-Ro cargo, tanker and others) and operational modes (manoeuvring, hotelling and during cruising). Results indicated that tankers were the largest emitters in two of the four analysed ports. Regarding cruising emissions, container ships were the largest emitters. . CO 2 , NO x and SO 2 estimated emissions represented more than 95% of the cruising and in-port emissions. Results were also compared with the total national emissions reported by the Portuguese Environment Agency, and if the in-port emissions estimated in the present study would have been taken into account to these totals, emissions of NO x and SO 2 would increase 15% and 24% in 2013 and 16% and 28% in 2014. Summing up ships seem to be an important source of air pollution, mainly regarding NO x and SO 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, B. Y.; Wu, L.; Mao, H. J.; Gong, S. L.; He, J. J.; Zou, C.; Song, G. H.; Li, X. Y.; Wu, Z.

    2015-10-01

    As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).

  1. Using RAQMS Chemical Transport Model, Aircraft In-situ and Satellite Data to Verify Ground-based Biomass Burning Emissions from the Extreme Fire Event in Boreal Alaska 2004

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Pierce, R. B.; Al-Saadi, J. A.; Alvarado, E.; Sandberg, D. V.; Ottmar, R. D.; Kittaka, C.; McMillian, W. W.; Sachse, G. W.; Warner, J. X.; Szykman, J. J.

    2006-12-01

    Current climate change scenarios are predicted to result in increased biomass burning, particularly in boreal regions. Biomass burning events feedback to the climate system by altering albedo (affecting the energy balance) and by direct and indirect fire emissions. Additionally, fire emissions influence air quality and human health downwind of burning. Biomass burning emission estimates are difficult to quantify in near-real-time and accurate estimates are useful for large-scale chemical transport models, which could be used to warn the public of potential health risks and for climate modeling. In this talk, we describe a methodology to quantify emissions, validate those emission estimates, transport the emissions and verify the resultant CO plume 100's of kilometers from the fire events using aircraft in-situ and satellite data. First, we developed carbon consumption estimates that are specifically designed for near-real-time use in conjunction with satellite-derived fire data for regional- to global-chemical transport models. Large-scale carbon consumption estimates are derived for 10 ecozones across North America and each zone contains 3 classes of severity. The estimates range is from a low severity 3.11 t C ha-1 estimate from the Western Taiga Shield to a high severity 59.83 t C ha-1 estimate from the Boreal Cordillera. These estimates are validated using extensive supplementary ground-based Alaskan data. Then, the RAQMS chemical transport model ingests these data and transports CO from the Alaskan 2004 fires across North America, where results are compared with in-situ flight CO data measured during INTEX-A and satellite-based CO data (AIRS and MOPITT). Ground-based CO is 6 to 14 times greater than the typically modeled fire climatology. RAQMS often overestimates CO in the biomass plumes in comparison to satellite- derived CO data and we suspect this may be due to the satellite instruments low sensitivity to planetary boundary layer CO, which is prevalent in the near field plumes, and also the assumption of high-severity fires throughout the burning season. RAQMS underestimates biomass CO in comparison to in-situ CO data (146 out of 148 ascents and descents), and we suspect this may be due to RAQMS difficulty in defining narrow fire plumes due to the 1.4° x 1.4° resolution.

  2. Top-Down Versus Bottom-Up Estimative of CO2 and CO Vehicular Emission Contribution from the Megacity of SãO Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Nogueira, T.; Martínez, P. J.; Fornaro, A.; Miranda, R. M.; Ynoue, R.

    2013-12-01

    The Metropolitan Area of São Paulo (MASP) is composed by 39 municipalities with a population of 20 million inhabitants in an area of 8,511 km2. The main source of pollutants to the air is the vehicular emission: exhaust and evaporative fuel. The climate is influenced by the sea breeze from the Southeast direction - MASP is approximately 40 km far from the sea; and by the valley- mountain circulation, due to the presence of the Serra do Mar Mountains in the Northwest part of the city. This wind circulation suffers the influence of the heat island due to the high degree of urbanization. The MASP fleet is composed by approximately 7 million passenger cars and freight vehicles, with 85% light duty vehicles (LDVs), 3% heavy-duty diesel vehicles (HDVs, diesel + 5% bio-diesel) and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 2% use diesel (CETESB, 2013a). The use of gasohol or hydrous ethanol by the flex-fuel is determined by the price of the fuel. Vehicle traffic is the main source of regulated pollutants: carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC), and contributes to the formation of inhalable particulate matter emissions (PM10) as well as being the principal source of carbon dioxide (CO2). 97% of all CO emissions, 85% of HC, 82% of NOx, 36% of sulfur dioxide (SO2), and 36% of all PM10 emissions come from mobile sources (CETESB, 2013b). The official inventory is calculated with the botton-up methodology: calculation of the emission factors in dynamometer, estimation of the average distance each kind of vehicles drives per day and the total number of vehicles in circulation. The values considered a deterioration factor due to the vehicle aging. The top-down methodology was performed from measurements performed in experiments in traffic roads and tunnels. The data presented here compared tunnel measurements performed in 2004 and 2011. The official data estimate an emission of 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles) and 128 million tons per year of CO. The top-down estimative based on tunnel measurements resulted in values approximately 5 times higher, being the difference more attributable to the estimative of the diesel emission factor. The uncertainties are related to the deterioration of the emission factor with time and the driving pattern. The diurnal variation of CO2 atmospheric concentration is characterized by the mobile source emission pattern. CETESB. Relatório Anual de Qualidade do Ar no Estado de São Paulo 2012. Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil, 2013a. CETESB. Plano de Controle de Poluição Veicular do Estado de São Paulo 2011 /2013. Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil, 2013b.

  3. A comparison of greenhouse gas emissions and local area pollution of highspeed rail and air travel between Los Angeles and Las Vegas

    NASA Astrophysics Data System (ADS)

    Mullins, Damien

    Global warming is one of the most discussed global environmental issues in the world today. Global warming is driven by fossil fuel combustion emissions known as Green-house Gases (GHG). One of the major contributors to GHG emissions is the transport sector, emitting approximately 30% of total U.S. CO 2 emissions in 2010. Air travel contributed approximately 3.5% of total U.S. CO2 in 2008. High-speed Rail (HSR) is often touted as cleaner, more sustainable mode of transport than air travel. HSR is one of few modes of transport capable of competing with air travel for short to medium-haul distances. There has been considerable study of GHG emissions of each independently. Research has also been carried out into the economics and competition of these transport modes. However, there has been very limited study of the comparative emissions of each, apart from one study in Europe (Givoni, 2007). The current study was undertaken with the goal of quantifying potential emission savings due to mode substitution from air travel to HSR in the Los Angeles to Las Vegas corridor. This study only considered the emissions which occurred from the combustion of the relevant fuels, either in power plants or the engines of an aircraft. Emissions from fuel production/refining or transport of fuels were not considered. Another issue compared was Local Area Pollution (LAP), which is a measure of the severity of emissions effect on the environment. This was examined because all emissions from HSR occur close to the surface of the earth, and hence effect the local environment, while only a portion of aircraft emissions do. This study was carried out using internationally recognized emission inventory methodologies. For the air travel emission estimate methodologies and data published by the Intergovernmental Panel on Climate Change (IPCC) and the International Civil Aviation Organization (ICAO) were used. The HSR energy use was estimated from energy use data from currently running HSR programs, in France, UK and Spain (Alvarez, 2007; Kemp, 2007). The emissions were then estimated using an adjusted tier 3 method. For aviation emissions a tier three method was also used. The findings of this research are mixed. HSR would emit 66% less GHG emissions using today's energy mixes for California and Nevada. Using California's 2020 target energy mix HSR would emit 80% less GHG emissions. However, using today's energy mix HSR would cause 33% more LAP than air travel. Using California's 2020 mix the HSR would cause 22% less LAP the air travel. However this 20% improvement would likely be eroded by aircraft emissions improvement between now and 2020. To conclude, this research found that HSR does offer significant GHG emission reductions, when compared to air travel between Los Angeles and Las Vegas. However is less clear regarding LAP, though HSR has the potential to create savings here in the future as well. For other corridors around the U.S.A., earmarked for HSR, similar studies should be carried out to examine the benefits of such mode transfer.

  4. Estimation of fire emissions from satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Kaufman, Y. J.

    2004-12-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.

  5. Estimation of Fire Emissions from Satellite-Based Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2004-01-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.

  6. Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review.

    PubMed

    Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M

    2018-10-15

    Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    NASA Astrophysics Data System (ADS)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the Tier 1 approach currently used in the emission inventory, using activity data and emission factors unadjusted for volatility and adjusted for volatility. The unadjusted estimate is useful, because it demonstrates the failure to properly account for volatility can produce significantly over-estimated emissions from the Domestic Solvent Usage sector. Unadjusted emissions were found to be 30% lower than the EMEP/EEA (2013) Tier 1 period in 2014. Emissions were found to reduce a further 20.9% when the volatility of the organic compounds was included. This new method shows that member parties may be significantly overestimating emissions from Domestic Solvent Use including pesticides and further work should include refining organic compound content and the sectorial adjustment factor of products.

  8. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory.more » Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC emissions were given additional species resolution by allocating the 23 chemical categories to individual chemical species based on factors derived from the speciated emissions of NMVOCs in the U.S. from the U.S. EPA's 1990 Interim Inventory. Ongoing research activities for this project continue to address emissions of both NO{sub x} and NMVOCs. Future tasks include: (a) evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates, (b) derivation of quantitative uncertainty estimates for the emission values, and (c) development of emissions estimates for 1995.« less

  9. Questioning the accuracy of greenhouse gas accounting from agricultural waste: a case study.

    PubMed

    Chung, Matthew L; Shilton, Andrew N; Guieysse, Benoit; Pratt, Chris

    2013-01-01

    The New Zealand Greenhouse Gas Inventory (the NZ Inventory) uses country-specific data to quantify CH emissions from anaerobic ponds treating dairy farm effluent (315 Gg CO equivalent [CO-e] in 2009). In this study, we used literature data to: (i) evaluate the accuracy of the NZ Inventory's parameters used to quantify these CH emissions; and (ii) determine whether the NZ Inventory's scope is capturing the full spectrum of sources with bio-CH potential entering anaerobic ponds. The research indicated that the current NZ Inventory methodology is underestimating CH emissions from anaerobic ponds across New Zealand by 264 to 603 Gg CO-e annually. Moreover, the NZ Inventory is currently not accounting for (i) manure from supplementary feed pads and stand-off pads (annual CH emissions = 207-330 Gg CO-e); (ii) waste milk (153-280 Gg CO-e); and (iii) supplementary feed waste (90-216 Gg CO-e). Annual CH emissions from anaerobic ponds on dairy farms across New Zealand are thus more likely to be 1029 to 1744 Gg CO-e, indicating that the NZ Inventory is reporting as little as 18% of actual CH emissions produced by this sector. These additional wastes are not accounted for in the methodology prescribed by the Intergovernmental Panel on Climate Change for estimating CH emissions from dairy manure. Consequently, other significant dairying nations will also probably be underestimating their waste CH emissions. Our research highlights that, if governments attempt to include country-specific emission factors in their greenhouse gas inventories, these factors must be based on an assessment of the full spectrum of sources contributing to greenhouse gas emissions within any given sector. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997

    NASA Astrophysics Data System (ADS)

    Wang, James S.; Logan, Jennifer A.; McElroy, Michael B.; Duncan, Bryan N.; Megretskaia, Inna A.; Yantosca, Robert M.

    2004-09-01

    Methane has exhibited significant interannual variability with a slowdown in its growth rate beginning in the 1980s. We use a 3-D chemical transport model accounting for interannually varying emissions, transport, and sinks to analyze trends in CH4 from 1988 to 1997. Variations in CH4 sources were based on meteorological and country-level socioeconomic data. An inverse method was used to optimize the strengths of sources and sinks for a base year, 1994. We present a best-guess budget along with sensitivity tests. The analysis suggests that the sum of emissions from animals, fossil fuels, landfills, and wastewater estimated using Intergovernmental Panel on Climate Change default methodology is too high. Recent bottom-up estimates of the source from rice paddies appear to be too low. Previous top-down estimates of emissions from wetlands may be a factor of 2 higher than bottom-up estimates because of possible overestimates of OH. The model captures the general decrease in the CH4 growth rate observed from 1988 to 1997 and the anomalously low growth rates during 1992-1993. The slowdown in the growth rate is attributed to a combination of slower growth of sources and increases in OH. The economic downturn in the former Soviet Union and Eastern Europe made a significant contribution to the decrease in the growth rate of emissions. The 1992-1993 anomaly can be explained by fluctuations in wetland emissions and OH after the eruption of Mount Pinatubo. The results suggest that the recent slowdown of CH4 may be temporary.

  11. The public health benefits of insulation retrofits in existing housing in the United States

    PubMed Central

    Levy, Jonathan I; Nishioka, Yurika; Spengler, John D

    2003-01-01

    Background Methodological limitations make it difficult to quantify the public health benefits of energy efficiency programs. To address this issue, we developed a risk-based model to estimate the health benefits associated with marginal energy usage reductions and applied the model to a hypothetical case study of insulation retrofits in single-family homes in the United States. Methods We modeled energy savings with a regression model that extrapolated findings from an energy simulation program. Reductions of fine particulate matter (PM2.5) emissions and particle precursors (SO2 and NOx) were quantified using fuel-specific emission factors and marginal electricity analyses. Estimates of population exposure per unit emissions, varying by location and source type, were extrapolated from past dispersion model runs. Concentration-response functions for morbidity and mortality from PM2.5 were derived from the epidemiological literature, and economic values were assigned to health outcomes based on willingness to pay studies. Results In total, the insulation retrofits would save 800 TBTU (8 × 1014 British Thermal Units) per year across 46 million homes, resulting in 3,100 fewer tons of PM2.5, 100,000 fewer tons of NOx, and 190,000 fewer tons of SO2 per year. These emission reductions are associated with outcomes including 240 fewer deaths, 6,500 fewer asthma attacks, and 110,000 fewer restricted activity days per year. At a state level, the health benefits per unit energy savings vary by an order of magnitude, illustrating that multiple factors (including population patterns and energy sources) influence health benefit estimates. The health benefits correspond to $1.3 billion per year in externalities averted, compared with $5.9 billion per year in economic savings. Conclusion In spite of significant uncertainties related to the interpretation of PM2.5 health effects and other dimensions of the model, our analysis demonstrates that a risk-based methodology is viable for national-level energy efficiency programs. PMID:12740041

  12. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.« less

  13. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    PubMed

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details ofmore » the methodology.« less

  15. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography

    PubMed Central

    Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.

    2017-01-01

    Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883

  16. A methodology framework for weighting genetic traits that impact greenhouse gas emission intensities in selection indexes.

    PubMed

    Amer, P R; Hely, F S; Quinton, C D; Cromie, A R

    2018-01-01

    A methodological framework was presented for deriving weightings to be applied in selection indexes to account for the impact genetic change in traits will have on greenhouse gas emissions intensities (EIs). Although the emission component of the breeding goal was defined as the ratio of total emissions relative to a weighted combination of farm outputs, the resulting trait-weighting factors can be applied as linear weightings in a way that augments any existing breeding objective before consideration of EI. Calculus was used to define the parameters and assumptions required to link each trait change to the expected changes in EI for an animal production system. Four key components were identified. The potential impact of the trait on relative numbers of emitting animals per breeding female first has a direct effect on emission output but, second, also has a dilution effect from the extra output associated with the extra animals. Third, each genetic trait can potentially change the amount of emissions generated per animal and, finally, the potential impact of the trait on product output is accounted for. Emission intensity weightings derived from this equation require further modifications to integrate them into an existing breeding objective. These include accounting for different timing and frequency of trait expressions as well as a weighting factor to determine the degree of selection emphasis that is diverted away from improving farm profitability in order to achieve gains in EI. The methodology was demonstrated using a simple application to dairy cattle breeding in Ireland to quantify gains in EI reduction from existing genetic trends in milk production as well as in fertility and survival traits. Most gains were identified as coming through the dilution effect of genetic increases in milk protein per cow, although gains from genetic improvements in survival by reducing emissions from herd replacements were also significant. Emission intensities in the Irish dairy industry were estimated to be reduced by ~5% in the last 10 years because of genetic trends in production, fertility and survival traits, and a further 15% reduction was projected over the next 15 years because of an observed acceleration of genetic trends.

  17. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico.

    PubMed

    Gastelum, Sandra L; Mejía-Velázquez, G M; Lozano-García, D Fabián

    2016-06-01

    In addition to oxygen, hydrocarbons are the most reactive chemical compounds produced by plants into the atmosphere. These compounds are part of the family of volatile organic compounds (VOCs) and are discharged in a great variety of forms. Among the VOCs produced by natural sources such as vegetation, the most studied until today are the isoprene and monoterpene. These substances can play an important role in the chemical balance of the atmosphere of a region. In this project, we develop a methodology to estimate the natural (vegetation) emission of isoprene and monoterpenes and applied it to the Monterrey Metropolitan Area, Mexico and its surrounding areas. Landsat-TM data was used to identify the dominant vegetation communities and field work to determine the foliage biomass density of key species. The studied communities were submontane scrub, oak, and pine forests and a combination of both. We carried out the estimation of emissions for isoprene and monoterpenes compounds in the different plant communities, with two different criteria: (1) taking into account the average foliage biomass density obtained from the various sample point in each vegetation community, and (2) using the foliage biomass density obtained for each transect, associated to an individual spectral class within a particular vegetation type. With this information, we obtained emission maps for each case. The results show that the main producers of isoprene are the communities that include species of the genus Quercus, located mainly on the Sierra Madre Oriental and Sierra de Picachos, with average isoprene emissions of 314.6 ton/day and 207.3 ton/day for the two methods utilized. The higher estimates of monoterpenes were found in the submontane scrub areas distributed along the valley of the metropolitan zone, with an estimated average emissions of 47.1 ton/day and 181.4 tons for the two methods respectively.

  18. ESP v1.0: Methodology for Exploring Emission Impacts of Future Scenarios in the United States

    EPA Science Inventory

    This article presents a methodology for creating anthropogenic emission inventories that can be used to simulate future regional air quality. The Emission Scenario Projection (ESP) methodology focuses on energy production and use, the principal sources of many air pollutants. Emi...

  19. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. © 2011 Society for Risk Analysis.

  20. A High Resolution Technology-based Emissions Inventory for Nepal: Present and Future Scenario

    NASA Astrophysics Data System (ADS)

    Sadavarte, P.; Das, B.; Rupakheti, M.; Byanju, R.; Bhave, P.

    2016-12-01

    A comprehensive regional assessment of emission sources is a major hindrance for a complete understanding of the air quality and for designing appropriate mitigation solutions in Nepal, a landlocked country in foothills of the Himalaya. This study attempts, for the first time, to develop a fine resolution (1km × 1km) present day emission inventory of Nepal with a higher tier approach using our understanding of the currently used technologies, energy consumption used in various energy sectors and its resultant emissions. We estimate present-day emissions of aerosols (BC, OC and PM2.5), trace gases (SO2, CO, NOX and VOC) and greenhouse gases (CO2, N2O and CH4) from non-open burning sources (residential, industry, transport, commercial) and open-burning sources (agriculture and municipal solid waste burning) for the base year 2013. We used methodologies published in literatures, and both primary and secondary data to estimate energy production and consumption in each sector and its sub-sector and associated emissions. Local practices and activity rates are explicitly accounted for energy consumption and dispersed often under-documented emission sources like brick manufacturing, diesel generator sets, mining, stone crushing, solid waste burning and diesel use in farms are considered. Apart from pyrogenic source of CH4 emissions, methanogenic and enteric fermentation sources are also accounted. Region-specific and newly measured country-specific emission factors are used for emission estimates. Activity based proxies are used for spatial and temporal distribution of emissions. Preliminary results suggest that 80% of national energy consumption is in residential sector followed by industry (8%) and transport (7%). More than 90% of the residential energy is supplied by biofuel which needs immediate attention to reduce emissions. Further, the emissions would be compared with other contemporary studies, regional and global datasets and used in the model simulations to understand impacts of air pollution on health and climate in Kathmandu Valley and Nepal. Future emissions are being developed based on different possible growth scenarios and policy interventions to mitigate emissions.

  1. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, Conor; Hutyra, Lucy

    2016-04-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  2. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.

    2015-12-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  3. Estimating the National Carbon Abatement Potential of City Policies: A Data-Driven Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Heeter, Jenny; Keyser, David

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy City Energy Profile tool. The analysismore » develops a national estimate of the carbon abatement potential of realizable city actions in six specific policy areas encompassing the most commonly implemented city actions. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO2) per year in a 'moderate abatement scenario' by 2035 and 480 MMT CO2/year in a 'high abatement scenario' by 2035 through these common actions typically within a city's control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. In the context of U.S. climate commitments under the 21st session of the Conference of the Parties (COP21), the estimated national abatement potential of the city actions analyzed in this report equates to about 15%-35% of the remaining carbon abatement necessary to achieve the U.S. COP21 target. Additional city actions outside the scope of this report, such as community choice aggregation (city-level purchasing of renewable energy), zero energy districts, and multi-level governance strategies, could significantly augment the carbon abatement contributions of city actions toward national climate targets. The results suggest that cities may play a pivotal role in progress toward national climate targets. In addition to providing carbon and emissions estimates, this report estimates the national net economic impacts of policies for which cost and benefit data are available. Impact metrics include employment, worker earnings, and gross domestic product (GDP). For the policy areas studied, the economic analysis demonstrates that city carbon abatement may be achieved with only minimal and generally slightly positive economic impacts. Employment impacts range from 0.04% to 0.13% of U.S, employment during implementation and zero to 0.1% thereafter. GDP estimates show net impacts of 0.02% to 0.07% of GDP during implementation and impacts from -0.02% to zero thereafter. This report quantitatively demonstrates the material impact of a limited set of local policy areas on national carbon abatement potential. The magnitude of estimated carbon reductions from city policies, 3%-7% of national emissions by 2035, suggests an important role for city-led actions in reaching U.S. climate goals. Multi-level governance at the city, state, and national levels could augment the carbon abatement potential of city actions and make cities a key component of long-term U.S. climate strategies.« less

  4. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  5. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  6. 40 CFR 52.420 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 8.0 Nitrogen Dioxide 9/11/08 8/11/10, 75 FR 48566 Section 10.0 Lead 9/11/08 8/11/10, 75 FR 48566....0 Restrictions on Petroleum Refining Operations 9/11/08 8/11/10, 75 FR 48566 1112Control of Nitrogen.../Liquid Material Balance 9/11/08 8/11/10, 75 FR 48566 Appendix K Emission Estimation Methodologies 9/11/08...

  7. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  8. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city

    NASA Astrophysics Data System (ADS)

    González, C. M.; Gómez, C. D.; Rojas, N. Y.; Acevedo, H.; Aristizábal, B. H.

    2017-03-01

    Cities in emerging countries are facing a fast growth and urbanization; however, the study of air pollutant emissions and its dynamics is scarce, making their populations vulnerable to potential effects of air pollution. This situation is critical in medium-sized urban areas built along the tropical Andean mountains. This work assesses the contribution of on-road vehicular and point-source industrial activities in the medium-sized Andean city of Manizales, Colombia. Annual fluxes of criteria pollutants, NMVOC, and greenhouse gases were estimated. Emissions were dominated by vehicular activity, with more than 90% of total estimated releases for the majority of air pollutants. On-road vehicular emissions for CO (43.4 Gg/yr) and NMVOC (9.6 Gg/yr) were mainly associated with the use of motorcycles (50% and 81% of total CO and NMVOC emissions respectively). Public transit buses were the main source of PM10 (47%) and NOx (48%). The per-capita emission index was significantly higher in Manizales than in other medium-sized cities, especially for NMVOC, CO, NOx and CO2. The unique mountainous terrain of Andean cities suggest that a methodology based on VSP model could give more realistic emission estimates, with additional model components that include slope and acceleration. Food and beverage facilities were the main contributors of point-source industrial emissions for PM10 (63%), SOx (55%) and NOx (45%), whereas scrap metal recycling had high emissions of CO (73%) and NMVOC (47%). Results provide the baseline for ongoing research in atmospheric modeling and urban air quality, in order to improve the understanding of air pollutant fluxes, transport and transformation in the atmosphere. In addition, this emission inventory could be used as a tool to identify areas of public health exposure and provide information for future decision makers.

  9. Advances in Estimating Methane Emissions from Enteric Fermentation

    NASA Astrophysics Data System (ADS)

    Kebreab, E.; Appuhamy, R.

    2016-12-01

    Methane from enteric fermentation of livestock is the largest contributor to the agricultural GHG emissions. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. Most countries use a fixed number (kg methane/year) or calculate as a proportion of energy intake to estimate enteric methane emissions in national inventories. However, diet composition significantly regulates enteric methane production in addition to total feed intake and thus the main target in formulating mitigation options. The two current methodologies are not able to assess mitigation options, therefore, new estimation methods are required that can take feed composition into account. The availability of information on livestock production systems has increased substantially enabling the development of more detailed methane prediction models. Limited number of process-based models have been developed that represent biological relationships in methane production, however, these require extensive inputs and specialized software that may not be easily available. Empirical models may provide a better alternative in practical situations due to less input requirements. Several models have been developed in the last 10 years but none of them work equally well across all regions of the world. The more successful models particularly in North America require three major inputs: feed (or energy) intake, fiber and fat concentration of the diet. Given the significant variability of emissions within regions, models that are able to capture regional variability of feed intake and diet composition perform the best in model evaluation with independent data. The utilization of such models may reduce uncertainties associated with prediction of methane emissions and allow a better examination and representation of policies regulating emissions from cattle.

  10. Methane emission to the atmosphere from landfills in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.

    2017-04-01

    Methane (CH4) is one of the most powerful greenhouse gases, and is increasing in the atmosphere by 0.6% each year (Intergovernmental Panel on Climate Change, IPCC, 2013). This gas is produced in landfills in large quantities following the anaerobic degradation of organic matter. The IPCC has estimated that more than 10% of the total anthropogenic emissions of CH4 are originated in landfills. Even after years of being no operative (closed), a significant amount of landfill gas could be released to the atmosphere through its surface as diffuse or fugitive degassing. Many landfills currently report their CH4 emissions to the atmosphere using model-based methods, which are based on the rate of production of CH4, the oxidation rate of CH4 and the amount of CH4 recovered (Bingemer and Crutzen, 1987). This approach often involves large uncertainties due to inaccuracies of input data and many assumptions in the estimation. In fact, the estimated CH4 emissions from landfills in the Canary Islands published by the Spanish National Emission and Pollutant Sources Registration (PRTR-Spain) seem to be overestimated due to the use of protocols and analytical methodologies based on mathematical models. For this reason, direct measurements to estimate CH4 emissions in landfills are essential to reduce this uncertainty. In order to estimate the CH4 emissions to the atmosphere from landfills in the Canary Islands 23 surveys have been performed since 1999. Each survey implies hundreds of CO2and CH4 efflux measurements covering the landfill surface area. Surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Samples of landfill gases were taken in the gas accumulated in the chamber and CO2 and CH4 were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux measurent was computed combining CO2 efflux and CH4/CO2 ratio. To quantify the the diffuse or fugitive CO2 and CH4 emission, gas efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. Considering that (a) there are 5 controlled landfills in the Canary Islands, (b) the average area of the 23 studied cells is 0.17 km2 and (c) the mean value of the CH4 emission estimated for the studied cells range between 6.9 and 8.1 kt km-2 y-1, the estimated CH4 emission to the atmosphere from landfills in the Canary Islands showed a range of 7.0 - 7.8 kt y-1. On the contrary and for the same period of time, the PRTR-Spain estimates CH4 emission in the order of 10.3 - 14.9 kt y-1, nearly two times our estimated value. This result demonstrates the need to perform direct measurements to estimate the surface fugitive emission of CH4 from landfills. Bingemer, H. G., and P. J. Crutzen (1987). The production of methane from solid wastes, J. Geophys. Res. 92, 2182-2187

  11. Real-time emissions from construction equipment compared with model predictions.

    PubMed

    Heidari, Bardia; Marr, Linsey C

    2015-02-01

    The construction industry is a large source of greenhouse gases and other air pollutants. Measuring and monitoring real-time emissions will provide practitioners with information to assess environmental impacts and improve the sustainability of construction. We employed a portable emission measurement system (PEMS) for real-time measurement of carbon dioxide (CO), nitrogen oxides (NOx), hydrocarbon, and carbon monoxide (CO) emissions from construction equipment to derive emission rates (mass of pollutant emitted per unit time) and emission factors (mass of pollutant emitted per unit volume of fuel consumed) under real-world operating conditions. Measurements were compared with emissions predicted by methodologies used in three models: NONROAD2008, OFFROAD2011, and a modal statistical model. Measured emission rates agreed with model predictions for some pieces of equipment but were up to 100 times lower for others. Much of the difference was driven by lower fuel consumption rates than predicted. Emission factors during idling and hauling were significantly different from each other and from those of other moving activities, such as digging and dumping. It appears that operating conditions introduce considerable variability in emission factors. Results of this research will aid researchers and practitioners in improving current emission estimation techniques, frameworks, and databases.

  12. A methodological framework to assess the carbon balance of tropical managed forests.

    PubMed

    Piponiot, Camille; Cabon, Antoine; Descroix, Laurent; Dourdain, Aurélie; Mazzei, Lucas; Ouliac, Benjamin; Rutishauser, Ervan; Sist, Plinio; Hérault, Bruno

    2016-12-01

    Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.

  13. Carbon loss and greenhouse gas emission from extreme fire events occurred in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Pellizzaro, G.; Arca, B.; Duce, P.; Spano, D.

    2011-12-01

    It is widely recognized that biomass burning is a significant driver of CO2 cycling and a source of greenhouse gases, aerosol particles, and other chemically reactive atmospheric gases. The large amounts of carbon that fires release into the atmosphere could approach levels of anthropogenic carbon emissions, especially in years of extreme fire activity. CO2 emissions from 2007 forest fires in Greece were in the range of 4.5 Mt, representing about the 4% of the total annual CO2 emissions of that country (http://effis.jrc.it/). Barbosa et al. (2006) reported a similar percentage of fire emissions to total emissions of CO2 in Portugal during the extreme fire seasons of 2003 and 2005. Currently, inventory methods for biomass burning emission use the equation first proposed by Seiler and Crutzen (1980), taking into account the area burned, the amount of biomass burned, and the emission factors associated with each specific chemical species. However, several errors and uncertainties can affect the emission assessment, due to the estimate consistency of the various parameters involved in the equation, including flaming and smoldering combustion periods, appropriate fuel load evaluations and gaseous emission factors for different fuel fractions and fire types. In this context, model approaching can contribute to better appraise fuel consumption and the resultant emissions. In addition, more comprehensive and accurate data inputs would be of valuable help for predicting and quantifying the source and the composition of fire emissions. The purpose of this work is to explore the impacts of extreme fire events occurred in Sardinia Island (Italy) using an integrated approach combining modelling fire emissions, field observations and remotely-sensed data. In order to achieve realistic fire emission estimates, we used the FOFEM model, due to the necessity to use a consistent modeling methodology across source categories, the input required, and its ability to estimate flaming and smoldering emissions. FOFEM input fuel load data were surveyed to represent those combusted, and fuel availability was obtained from supervised classification of remotely-sensed images. Data relative to fire perimeters, fire weather data, and fire behaviour were gathered by the Sardinian Forestry Corps (CFVA). Consumptions and emissions for each fuel types were estimated through FOFEM. Finally, all the data were assembled into a Geographical Information System (GIS) to facilitate manipulation and display of the data. The results showed the crucial role of appropriate fuel, fire, and weather data and maps to attain reasonable simulations of fuel consumption and smoke emissions. Carbon emission estimates are sensitive to pre-fire fuel loads, so the method used to establish initial fuel conditions is crucial. The FOFEM outputs and the derived smoke emission maps are useful for several applications including emissions inventories, air quality management plans, and emission source models coupled with dispersion models and decision support systems.

  14. Developing high-resolution urban scale heavy-duty truck emission inventory using the data-driven truck activity model output

    NASA Astrophysics Data System (ADS)

    Perugu, Harikishan; Wei, Heng; Yao, Zhuo

    2017-04-01

    Air quality modelers often rely on regional travel demand models to estimate the vehicle activity data for emission models, however, most of the current travel demand models can only output reliable person travel activity rather than goods/service specific travel activity. This paper presents the successful application of data-driven, Spatial Regression and output optimization Truck model (SPARE-Truck) to develop truck-related activity inputs for the mobile emission model, and eventually to produce truck specific gridded emissions. To validate the proposed methodology, the Cincinnati metropolitan area in United States was selected as a case study site. From the results, it is found that the truck miles traveled predicted using traditional methods tend to underestimate - overall 32% less than proposed model- truck miles traveled. The coefficient of determination values for different truck types range between 0.82 and 0.97, except the motor homes which showed least model fit with 0.51. Consequently, the emission inventories calculated from the traditional methods were also underestimated i.e. -37% for NOx, -35% for SO2, -43% for VOC, -43% for BC, -47% for OC and - 49% for PM2.5. Further, the proposed method also predicted within ∼7% of the national emission inventory for all pollutants. The bottom-up gridding methodology used in this paper could allocate the emissions to grid cell where more truck activity is expected, and it is verified against regional land-use data. Most importantly, using proposed method it is easy to segregate gridded emission inventory by truck type, which is of particular interest for decision makers, since currently there is no reliable method to test different truck-category specific travel-demand management strategies for air pollution control.

  15. Greenhouse gas emissions of alternative pavement designs: framework development and illustrative application.

    PubMed

    Liu, Xiaoyu; Cui, Qingbin; Schwartz, Charles

    2014-01-01

    Pavement rehabilitation is carbon intensive and the choice of pavement type is a critical factor in controlling greenhouse gas (GHG) emissions. The existing body of knowledge is not able to support decision-making on pavement choice due to a lack of consensus on the system boundaries, the functional units and the estimation periods. Excessive data requirements further inhibit the generalization of the existing methodologies for design evaluation at the early planning stage. This study proposes a practical life-cycle GHG estimation approach, which is arguably effective to benchmark pavement emissions given project bid tabulation. A set of case studies conducted for this study suggest that recycled asphalt pavement (e.g., foam stabilized base (FSB), and warm mix asphalt (WMA)) would prevent up to 50% of GHGs from the initial construction phase. However, from a life-cycle perspective, pavement emissions are dictated largely by the traffic characteristics and the analysis period for the use phase. The benefits from using recycled materials (e.g., FSB) are likely to diminish if the recycled products do not perform as well as those properly proportioned with less recycled materials, or if the recycled materials are locally unavailable. When the AADT reaches 10,000, use phase releases more than 97% of the life cycle emissions and the emissions difference among alternative designs will be within 1%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nitrous oxide abatement potential from the wastewater sector and the monetary value of the emissions credits

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Hamburg, S. P.; Pryor, D.

    2009-12-01

    As an illustration of the monetary opportunities afforded by greenhouse gas emissions markets, we estimated the potential value of greenhouse gas credits generated in the wastewater sector by switching from secondary to tertiary treatment. Our methodology for estimating emissions is a modification of that used by the Environmental Protection Agency for the U.S. greenhouse gas inventories. Focusing on N2O, we found that tertiary treatment in some situations will result in a net decrease in emissions, though the full range of reported emission factors for treatment plants and effluent in receiving waters could result in a net increase as well. Implementation of tertiary treatment across the U.S. could reduce emissions by up to 800,000 tonnes of N2O per year, generating greenhouse gas emissions credits worth up to 10 billion per year (assuming a market price of 10-40/tonne CO2 equivalents). In practice, it will be important to account for potential increases in CO2 emissions associated with the additional power consumption and chemical use required by tertiary treatment that would reduce the net climatic benefit. The net credits would reduce the cost of operating and maintaining tertiary treatment plants and provide an incentive for managers to optimize operating conditions for N2O reductions, a critical benefit of raising awareness of the link between tertiary treatment and N2O emissions. We outline a strategy for minimizing the uncertainty in quantifying N2O reductions in the hopes of accelerating implementation of a N2O crediting system for tertiary wastewater treatment plants.

  17. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    PubMed

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  18. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  19. Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems.

    PubMed

    Labib, S M; Neema, Meher Nigar; Rahaman, Zahidur; Patwary, Shahadath Hossain; Shakil, Shahadat Hossain

    2018-06-09

    CO 2 emissions from urban traffic are a major concern in an era of increasing ecological disequilibrium. Adding to the problem net CO 2 emissions in urban settings are worsened due to the decline of bio-productive areas in many cities. This decline exacerbates the lack of capacity to sequestrate CO 2 at the micro and meso-scales resulting in increased temperatures and decreased air quality within city boundaries. Various transportation and environmental strategies have been implemented to address traffic related CO 2 emissions, however current literature identifies difficulties in pinpointing these critical areas of maximal net emissions in urban transport networks. This study attempts to close this gap in the literature by creating a new lay-person friendly index that combines CO 2 emissions from vehicles and the bio-capacity of specific traffic zones to identify these areas at the meso-scale within four ranges of values with the lowest index values representing the highest net CO 2 levels. The study used traffic volume, fuel types, and vehicular travel distance to estimate CO 2 emissions at major links in Dhaka, Bangladesh's capital city's transportation network. Additionally, using remote-sensing tools, adjacent bio-productive areas were identified and their bio-capacity for CO 2 sequestration estimated. The bio-productive areas were correlated with each traffic zone under study resulting in an Emission Bio-Capacity index (EBI) value estimate for each traffic node. Among the ten studied nodes in Dhaka City, nine had very low EBI values, correlating to very high CO 2 emissions and low bio-capacity. As a result, the study considered these areas unsustainable as traffic nodes going forward. Key reasons for unsustainability included increasing use of motorized traffic, absence of optimized signal systems, inadequate public transit options, disincentives for fuel free transport (FFT), and a decline in bio-productive areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A methodology of the assessment of environmental and human health risks from amine emissions from post combustion CO2 capture technology

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Manzoor, Saba; Simperler, Alexandra

    2015-04-01

    Post combustion CO2 capture (PCCC) technology in power plants using amines as solvent for CO2 capture, is one of the reduction technologies employed to combat escalating levels of CO2 in the atmosphere. However, amine solvents used for capturing CO2 produce negative emissions such as, nitrosamines and nitramines, which are suspected to be potent carcinogens. It is therefore essential to assess the atmospheric fate of these amine emissions in the atmosphere by studying their atmospheric chemistry, dispersion and transport pathways away from the source and deposition in the environment, so as to be able to assess accurately the risk posed to human health and the natural environment. An important knowledge gap until recently has been the consideration of the atmospheric chemistry of these amine emissions simultaneously with dispersion and deposition studies so as to perform reliable human health and environmental risk assessments. The authors have developed a methodology to assess the distribution of such emissions away from a post-combustion facility by studying the atmospheric chemistry of monoethanolamine, the most commonly used solvent for CO2 capture, and those of the resulting degradation amines, methylamine and dimethylamine. This was coupled with dispersion modeling calculations (Manzoor, et al., 2014; Manzoor et al,2015). Rate coefficients describing the entire atmospheric chemistry schemes of the amines studied were evaluated employing quantum chemical theoretical and kinetic modeling calculations. These coefficients were used to solve the advection-dispersion-chemical equation using an atmospheric dispersion model, ADMS 5. This methodology is applicable to any size of a power plant and at any geographical location. In this paper, the humman health risk assessment is integrated in the modelling study. The methodology is demonstrated on a case study on the UK's largest capture pilot plant, Ferrybridge CCPilot 100+, to estimate the dispersion, chemical transformation and transport pathways of the amines and their degradation products away from the emitting facilities for the worst case scenario. The obtained results are used in calculating the cancer risks centred on oral cancer slope factor (CSF), risk-specific dose (RSD) and tolerant risk level of these chemical discharges. According to the CSF and RSD relationship (WQSA, 2011), at high CSF the RSD is small i.e. resulting in a high potent carcinogen risk. The health risk assessment is performed by following the US EPA method (USEPA, 1992) which considers atmospheric concentrations of these pollutants (mg m-3, evaluated by the dispersion model), daily intake through inhalation (mg kg-1 d-1), inhalation rate (m3 d-1), body weight (kg), average time (d), exposure time (d), exposure frequency (d), absorption factor and retention factor. Deterministic and probabilistic risk estimation of human health risks caused by exposure to these chemical pollutant discharges are conducted as well. From the findings of this study, it is suggested that the developed methodology is reliable in determining the risk these amine emissions from PCCC technology pose to human health. With this reliable and a universal approach it is possible to assess the fate of the amine emissions which remains a key area to address for the large scale CCS implementation.

  1. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.

    PubMed

    Gabrielle, Benoît; Gagnaire, Nathalie; Massad, Raia Silvia; Dufossé, Karine; Bessou, Cécile

    2014-01-01

    The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  3. Enteric methane emissions and their response to agro-ecological and livestock production systems dynamics in Zimbabwe.

    PubMed

    Svinurai, Walter; Mapanda, Farai; Sithole, Dingane; Moyo, Elisha N; Ndidzano, Kudzai; Tsiga, Alois; Zhakata, Washington

    2018-03-01

    Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH 4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH 4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear -1 . Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH 4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH 4 capita -1 year -1 . The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH 4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. REDD+ emissions estimation and reporting: dealing with uncertainty

    NASA Astrophysics Data System (ADS)

    Pelletier, Johanne; Martin, Davy; Potvin, Catherine

    2013-09-01

    The United Nations Framework Convention on Climate Change (UNFCCC) defined the technical and financial modalities of policy approaches and incentives to reduce emissions from deforestation and forest degradation in developing countries (REDD+). Substantial technical challenges hinder precise and accurate estimation of forest-related emissions and removals, as well as the setting and assessment of reference levels. These challenges could limit country participation in REDD+, especially if REDD+ emission reductions were to meet quality standards required to serve as compliance grade offsets for developed countries’ emissions. Using Panama as a case study, we tested the matrix approach proposed by Bucki et al (2012 Environ. Res. Lett. 7 024005) to perform sensitivity and uncertainty analysis distinguishing between ‘modelling sources’ of uncertainty, which refers to model-specific parameters and assumptions, and ‘recurring sources’ of uncertainty, which refers to random and systematic errors in emission factors and activity data. The sensitivity analysis estimated differences in the resulting fluxes ranging from 4.2% to 262.2% of the reference emission level. The classification of fallows and the carbon stock increment or carbon accumulation of intact forest lands were the two key parameters showing the largest sensitivity. The highest error propagated using Monte Carlo simulations was caused by modelling sources of uncertainty, which calls for special attention to ensure consistency in REDD+ reporting which is essential for securing environmental integrity. Due to the role of these modelling sources of uncertainty, the adoption of strict rules for estimation and reporting would favour comparability of emission reductions between countries. We believe that a reduction of the bias in emission factors will arise, among other things, from a globally concerted effort to improve allometric equations for tropical forests. Public access to datasets and methodology used to evaluate reference level and emission reductions would strengthen the credibility of the system by promoting accountability and transparency. To secure conservativeness and deal with uncertainty, we consider the need for further research using real data available to developing countries to test the applicability of conservative discounts including the trend uncertainty and other possible options that would allow real incentives and stimulate improvements over time. Finally, we argue that REDD+ result-based actions assessed on the basis of a dashboard of performance indicators, not only in ‘tonnes CO2 equ. per year’ might provide a more holistic approach, at least until better accuracy and certainty of forest carbon stocks emission and removal estimates to support a REDD+ policy can be reached.

  5. A new approach to evaluate regional methane emission from irrigated rice paddies: Combining process study, modeling and remote sensing into GIS

    NASA Astrophysics Data System (ADS)

    Ding, Aiju

    2000-10-01

    A large seasonal variation in methane emission from Texas rice fields was observed in most of the growing seasons from 1989 through 1997. In general, the pattern showed small fluxes in the early season of cultivation and reached maximum at post-heading time, then declined and stopped after fields were drained. The amount of methane emission positively relates to the aboveground biomass, the number of effective stems and tillers, and nitrogen addition. The day-to-day pattern of methane emissions was similar among all cultivars. The seasonal total methane emission shows a significant positive correlation with post-heading plant height. The total methane emission from Texas rice fields was estimated as 33.25 × 109 g in 1993, ranging from 25.85 × 109 g/yr to 40.65 × 109 g/yr. A mitigation technique was developed to obtain both high yield and less methane emission from Texas rice fields. A new approach was also developed to evaluate regional to large-scale methane emission from irrigated rice paddies. By combining modeling, ground truth information and remote sensing into a Geographic Information System (GIS)-a computer based system, the seasonal methane emission from a large area can be calculated efficiently and more accurately. The methodology was tested at the Richmond Irrigation District (RID) site in Texas. The average daily methane emission varied from field to field and even within a single field. The calculated seasonal total methane emission from RID rice fields was as low as 3.34 × 108 g CH4 in 1996 and as high as 7.80 × 108 g CH4 in 1998. To support the application of the estimation method in a worldwide study, an algorithm describing the mapping of irrigated rice paddies from Landsat TM data was demonstrated. The accuracy in 1998- supervised classification approached 95% when cloud cover was taken into account. Model uncertainty and data availability are the two major potential problems in worldwide application of the new approach. A potential alternative model is proposed which allows estimation of regional methane emission from rice plant height.

  6. Revisiting the contribution of land transport and shipping emissions to tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Mertens, Mariano; Grewe, Volker; Rieger, Vanessa S.; Jöckel, Patrick

    2018-04-01

    We quantify the contribution of land transport and shipping emissions to tropospheric ozone for the first time with a chemistry-climate model including an advanced tagging method (also known as source apportionment), which considers not only the emissions of nitrogen oxides (NOx, NO, and NO2), carbon monoxide (CO), and volatile organic compounds (VOC) separately, but also their non-linear interaction in producing ozone. For summer conditions a contribution of land transport emissions to ground-level ozone of up to 18 % in North America and Southern Europe is estimated, which corresponds to 12 and 10 nmol mol-1, respectively. The simulation results indicate a contribution of shipping emissions to ground-level ozone during summer on the order of up to 30 % in the North Pacific Ocean (up to 12 nmol mol-1) and 20 % in the North Atlantic Ocean (12 nmol mol-1). With respect to the contribution to the tropospheric ozone burden, we quantified values of 8 and 6 % for land transport and shipping emissions, respectively. Overall, the emissions from land transport contribute around 20 % to the net ozone production near the source regions, while shipping emissions contribute up to 52 % to the net ozone production in the North Pacific Ocean. To put these estimates in the context of literature values, we review previous studies. Most of them used the perturbation approach, in which the results for two simulations, one with all emissions and one with changed emissions for the source of interest, are compared. For a better comparability with these studies, we also performed additional perturbation simulations, which allow for a consistent comparison of results using the perturbation and the tagging approach. The comparison shows that the results strongly depend on the chosen methodology (tagging or perturbation approach) and on the strength of the perturbation. A more in-depth analysis for the land transport emissions reveals that the two approaches give different results, particularly in regions with large emissions (up to a factor of 4 for Europe). Our estimates of the ozone radiative forcing due to land transport and shipping emissions are, based on the tagging method, 92 and 62 mW m-2, respectively. Compared to our best estimates, previously reported values using the perturbation approach are almost a factor of 2 lower, while previous estimates using NOx-only tagging are almost a factor of 2 larger. Overall our results highlight the importance of differentiating between the perturbation and the tagging approach, as they answer two different questions. In line with previous studies, we argue that only the tagging approach (or source apportionment approaches in general) can estimate the contribution of emissions, which is important to attribute emission sources to climate change and/or extreme ozone events. The perturbation approach, however, is important to investigate the effect of an emission change. To effectively assess mitigation options, both approaches should be combined. This combination allows us to track changes in the ozone production efficiency of emissions from sources which are not mitigated and shows how the ozone share caused by these unmitigated emission sources subsequently increases.

  7. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related emissions within the Uintah Basin to be 119,974 tons/yr. Given the large observed variabilities and the uncertainties with extrapolating the derived emission rates across varying pond types and differing climatic conditions, the comparisons are not unreasonable. If the lower, literature emission rates of Thoma (2009) are used the estimated Basin-wide evaporation emissions, the pond emissions would still be approximately 30% of the total emissions compiled by Bar-Ilan et al. (2009). Although the study described herein only represents a single facility and a single set of seasonal conditions, extrapolating these rates can give potential insight into the significance of VOC emissions into the Basin atmosphere from evaporation ponds.

  8. Are renewable energy policies upsetting carbon dioxide emissions? The case of Latin America countries.

    PubMed

    Fuinhas, José Alberto; Marques, António Cardoso; Koengkan, Matheus

    2017-06-01

    The impact of renewable energy policies in carbon dioxide emissions was analysed for a panel of ten Latin American countries, for the period from 1991 to 2012. Panel autoregressive distributed lag methodology was used to decompose the total effect of renewable energy policies on carbon dioxide emissions in its short- and long-run components. There is evidence for the presence of cross-sectional dependence, confirming that Latin American countries share spatial patterns. Heteroskedasticity, contemporaneous correlation, and first-order autocorrelation cross-sectional dependence are also present. To cope with these phenomena, the robust dynamic Driscoll-Kraay estimator, with fixed effects, was used. It was confirmed that the primary energy consumption per capita, in both the short- and long-run, contributes to an increase in carbon dioxide emissions, and also that renewable energy policies in the long-run, and renewable electricity generation per capita both in the short- and long-run, help to mitigate per capita carbon dioxide emissions.

  9. Emission rate modeling and risk assessment at an automobile plant from painting operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Shrivastava, A.; Kulkarni, A.

    Pollution from automobile plants from painting operations has been addressed in the Clean Act Amendments (1990). The estimation of pollutant emissions from automobile painting operation were done mostly by approximate procedures than by actual calculations. The purpose of this study was to develop a methodology for calculating the emissions of the pollutants from painting operation in an automobile plant. Five scenarios involving an automobile painting operation, located in Columbus (Ohio), were studied for pollutant emission and concomitant risk associated with that. In the study of risk, a sensitivity analysis was done using Crystal Ball{reg{underscore}sign} on the parameters involved in risk.more » This software uses the Monte Carlo principle. The most sensitive factor in the risk analysis was the ground level concentration of the pollutants. All scenarios studied met the safety goal (a risk value of 1 x 10{sup {minus}6}) with different confidence levels. The highest level of confidence in meeting the safety goal was displayed by Scenario 1 (Alpha Industries). The results from the scenarios suggest that risk is associated with the quantity of released toxic pollutants. The sensitivity analysis of the various parameter shows that average spray rate of paint is the most important parameter in the estimation of pollutants from the painting operations. The entire study is a complete module that can be used by the environmental pollution control agencies for estimation of pollution levels and estimation of associated risk. The study can be further extended to other operations in an automobile industry or to different industries.« less

  10. Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions.

    PubMed

    Tadić, Jovan M; Michalak, Anna M; Iraci, Laura; Ilić, Velibor; Biraud, Sébastien C; Feldman, Daniel R; Bui, Thaopaul; Johnson, Matthew S; Loewenstein, Max; Jeong, Seongeun; Fischer, Marc L; Yates, Emma L; Ryoo, Ju-Mee

    2017-09-05

    In this study, we explore observational, experimental, methodological, and practical aspects of the flux quantification of greenhouse gases from local point sources by using in situ airborne observations, and suggest a series of conceptual changes to improve flux estimates. We address the major sources of uncertainty reported in previous studies by modifying (1) the shape of the typical flight path, (2) the modeling of covariance and anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight profile offers considerable advantages compared to traditional profiles collected as curtains, although this new approach brings with it the need for a more comprehensive subsequent analysis. The proposed flight pattern design does not require prior knowledge of wind direction and allows for the derivation of an ad hoc empirical correction factor to partially alleviate errors resulting from interpolation and measurement inaccuracies. The modified approach is applied to a use-case for quantifying CH 4 emission from an oil field south of San Ardo, CA, and compared to a bottom-up CH 4 emission estimate.

  11. Time series GHG emission estimates for residential, commercial, agriculture and fisheries sectors in India

    NASA Astrophysics Data System (ADS)

    Mohan, Riya Rachel

    2018-04-01

    Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.

  12. Comment on Geoengineering with seagrasses: is credit due where credit is given?

    NASA Astrophysics Data System (ADS)

    Oreska, Matthew P. J.; McGlathery, Karen J.; Emmer, Igino M.; Needelman, Brian A.; Emmett-Mattox, Stephen; Crooks, Stephen; Megonigal, J. Patrick; Myers, Doug

    2018-03-01

    In their recent review, ‘Geoengineering with seagrasses: is credit due where credit is given?,’ Johannessen and Macdonald (2016) invoke the prospect of carbon offset-credit over-allocation by the Verified Carbon Standard as a pretense for their concerns about published seagrass carbon burial rate and global stock estimates. Johannessen and Macdonald (2016) suggest that projects seeking offset-credits under the Verified Carbon Standard methodology VM0033: Methodology for Tidal Wetland and Seagrass Restoration will overestimate long-term (100 yr) sediment organic carbon (SOC) storage because issues affecting carbon burial rates bias storage estimates. These issues warrant serious consideration by the seagrass research community; however, VM0033 does not refer to seagrass SOC ‘burial rates’ or ‘storage.’ Projects seeking credits under VM0033 must document greenhouse gas emission reductions over time, relative to a baseline scenario, in order to receive credits. Projects must also monitor changes in carbon pools, including SOC, to confirm that observed benefits are maintained over time. However, VM0033 allows projects to conservatively underestimate project benefits by citing default values for specific accounting parameters, including CO2 emissions reductions. We therefore acknowledge that carbon crediting methodologies such as VM0033 are sensitive to the quality of the seagrass literature, particularly when permitted default factors are based in part on seagrass burial rates. Literature-derived values should be evaluated based on the concerns raised by Johannessen and Macdonald (2016), but these issues should not lead to credit over-allocation in practice, provided VM0033 is rigorously followed. These issues may, however, affect the feasibility of particular seagrass offset projects.

  13. A novel method for quantifying the greenhouse gas emissions of biofuels based on historical land use change

    NASA Astrophysics Data System (ADS)

    Liu, X.; Rhodes, J.; Clarens, A. F.

    2012-12-01

    Land use change (LUC) emissions have been at the center of an ongoing debate about how the carbon footprint of biofuels compare to petroleum-based fuels over their entire life cycle. The debate about LUC has important implications in the US, the EU, and other countries that are working to deploy biofuel policies, informed by life cycle assessment, that promote carbon emission reductions, among other things. LUC calculations often distinguish between direct land use change (DLUC), those that occur onsite, and indirect land use change (ILUC), those that result from market mechanisms leading to emissions that are either spatially or temporally removed from the agricultural activity. These designations are intended to capture the fundamental connection between agricultural production of biofuel feedstock and its physical effects on the land, but both DLUC and ILUC can be difficult to measure and apply broadly. ILUC estimates are especially challenging to quantify because they rely on global economic models to assess how much land would be brought into production in other countries as a consequence of biofuel feedstock cultivation. As a result, ILUC estimates inherently uncertain, are sensitive to complex assumptions, have limited transparency, and have precipitated sufficient controversy to delay development of coherent biofuel policies. To address these shortcomings of conventional LUC methodologies, we have developed a method for estimating land use change emissions that is based on historical emissions from a parcel of land. The method, which we call historical land use change (HLUC) can be readily quantified for any parcel of land in the world using open source datasets of historical emissions. HLUC is easy to use and is directly tied to the physical processes on land used for biofuel production. The emissions from the HLUC calculations are allocated between historical agricultural activity and proposed biofuel feedstock cultivation. This is compatible with existing life cycle assessment frameworks. HLUC does not represent a direct substitute for conventional ILUC estimates but rather an alternate approach for capturing LUC emissions overall. HLUC estimates for six biofuel producing countries: US (corn ethanol), Brazil (sugarcane ethanol), France (rapeseed biodiesel), Germany (rapeseed biodiesel), Indonesia (palm oil biodiesel), and Malaysia (palm oil biodiesel) were developed. The values are highly comparable to published ILUC values but the nature and magnitude of the uncertainty is lower and the estimates are more regionally variable. Important differences were found between government-derived LUC estimates and HLUC estimates in Brazil and South Asia, which suggest that HLUC could be a more equitable means for allocating emissions than existing approaches. Sensitivity analysis in terms of the spatial resolution of the data suggest that the open source data sets are adequate for obtaining reasonable estimates of HLUC with minimal effort. Alternative allocation scenarios could consider some of the climate dynamics, e.g., carbon degradation in the atmosphere, that would inform more sophisticated accounting. HLUC represents a more straightforward and less controversial policy tool for capturing the emissions associated for land use change and it could enable the advancement of coherent biofuel and climate policy instruments.

  14. Monitoring and analysis of combustion aerosol emissions from fast moving diesel trains.

    PubMed

    Burchill, Michael J; Gramotnev, Dmitri K; Gramotnev, Galina; Davison, Brian M; Flegg, Mark B

    2011-02-01

    In this paper we report the results of the detailed monitoring and analysis of combustion emissions from fast moving diesel trains. A new highly efficient monitoring methodology is proposed based on the measurements of the total number concentration (TNC) of combustion aerosols at a fixed point (on a bridge overpassing the railway) inside the violently mixing zone created by a fast moving train. Applicability conditions for the proposed methodology are presented, discussed and linked to the formation of the stable and uniform mixing zone. In particular, it is demonstrated that if such a mixing zone is formed, the monitoring results are highly consistent, repeatable (with typically negligible statistical errors and dispersion), stable with respect to the external atmospheric turbulence and result in an unusual pattern of the aerosol evolution with two or three distinct TNC maximums. It is also shown that the stability and uniformity of the created mixing zone (as well as the repeatability of the monitoring results) increase with increasing length of the train (with an estimated critical train length of ~10 carriages, at the speed of ~150km/h). The analysis of the obtained evolutionary dependencies of aerosol TNC suggests that the major possible mechanisms responsible for the formation of the distinct concentration maximums are condensation (the second maximum) and thermal fragmentation of solid nanoparticle aggregates (third maximum). The obtained results and the new methodology will be important for monitoring and analysis of combustion emissions from fast moving trains, and for the determination of the impact of rail networks on the atmospheric environment and human exposure to combustion emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). This presentation introduces newly build database and web interface, reflects the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System as well as future plans for expansion.

  16. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An Investigation on the Effects of Ship Sourced Emissions in Izmir Port, Turkey

    PubMed Central

    Saraçoğlu, Halil; Kılıç, Alper

    2013-01-01

    Maritime transportation is a major source of climate change and air pollution. Shipping emissions cause severe impacts on health and environment. These effects of emissions are emerged especially in territorial waters, inland seas, canals, straits, bays, and port regions. In this paper, exhaust gas emissions from ships in Izmir Port, which is one of the main ports in Turkey, are calculated by the ship activity-based methodology. Total emissions from ships in the port is estimated as 1923 ton y−1 for NOx, 1405 ton y−1 for SO2, 82753 ton y−1 for CO2, ton y−1 for HC, and 165 ton y−1 for PM in the year 2007. These emissions are classified regarding operation modes and types of ships. The results are compared with the other studies including amounts of exhaust pollutants generated by ships. According to the findings, it is clear that the ships calling the Izmir Port are important air polluting causes of the Izmir city and its surroundings. PMID:24198720

  18. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  19. Measurement and prediction of enteric methane emission

    NASA Astrophysics Data System (ADS)

    Sejian, Veerasamy; Lal, Rattan; Lakritz, Jeffrey; Ezeji, Thaddeus

    2011-01-01

    The greenhouse gas (GHG) emissions from the agricultural sector account for about 25.5% of total global anthropogenic emission. While CO2 receives the most attention as a factor relative to global warming, CH4, N2O and chlorofluorocarbons (CFCs) also cause significant radiative forcing. With the relative global warming potential of 25 compared with CO2, CH4 is one of the most important GHGs. This article reviews the prediction models, estimation methodology and strategies for reducing enteric CH4 emissions. Emission of CH4 in ruminants differs among developed and developing countries, depending on factors like animal species, breed, pH of rumen fluid, ratio of acetate:propionate, methanogen population, composition of diet and amount of concentrate fed. Among the ruminant animals, cattle contribute the most towards the greenhouse effect through methane emission followed by sheep, goats and buffalos, respectively. The estimated CH4 emission rate per cattle, buffaloe, sheep and goat in developed countries are 150.7, 137, 21.9 and 13.7 (g/animal/day) respectively. However, the estimated rates in developing countries are significantly lower at 95.9 and 13.7 (g/animal/day) per cattle and sheep, respectively. There exists a strong interest in developing new and improving the existing CH4 prediction models to identify mitigation strategies for reducing the overall CH4 emissions. A synthesis of the available literature suggests that the mechanistic models are superior to empirical models in accurately predicting the CH4 emission from dairy farms. The latest development in prediction model is the integrated farm system model which is a process-based whole-farm simulation technique. Several techniques are used to quantify enteric CH4 emissions starting from whole animal chambers to sulfur hexafluoride (SF6) tracer techniques. The latest technology developed to estimate CH4 more accurately is the micrometeorological mass difference technique. Because the conditions under which animals are managed vary greatly by country, CH4 emissions reduction strategies must be tailored to country-specific circumstances. Strategies that are cost effective, improve productivity, and have limited potential negative effects on livestock production hold a greater chance of being adopted by producers. It is also important to evaluate CH4 mitigation strategies in terms of the total GHG budget and to consider the economics of various strategies. Although reductions in GHG emissions from livestock industries are seen as high priorities, strategies for reducing emissions should not reduce the economic viability of enterprises.

  20. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Bogacki, Marek; Mazur, Marian; Oleniacz, Robert; Rzeszutek, Mateusz; Szulecka, Adriana

    2018-01-01

    Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland) together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day) and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition). Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets) and from the road surface alone (1 street). The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  1. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. GREET Pretreatment Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET TM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhousemore » gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.« less

  3. Fuel and Carbon Dioxide Emissions Savings Calculation Methodology for Combined Heat and Power Systems

    EPA Pesticide Factsheets

    This paper provides the EPA Combined Heat and Power Partnership's recommended methodology for calculating fuel and carbon dioxide emissions savings from CHP compared to SHP, which serves as the basis for the EPA's CHP emissions calculator.

  4. Antibunched emission of photon pairs via quantum Zeno blockade.

    PubMed

    Huang, Yu-Ping; Kumar, Prem

    2012-01-20

    We propose a new methodology, namely, the "quantum Zeno blockade," for managing light scattering at a few-photon level in general nonlinear-optical media, such as crystals, fibers, silicon microrings, and atomic vapors. Using this tool, antibunched emission of photon pairs can be achieved, leading to potent quantum-optics applications such as deterministic entanglement generation without the need for heralding. In a practical implementation using an on-chip toroidal microcavity immersed in rubidium vapor, we estimate that high-fidelity entangled photons can be produced on-demand at MHz rates or higher, corresponding to an improvement of ≳10(7) times from the state-of-the-art. © 2012 American Physical Society

  5. Emissions of carbon tetrachloride from Europe

    NASA Astrophysics Data System (ADS)

    Graziosi, Francesco; Arduini, Jgor; Bonasoni, Paolo; Furlani, Francesco; Giostra, Umberto; Manning, Alistair J.; McCulloch, Archie; O'Doherty, Simon; Simmonds, Peter G.; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela

    2016-10-01

    Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006-2014 were 2.2 (± 0.8) Gg yr-1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006-2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.

  6. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    PubMed

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  7. Incineration of different types of medical wastes: emission factors for gaseous emissions

    NASA Astrophysics Data System (ADS)

    Alvim-Ferraz, M. C. M.; Afonso, S. A. V.

    Previous research works showed that to protect public health, the hospital incinerators should be provided with air pollution control devices. As most hospital incinerators do not possess such equipment, efficient methodologies should be developed to evaluate the safety of incineration procedure. Emission factors (EF) can be used for an easy estimation of legal parameters. Nevertheless, the actual knowledge is yet very scarce, mainly because EF previously published do not include enough information about the incinerated waste composition, besides considering many different waste classifications. This paper reports the first EF estimated for CO, SO 2, NO x and HCl, associated to the incineration of medical waste, segregated in different types according to the classification of the Portuguese legislation. The results showed that those EF are strongly influenced by incinerated waste composition, directly affected by incinerated waste type, waste classification, segregation practice and management methodology. The correspondence between different waste classifications was analysed comparing the estimated EF with the sole results previously published for specific waste types, being observed that the correspondence is not always possible. The legal limit for pollutant concentrations could be obeyed for NO x, but concentrations were higher than the limit for CO (11-24 times), SO 2 (2-5 times), and HCl (9-200 times), confirming that air pollution control devices must be used to protect human health. The small heating value of medical wastes with compulsory incineration implied the requirement of a bigger amount of auxiliary fuel for their incineration, which affects the emitted amounts of CO, NO x and SO 2 (28, 20 and practically 100% of the respective values were related with fuel combustion). Nevertheless, the incineration of those wastes lead to the smallest amount of emitted pollutants, the emitted amount of SO 2 and NO x reducing to 93% and the emitted amount of CO and HCl to more than 99%.

  8. A new MODIS based approach for gas flared volumes estimation: the case of the Val d'Agri Oil Center (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Lacava, T.; Faruolo, M.; Coviello, I.; Filizzola, C.; Pergola, N.; Tramutoli, V.

    2014-12-01

    Gas flaring is one of the most controversial energetic and environmental issues the Earth is facing, moreover contributing to the global warming and climate change. According to the World Bank, each year about 150 Billion Cubic Meter of gas are being flared globally, that is equivalent to the annual gas use of Italy and France combined. Besides, about 400 million tons of CO2 (representing about 1.2% of global CO2 emissions) are added annually into the atmosphere. Efforts to evaluate the impact of flaring on the surrounding environment are hampered by lack of official information on flare locations and volumes. Suitable satellite based techniques could offers a potential solution to this problem through the detection and subsequent mapping of flare locations as well as gas emissions estimation. In this paper a new methodological approach, based on the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was developed to analyze and characterize the flaring activity of the largest Italian gas and oil pre-treatment plant (ENI-COVA) located in Val d'Agri (Basilicata) For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the RST approach was implemented on 13 years of EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) infrared data to detect COVA-related thermal anomalies and to develop a regression model for gas flared volume estimation. The methodological approach, the whole processing chain and the preliminarily achieved results will be shown and discussed in this paper. In addition, the possible implementation of the proposed approach on the data acquired by the SUOMI NPP - VIIRS (National Polar-orbiting Partnership - Visible Infrared Imaging Radiometer Suite) and the expected improvements will be also discussed.

  9. Continuous Monitoring of CH4 Emissions from Marcellus Shale Gas Extraction in South West Pennsylvania Using Top Down Methodology

    NASA Astrophysics Data System (ADS)

    Sarmiento, D. P.; Belmecheri, S.; Lauvaux, T.; Sowers, T. A.; Bryant, S.; Miles, N. L.; Richardson, S.; Aikins, J.; Sweeney, C.; Petron, G.; Davis, K. J.

    2012-12-01

    Natural gas extraction from shale formations via hydraulic-fracturing (fracking) is expanding rapidly in several regions of North America. In Pennsylvania, the number of wells drilled to extract natural gas from the Marcellus shale has grown from 195 in 2008 to 1,386 in 2010. The gas extraction process using the fracking technology results in the escape of methane (CH4), a potent greenhouse gas and the principal component of natural gas, into the atmosphere. Emissions of methane from fracking operations remain poorly quantified, leading to a large range of scenarios for the contribution of fracking to climate change. A mobile measurement campaign provided insights on methane leakage rates and an improved understanding of the spatio-temporal variability in active drilling areas in the South West of Pennsylvania. Two towers were then instrumented to monitor fugitive emissions of methane from well pads, pipelines, and other infrastructures in the area. The towers, one within a drilling region and one upwind of active drilling, measured atmospheric CH4 mixing ratios continuously. Isotopic measurements from air flasks were also collected. Data from the initial mobile campaign were used to estimate emission rates from single sites such as wells and compressor stations. Tower data will be used to construct a simple atmospheric inversion for regional methane emissions. Our results show the daily variability in emissions and allow us to estimate leakage rates over a one month period in South West Pennsylvania. We discuss potential deployment strategies in drilling zones to monitor emissions of methane over longer periods of time.

  10. The Land Use Planning Imperative: Applying Carbon Emissions Analyses

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Havens, G.

    2007-12-01

    Reversing global warming is the defining crisis of the 21st century and must be dealt with, in part, by reinventing the built environment. Current land use and planning frameworks are not aligned with scientific models which can aid in the reversal of carbon emissions at the local and regional scale. The disjunction between land use planning and the scientific methodologies for calculating the impacts of climate change beg for a stronger union between climate change science and land use planning. Buildings account for approximately 35 percent of the U.S. carbon emissions while the transportation sector accounts for approximately 27 percent (U.S. Department of Energy, Energy Information Administration, United States Environmental Protection Agency, 2007). To adopt energy efficiency measures and hence reduce carbon dioxide emissions at a site, city, or regional scale, land use planners and climate scientists must integrate their expertise to influence policy with precision and accuracy. Land use planners have influence over the design of the built environment in municipalities and institutions such as colleges and universities. In many ways, college and university campuses are microcosms of the land use patterns established historically; they demonstrate a lack of coordinated land use planning across the entire continent that is extremely dependent on the automobile and fossil fuels. Climate models predict that the average temperature at the Earth's surface could increase from 2.5 to 10.4ºF above 1990 levels by the end of this century (United States Environmental Protection Agency, 2007). Further, it is estimated that the country will have to construct an additional 213 billion square feet of built space by the year 2030 to accommodate the increasing population. Planning and design will dictate the degree to which land use change will exacerbate trends of global warming. It commands an integration of the methodology to calculate carbon emissions with the science which demonstrates the impact of those emissions. This session presents a new approach and methodology for integrating calculating carbon emissions and land use planning to increase the accessibility of carbon dioxide emissions data, transforming our conception of how the built environment can function in a more sustainable way. The emergence of the public and institutional interest in reducing carbon emissions advances the question of how climate science may be applied and translated for a public audience to develop effective, measurable carbon reduction strategies. Building on the growing momentum in the higher education sector in the United States, land use planners are grappling with the integration of carbon reduction and the transformation of the built environment, particularly at college campuses. A critical first step in reducing carbon emissions is to complete a greenhouse gas inventory. In recent years, universities have adopted challenges to become climate neutral through operations, buildings, and transportation. This session will present two case studies at universities of how land use planning integrates scientific data and suggested methodology from the IPCC, the Chicago Climate Exchange, the Kyoto Protocol, and various other climate action registries in order to demonstrate a university's contribution to global warming. By developing a methodology for calculating CO2 emissions, land use planning and climate science can collectively formulate strategies for a more sustainable future.

  11. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the balance among the net shortwave radiation Rn and the net longwave radiation. In addition, two types of approaches have been carried out for its determination: the estimation of the variables implied in the calculation of Rn at daily level (Rndl); and the calculation of the Rn at the time of satellite pass (Rni) and its subsequent conversion to daily Rn by means of the Rn ratio. Net shortwave radiation has been computed by means of albedo and a solar radiation model obtained through a DEM following the methodology of Pons and Ninyerola (2008).This methodology takes into account the position of the Sun, the angles of incidence, the projected shadows and the distance from the Earth to the Sun at one hour intervals. The diffuse radiation is estimated from the direct radiaton and the exoatmospheric direct solar irradiance is estimated with the Page equation (1986) and fitted by Baldasano et al. (1994). Net longwave radiation has been calculated through land surface temperature and emissivity, atmospheric water vapour and air temperature. Air temperature has been modeled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Finally, air emissivity has been computed using air temperature models and atmospheric water vapour following the methodology developed by Dilley and O'Brien (1998). Finally, models have been validated through a set of 13 ground meteorological standard stations and an experimental station placed in a Mediterranean mountain area over a Pinus sylvestris stand. Obtained results show a mean RMSE of 20 W m-2 in the case of Landsat and a mean RMSE of 22 W m-2 in the case of TERRA/AQUA MODIS, being these results in agreement with other published results, but also offering better RMSE in some cases. Keywords: Net radiation, Landsat, TERRA/AQUA MODIS, GIS modeling, regional scale.

  12. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  13. Power Watch: Increasing Transparency and Accessibility of Data in the Global Power Sector to Accelerate the Transition to a Lower Carbon Economy

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.

    2016-12-01

    The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.

  14. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2005-05-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.

  15. Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.

    2006-12-01

    The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.

  16. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  17. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  18. Three Methods for Estimating the Middle-Ear Muscle Reflex (MEMR) Using Otoacoustic Emission (OAE) Measurement Systems

    DTIC Science & Technology

    2014-10-01

    sensitive MEMR measurement using the OAE and MOCR measurement modules in the Mimosa Acoustics HeariD system. All three methods can sensitively detect...three related methods for making this sensitive MEMR measurement using the OAE and MOCR measurement modules in the Mimosa Acoustics HearID system...without buying additional equipment or software. The purpose of this report is to document the methodology we have used since 2007 with Mimosa Acoustics

  19. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, J.; Heath, G.; Macknick, J.

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  20. Power requirements and environmental impact of a pedelec. A case study based on real-life applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abagnale, Carmelina, E-mail: c.abagnale@unina.it; Cardone, Massimo, E-mail: massimo.cardone@unina.it; Iodice, Paolo, E-mail: paolo.iodice@unina.it

    2015-07-15

    This paper describes the methodologies to appraise the power requests and environmental analysis of an electrically assisted bicycle under real driving conditions, also containing regulations and technical-science-related aspects. For this purpose, in this study, the on-road test program of an electrically assisted bicycle was executed in the urban area of Naples on different test tracks, so a general assessment about its driving behavior under several driving conditions was performed. The power requirements in different typical riding situations were estimated by a procedure based on the experimental kinematic parameters that characterize the driving dynamics collected during the real-life applications. An environmentalmore » analysis was also performed, with a methodology that takes into account the environmental assessment of a moped by measuring the experimental moped exhaust emissions of the regulated pollutants. Starting from the results acquired during the different test samples, besides, an assessment of the electric traction offered by this pedelec on the driving comfort was evaluated for different riding situations. - Highlights: • The power requirements of a pedelec in typical riding conditions were identified. • The estimated electricity consumption for battery recharging was defined. • An environmental valuation of the tested pedelec and of a moped was performed. • Emissions that could be saved utilizing a pedelec instead of a moped were derived.« less

  1. Sharing global CO2 emission reductions among one billion high emitters

    PubMed Central

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-01-01

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586

  2. Greenhouse gas emissions in the state of Morelos, Mexico: a first approximation for establishing mitigation strategies.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura

    2013-11-01

    In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future.

  3. Determining residential energy consumption-based CO2 emissions and examining the factors affecting the variation in Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Kus, Melike; Akan, Perihan; Aydinalp Koksal, Merih; Gullu, Gulen

    2017-11-01

    Energy demand of Turkey has been showing a remarkable increase in the last two decades due to rapid increase in population and changes in consumption trends. In parallel to the increase in energy demand, the CO2 emissions in Turkey are also increasing dramatically due to high usage of fossil fuels. CO2 emissions from the residential sector covers almost one fourth of the total sectoral emissions. In this study, CO2 emissions from the residential sector are estimated, and the factors affecting the emission levels are determined for the residential sector in Ankara, Turkey. In this study, detailed surveys are conducted to more than 400 households in Ankara. Using the information gathered from the surveys, the CO2 emissions associated with energy consumption of the households are calculated using the methodology outlined at IPCC. The statistical analyses are carried out using household income, dwelling characteristics, and household economic and demographic data to determine the factors causing the variation in emission levels among the households. The results of the study present that the main factors impacting the amount of total energy consumption and associated CO2 emissions are household income, dwelling construction year, age, education level of the household, and net footage of the dwelling.

  4. Vehicular road influence areas

    NASA Astrophysics Data System (ADS)

    Huertas, María E.; Huertas, José I.; Valencia, Alexander

    2017-02-01

    Vehicle operation over paved and unpaved roads is an emission source that significantly contributes to air pollution. Emissions are derived from vehicle exhaust pipes and re-suspension of particulate matter generated by wind erosion and tire to road surface interactions. Environmental authorities require a methodology to evaluate road impact areas, which enable managers to initiate counter-measures, particularly under circumstances where historic meteorological and/or air quality data is unavailable. The present study describes an analytical and experimental work developed to establish a simplified methodology to estimate the area influenced by vehicular roads. AERMOD was chosen to model pollutant dispersion generated by two roads of common attributes (straight road over flat terrain) under the effects of several arbitrary chosen weather conditions. The resulting pollutant concentration vs. Distance curves collapsed into a single curve when concentration and distance were expressed as dimensionless numbers and this curve can be described by a beta distribution function. This result implied that average concentration at a given distance was proportional to emission intensity and that it showed minor sensitivity to meteorological conditions. Therefore, road influence was defined by the area adjacent to the road limited by distance at which the beta distribution function equaled the limiting value specified by the national air quality standard for the pollutant under consideration.

  5. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:methodology and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika

    2010-08-11

    We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available atmore » this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.« less

  6. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  7. The role of emissivity during the cooling of a body: an experimental design for a laboratory classroom

    NASA Astrophysics Data System (ADS)

    Jiménez-Muñoz, J. C.; Sobrino, J. A.; Sòria, G.; Delegido, J.; Bañauls, S.

    2017-01-01

    Mechanisms of heat transfer and Newton’s law of cooling are introduced in the first physics and biophysics courses for a number of university science majors. Several papers have commented on the derivation of the exponential decay and validity of this law. However, the description of the phenomena is traditionally described without consideration of basic factors that contribute to the cooling rate of a body. One of these key factors is the emissivity of the body, which requires specific instrumentation to be measured. In particular, we present in this paper an experiment to record the cooling temperatures of an avian egg by means of a thermal camera. The objective is to comment on the dependence of the cooling process on emissivity, and then propose a methodology for estimating the emissivity of the cooling object. The method can be applied a priori to other bodies and is suitable for a biophysics laboratory classroom in higher education.

  8. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Airborne IPDA-Lidar Measurements: Methodology and Experimental Results

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Amediek, A.; Wirth, M.; Fix, A.; Kiemle, C.; Quatrevalet, M.

    2016-12-01

    We report on a new method and on the first demonstration to quantify emission rates from strong greenhouse gas (GHG) point sources using airborne Integrated Path Differential Absorption (IPDA) Lidar measurements. In order to build trust in the self-reported emission rates by countries, verification against independent monitoring systems is a prerequisite to check the reported budget. A significant fraction of the total anthropogenic emission of CO2 and CH4 originates from localized strong point sources of large energy production sites or landfills. Both are not monitored with sufficiently accuracy by the current observation system. There is a debate whether airborne remote sensing could fill in the gap to infer those emission rates from budgeting or from Gaussian plume inversion approaches, whereby measurements of the GHG column abundance beneath the aircraft can be used to constrain inverse models. In contrast to passive sensors, the use of an active instrument like CHARM-F for such emission verification measurements is new. CHARM-F is a new airborne IPDA-Lidar devised for the German research aircraft HALO for the simultaneous measurement of the column-integrated dry-air mixing ratio of CO2 and CH4 commonly denoted as XCO2 und XCH4, respectively. It has successfully been tested in a serious of flights over Central Europe to assess its performance under various reflectivity conditions and in a strongly varying topography like the Alps. The analysis of a methane plume measured in crosswind direction of a coal mine ventilation shaft revealed an instantaneous emission rate of 9.9 ± 1.7 kt CH4 yr-1. We discuss the methodology of our point source estimation approach and give an outlook on the CoMet field experiment scheduled in 2017 for the measurement of anthropogenic and natural GHG emissions by a combination of active and passive remote sensing instruments on research aircraft.

  9. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.

    PubMed

    Khan, M Yusuf; Agrawal, Harshit; Ranganathan, Sindhuja; Welch, William A; Miller, J Wayne; Cocker, David R

    2012-11-20

    Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots.

  10. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port

    NASA Astrophysics Data System (ADS)

    Song, Su

    2014-01-01

    This study estimated both the in-port ship emissions inventory (CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC) and the emission associated social cost in Yangshan port of Shanghai. A sophisticated activity-based methodology, supported by the ship-by-ship and real-time data from the modern automatic identification system (AIS), was introduced to obtain accurate estimates of ship emissions. The detailed spatial and temporal emission inventories can be used as input for air quality dispersion modeling in the port and vicinities. The social cost of the emission impact on the Yangshan port coastal regions was then assessed based on the emissions inventories. The social cost covers the impact on human health, the environment, and the climate of the coastal community. Finally, the ship emissions was combined with port's basic operation profiles, i.e. container throughput, ship calls, and port revenue, in an attempt to assess the port's “eco-efficiency”, which indicates the port performance with social-economic and environmental concerns. This study filled the gap of previous studies by providing the AIS-supported activity-based emission inventory to facilitate the social cost-benefit analysis for the emission abatement policies. The result shows that i) the amount of in-port ship emissions of CO2, CH4, N2O, PM10, PM2.5, NOx, SOx, CO, and HC in Yangshan port area was 578,444 tons, 10 tons, 33 tons, 1078 tons (PM10, inducing PM2.5), 859 tons (PM2.5 only), 10,758 tons, 5623 tons, 1136 tons, and 519 tons, respectively, with ii) a total social cost of 287 million; iii) the values of the three parameters of the port eco-efficiency performance were 36,528 per 1,000 TEU throughput, 43,993 per ship call, and 44 million per billion US$ port revenue (4.4% of port revenue), respectively in 2009.

  11. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: a case study of Ribeirão Pires, Brazil.

    PubMed

    King, Megan F; Gutberlet, Jutta

    2013-12-01

    Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Surface spectral emissivity derived from MODIS data

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  13. Monitoring tropical forest degradation using time series analysis of Landsat and Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Bullock, E.; Woodcock, C. E.

    2017-12-01

    Tropical forest loss is expected to be contribute 5 to 15% of anthropogenic carbon emissions in the coming century. The wide range of expected emissions is indicative of the large uncertainties that exist in the terrestrial carbon cycle. Total carbon loss from forest conversion consists of loss from deforestation plus loss from degradation. There have been significant improvements in the ability to relate plot-level estimates of carbon stocks to remote sensing-derived calculations of deforestation to estimate total carbon emissions from forest loss. These approaches, however, have been limited in their ability to assess the magnitude, extent, and overall impact of forest degradation. The causes of tropical degradation include selective logging, fuel wood collection, fires, and the development of forest plantations. This study demonstrates a newly developed methodology for detecting subtle changes in forest structure and condition using time series analysis of Landsat and Sentinel-2 data. The research shows how the ability to detect small changes in forest biomass, in addition to changes in forest composition, can be improved by incorporating historical context and multi-sensor data fusion. Results are demonstrated from two climatically unique tropical forests in Thailand and Brazil.

  14. Greenhouse gas emissions of an agro-biogas energy system: Estimation under the Renewable Energy Directive.

    PubMed

    Rana, Roberto; Ingrao, Carlo; Lombardi, Mariarosaria; Tricase, Caterina

    2016-04-15

    Agro-biogas from energy crops and by-products is a renewable energy carrier that can potentially contribute to climate change mitigation. In this context, application of the methodology defined by the Renewable Energy Directive 2009/28/EC (RED) was performed in order to estimate the 100-year Global Warming Potential (GWP100) associated with an agro-biogas supply chain (SC) in Southern Italy. Doing so enabled calculation of Greenhouse Gas (GHG) emission saving in order to verify if it is at least equal to 35% compared to the fossil fuel reference system, as specified by the RED. For the assessment, an attributional Life Cycle Assessment (LCA) approach (International Organization for Standardization (ISO), 2006a,b) was integrated with the RED methodology applied following the guidelines reported in COM(2010)11 and updated by SWD(2014)259 and Report EUR 27215 EN (2015). Moreover, primary data were collected with secondary data extrapolated from the Ecoinvent database system. Results showed that the GWP100 associated with electricity production through the biogas plant investigated was equal to 111.58gCO2eqMJe(-1) and so a 40.01% GHG-emission saving was recorded compared to the RED reference. The highest contribution comes from biomass production and, in particular, from crop cultivation due to production of ammonium nitrate in the overall amount used for crop cultivation. Based upon the findings of the study, the GHG saving calculated slightly exceeds the related minimum proposed by the RED: therefore, improvements are needed anyway. In particular, the authors documented that through replacement of ammonium nitrate with urea the GHG-emission saving would increase to almost 68%, thus largely satisfying the RED limit. In addition, the study highlighted that conservation practices, such as NT, can significantly enable reduction of the GHG-emissions coming from agricultural activities. Therefore, those practices should be increasingly adopted for cultivation of energy crops, because the latter significantly contribute to biogas production yield enhancement. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Increasing power-law range in avalanche amplitude and energy distributions

    NASA Astrophysics Data System (ADS)

    Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard

    2018-02-01

    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

  16. Increasing power-law range in avalanche amplitude and energy distributions.

    PubMed

    Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard

    2018-02-01

    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

  17. Decadal evolution of ship emissions in China from 2004 to 2013 by using an integrated AIS-based approach and projection to 2040

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Borken-Kleefeld, Jens; Zheng, Junyu; Yuan, Zibing; Ou, Jiamin; Li, Yue; Wang, Yanlong; Xu, Yuanqian

    2018-05-01

    Ship emissions contribute significantly to air pollution and pose health risks to residents of coastal areas in China, but the current research remains incomplete and coarse due to data availability and inaccuracy in estimation methods. In this study, an integrated approach based on the Automatic Identification System (AIS) was developed to address this problem. This approach utilized detailed information from AIS and cargo turnover and the vessel calling number information and is thereby capable of quantifying sectoral contributions by fuel types and emissions from ports, rivers, coastal traffic and over-the-horizon ship traffic. Based upon the established methodology, ship emissions in China from 2004 to 2013 were estimated, and those to 2040 at 5-year intervals under different control scenarios were projected. Results showed that for the area within 200 nautical miles (Nm) of the Chinese coast, SO2, NOx, CO, PM10, PM2.5, hydrocarbon (HC), black carbon (BC) and organic carbon (OC) emissions in 2013 were 1010, 1443, 118, 107, 87, 67, 29 and 21 kt yr-1, respectively, which doubled over these 10 years. Ship sources contributed ˜ 10 % to the total SO2 and NOx emissions in the coastal provinces of China. Emissions from the proposed Domestic Emission Control Areas (DECAs) within 12 Nm constituted approximately 40 % of the all ship emissions along the Chinese coast, and this percentage would double when the DECA boundary is extended to 100 Nm. Ship emissions in ports accounted for about one-quarter of the total emissions within 200 Nm, within which nearly 80 % of the emissions were concentrated in the top 10 busiest ports of China. SO2 emissions could be reduced by 80 % in 2020 under a 0.5 % global sulfur cap policy. In comparison, a similar reduction of NOx emissions would require significant technological change and would likely take several decades. This study provides solid scientific support for ship emissions control policy making in China. It is suggested to investigate and monitor the emissions from the shipping sector in more detail in the future.

  18. 40 CFR Appendix B to Part 72 - Methodology for Conversion of Emissions Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Methodology for Conversion of Emissions Limits B Appendix B to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. B Appendix B to Part 72—Methodology for...

  19. 40 CFR Appendix A to Part 72 - Methodology for Annualization of Emissions Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Methodology for Annualization of Emissions Limits A Appendix A to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. A Appendix A to Part 72—Methodology for...

  20. 40 CFR Appendix A to Part 72 - Methodology for Annualization of Emissions Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Methodology for Annualization of Emissions Limits A Appendix A to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. A Appendix A to Part 72—Methodology for...

  1. 40 CFR Appendix B to Part 72 - Methodology for Conversion of Emissions Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Methodology for Conversion of Emissions Limits B Appendix B to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. B Appendix B to Part 72—Methodology for...

  2. Cobenefits of replacing car trips with alternative transportation: a review of evidence and methodological issues.

    PubMed

    Xia, Ting; Zhang, Ying; Crabb, Shona; Shah, Pushan

    2013-01-01

    It has been reported that motor vehicle emissions contribute nearly a quarter of world energy-related greenhouse gases and cause nonnegligible air pollution primarily in urban areas. Reducing car use and increasing ecofriendly alternative transport, such as public and active transport, are efficient approaches to mitigate harmful environmental impacts caused by a large amount of vehicle use. Besides the environmental benefits of promoting alternative transport, it can also induce other health and economic benefits. At present, a number of studies have been conducted to evaluate cobenefits from greenhouse gas mitigation policies. However, relatively few have focused specifically on the transport sector. A comprehensive understanding of the multiple benefits of alternative transport could assist with policy making in the areas of transport, health, and environment. However, there is no straightforward method which could estimate cobenefits effect at one time. In this paper, the links between vehicle emissions and air quality, as well as the health and economic benefits from alternative transport use, are considered, and methodological issues relating to the modelling of these cobenefits are discussed.

  3. 40 CFR Appendix B to Part 72 - Methodology for Conversion of Emissions Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Methodology for Conversion of... Conversion of Emissions Limits For the purposes of the Acid Rain Program, all emissions limits must be... conditions. Generic conversions for these limits are based on the assumed average energy contents listed in...

  4. 40 CFR Appendix B to Part 72 - Methodology for Conversion of Emissions Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Methodology for Conversion of... Conversion of Emissions Limits For the purposes of the Acid Rain Program, all emissions limits must be... conditions. Generic conversions for these limits are based on the assumed average energy contents listed in...

  5. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    PubMed

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  6. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  7. Methane Leakage from Oil & Gas Operations. What have we learned from recent studies in the U.S.?

    NASA Astrophysics Data System (ADS)

    Zavala-Araiza, Daniel; Hamburg, Steven

    2016-04-01

    Methane, the principal component of natural gas, is a powerful greenhouse gas. Methane losses from the natural gas supply chain erode the climate benefits of fuel switching to natural gas from other fossil fuels, reducing or eliminating them for several decades or longer. Global data on methane emissions from the oil and gas sector is uncertain and as a consequence, measuring and characterizing methane emissions is critical to the design of effective mitigation strategies. In this work, we synthesize lessons learned from dozens of U.S. studies that characterized methane emissions along each stage of the natural gas supply chain. These results are relevant to the design of methane measurement campaigns outside the U.S. A recurring theme in the research conducted in the U.S. is that public emissions inventories (e.g., The U.S. Environmental Protection Agency's National Greenhouse gas Inventory) tend to underestimate emissions for two key reasons: (1) use of non-representative emission factors and (2) inaccurate activity data (incomplete counts of facilities and equipment). Similarly, the accuracy of emission factors and the effectiveness of mitigation strategies are heavily affected by the existence of low-probability, unpredictable high emitters-which have been observed all along the supply chain- and are spatiotemporally variable. We conducted a coordinated campaign to measure methane emissions in a major gas producing region of the U.S. (Barnett Shale region of Texas) using a diversity of approaches. As part of this study we identified methods for effective quantification of regional fossil methane emissions using atmospheric data (through replicate mass balance flights and source apportionment using methane to ethane ratios) as well as how to build an accurate inventory that includes a statistical estimator that more rigorously captures the magnitude and frequency of high emitters. We found agreement between large-scale atmospheric sampling estimates and source-based estimates (custom inventory). With measured oil and gas methane being roughly twice what estimates based on the U.S. Environmental Protection Agency's National Greenhouse gas Inventory would suggest. Ten percent of oil and gas facilities in the region -the high emitters or fat tail of the distribution- account for 90% of the emissions. We observed significant regional heterogeneity (e.g., local practices, technologies used, physical properties of the reservoirs) during the production, processing, transportation, and use of natural gas, describing this heterogeneity is critical to constructing accurate methane emission inventories. The lessons learned in the U.S. provide robust methodological guidelines that can be used to extend our understanding of the climatic implications of global oil and gas methane emissions with regards to, accurate quantification, reporting, and mitigation of methane emissions.

  8. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2014-09-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1 and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.

  9. Propulsion and Power Rapid Response Research and Development (R&D) Support. Delivery Order 0011: Advanced Propulsion Fuels Research and Development-Subtask: Framework and Guidance for Estimating Greenhouse Gas Footprints of Aviation Fuels

    DTIC Science & Technology

    2009-04-01

    Uncertainties, Gaps , and Issues for the Use of GWP to Examine Emissions From Aviation That Impact Global Climate Change. (Wuebbles, Yang and Herman 2008...selecting time periods and spatial scales for data gathering, strategies for filling data gaps , and computational considerations for managing the...Fuels Assumptions, methodological choices, strategies for filling data gaps , and other factors throughout the life cycle substantially influence the

  10. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  11. Improving bioaerosol exposure assessments of composting facilities — Comparative modelling of emissions from different compost ages and processing activities

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer, A.; Hewings, G.; Jordinson, G. M.; Longhurst, P. J.; Pollard, S. J. T.

    We present bioaerosol source term concentrations from passive and active composting sources and compare emissions from green waste compost aged 1, 2, 4, 6, 8, 12 and 16 weeks. Results reveal that the age of compost has little effect on the bioaerosol concentrations emitted for passive windrow sources. However emissions from turning compost during the early stages may be higher than during the later stages of the composting process. The bioaerosol emissions from passive sources were in the range of 10 3-10 4 cfu m -3, with releases from active sources typically 1-log higher. We propose improvements to current risk assessment methodologies by examining emission rates and the differences between two air dispersion models for the prediction of downwind bioaerosol concentrations at off-site points of exposure. The SCREEN3 model provides a more precautionary estimate of the source depletion curves of bioaerosol emissions in comparison to ADMS 3.3. The results from both models predict that bioaerosol concentrations decrease to below typical background concentrations before 250 m, the distance at which the regulator in England and Wales may require a risk assessment to be completed.

  12. Comparison of calculation methods for estimating annual carbon stock change in German forests under forest management in the German greenhouse gas inventory.

    PubMed

    Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes

    2016-12-01

    The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.

  13. Inland waters and their role in the carbon cycle of Alaska

    USGS Publications Warehouse

    Stackpoole, Sarah M.; Butman, David E.; Clow, David W.; Verdin, Kristine L.; Gaglioti, Benjamin V.; Genet, Hélène; Striegl, Robert G.

    2017-01-01

    The magnitude of Alaska (AK) inland waters carbon (C) fluxes is likely to change in the future due to amplified climate warming impacts on the hydrology and biogeochemical processes in high latitude regions. Although current estimates of major aquatic C fluxes represent an essential baseline against which future change can be compared, a comprehensive assessment for AK has not yet been completed. To address this gap, we combined available data sets and applied consistent methodologies to estimate river lateral C export to the coast, river and lake carbon dioxide (CO2) and methane (CH4) emissions, and C burial in lakes for the six major hydrologic regions in the state. Estimated total aquatic C flux for AK was 41 Tg C/yr. Major components of this total flux, in Tg C/yr, were 18 for river lateral export, 17 for river CO2 emissions, and 8 for lake CO2 emissions. Lake C burial offset these fluxes by 2 Tg C/yr. River and lake CH4 emissions were 0.03 and 0.10 Tg C/yr, respectively. The Southeast and South central regions had the highest temperature, precipitation, terrestrial net primary productivity (NPP), and C yields (fluxes normalized to land area) were 77 and 42 g C·m−2·yr−1, respectively. Lake CO2 emissions represented over half of the total aquatic flux from the Southwest (37 g C·m−2·yr−1). The North Slope, Northwest, and Yukon regions had lesser yields (11, 15, and 17 g C·m2·yr−1), but these estimates may be the most vulnerable to future climate change, because of the heightened sensitivity of arctic and boreal ecosystems to intensified warming. Total aquatic C yield for AK was 27 g C·m−2·yr−1, which represented 16% of the estimated terrestrial NPP. Freshwater ecosystems represent a significant conduit for C loss, and a more comprehensive view of land-water-atmosphere interactions is necessary to predict future climate change impacts on the Alaskan ecosystem C balance.

  14. Global carbon budget 2013

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.; Yue, C.

    2013-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.8 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.6 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr-1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and assuming and ELUC of 0.9 ± 0.5 GtC yr-1 (based on 2001-2010 average), SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1-3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870-2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).

  15. Peer Review of March 2013 LDV Rebound Report By Small ...

    EPA Pesticide Factsheets

    The regulatory option of encouraging the adoption of advanced technologies for improving vehicle efficiency can result in significant fuel savings and GHG emissions benefits. At the same time, it is possible that some of these benefits might be offset by additional driving that is encouraged by the reduced costs of operating more efficient vehicles. This so called “rebound effect”, the increased driving that results from an improvement in the energy efficiency of a vehicle, must be determined in order to reliably estimate the overall benefits of GHG regulations for light-duty vehicles. Dr. Ken Small, an Economist at the Department of Economics, University of California at Irvine, with contributions by Dr. Kent Hymel, Department of Economics, California State University at Northridge, have developed a methodology to estimate the rebound effect for light-duty vehicles in the U.S. Specifically, rebound is estimated as the change in vehicle miles traveled (VMT) with respect to the change in per mile fuel costs that can occur, for example, when vehicle operating efficiency is improved. The model analyzes aggregate personal motor-vehicle travel within a simultaneous model of aggregate VMT, fleet size, fuel efficiency, and congestion formation. To use the peer review process to help assure that the methodologies considered by the U.S. EPA for estimating VMT rebound have been thoroughly examined.

  16. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    NASA Astrophysics Data System (ADS)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  17. Net Greenhouse Gas Emissions at the Eastmain 1 Reservoir, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Strachan, I. B.; Tremblay, A.; Bastien, J.; Bonneville, M.; Del Georgio, P.; Demarty, M.; Garneau, M.; Helie, J.; Pelletier, L.; Prairie, Y.; Roulet, N. T.; Teodoru, C. R.

    2010-12-01

    Canada has much potential to increase its already large use of hydroelectricity for energy production. However, hydroelectricity production in many cases requires the creation of reservoirs that inundate terrestrial ecosystems. While it has been reasonably well established that reservoirs emit GHGs, it has not been established what the net difference between the landscape scale exchange of GHGs would be before and after reservoir creation. Further, there is no indication of how that net difference may change over time from when the reservoir was first created to when it reaches a steady-state condition. A team of University and private sector researchers in partnership with Hydro-Québec has been studying net GHG emissions from the Eastmain 1 reservoir located in the boreal forest region of Québec, Canada. Net emissions are defined as those emitted following the creation of a reservoir minus those that would have been emitted or absorbed by the natural systems over a 100-year period in the absence of the reservoir. Sedimentation rates, emissions at the surface of the reservoir and natural water bodies, the degassing emissions downstream of the power house as well as the emissions/absorption of the natural ecosystems (forest, peatlands, lakes, streams and rivers) before and after the impoundment were measured using different techniques (Eddy covariance, floating chambers, automated systems, etc.). This project provides the first measurements of CO2 and CH4 between a new boreal reservoir and the atmosphere as the reservoir is being created, the development of the methodology to obtain these, and the first attempt at approaching the GHGs emissions from northern hydroelectric reservoirs as a land cover change issue. We will therefore provide: an estimate of the change in GHG source the atmosphere would see; an estimate of the net emissions that can be used for intercomparison of GHG contributions with other modes of power production; and a basis on which to develop biogeochemical sound, verifiable, and transparent estimates for GHG accounting. The results of the mass balance for this boreal reservoir from 2005 to 2009 as well as an extrapolation over 100 years will be presented.

  18. Comparison of the Current Center of Site Annual Neshap Dose Modeling at the Savannah River Site with Other Assessment Methods.

    PubMed

    Minter, Kelsey M; Jannik, G Timothy; Stagich, Brooke H; Dixon, Kenneth L; Newton, Joseph R

    2018-04-01

    The U.S. Environmental Protection Agency (EPA) requires the use of the model CAP88 to estimate the total effective dose (TED) to an offsite maximally exposed individual (MEI) for demonstrating compliance with 40 CFR 61, Subpart H: The National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. For NESHAP compliance at the Savannah River Site (SRS), the EPA, the U.S. Department of Energy (DOE), South Carolina's Department of Health and Environmental Control, and SRS approved a dose assessment method in 1991 that models all radiological emissions as if originating from a generalized center of site (COS) location at two allowable stack heights (0 m and 61 m). However, due to changes in SRS missions, radiological emissions are no longer evenly distributed about the COS. An area-specific simulation of the 2015 SRS radiological airborne emissions was conducted to compare to the current COS method. The results produced a slightly higher dose estimate (2.97 × 10 mSv vs. 2.22 × 10 mSv), marginally changed the overall MEI location, and noted that H-Area tritium emissions dominated the dose. Thus, an H-Area dose model was executed as a potential simplification of the area-specific simulation by adopting the COS methodology and modeling all site emissions from a single location in H-Area using six stack heights that reference stacks specific to the tritium production facilities within H-Area. This "H-Area Tritium Stacks" method produced a small increase in TED estimates (3.03 × 10 mSv vs. 2.97 × 10 mSv) when compared to the area-specific simulation. This suggests that the current COS method is still appropriate for demonstrating compliance with NESHAP regulations but that changing to the H-Area Tritium Stacks assessment method may now be a more appropriate representation of operations at SRS.

  19. Development and application of a methodology for a clean development mechanism to avoid methane emissions in closed landfills.

    PubMed

    Janke, Leandro; Lima, André O S; Millet, Maurice; Radetski, Claudemir M

    2013-01-01

    In Brazil, Solid Waste Disposal Sites have operated without consideration of environmental criteria, these areas being characterized by methane (CH4) emissions during the anaerobic degradation of organic matter. The United Nations organization has made efforts to control this situation, through the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, where projects that seek to reduce the emissions of greenhouse gases (GHG) can be financially rewarded through Certified Emission Reductions (CERs) if they respect the requirements established by the Clean Development Mechanism (CDM), such as the use of methodologies approved by the CDM Executive Board (CDM-EB). Thus, a methodology was developed according to the CDM standards related to the aeration, excavation and composting of closed Municipal Solid Waste (MSW) landfills, which was submitted to CDM-EB for assessment and, after its approval, applied to a real case study in Maringá City (Brazil) with a view to avoiding negative environmental impacts due the production of methane and leachates even after its closure. This paper describes the establishment of this CDM-EB-approved methodology to determine baseline emissions, project emissions and the resultant emission reductions with the application of appropriate aeration, excavation and composting practices at closed MSW landfills. A further result obtained through the application of the methodology in the landfill case study was that it would be possible to achieve an ex-ante emission reduction of 74,013 tCO2 equivalent if the proposed CDM project activity were implemented.

  20. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each storyline to enhance carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct realistic and meaningful scenarios. The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and in-situ (for example, forest inventory data) to capture and characterize landscape-change events. For future potential LULC and ecosystem disturbances, key drivers such as socioeconomic, policy, and climate assumptions will be used in addition to biophysical data. The product of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the current and projected future conditions will be assessed using the LULC and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as elevation, vegetation characteristics, and soil attributes). For aquatic ecosystems, carbon burial in sediments and GHG fluxes are functions of the current and projected future stream flow and sediment transports, and therefore will be assessed using empirical modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results. The U.S. Environmental Protection Agency's Level II ecoregions map (which delineates 24 ecoregions for the Nation) will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion will be the reporting unit of the assessment because the mitigation scenarios, assessment results, validation, and uncertainty analysis will be

  1. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  2. A MODIS-based analysis of the Val d'Agri Oil Center (South of Italy) thermal emission: an independent gas flaring estimation strategy

    NASA Astrophysics Data System (ADS)

    Pergola, Nicola; Faruolo, Mariapia; Irina, Coviello; Carolina, Filizzola; Teodosio, Lacava; Valerio, Tramutoli

    2014-05-01

    Different kinds of atmospheric pollution affect human health and the environment at local and global scale. The petroleum industry represents one of the most important environmental pollution sources, accounting for about 18% of well-to-wheels greenhouse gas (GHG) emissions. The main pollution source is represented by the flaring of gas, one of the most challenging energy and environmental problems facing the world today. The World Bank has estimated that 150 billion cubic meters of natural gas are being flared annually, that is equivalent to 30% of the European Union's gas consumption. Since 2002, satellite-based methodologies have shown their capability in providing independent and reliable estimation of gas flaring emissions, at both national and global scale. In this paper, for the first time, the potential of satellite data in estimating gas flaring volumes emitted from a single on-shore crude oil pre-treatment plant, i.e. the Ente Nazionale Idrocarburi (ENI) Val d'Agri Oil Center (COVA), located in the Basilicata Region (South of Italy), was assessed. Specifically, thirteen years of night-time Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired in the medium and thermal infrared (MIR and TIR, respectively) bands were processed. The Robust Satellite Techniques (RST) approach was implemented for identifying anomalous values of the signals under investigation (i.e. the MIR-TIR difference one), associated to the COVA flares emergency discharges. Then, the Fire Radiative Power (FRP), computed for the thermal anomalies previously identified, was correlated to the emitted gas flaring volumes, available for the COVA in the period 2003 - 2009, defining a satellite based regression model for estimating COVA gas flaring emitted volumes. The used strategy and the preliminary results of this analysis will be described in detail in this work.

  3. Estimating the Star Formation Rate at 1 kpc Scales in nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Bigiel, Frank; de Blok, W. J. G.; Boissier, Samuel; Bolatto, Alberto; Brinks, Elias; Madore, Barry; Munoz-Mateos, Juan-Carlos; Murphy, Eric; Sandstrom, Karin; Schruba, Andreas; Walter, Fabian

    2012-07-01

    Using combinations of Hα, ultraviolet (UV), and infrared (IR) emission, we estimate the star formation rate (SFR) surface density, ΣSFR, at 1 kpc resolution for 30 disk galaxies that are targets of the IRAM HERACLES CO survey. We present a new physically motivated IR spectral-energy-distribution-based approach to account for possible contributions to 24 μm emission not associated with recent star formation. Considering a variety of "reference" SFRs from the literature, we revisit the calibration of the 24 μm term in hybrid (UV+IR or Hα+IR) tracers. We show that the overall calibration of this term remains uncertain at the factor of two level because of the lack of wide-field, robust reference SFR estimates. Within this uncertainty, published calibrations represent a reasonable starting point for 1 kpc-wide areas of star-forming disk galaxies, but we re-derive and refine the calibration of the IR term in these tracers to match our resolution and approach to 24 μm emission. We compare a large suite of ΣSFR estimates and find that above ΣSFR ~ 10-3 M ⊙ yr-1 kpc-2 the systematic differences among tracers are less than a factor of two across two orders of magnitude dynamic range. We caution that methodology and data both become serious issues below this level. We note from simple model considerations that when focusing on a part of a galaxy dominated by a single stellar population, the intrinsic uncertainty in Hα- and FUV-based SFRs is ~0.3 and ~0.5 dex.

  4. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.

  5. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.

  6. Wastewater GHG Accounting Protocols as Compared to the State of GHG Science.

    PubMed

    Willis, John L; Yuan, Zhiguo; Murthy, Sudhir

    2016-08-01

    Greenhouse gas (GHG) accounting protocols have addressed emissions from wastewater conveyance and treatment using a variety of simplifying methodologies. While these methodologies vary to some degree by protocol, within each protocol they provide consistent tools for organizational entities of varying size and scope to report and verify GHG emissions. Much of the science supporting these methodologies is either limited or the protocols have failed to keep abreast of developing GHG research. This state-of-the-art review summarizes the sources of direct GHG emissions (both those covered and not covered in current protocols) from wastewater handling; provides a review of the wastewater-related methodologies in a select group of popular protocols; and discusses where research has out-paced protocol methodologies and other areas where the supporting science is relatively weak and warrants further exploration.

  7. Future Sulfur Dioxide Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latestmore » version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.« less

  8. A novel in vivo receptor occupancy methodology for the glucocorticoid receptor: toward an improved understanding of lung pharmacokinetic/pharmacodynamic relationships.

    PubMed

    Boger, Elin; Ewing, Pär; Eriksson, Ulf G; Fihn, Britt-Marie; Chappell, Michael; Evans, Neil; Fridén, Markus

    2015-05-01

    Investigation of pharmacokinetic/pharmacodynamic (PK/PD) relationships for inhaled drugs is challenging because of the limited possibilities of measuring tissue exposure and target engagement in the lung. The aim of this study was to develop a methodology for measuring receptor occupancy in vivo in the rat for the glucocorticoid receptor (GR) to allow more informative inhalation PK/PD studies. From AstraZeneca's chemical library of GR binders, compound 1 [N-(2-amino-2-oxo-ethyl)-3-[5-[(1R,2S)-2-(2,2-difluoropropanoylamino)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)propoxy]indazol-1-yl]-N-methyl-benzamide] was identified to have properties that are useful as a tracer for GR in vitro. When given at an appropriate dose (30 nmol/kg) to rats, compound 1 functioned as a tracer in the lung and spleen in vivo using liquid chromatography-tandem mass spectrometry bioanalysis. The methodology was successfully used to show the dose-receptor occupancy relationship measured at 1.5 hours after intravenous administration of fluticasone propionate (20, 150, and 750 nmol/kg) as well as to characterize the time profile for receptor occupancy after a dose of 90 nmol/kg i.v. The dose giving 50% occupancy was estimated as 47 nmol/kg. The methodology is novel in terms of measuring occupancy strictly in vivo and by using an unlabeled tracer. This feature confers key advantages, including occupancy estimation not being influenced by drug particle dissolution or binding/dissociation taking place postmortem. In addition, the tracer may be labeled for use in positron emission tomography imaging, thus enabling occupancy estimation in humans as a translatable biomarker of target engagement. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. How Much Can Non-industry Standard Measurement Methodologies Benefit Methane Reduction Programs?

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; O'Connell, L.; Atherton, E.

    2017-12-01

    In recent years, energy sector methane emissions have been recorded in large part by applying modern non-industry-standard techniques. Industry may lack the regulatory flexibility to use such techniques, or in some cases may not understand the possible associated economic advantage. As progressive jurisdictions move from estimation and towards routine measurement, the research community should provide guidance to help regulators and companies measure more effectively, and economically if possible. In this study, we outline a modelling experiment in which we explore the integration of non-industry-standard measurement techniques as part of a generalized compliance measurement program. The study was not intended to be exhaustive, or to recommend particular combinations, but instead to explore the inter-relationships between methodologies, development type, compliance practice. We first defined the role, applicable scale, detection limits, working distances, and approximate deployment cost of several measurement methodologies. We then considered a variety of development types differing mainly in footprint, density, and emissions "profile". Using a Monte Carlo approach, we evaluated the effect of these various factors on the cost and confidence of the compliance measurement program. We found that when added individually, some of the research techniques were indeed able to deliver an improvement in cost and/or confidence when used alongside industry-standard Optical Gas Imaging. When applied in combination, the ideal fraction of each measurement technique depended on development type, emission profile, and whether confidence or cost was more important. Results suggest that measurement cost and confidence could be improved if energy companies exploited a wider range of measurement techniques, and in a manner tailored to each development. In the short-term, combining clear scientific guidance with economic information could benefit immediate mitigation efforts over developing new super sensors.

  10. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  11. Coal resources available for development; a methodology and pilot study

    USGS Publications Warehouse

    Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.

    1990-01-01

    Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated original 986.5 million short tons of coal resources in Kentucky's Matewan quadrangle, 13 percent has been mined, 2 percent is restricted by land-use considerations, and 23 percent is restricted by technological considerations. This leaves an estimated 62 percent of the original resource, or approximately 612 million short tons available for mining. However, only 44 percent of this available coal (266 million short tons) will meet current Environmental Protection Agency new-source performance standards for sulfur emissions from electric generating plants in the United States. In addition, coal tonnage lost during mining and cleaning would further reduce the amount of coal actually arriving at the market.

  12. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably <1 Tg N2O-N/yr). Assuming that the changes in atmospheric concentrations from 1850 to the present are entirely anthropogenic, the top-down methodology yields an estimate of 5.3 Tg N2O-N/yr (range 5.2 - 5.5) net anthropogenic emissions for the period 2000-2007. Based on a review of bottom-up inventories, we estimate total net anthropogenic N2O emissions of 6.0 Tg N2O-N/yr (5.4-8.4 Tg N2O-N/yr). Estimates (and ranges) by sector (in Tg N2O-N/yr) are: agriculture 4.1 Tg (3.8-6.8); biomass burning 0.7 (0.5-1.7); energy and transport 0.7 (0.5-1.2); industry 0.7 (0.3-1.1); and other 0.5 (0.2 - 0.8). Tropical deforestation has reduced emissions by 0.7 (0.5 - 1.0). Given the large inherent uncertainties in both approaches, it is encouraging that the bottom-up (6.0) and top-down (5.3) estimates are within 12% of each other and their uncertainty ranges overlap. N2O is inescapably linked to food production and food security. Future agricultural emissions will be determined by population, dietary habits, and agricultural N use efficiency. Without deliberate and effective mitigation policies, anthropogenic N2O emissions will likely double by 2050 and continue to increase thereafter. Only a combination of aggressive mitigation efforts in all sectors as well as changes in dietary habits could lead to stabilization of atmospheric N2O concentrations at about 350 ppb by 2050. The potential emissions reductions by following published mitigation versus business-as-usual scenarios over the period 2013-2050 is ~102 Tg N2O-N; equivalent to ~48 Gt CO2e or ~2730 kt ozone depleting potential. The impact of growing demand for biofuels is highly uncertain, ranging from trivial to the most significant N2O source to date, depending on the types of plants, their nutrient management, the amount of land used for their cultivation, and the fates of their waste products.

  13. VT0005 In Action: National Forest Biomass Inventory Using Airborne Lidar Sampling

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Xu, L.; Meyer, V.; Ferraz, A.; Yang, Y.; Shapiro, A.; Bastin, J. F.

    2016-12-01

    Tropical countries are required to produce robust and verifiable estimates of forest carbon stocks for successful implementation of climate change mitigation. Lack of systematic national inventory data due to access, cost, and infrastructure, has impacted the capacity of most tropical countries to accurately report the GHG emissions to the international community. Here, we report on the development of the aboveground forest carbon (AGC) map of Democratic Republic of Congo (DRC) by using the VCS (Verified Carbon Standard) methodology developed by Sassan Saatchi (VT0005) using high-resolution airborne LiDAR samples. The methodology provides the distribution of the carbon stocks in aboveground live trees of more than 150 million ha of forests at 1-ha spatial resolution in DRC using more than 430, 000 ha of systematic random airborne Lidar inventory samples of forest structure. We developed a LIDAR aboveground biomass allometry using more than 100 1-ha plots across forest types and power-law model with LIDAR height metrics and average landscape scale wood density. The methodology provided estimates of forest biomass over the entire country using two approaches: 1) mean, variance, and total carbon estimates for each forest type present in DRC using inventory statistical techniques, and 2) a wall-to-wall map of the forest biomass extrapolated using satellite radar (ALOS PALSAR), surface topography from SRTM, and spectral information from Landsat (TM) and machine learning algorithms. We present the methodology, the estimates of carbon stocks and the spatial uncertainty over the entire country. AcknowledgementsThe theoretical research was carried out partially at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and the design and implementation in the Democratic Republic of Congo was carried out at the Institute of Environment and Sustainability at University of California Los Angeles through the support of the International Climate Initiative of the German Ministry of Environment, Conservation and Nuclear Security, and the KFW Development Bank.

  14. Deforestation and greenhouse gas emissions associated with fuelwood consumption of the brick making industry in Sudan.

    PubMed

    Alam, Syed Ashraful; Starr, Mike

    2009-01-01

    The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr(-1)) was converted into harvested biomass (m(3)) using a wood density value of 0.65 t dm m(-3). For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4x10(3) m(3) of wood biomass, including 267.6x10(3) m(3) round wood and 240.8x10(3) m(3) branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378028 t CO(2), 15554 t CO, 1778 t CH(4), 442 t NO(X), 288 t NO and 12 t N(2)O per annum. The combined CO(2)-equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO(X) and NO) is 455666 t yr(-1). While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management.

  15. A New High-Resolution N2O Emission Inventory for China in 2008

    NASA Astrophysics Data System (ADS)

    Shang, Z.; Zhou, F.; Ciais, P.; Tao, S.; Piao, S.; Raymond, P. A.; He, C.; Li, B.; Wang, R.; Wang, X.; Peng, S.; Zeng, Z.; Chen, H.; Ying, N.; Hou, X.; Xu, P.

    2014-12-01

    The amount and geographic distribution of N2O emissions over China remain largely uncertain. Most of existing emission inventories use uniform emission factors (EFs) and the associated parameters and apply spatial proxies to downscale national or provincial data, resulting in the introduction of spatial bias. In this study, county-level and 0.1° × 0.1° gridded anthropogenic N2O emission inventories for China (PKU-N2O) in 2008 are developed based on high-resolution activity data and regional EFs and parameters. These new estimates are compared with estimates from EDGAR v4.2, GAINS-China, National Development and Reform Commission of China (NDRC), and with two sensitivity tests: one that uses high-resolution activity data but the default IPCC methodology (S1) and the other that uses regional EFs and parameters but starts from coarser-resolution activity data. The total N2O emissions are 2150 GgN2O/yr (interquartile range from 1174 to 2787 GgN2O/yr). Agriculture contributes 64% of the total, followed by energy (17%), indirect emissions (12%), wastes (5%), industry (2.8%), and wildfires (0.2%). Our national emission total is 17% greater than that of the EDGAR v4.2 global product sampled over China and is also greater than the GAINS-China, NDRC, and S1 estimates by 10%, 50%, and 17%, respectively. We also found that using uniform EFs and parameters or starting from national/provincial data causes systematic spatial biases compared to PKU-N2O. In addition, the considerable differences between the relative contributions of the six sectors across the six Agro-Climate Zones primarily reflect the different distributions of industrial activities and land use. Eastern China (8.7% area of China) is the largest contributor of N2O emissions and accounts for nearly 25% of the total. Spatial analysis also shows nonlinear relationships between N2O emission intensities and urbanization. Per-capita and per-GDP N2O emissions increase gradually with an increase in the urban population fraction from 0.3 to 0.9 among 2884 counties, and N2O emission density increases with urban expansion. Moreover, additional experiments and the use of a reliable data-driven approach or process-based models can improve the spatial resolution and reduce the uncertainties in PKU-N2O, especially from agricultural soils and manure management.

  16. Estimation of GHG emissions in Egypt up to the year 2020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElMahgary, Y.; Abdel-Fattah, A.I.; Shama, M.A.

    1994-09-01

    Within the frame of UNEP's project on the Methodologies of Determining the Costs of Abatement of GHG Emissions, a case study on Egypt was undertaken by VTT (Technical Research Centre of Finland) in cooperation with the Egyptian Environment Authority Agency (EEAA). Both the bottom-up or engineering models and the top-down or the macroeconomic models were used. In the bottom-up approach, the economic sectors were divided into seven groups: petroleum industry, power generation, heavy industry, light industry, residential and commercial sector, transport and agriculture and domestic wastes. First, a comprehensive inventory for the year 1990 was prepared for all the GHGmore » emissions mainly, but not exclusively, from energy sources. This included CO[sub 2], CH[sub 4] and N[sub 2]O. A base scenario of economic and energy growth of Egypt for business-as-usual alternative was fixed using the results of several optimization processes undertaken earlier by the National Committee of Egypt. GHG emissions of the different sources in this base scenario were then determined using LEAP model and spread sheets.« less

  17. An LCA researcher's wish list--data and emission models needed to improve LCA studies of animal production.

    PubMed

    Cederberg, C; Henriksson, M; Berglund, M

    2013-06-01

    The last decade has seen an increase in environmental systems analysis of livestock production, resulting in a significant number of studies with a holistic approach often based on life-cycle assessment (LCA) methodology. The growing public interest in global warming has added to this development; guidelines for carbon footprint (CF) accounting have been developed, including for greenhouse gas (GHG) accounting of animal products. Here we give an overview of methods for estimating GHG emissions, with emphasis on nitrous oxide, methane and carbon from land use change, presently used in LCA/CF studies of animal products. We discuss where methods and data availability for GHGs and nitrogen (N) compounds most urgently need to be improved in order to produce more accurate environmental assessments of livestock production. We conclude that the top priority is to improve models for N fluxes and emissions from soils and to implement soil carbon change models in LCA/CF studies of animal products. We also point at the need for more farm data and studies measuring emissions from soils, manure and livestock in developing countries.

  18. Comparing Landsat-7 ETM+ and ASTER Imageries to Estimate Daily Evapotranspiration Within a Mediterranean Vineyard Watershed

    NASA Technical Reports Server (NTRS)

    Montes, Carlo; Jacob, Frederic

    2017-01-01

    We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.

  19. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  20. Emission Inventory for PFOS in China: Review of Past Methodologies and Suggestions

    PubMed Central

    Lim, Theodore Chao; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a persistent, bioaccumulative, and toxic chemical that has the potential for long-range transport in the environment. Its use in a wide variety of consumer products and industrial processes makes a detailed characterization of its emissions sources very challenging. These varied emissions sources all contribute to PFOS' existence within nearly all environmental media. Currently, China is the only country documented to still be producing PFOS, though there is no China PFOS emission inventory available. This study reviews the inventory methodologies for PFOS in other countries to suggest a China-specific methodology framework for a PFOS emission inventory. The suggested framework combines unknowns for PFOS-containing product penetration into the Chinese market with product lifecycle assumptions, centralizing these diverse sources into municipal sewage treatment plants. Releases from industrial sources can be quantified separately using another set of emission factors. Industrial sources likely to be relevant to the Chinese environment are identified. PMID:22125449

  1. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    PubMed

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  2. Updated national emission of perfluoroalkyl substances (PFASs) from wastewater treatment plants in South Korea.

    PubMed

    Kwon, Hye-Ok; Kim, Hee-Young; Park, Yu-Mi; Seok, Kwang-Seol; Oh, Jeong-Eun; Choi, Sung-Deuk

    2017-01-01

    A nationwide emission estimate of perfluoroalkyl substances (PFASs) from wastewater treatment plants (WWTPs) is required to understand the source-receptor relationship of PFASs and to manage major types of WWTPs. In this study, the concentrations of 13 PFASs (8 perfluorocarboxylic acids, 3 perfluoroalkane sulfonates, and 2 intermediates) in wastewater and sludge from 81 WWTPs in South Korea were collected. The emission pathways of PFASs were redefined, and then the national emission of PFASs from WWTPs was rigorously updated. In addition to the direct calculations, Monte Carlo simulations were also used to calculate the likely range of PFAS emissions. The total (Σ 13 PFAS) emission (wastewater + sludge) calculated from the direct calculation with mean concentrations was 4.03 ton/y. The emissions of perfluorooctanoic acid (PFOA, 1.19 ton/y) and perfluorooctane sulfonate (PFOS, 1.01 ton/y) were dominant. The Monte Carlo simulations suggested that the realistic national emission of Σ 13 PFASs is between 2 ton/y and 20 ton/y. Combined WWTPs treating municipal wastewater from residential and commercial areas were identified as a major emission source, contributing 65% to the total PFAS emissions. The Han and Nakdong Rivers were the primary contaminated rivers, receiving 89% of the total PFAS discharge from WWTPs. The results and methodologies in this study can be useful to establish a management policy for PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A methodology to compile food metrics related to diet sustainability into a single food database: Application to the French case.

    PubMed

    Gazan, Rozenn; Barré, Tangui; Perignon, Marlène; Maillot, Matthieu; Darmon, Nicole; Vieux, Florent

    2018-01-01

    The holistic approach required to assess diet sustainability is hindered by lack of comprehensive databases compiling relevant food metrics. Those metrics are generally scattered in different data sources with various levels of aggregation hampering their matching. The objective was to develop a general methodology to compile food metrics describing diet sustainability dimensions into a single database and to apply it to the French context. Each step of the methodology is detailed: indicators and food metrics identification and selection, food list definition, food matching and values assignment. For the French case, nutrient and contaminant content, bioavailability factors, distribution of dietary intakes, portion sizes, food prices, greenhouse gas emission, acidification and marine eutrophication estimates were allocated to 212 commonly consumed generic foods. This generic database compiling 279 metrics will allow the simultaneous evaluation of the four dimensions of diet sustainability, namely health, economic, social and environmental, dimensions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The URban Greenhouse gas Emissions assessment through inverse modeling (URGE) project: a pilot study in the Oslo area

    NASA Astrophysics Data System (ADS)

    Pisso, I. J.; Lopez-Aparicio, S.; Schneider, P.; Schmidbauer, N.; Vogt, M.

    2017-12-01

    Norway has set the target of cutting greenhouse gas (GHG) emissions by at least 40% compared to 1990 levels by 2030. This goal will require the implementation of policy measures aiming at strong reductions of GHGs emissions, especially in the urban environment. The implementation of urban policy measures is still a challenging task and it requires control and verification for success. The URGE project aims at assessing the emission flux of GHGs including comprehensive uncertainty estimates based on inverse transport modelling techniques and optimized use of measurements. The final goal is to establish a coherent and consistent GHG urban emission inventory. This will be carried out in a case study in Oslo (Norway), where CO2 will be the priority compound. The overall outcome of the project will provide support in the development of strategies to effectively reduce GHG emissions in the urban environment. The overall goal will be reached through establishing the baseline urban CO2 emission inventory for Oslo; determining the optimal measurement locations based on transport modelling (with flexpart-wrf); designing and carrying out a pilot measurement campaign of the CO2-rich air downwind of the city plume combining state-of-the-art instruments (Picarro) and small sensors; assessing the feasibility of determining the background concentration surrounding the city with satellite measurements (OCO2); and providing optimised estimates of the emissions and their uncertainties via inverse modelling (source-receptor relationship). One of our main interests is the interoperability and exchange of information with similar activities in other urban areas. We will present the overall project and the preliminary results of the network design. We will discuss the data exchange formats, the algorithms and data structures that could be used for results and methodology intercomparisons as well as the suitability to apply the same techniques to other atmospheric compounds.

  5. Nitrous oxide emission factors from N-fertilizer in sugarcane production in Brazil

    NASA Astrophysics Data System (ADS)

    Galdos, M. V.; Siqueira Neto, M.; Feigl, B. J.; Carvalho, J. L.; Cerri, C. E.; Cerri, C. C.

    2013-12-01

    The Brazilian sugarcane production is rapidly expanding due to the increase of global demand for ethanol. Concurrently the necessary inputs to culture, especially N-fertilizer, are growing, since N is one of the key element to maintain sugarcane productivity. However, it is known that N-fertilizer is responsible for the largest share of N2O emissions from agricultural soils. The Intergovernmental Panel on Climate Changes (IPCC) estimated that under favorable climatic conditions approximately 1% of the N-fertilizer applied can be emitted as N2O. Our goal was to estimate N2O emission factors from N-fertilizer used in the sugarcane ratoon for ethanol production. A field study was conducted at the Capuava Mill, located in southeastern Brazil. The experimental design was completely randomized, with four replications in a factorial scheme (2 x 2): two N sources (urea and ammonium nitrate), two application rates (80 and 120 kg ha-1), and a control treatment. N2O concentrations were determined by gas chromatography using a Shimadzu© GC-mini. N2O fluxes were calculated from linear regressions of concentration versus incubation time in the soil static chambers. The N2O emission factor of N-fertilizer was calculated according to the methodology described in the Guidelines for National Greenhouse Gas Inventories (IPCC). Comparatively, ammonium nitrate emitted 45 to 75% less N2O than urea application. There was no significant difference in N2O emission between the two applied rates of urea. Also the N2O emission factor of ammonium nitrate (0.3×0.2%) was lower than that of urea (1.1×0.4%). Our results indicated that on average the N fertilization of sugarcane plantation has an emission factor of 0.7×0.5% suggesting that N-fertilizer management can be used to reduce greenhouse gas emissions in order to improve the sustainability of bioethanol from sugarcane.

  6. Global Carbon Budget 2016

    NASA Technical Reports Server (NTRS)

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3+/-0.5 GtC/yr, ELUC 1.0+/-0.5 GtC/yr,GATM 4.5+/-0.1 GtC/yr, SOCEAN 2.6+/-0.5 GtC/yr, and SLAND 3.1+/-0.9 GtC/yr. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9+/-0.5 GtC/yr, showing a slowdown in growth of these emissions compared to the average growth of 1.8/yr that took place during 2006-2015.Also, for 2015, ELUC was 1.3+/-0.5 GtC/yr, GATM was 6.3+/-0.2 GtC/yr, SOCEAN was 3.0+/-0.5 GtC/yr, and SLAND was 1.9+/-0.9 GtC/yr. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4+/-0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2% (range of -1.0 to +1.8% ) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Nino conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565+/-55 GtC (2075+/-205 GtCO2) for 1870-2016, about 75% from EFF and 25% from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set.

  7. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.

    PubMed

    Del Prado, A; Mas, K; Pardo, G; Gallejones, P

    2013-11-01

    There is world-wide concern for the contribution of dairy farming to global warming. However, there is still a need to improve the quantification of the C-footprint of dairy farming systems under different production systems and locations since most of the studies (e.g. at farm-scale or using LCA) have been carried out using too simplistic and generalised approaches. A modelling approach integrating existing and new sub-models has been developed and used to simulate the C and N flows and to predict the GHG burden of milk production (from the cradle to the farm gate) from 17 commercial confinement dairy farms in the Basque Country (northern Spain). We studied the relationship between their GHG emissions, and their management and economic performance. Additionally, we explored some of the effects on the GHG results of the modelling methodology choice. The GHG burden values resulting from this study (0.84-2.07 kg CO2-eq kg(-l) milk ECM), although variable, were within the range of values of existing studies. It was evidenced, however, that the methodology choice used for prediction had a large effect on the results. Methane from the rumen and manures, and N2O emissions from soils comprised most of the GHG emissions for milk production. Diet was the strongest factor explaining differences in GHG emissions from milk production. Moreover, the proportion of feed from the total cattle diet that could have directly been used to feed humans (e.g. cereals) was a good indicator to predict the C-footprint of milk. Not only were some other indicators, such as those in relation with farm N use efficiency, good proxies to estimate GHG emissions per ha or per kg milk ECM (C-footprint of milk) but they were also positively linked with farm economic performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Development of Methodologies Evaluating Emissions from Metal-Containing Explosives and Propellants

    DTIC Science & Technology

    Experiments were performed to develop methodologies that will allow determination of pollutant emission factors for gases and particles produced by...micrometer, 16 by weight). Although not included here, the analysis methods described will be directly applicable to the study of pyrotechnics.

  10. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  11. A high-resolution, empirical approach to climate impact assessment for regulatory analysis

    NASA Astrophysics Data System (ADS)

    Delgado, M.; Simcock, J. G.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Rising, J. A.; Nath, I.; Yuan, J.; Rode, A.; Chong, T.; Dobbels, G.; Hussain, A.; Wang, J.; Song, Y.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Recent breakthroughs in computing, data availability, and methodology have precipitated significant advances in the understanding of the relationship between climate and socioeconomic outcomes [1]. And while the use of estimates of the global marginal costs of greenhouse gas emissions (e.g. the SCC) are a mandatory component of regulatory policy in many jurisdictions, existing SCC-IAMs have lagged advances in impact assessment and valuation [2]. Recent work shows that incorporating high spatial and temporal resolution can significantly affect the observed relationships of economic outcomes to climate and socioeconomic factors [3] and that maintaining this granularity is critical to understanding the sensitivity of aggregate measures of valuation to inequality and risk adjustment methodologies [4]. We propose a novel framework that decomposes uncertainty in the SCC along multiple sources, including aggregate climate response parameters, the translation of global climate into local weather, the effect of weather on physical and economic systems, human and macro-economic responses, and impact valuation methodologies. This work extends Hsiang et al. (2017) [4] to directly estimate local response functions for multiple sectors in each of 24,378 global regions and to estimate impacts at this resolution daily, incorporating endogenous, empirically-estimated adaptation and costs. The goal of this work is to provide insight into the heterogeneity of climate impacts and to work with other modeling teams to enhance the empirical grounding of integrated climate impact assessment in more complex energy-environment-economics models. [1] T. Carleton and S. Hsiang (2016), DOI: 10.1126/science.aad9837. [2] National Academies of Sciences, Engineering, and Medicine (2017), DOI: 10.17226/24651. [3] Burke, M., S. Hsiang, and E. Miguel (2015), DOI: 10.1038/nature15725. [4] S. Hsiang et al. (2017), DOI: 10.1126/science.aal4369.

  12. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Environmental compatibility of closed landfills - assessing future pollution hazards.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2011-01-01

    Municipal solid waste landfills need to be managed after closure. This so-called aftercare comprises the treatment and monitoring of residual emissions as well as the maintenance and control of landfill elements. The measures can be terminated when a landfill does not pose a threat to the environment any more. Consequently, the evaluation of landfill environmental compatibility includes an estimation of future pollution hazards as well as an assessment of the vulnerability of the affected environment. An approach to assess future emission rates is presented and discussed in view of long-term environmental compatibility. The suggested method consists (a) of a continuous model to predict emissions under the assumption of constant landfill conditions, and (b) different scenarios to evaluate the effects of changing conditions within and around the landfill. The model takes into account the actual status of the landfill, hence different methods to gain information about landfill characteristics have to be applied. Finally, assumptions, uncertainties, and limitations of the methodology are discussed, and the need for future research is outlined.

  14. Department of Energy Air Emissions Annual Report Oak Ridge Reservation, Oak Ridge, Tennessee 40 Code of Federal Regulations (CFR) 61, Subpart H Calendar Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Richard

    As defined in the preamble of the final rule, the entire DOE facility on the Oak Ridge Reservation (ORR) must meet the 10 mrem/yr ED standard.1 In other words, the combined ED from all radiological air emission sources from Y-12 National Security Complex (Y-12 Complex), Oak Ridge National Laboratory (ORNL), East Tennessee Technology Park (ETTP), Oak Ridge Institute for Science and Education (ORISE) and any other DOE operation on the reservation must meet the 10 mrem/yr standard. Compliance with the standard is demonstrated through emission sampling, monitoring, calculations and radiation dose modeling in accordance with approved EPA methodologies and procedures.more » DOE estimates the ED to many individuals or receptor points in the vicinity of ORR, but it is the dose to the maximally exposed individual (MEI) that determines compliance with the standard.« less

  15. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  16. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    NASA Astrophysics Data System (ADS)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  17. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

  18. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.

  19. Increase in NOx emissions from Indian thermal power plants during 1996-2010: unit-based inventories and multisatellite observations.

    PubMed

    Lu, Zifeng; Streets, David G

    2012-07-17

    Driven by rapid economic development and growing electricity demand, NO(x) emissions (E) from the power sector in India have increased dramatically since the mid-1990s. In this study, we present the NO(x) emissions from Indian public thermal power plants for the period 1996-2010 using a unit-based methodology and compare the emission estimates with the satellite observations of NO(2) tropospheric vertical column densities (TVCDs) from four spaceborne instruments: GOME, SCIAMACHY, OMI, and GOME-2. Results show that NO(x) emissions from Indian power plants increased by at least 70% during 1996-2010. Coal-fired power plants, NO(x) emissions from which are not regulated in India, contribute ∼96% to the total power sector emissions, followed by gas-fired (∼4%) and oil-fired (<1%) ones. A number of isolated NO(2) hot spots are observed over the power plant areas, and good agreement between NO(2) TVCDs and NO(x) emissions is found for areas dominated by power plant emissions. Average NO(2) TVCDs over power plant areas were continuously increasing during the study period. We find that the ratio of ΔE/E to ΔTVCD/TVCD changed from greater than one to less than one around 2005-2008, implying that a transition of the overall NO(x) chemistry occurred over the power plant areas, which may cause significant impact on the atmospheric environment.

  20. ESTIMATING THE STAR FORMATION RATE AT 1 kpc SCALES IN NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Bigiel, Frank

    2012-07-15

    Using combinations of H{alpha}, ultraviolet (UV), and infrared (IR) emission, we estimate the star formation rate (SFR) surface density, {Sigma}{sub SFR}, at 1 kpc resolution for 30 disk galaxies that are targets of the IRAM HERACLES CO survey. We present a new physically motivated IR spectral-energy-distribution-based approach to account for possible contributions to 24 {mu}m emission not associated with recent star formation. Considering a variety of 'reference' SFRs from the literature, we revisit the calibration of the 24 {mu}m term in hybrid (UV+IR or H{alpha}+IR) tracers. We show that the overall calibration of this term remains uncertain at the factormore » of two level because of the lack of wide-field, robust reference SFR estimates. Within this uncertainty, published calibrations represent a reasonable starting point for 1 kpc-wide areas of star-forming disk galaxies, but we re-derive and refine the calibration of the IR term in these tracers to match our resolution and approach to 24 {mu}m emission. We compare a large suite of {Sigma}{sub SFR} estimates and find that above {Sigma}{sub SFR} {approx} 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2} the systematic differences among tracers are less than a factor of two across two orders of magnitude dynamic range. We caution that methodology and data both become serious issues below this level. We note from simple model considerations that when focusing on a part of a galaxy dominated by a single stellar population, the intrinsic uncertainty in H{alpha}- and FUV-based SFRs is {approx}0.3 and {approx}0.5 dex.« less

  1. Estimation of hydrogen sulfide emission rates at several wastewater treatment plants through experimental concentration measurements and dispersion modeling.

    PubMed

    Llavador Colomer, Fernando; Espinós Morató, Héctor; Mantilla Iglesias, Enrique

    2012-07-01

    The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

  2. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  3. Methodology for the analysis of pollutant emissions from a city bus

    NASA Astrophysics Data System (ADS)

    Armas, Octavio; Lapuerta, Magín; Mata, Carmen

    2012-04-01

    In this work a methodology is proposed for measurement and analysis of gaseous emissions and particle size distributions emitted by a diesel city bus during its typical operation under urban driving conditions. As test circuit, a passenger transportation line at a Spanish city was used. Different ways for data processing and representation were studied and, derived from this work, a new approach is proposed. The methodology was useful to detect the most important uncertainties arising during registration and processing of data derived from a measurement campaign devoted to determine the main pollutant emissions. A HORIBA OBS-1300 gas analyzer and a TSI engine exhaust particle spectrometer were used with 1 Hz frequency data recording. The methodology proposed allows for the comparison of results (in mean values) derived from the analysis of either complete cycles or specific categories (or sequences). The analysis by categories is demonstrated to be a robust and helpful tool to isolate the effect of the main vehicle parameters (relative fuel-air ratio and velocity) on pollutant emissions. It was shown that acceleration sequences have the highest contribution to the total emissions, whereas deceleration sequences have the least.

  4. Maximizing the spatial representativeness of NO2 monitoring data using a combination of local wind-based sectoral division and seasonal and diurnal correction factors.

    PubMed

    Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian

    2016-10-14

    This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.

  5. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China.

    PubMed

    Wang, Hongli; Xiang, Zhiyuan; Wang, Lina; Jing, Shengao; Lou, Shengrong; Tao, Shikang; Liu, Jing; Yu, Mingzhou; Li, Li; Lin, Li; Chen, Ying; Wiedensohler, Alfred; Chen, Changhong

    2018-04-15

    Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EF person ), per kitchen stove (EF kitchen stove ) and per hour (EF hour ) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (S type ) and restaurant scales (S scale ). The range of S type and S scale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that S type and S scale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively. Large and medium-scaled restaurants should be paid more attention with respect to regulation of VOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regional prediction of long-term landfill gas to energy potential.

    PubMed

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Large Uncertainties in Urban-Scale Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Gately, C. K.; Hutyra, L. R.

    2017-10-01

    Accurate estimates of fossil fuel carbon dioxide (FFCO2) emissions are a critical component of local, regional, and global climate agreements. Current global inventories of FFCO2 emissions do not directly quantify emissions at local scales; instead, spatial proxies like population density, nighttime lights, and power plant databases are used to downscale emissions from national totals. We have developed a high-resolution (hourly, 1 km2) bottom-up Anthropogenic Carbon Emissions System (ACES) for FFCO2, based on local activity data for the year 2011 across the northeastern U.S. We compare ACES with three widely used global inventories, finding significant differences at regional (20%) and city scales (50-250%). At a spatial resolution of 0.1°, inventories differ by over 100% for half of the grid cells in the domain, with the largest differences in urban areas and oil and gas production regions. Given recent U.S. federal policy pull backs regarding greenhouse gas emissions reductions, inventories like ACES are crucial for U.S. actions, as the impetus for climate leadership has shifted to city and state governments. The development of a robust carbon monitoring system to track carbon fluxes is critical for emissions benchmarking and verification. We show that existing downscaled inventories are not suitable for urban emissions monitoring, as they do not consider important local activity patterns. The ACES methodology is designed for easy updating, making it suitable for emissions monitoring under most city, regional, and state greenhouse gas mitigation initiatives, in particular, for the small- and medium-sized cities that lack the resources to regularly perform their own bottom-up emissions inventories.

  8. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    NASA Astrophysics Data System (ADS)

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The grid-cell cumulative emissions of ODIAC appear in good agreement with that of Hestia, implying the two inventories have similar overall spatial structures at the city scale.

  9. African anthropogenic combustion emission inventory: specificities and uncertainties

    NASA Astrophysics Data System (ADS)

    Sekou, K.; Liousse, C.; Eric-michel, A.; Veronique, Y.; Thierno, D.; Roblou, L.; Toure, E. N.; Julien, B.

    2015-12-01

    Fossil fuel and biofuel emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to the growth of African cities. In addition, African large savannah fires occur each year during the dry season, mainly for socio-economical purposes. In this study, we will present the most recent developments of African anthropogenic combustion emission inventories, stressing African specificities. (1)A regional fossil fuel and biofuel inventory for gases and particulates will be presented for Africa at a resolution of 0.25° x 0.25° from 1990 to 2012. For this purpose, the original database of Liousse et al. (2014) has been used after modification for emission factors and for updated regional fuel consumption including new emitter categories (waste burning, flaring) and new activity sectors (i.e. disaggregation of transport into sub-sectors including two wheel ). In terms of emission factors, new measured values will be presented and compared to litterature with a focus on aerosols. They result from measurement campaigns organized in the frame of DACCIWA European program for each kind of African specific anthropogenic sources in 2015, in Abidjan (Ivory Coast), Cotonou (Benin) and in Laboratoire d'Aérologie combustion chamber. Finally, a more detailed spatial distribution of emissions will be proposed at a country level to better take into account road distributions and population densities. (2) Large uncertainties still remain in biomass burning emission inventories estimates, especially over Africa between different datasets such as GFED and AMMABB. Sensitivity tests will be presented to investigate uncertainties in the emission inventories, applying methodologies used for AMMABB and GFED inventories respectively. Then, the relative importance of each sources (fossil fuel, biofuel and biomass burning inventories) on the budgets of carbon monoxide, nitrogen oxides, sulfur dioxide, black and organic carbon, and volatile organic compounds emission will be discussed for the years 1990-2012 at the region (West and Central Africa) and country (Ivory Coast and Benin) level and compared to existing inventories. Finally, a first tentative estimation of uncertainties will be conducted allowing to vary fuel consumption and emission factors for gases and particles.

  10. Climate change-related temperature impacts on warm season heat mortality: a proof-of-concept methodology using BenMAP.

    PubMed

    Voorhees, A Scott; Fann, Neal; Fulcher, Charles; Dolwick, Patrick; Hubbell, Bryan; Bierwagen, Britta; Morefield, Philip

    2011-02-15

    Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution health impacts by incorporating temperature modeling and heat mortality health impact functions. This new method demonstrates the ability to apply the existing temperature-health literature to quantify prospective changes in climate-sensitive heat-related mortality. We compared estimates of future temperature with and without climate change and applied heat-mortality health functions to estimate relative changes in heat-related premature mortality. Using the A1B emissions scenario, we applied the GISS-II global circulation model downscaled to 36-km using MM5 and formatted using the Meteorology-Chemistry Interface Processor. For averaged temperatures derived from the 5 years 2048-2052 relative to 1999-2003 we estimated for the warm season May-September a national U.S. estimate of annual incidence of heat-related mortality to be 3700-3800 from all causes, 3500 from cardiovascular disease, and 21 000-27 000 from nonaccidental death, applying various health impact functions. Our estimates of mortality, produced to validate the application of a new methodology, suggest the importance of quantifying heat impacts in economic assessments of climate change.

  11. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.

    PubMed

    Lappi, Maija K; Ristimäki, Jyrki M

    2017-12-01

    The awareness of black carbon (BC) as the second largest anthropogenic contributor in global warming and an ice melting enhancer has increased. Due to prospected increase in shipping especially in the Arctic reliability of BC emissions and their invented amounts from ships is gaining more attention. The International Maritime Organization (IMO) is actively working toward estimation of quantities and effects of BC especially in the Arctic. IMO has launched work toward constituting a definition for BC and agreeing appropriate methods for its determination from shipping emission sources. In our study we evaluated the suitability of elemental carbon (EC) analysis by a thermal-optical transmittance (TOT) method to marine exhausts and possible measures to overcome the analysis interferences related to the chemically complex emissions. The measures included drying with CaSO 4, evaporation at 40-180ºC, H 2 O treatment, and variation of the sampling method (in-stack and diluted) and its parameters (e.g., dilution ratio, Dr). A reevaluation of the nominal organic carbon (OC)/EC split point was made. Measurement of residual carbon after solvent extraction (TC-C SOF ) was used as a reference, and later also filter smoke number (FSN) measurement, which is dealt with in a forthcoming paper by the authors. Exhaust sources used for collecting the particle sample were mainly four-stroke marine engines operated with variable loads and marine fuels ranging from light to heavy fuel oils (LFO and HFO) with a sulfur content range of <0.1-2.4% S. The results were found to be dependent on many factors, namely, sampling, preparation and analysis method, and fuel quality. It was found that the condensed H 2 SO 4 + H 2 O on the particulate matter (PM) filter had an effect on the measured EC content, and also promoted the formation of pyrolytic carbon (PyC) from OC, affecting the accuracy of EC determination. Thus, uncertainty remained regarding the EC results from HFO fuels. The work supports one part of the decision making in black carbon (BC) determination methodology. If regulations regarding BC emissions from marine engines will be implemented in the future, a well-defined and at best unequivocal method of BC determination is required for coherent and comparable emission inventories and estimating BC effects. As the aerosol from marine emission sources may be very heterogeneous and low in BC, special attention to the effects of sampling conditions and sample pretreatments on the validity of the results was paid in developing the thermal-optical analysis methodology (TOT).

  12. Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies

    NASA Astrophysics Data System (ADS)

    Gómez, C. D.; González, C. M.; Osses, M.; Aristizábal, B. H.

    2018-04-01

    Emission data is an essential tool for understanding environmental problems associated with sources and dynamics of air pollutants in urban environments, especially those emitted from vehicular sources. There is a lack of knowledge about the estimation of air pollutant emissions and particularly its spatial and temporal distribution in South America, mainly in medium-sized cities with population less than one million inhabitants. This work performed the spatial and temporal disaggregation of the on-road vehicle emission inventory (EI) in the medium-sized Andean city of Manizales, Colombia, with a spatial resolution of 1 km × 1 km and a temporal resolution of 1 h. A reported top-down methodology, based on the analysis of traffic flow levels and road network distribution, was applied. Results obtained allowed the identification of several hotspots of emission at the downtown zone and the residential and commercial area of Manizales. Downtown exhibited the highest percentage contribution of emissions normalized by its total area, with values equal to 6% and 5% of total CO and PM10 emissions per km2 respectively. These indexes were higher than those obtained in residential-commercial area with values of 2%/km2 for both pollutants. Temporal distribution showed strong relationship with driving patterns at rush hours, as well as an important influence of passenger cars and motorcycles in emissions of CO both at downtown and residential-commercial areas, and the impact of public transport in PM10 emissions in the residential-commercial zone. Considering that detailed information about traffic counts and road network distribution is not always available in medium-sized cities, this work compares other simplified top-down methods for spatially assessing the on-road vehicle EI. Results suggested that simplified methods could underestimate the spatial allocation of downtown emissions, a zone dominated by high traffic of vehicles. The comparison between simplified methods based on total traffic counts and road density distribution suggested that the use of total traffic counts in a simplified form could enhance higher uncertainties in the spatial disaggregation of emissions. Results obtained could add new information that help to improve the air pollution management system in the city and contribute to local public policy decisions. Additionally, this work provides appropriate resolution emission fluxes for ongoing research in atmospheric modeling in the city, with the aim to improve the understanding of transport, transformation and impacts of pollutant emissions in urban air quality.

  13. Numerical and experimental investigation of a beveled trailing-edge flow field and noise emission

    NASA Astrophysics Data System (ADS)

    van der Velden, W. C. P.; Pröbsting, S.; van Zuijlen, A. H.; de Jong, A. T.; Guan, Y.; Morris, S. C.

    2016-12-01

    Efficient tools and methodology for the prediction of trailing-edge noise experience substantial interest within the wind turbine industry. In recent years, the Lattice Boltzmann Method has received increased attention for providing such an efficient alternative for the numerical solution of complex flow problems. Based on the fully explicit, transient, compressible solution of the Lattice Boltzmann Equation in combination with a Ffowcs-Williams and Hawking aeroacoustic analogy, an estimation of the acoustic radiation in the far field is obtained. To validate this methodology for the prediction of trailing-edge noise, the flow around a flat plate with an asymmetric 25° beveled trailing edge and obtuse corner in a low Mach number flow is analyzed. Flow field dynamics are compared to data obtained experimentally from Particle Image Velocimetry and Hot Wire Anemometry, and compare favorably in terms of mean velocity field and turbulent fluctuations. Moreover, the characteristics of the unsteady surface pressure, which are closely related to the acoustic emission, show good agreement between simulation and experiment. Finally, the prediction of the radiated sound is compared to the results obtained from acoustic phased array measurements in combination with a beamforming methodology. Vortex shedding results in a strong narrowband component centered at a constant Strouhal number in the acoustic spectrum. At higher frequency, a good agreement between simulation and experiment for the broadband noise component is obtained and a typical cardioid-like directivity is recovered.

  14. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  15. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  16. Annual land cover change mapping using MODIS time series to improve emissions inventories.

    NASA Astrophysics Data System (ADS)

    López Saldaña, G.; Quaife, T. L.; Clifford, D.

    2014-12-01

    Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A prototype land cover product was created for 2006 to 2008. Several machine learning classifiers were tested as well as different sets of input features going from the BRDF parameters to spectral Albedo. We will present the results of the time series development and the first exercises when creating the prototype land cover product.

  17. CO2 storage capacity estimation: Methodology and gaps

    USGS Publications Warehouse

    Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Derivation of a New Smoke Emissions Inventory using Remote Sensing, and Its Implications for Near Real-Time Air Quality Applications

    NASA Technical Reports Server (NTRS)

    Ellison, Luke; Ichoku, Charles

    2012-01-01

    A new emissions inventory of particulate matter (PM) is being derived mainly from remote sensing data using fire radiative power (FRP) and aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, as well as wind data from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis dataset, which spans the satellite era. This product is generated using a coefficient of emission, C(sub e), that has been produced on a 1x1 degree global grid such that, when it is multiplied with satellite measurements of FRP or its time-integrated equivalent fire radiative energy (FRE) retrieved over a given area and time period, the corresponding PM emissions are estimated. This methodology of using C(sub e) to derive PM emissions is relatively new and advantageous for near real-time air quality applications compared to current methods based on post-fire burned area that may not provide emissions in a timely manner. Furthermore, by using FRP to characterize a fire s output, it will represent better accuracy than the use of raw fire pixel counts, since fires in individual pixels can differ in size and strength by orders of magnitude, resulting in similar differences in emission rates. Here we will show examples of this effect and how this new emission inventory can properly account for the differing emission rates from fires of varying strengths. We also describe the characteristics of the new emissions inventory, and propose the process chain of incorporating it into models for air quality applications.

  19. A non-intrusive screening methodology for environmental hazard assessment at waste disposal sites for water resources protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simons, B.A.; Woldt, W.E.; Jones, D.D.

    The environmental and health risks posed by unregulated waste disposal sites are potential concerns of Pacific Rim regions and island ares because of the need to protect aquifers and other valuable water resources. A non-intrusive screening methodology to determine site characteristics including possible soil and/or groundwater contamination, areal extent of waste, etc. is being developed and tested at waste disposal sites in Nebraska. This type of methodology would be beneficial to Pacific Rim regions in investigating and/or locating unknown or poorly documented contamination areas for hazard assessment and groundwater protection. Traditional assessment methods are generally expensive, time consuming, and potentiallymore » exacerbate the problem. Ideally, a quick and inexpensive assessment method to reliably characterize these sites is desired. Electromagnetic (EM) conductivity surveying and soil-vapor sampling techniques, combined with innovative three-dimensional geostatistical methods are used to map the data to develop a site characterization of the subsurface and to aid in tracking any contaminant plumes. The EM data is analyzed to determine/estimate the extent and volume of waste and/or leachate. Soil-vapor data are analyzed to estimate a site`s volatile organic compound (VOC) emission rate to the atmosphere. The combined information could then be incorporated as one part of an overall hazard assessment system.« less

  20. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  1. EPA’s AP-42 development methodology: Converting or rerating current AP-42 datasets

    USDA-ARS?s Scientific Manuscript database

    In August 2013, the U.S. Environmental Protection Agency’s (EPA) published their new methodology for updating the Compilation of Air Pollution Emission Factors (AP-42). The “Recommended Procedures for Development of Emissions Factors and Use of the WebFIRE Database” instructs that the ratings of the...

  2. Evaluating EPA’s AP-42 development methodology using a cotton gin total PM dataset

    USDA-ARS?s Scientific Manuscript database

    In August 2013, the U.S. Environmental Protection Agency’s (EPA) published their new methodology for updating the Compilation of Air Pollution Emission Factors (AP-42). The “Recommended Procedures for Development of Emissions Factors and Use of the WebFIRE Database” has yet to be widely used. These ...

  3. Decision analysis of visual range improvements attributable to sulfur dioxide emission reductions in the eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balson, W.E.; Rice, J.S.

    1988-01-01

    The Environmental Protection Agency (EPA) recently published an advanced notice of proposed rulemaking (ANPR) (Federal Register, July 1, 1987) inquiring into the need for a secondary ambient standard for fine particles to protect visibility in the east and urban west. The EPA has solicited comments on the application of cost and benefits analyses in making decisions about such standards. In response to this request for comments, the utility air regulatory group (UARG) requested that Decision Focus Incorporated (DFI) estimate the benefits of visibility improvements reasonably associated with changes in SO{sub 2} emissions, to compare those benefits with the cost ofmore » achieving those emission reduction, and to assess the value of acquiring more information before making a decision, taking into account the uncertainties associated with these estimates. This request followed a presentation by DFI on such a method at the Grand Teton Specialty Conference on Visibility. In coordination with this cost and benefit comparison, UARG has also requested that other contractors estimate the levels of uncertainty in visibility improvements, the household value for visibility improvements, and the costs of implementation. The information provided by those contractors served as key inputs for the methodology and the results that are described in this paper. The information on visibility improvements was provided by AeroVironment Incorporated (AV), Zannetti. The information on household value was provided by Dr. Paul Ruud. Finally, the information on costs was provided by Temple, Baker, and Sloane, Incorporated (TBS). The three reports described above are discussed in this paper.« less

  4. Atmospheric Carbon Tetrachloride: Mysterious Emissions Gap Almost Closed

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Newman, P. A.; Reimann, S.

    2016-12-01

    Carbon tetrachloride (CCl4) is a major ozone-depleting substance and its production and consumption is controlled under the Montreal Protocol for emissive uses. The most recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg yr-1, based on country-by-country reports to UNEP, vs. a global top-down emissions estimate of 57 Gg yr-1, based on atmospheric measurements. To understand the gap between the top-down and bottom-up emissions estimates, a CCl4 activity was formed under the auspices of the Stratosphere-Troposphere Processes And their Role in Climate (SPARC) project. Several new findings were brought forward by the SPARC CCl4 activity. CCl4 is destroyed in the stratosphere, oceans, and soils. The total lifetime estimate has been increased from 26 to 33 years. The new 33-year total lifetime lowers the top-down emissions estimate to 40 (25-55) Gg yr-1. In addition, a persistent hemispheric difference implies substantial ongoing Northern Hemisphere emissions, yielding an independent emissions estimate of 30 Gg yr-1. The combination of these two yields an emissions estimate of 35 Gg yr-1. Regional estimates have been made for Australia, North America, East Asia, and Western Europe. The sum of these estimates results in emissions of 21 Gg yr-1, albeit this does not include all regions of the world. Four bottom-up CCl4 emissions pathways have been identified, i.e., fugitive, unreported non-feedstock, unreported inadvertent, and legacy emissions. The new industrial bottom-up emissions estimate includes emissions from chloromethanes plants (13 Gg yr-1) and feedstock fugitive emissions (2 Gg yr-1). When combined with legacy emissions and unreported inadvertent emissions ( 10 Gg yr-1), the total global emissions are 20±5 Gg yr-1. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties.

  5. Airport emissions quantification: Impacts of electrification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geba, V.

    1998-07-01

    Four airports were assessed to demonstrate that electrification of economically viable air- and land-side vehicles and equipment can significantly reduce total airport emissions. Assessments were made using the FAA`s Emissions and Dispersion Modeling System and EPRI Airport Electrification Project data. Development and implementation of cost-effective airport emissions reduction strategies can be complex, requiring successful collaboration of local, state, and federal regulatory agencies with airport authorities. The methodology developed in this study helps to simplify this task. The objectives of this study were: to develop a methodology to quantify annual emissions at US airports from all sources--aircraft, vehicles, and infrastructure; andmore » to demonstrate that electrification of economically viable air- and land-side vehicles and equipment can significantly reduce total airport emissions on-site, even when allowing for emissions from the generation of electricity.« less

  6. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use change shows limited impacts on global carbon fluxes and BVOC emissions, but there are regional contrasting impacts over Europe (afforestation) and China (deforestation).

  7. Inclusion of Coastal Wetlands within the Inventory of United States Greenhouse Gas Emissions and Sinks

    NASA Astrophysics Data System (ADS)

    Crooks, S.; Wirth, T. C.; Herold, N.; Bernal, B.; Holmquist, J. R.; Troxler, T.; Megonigal, P.; Sutton-Grier, A.; Muth, M.; Emmett-Mattox, S.

    2016-12-01

    The Inventory of U.S. GHG Emissions and Sinks' (Inventory) chapter on Land Use, Land Use Change and Forestry (LULUCF) reports C stock changes and emissions of CH4 and N2O from forest management, and other land-use/land-use change activities. With the release of the 2013 Supplement to the 2006 IPCC Guidelines for National GHG Inventories: Wetlands (Wetlands Supplement) the United States has begun working to include emissions and removals from management activities on coastal wetlands, and is responding to a request by the United Nations Framework Convention on Climate Change (UNFCCC) for Parties to report back in March 2017 on their country's experience in applying the Wetlands Supplement. To support the EPA, NOAA has formed an interagency and science community group i.e., Coastal Wetland Carbon Working Group (CWCWG). The task of the CWCWG is to conduct an initial IPCC Tier 1-2 baseline assessment of GHG emissions and removals associated with coastal wetlands using the methodologies described in the recently released IPCC Wetlands Supplement for inclusion in the Inventory submitted to the UNFCCC in April 2017. The 5 million ha coastal land area of the conterminous United States has been delineated based upon tide stations and LIDAR derived digital elevation model. Land use change within the coastal land area has been calculated from NOAA Coastal Change Analysis Program (C-CAP), Forest Inventory and National Resource Inventory (NRI). Tier 2 (i.e., country-specific) subnational / climate zone estimates of carbon stocks (including soils), along with carbon sequestration rates and methane emissions rates have been developed from literature. Future opportunities to improve the coastal wetland estimates include: refined quantification of methane emissions from wetlands across the salinity gradient (including mapping of this gradient) and from impounded waters; quantification of impacts of forestry activities on wetland soils; emissions and removals on forested tidally influenced and palustrine wetlands on coastal land areas; the fate of carbon released from eroded wetlands; and the extent of seagrass along with the emissions and removals associated with anthropogenic impacts to them.

  8. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    NASA Astrophysics Data System (ADS)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case of constant management practices. High temporal resolution of model outputs enabled us to identify hot moments of N-turnover and total N2O emissions according to extreme weather events. We analysed how strongly these event based emissions, which are not accounted for by classical inventories, affect emission factors. The evaluation of the IPCC default emission factor for its validity under spatially distinct environmental conditions revealed which environmental conditions are responsible for major deviations of actual emissions from the theoretical values. Scrutinizing these conditions can help to improve climate reporting and greenhouse gas mitigation measures.

  9. Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms

    NASA Astrophysics Data System (ADS)

    VanderZaag, A. C.; MacDonald, J. D.; Evans, L.; Vergé, X. P. C.; Desjardins, R. L.

    2013-09-01

    Methane emissions from manure management represent an important mitigation opportunity, yet emission quantification methods remain crude and do not contain adequate detail to capture changes in agricultural practices that may influence emissions. Using the Canadian emission inventory methodology as an example, this letter explores three key aspects for improving emission quantification: (i) obtaining emission measurements to improve and validate emission model estimates, (ii) obtaining more useful activity data, and (iii) developing a methane emission model that uses the available farm management activity data. In Canada, national surveys to collect manure management data have been inconsistent and not designed to provide quantitative data. Thus, the inventory has not been able to accurately capture changes in management systems even between manure stored as solid versus liquid. To address this, we re-analyzed four farm management surveys from the past decade and quantified the significant change in manure management which can be linked to the annual agricultural survey to create a continuous time series. In the dairy industry of one province, for example, the percentage of manure stored as liquid increased by 300% between 1991 and 2006, which greatly affects the methane emission estimates. Methane emissions are greatest from liquid manure, but vary by an order of magnitude depending on how the liquid manure is managed. Even if more complete activity data are collected on manure storage systems, default Intergovernmental Panel on Climate Change (IPCC) guidance does not adequately capture the impacts of management decisions to reflect variation among farms and regions in inventory calculations. We propose a model that stays within the IPCC framework but would be more responsive to farm management by generating a matrix of methane conversion factors (MCFs) that account for key factors known to affect methane emissions: temperature, retention time and inoculum. This MCF matrix would be populated using a mechanistic emission model verified with on-farm emission measurements. Implementation of these MCF values will require re-analysis of farm surveys to quantify liquid manure emptying frequency and timing, and will rely on the continued collection of this activity data in the future. For model development and validation, emission measurement campaigns will be needed on representative farms over at least one full year, or manure management cycle (whichever is longer). The proposed approach described in this letter is long-term, but is required to establish baseline data for emissions from manure management systems. With these improvements, the manure management emission inventory will become more responsive to the changing practices on Canadian livestock farms.

  10. The potential of using remote sensing data to estimate air-sea CO2 exchange in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase

    2017-12-01

    In this article, we present the first climatological map of air-sea CO2 flux over the Baltic Sea based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic Sea, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open sea (-4 mmol m-2 d-1). In its entirety, the Baltic Sea acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.

  11. Normalization of hydrocarbon emissions in Germany

    NASA Astrophysics Data System (ADS)

    Levitin, R. E.

    2018-05-01

    In connection with the integration of the Russian Federation into the European space, many technical regulations and methodologies are being corrected. The work deals with the German legislation in the field of determining of hydrocarbon emissions and the methodology for determining the emissions of oil products from vertical steel tanks. In German law, the Emission Protection Act establishes only basic requirements. Mainly technical details, which have importance for practice, are regulated in numerous Orders on the Procedure for the Implementation of the Law (German abbr. - BimSchV). Documents referred to by the Technical Manual on the Maintenance of Clean Air are a step below on the hierarchical ladder of legislative and regulatory documentation. This set of documents is represented by numerous DIN standards and VDI guidelines. The article considers the methodology from the guidance document VDI 3479. The shortcomings and problems of applying the given method in Russia are shown.

  12. Estimating net changes in life-cycle emissions from adoption of emerging civil infrastructure technologies.

    PubMed

    Amponsah, Isaac; Harrison, Kenneth W; Rizos, Dimitris C; Ziehl, Paul H

    2008-01-01

    There is a net emissions change when adopting new materials for use in civil infrastructure design. To evaluate the total net emissions change, one must consider changes in manufacture and associated life-cycle emissions, as well as changes in the quantity of material required. In addition, in principle one should also consider any differences in costs of the two designs because cost savings can be applied to other economic activities with associated environmental impacts. In this paper, a method is presented that combines these considerations to permit an evaluation of the net change in emissions when considering the adoption of emerging technologies/materials for civil infrastructure. The method factors in data on differences between a standard and new material for civil infrastructure, material requirements as specified in designs using both materials, and price information. The life-cycle assessment approach known as economic input-output life-cycle assessment (EIO-LCA) is utilized. A brief background on EIO-LCA is provided because its use is central to the method. The methodology is demonstrated with analysis of a switch from carbon steel to high-performance steel in military bridge design. The results are compared with a simplistic analysis that accounts for the weight reduction afforded by use of the high-performance steel but assuming no differences in manufacture.

  13. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions.

    PubMed

    Préndez, Margarita; Lara-González, Scarlette

    2008-09-01

    Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65 Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.

  14. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling.

    PubMed

    Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang

    2013-11-05

    A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data.

  15. Global EDGAR v4.1 emissions of air pollutants: analysis of impacts of emissions abatement in industry and road transport on regional and global scale

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Olivier, J. G.; Doering, U. M.; van Aardenne, J.; Monni, S.; Pagliari, V.; Peters, J. A.

    2010-12-01

    The new version v4.1 of the Emission Database for Global Atmospheric Research (EDGAR) compiled by JRC and PBL provides independent estimates of the global anthropogenic emissions and emission trends of precursors of tropospheric ozone (CO, NMVOC, NOx) and acidifying substances (NOx, NH3, SO2) for the period 1970-2005. All emissions are detailed at country level consistently using the same technology-based methodology, combining activity data (international statistics) from publicly available sources and to the extent possible emission factors as recommended by the EMEP/EEA air pollutant emission inventory guidebook. By using high resolution global grid maps per source category of area sources and point sources, we also compiled datasets with annual emissions on a 0.1x0.1 degree grid, as input for atmospheric models. We provide full and up-to-date inventories per country, also for developing countries. Moreover, the time series back in time to 1970 provides for the trends in official national inventories a historic perspective. As part of our objective to contribute to more reliable inventories by providing a reference emissions database for emission scenarios, inventory comparisons and for atmospheric modellers, we strive to transparently document all data sources used and assumptions made where data was missing, in particular for assumptions made on the shares of technologies where relevant. Technology mixes per country or region were taken from other data sources (such as the Platts database) or estimated using other sources or countries as proxy. The evolution in the adoption of technologies world-wide over the 35 years covered by EDGAR v4.1 will be illustrated for the power industry and the road transport sectors, in particular for Europe and the US. Similarly the regional and global impacts of implemented control measures and end-of pipe abatements will be illustrated by the examples of - NOx and SO2 end-of pipe abatements being implemented since the late eighties for power plants in Europe, and since 2000 appearing in the economically emerging countries such as China; - EURO3 control measures, a European standard for passenger cars, which now reached the age of being exported to African and Latin-American countries. An outlook will be given on the current readiness of Europe to meet the challenging goals of the National Emission Ceilings directive.

  16. "Investigation of Trends in Aerosol Direct Radiative Effects ...

    EPA Pesticide Factsheets

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing. A comprehensive investigation of the processes regulating aerosol distributions, their optical properties, and their radiative effects and verification of their simulated effects for past conditions relative to measurements is needed in order to build confidence in the estimates of the projected impacts arising from changes in both anthropogenic forcing and climate change. This study aims at addressing this issue through a systematic investigation of changes in anthropogenic emissions of SO2 and NOx over the past two decades in the United States, their impacts on anthropogenic aerosol loading in the North American troposphere, and subsequent impacts on regional radiation budgets. During the period 1990-2010, SO2 and NOx emissions across the US have reduced by about 66% and 50%, respectively, mainly due to Title IV of the U.S. Clean Air Act Amendments (CAA). A methodology is developed to consistently estimate emission inventories for the 20-year period accounting for air quality regulations as well as population trends, economic conditions, and technology changes in motor vehicles and electric power generation. The coupled WRF-CMAQ model is applied for time periods pre a

  17. Global carbon budget 2013

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.

    2014-06-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.5 ± 0.5 GtC yr-1, and SLAND 2.8 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr-1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and assuming an ELUC of 1.0 ± 0.5 GtC yr-1 (based on the 2001-2010 average), SLAND was 2.7 ± 0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1-3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870-2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2013_V2.3).

  18. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Kendall, E. A.; Schlatter, N. M.; Varney, R. H.; Watkins, B. J.; Pedersen, T. R.; Bernhardt, P. A.; Huba, J. D.

    2014-03-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at High Frequency Active Auroral Research Program on 12 March 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert (1968, 1970), we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with heater-induced ionization in view of the spatial intermittency of the airglow.

  19. Development of Methodology and Technology for Identifying and Quantifying Emission Products from Open Burning and Open Detonation Thermal Treatment Methods. Field Test Series A, B, and C. Volume 2, Part B. Quality Assurance and Quality Control. Appendices

    DTIC Science & Technology

    1992-01-01

    the uncertainty. The above method can give an estimate of the precision of the * analysis. However, determining the accuracy can not be done as...speciation has been determined from analyzing model samples as well as comparison with other methods and combinations of other methods with this method . 3...laboratory. The output of the sensor is characterized over its working range and an appropriate response factor determined by linear regression of the

  20. Comparing Top-down and Bottom-up Estimates of Methane Emissions across Multiple U.S. Basins Provides Insights into National Oil and Gas Emissions and Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Hamburg, S.; Alvarez, R.; Lyon, D. R.; Zavala-Araiza, D.

    2016-12-01

    Several recent studies quantified regional methane emissions in U.S. oil and gas (O&G) basins using top-down approaches such as airborne mass balance measurements. These studies apportioned total methane emissions to O&G based on hydrocarbon ratios or subtracting bottom-up estimates of other sources. In most studies, top-down estimates of O&G methane emissions exceeded bottom-up emission inventories. An exception is the Barnett Shale Coordinated Campaign, which found agreement between aircraft mass balance estimates and a custom emission inventory. Reconciliation of Barnett Shale O&G emissions depended on two key features: 1) matching the spatial domains of top-down and bottom-up estimates, and 2) accounting for fat-tail sources in site-level emission factors. We construct spatially explicit custom emission inventories for domains with top-down O&G emission estimates in eight major U.S. oil and gas production basins using a variety of data sources including a spatially-allocated U.S. EPA Greenhouse Gas Inventory, the EPA Greenhouse Gas Reporting Program, state emission inventories, and recently published measurement studies. A comparison of top-down and our bottom-up estimates of O&G emissions constrains the gap between these approaches and elucidates regional variability in production-normalized loss rates. A comparison of component-level and site-level emission estimates of production sites in the Barnett Shale region - where comprehensive activity data and emissions estimates are available - indicates that abnormal process conditions contribute about 20% of regional O&G emissions. Combining these two analyses provides insights into the relative importance of different equipment, processes, and malfunctions to emissions in each basin. These data allow us to estimate the U.S. O&G supply chain loss rate, recommend mitigation strategies to reduce emissions from existing infrastructure, and discuss how a similar approach can be applied internationally.

  1. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  2. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  3. Economic impacts of a transition to higher oil prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessmer, Jr, R. G.; Carhart, S. C.; Marcuse, W.

    1978-06-01

    Economic impacts of sharply higher oil and gas prices in the eighties are estimated using a combination of optimization and input-output models. A 1985 Base Case is compared with a High Case in which crude oil and crude natural gas are, respectively, 2.1 and 1.4 times as expensive as in the Base Case. Impacts examined include delivered energy prices and demands, resource consumption, emission levels and costs, aggregate and compositional changes in gross national product, balance of payments, output, employment, and sectoral prices. Methodology is developed for linking models in both quantity and price space for energy service--specific fuel demands.more » A set of energy demand elasticities is derived which is consistent between alternative 1985 cases and between the 1985 cases and an historical year (1967). A framework and methodology are also presented for allocating portions of the DOE Conservation budget according to broad policy objectives and allocation rules.« less

  4. Improving and Assessing Aircraft-based Greenhouse Gas Emission Rate Measurements at Indianapolis as part of the INFLUX project.

    NASA Astrophysics Data System (ADS)

    Heimburger, A. M. F.; Shepson, P. B.; Stirm, B. H.; Susdorf, C.; Cambaliza, M. O. L.

    2015-12-01

    Since the Copenhagen accord in 2009, several countries have affirmed their commitment to reduce their greenhouse gas emissions. The United States and Canada committed to reduce their emissions by 17% below 2005 levels, by 2020, Europe by 14% and China by ~40%. To achieve such targets, coherent and effective strategies in mitigating atmospheric carbon emissions must be implemented in the next decades. Whether such goals are actually achieved, they require that reductions are "measurable", "reportable", and "verifiable". Management of greenhouse gas emissions must focus on urban environments since ~74% of CO2 emissions worldwide will be from cities, while measurement approaches are highly uncertain (~50% to >100%). The Indianapolis Flux Experiment (INFLUX) was established to develop, assess and improve top-down and bottom-up quantifications of urban greenhouse gas emissions. Based on an aircraft mass balance approach, we performed a series of experiments focused on the improvement of CO2, CH4 and CO emission rates quantification from Indianapolis, our final objective being to drastically improve the method overall uncertainty from the previous estimate of 50%. In November-December 2014, we conducted nine methodologically identical mass balance experiments in a short period of time (24 days, one downwind distance) for assumed constant total emission rate conditions, as a means to obtain an improved standard deviation of the mean determination. By averaging the individual emission rate determinations, we were able to obtain a method precision of 17% and 16% for CO2 and CO, respectively, at the 95%C.L. CH4 emission rates are highly variable day to day, leading to precision of 60%. Our results show that repetitive sampling can enable improvement in precision of the aircraft top-down methods through averaging.

  5. A spatial ammonia emission inventory for pig farming

    NASA Astrophysics Data System (ADS)

    Rebolledo, Boris; Gil, Antonia; Pallarés, Javier

    2013-01-01

    Atmospheric emissions of ammonia (NH3) from the agricultural sector have become a significant environmental and public concern as they have impacts on human health and ecosystems. This work proposes an improved methodology in order to identify administrative regions with high NH3 emissions from pig farming and calculates an ammonia density map (kg NH3-N ha-1), based on the number of pigs and available agricultural land, terrain slopes, groundwater bodies, soil permeability, zones sensitive to nitrate pollution and surface water buffer zones. The methodology has been used to construct a general tool for locating ammonia emissions from pig farming when detailed information of livestock farms is not available.

  6. An Evaluation of Aircraft Emissions Inventory Methodology by Comparisons with Reported Airline Data

    NASA Technical Reports Server (NTRS)

    Daggett, D. L.; Sutkus, D. J.; DuBois, D. P.; Baughcum, S. L.

    1999-01-01

    This report provides results of work done to evaluate the calculation methodology used in generating aircraft emissions inventories. Results from the inventory calculation methodology are compared to actual fuel consumption data. Results are also presented that show the sensitivity of calculated emissions to aircraft payload factors. Comparisons of departures made, ground track miles flown and total fuel consumed by selected air carriers were made between U.S. Dept. of Transportation (DOT) Form 41 data reported for 1992 and results of simplified aircraft emissions inventory calculations. These comparisons provide an indication of the magnitude of error that may be present in aircraft emissions inventories. To determine some of the factors responsible for the errors quantified in the DOT Form 41 analysis, a comparative study of in-flight fuel flow data for a specific operator's 747-400 fleet was conducted. Fuel consumption differences between the studied aircraft and the inventory calculation results may be attributable to several factors. Among these are longer flight times, greater actual aircraft weight and performance deterioration effects for the in-service aircraft. Results of a parametric study on the variation in fuel use and NOx emissions as a function of aircraft payload for different aircraft types are also presented.

  7. A new inventory for two-wheel vehicle emissions in West Africa for 2002

    NASA Astrophysics Data System (ADS)

    Assamoi, Eric-Michel; Liousse, Catherine

    2010-10-01

    Rather surprisingly, urban atmospheric particulate levels in West Africa compare with measured concentrations in Europe and Asia megacities (Liousse, C., Galy-Lacaux, C., Assamoi, E.-M., Ndiaye, A., Diop, B., Cachier, H., Doumbia, T., Gueye, P., Yoboue, V., Lacaux, J.-P., Guinot, B., Guillaume, B., Rosset, R., Castera, P., Gardrat, E., Zouiten, C., Jambert, C., Diouf, A., Koita, O., Baeza, A., Annesi-Maesano, I., Didier, A., Audry, S., Konare, A., 2009. Integrated Focus on West African Cities (Cotonou, Bamako, Dakar, Ouagadougou, Abidjan, Niamey): Emissions, Air Quality and Health Impacts of Gases and Aerosols. Third International AMMA Conference on Predictability of the West African Moosoon Weather, Climate and Impacts. Ouagadougou, Burkina Faso. July 20-24). This pollution mainly derives from road traffic emissions with, in some capitals (e.g. Cotonou), the strong contribution of two-wheel vehicles. Two key questions arise: are presently available emission inventories (e.g. Junker, C., Liousse, C., 2008. A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmospheric Chemistry Physics, 8, 1-13; Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 1009, D14203, DOI:10.1029/2003JD003697) able to account for these emissions? And, if not, how can we remedy this? The aim of this paper is to develop a methodology to estimate emissions produced by two-wheel vehicles in West Africa for 2002 in a context where reliable information is hardly available. Fuel consumption ratios between two-wheel engines (in this work) and all vehicles issued from UN database ( http://data.un.org/Data.aspx?d=EDATA&f=cmID%3aMO%3btrID%3a1221) are as high as 169%, 264% and 628%, for Burkina Faso, Mali and Chad respectively, indicating that this global database does not properly account for regional specificities. Moreover, emission factors for black carbon (BC) and primary organic carbon (OCp) have been measured for two-stroke engines in Benin (Guinot, B., Liousse, C., Cachier, H., Guillaume, B., et al. New emission factor estimates for biofuels and mobile sources. Atmospheric Environment, in press.), giving significantly higher values than in Europe. This is particularly true for OCp, and consequently the calculated emissions for two-stroke engines are also significantly larger than total road traffic previously estimated in global inventories ( Junker and Liousse (2008) with United Nations database for 2002; Bond et al., 2004). The ensuing discussion illustrates the importance of two-stroke engines in the West Africa transport sector and the strong need for inventory updating.

  8. Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition

    NASA Astrophysics Data System (ADS)

    Torregrosa, A. J.; Broatch, A.; Margot, X.; García-Tíscar, J.

    2016-08-01

    An experimental methodology is proposed to assess the noise emission of centrifugal turbocompressors like those of automotive turbochargers. A step-by-step procedure is detailed, starting from the theoretical considerations of sound measurement in flow ducts and examining specific experimental setup guidelines and signal processing routines. Special care is taken regarding some limiting factors that adversely affect the measuring of sound intensity in ducts, namely calibration, sensor placement and frequency ranges and restrictions. In order to provide illustrative examples of the proposed techniques and results, the methodology has been applied to the acoustic evaluation of a small automotive turbocharger in a flow bench. Samples of raw pressure spectra, decomposed pressure waves, calibration results, accurate surge characterization and final compressor noise maps and estimated spectrograms are provided. The analysis of selected frequency bands successfully shows how different, known noise phenomena of particular interest such as mid-frequency "whoosh noise" and low-frequency surge onset are correlated with operating conditions of the turbocharger. Comparison against external inlet orifice intensity measurements shows good correlation and improvement with respect to alternative wave decomposition techniques.

  9. Empirical Temperature Measurement in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  10. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road accessibility datasets.

  11. Staging Airliner Service

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2007-01-01

    There is a general consensus building that historically high fuel prices and greater public awareness of the emissions that result from burning fuel are going to be long-term concerns for those who design, build, and operate airliners. The possibility of saving both fuel and reducing emissions has rekindled interest in breaking very long-range airline flights into multiple stages or even adopting in-flight refueling. It is likely that staging will result in lower fuel burn, and recent published reports have suggested that the savings are substantial, particularly if the airliner is designed from the outset for this kind of operation. Given that staging runs against the design and operation historical trend, this result begs for further attention. This paper will examine the staging question, examining both analytic and numeric performance estimation methodologies to quantify the likely amount of fuel savings that can be expected and the resulting design impacts on the airliner.

  12. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; Kulmala, M.

    2006-10-01

    Boundary layer concenrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. Measurements were conducted over boreal forests near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using light aircraft and in 2006 using hot air ballon. Isoprene concentrarions were low, usually below detection limit. This is explained by low biogenic production due to cold weather. Monoterpenes were observed frequently. Average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds e.g. benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using simple mixed box budget methodology. Total monoterpene fluxes varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. Highest fluxes of anthropogenic compounds were those of p/m xylene.

  13. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  14. Characterization of Dust Emissions from an Actively Retreating Glacier

    NASA Astrophysics Data System (ADS)

    King, J.

    2017-12-01

    The Kaskawulsh glacier in Yukon, Canada, part of the St. Elias Mountain Glacier system, is experiencing increased ablation from rising air temperatures and in 2016 changed its main fluvial outlet (the Slims River and Kluane Lake) for the first time in over 300 years to drain into the Gulf of Alaska. In the recent earth history, changes in temperature within glaciated valleys have produced large amounts of wind-blown dust, evident in layers of loess within surrounding soils. Mineral aerosols in the atmosphere affect the environment of the earth through their direct effect on solar radiation, modifying cloud processes, and ground insolation, while the deposition of mineral aerosols can provide essential nutrients for ocean and terrestrial productivity. This potential drastic reduction in fluvial inputs into Kluane Lake will result in the rapid exposure of deltaic sediments and extended periods of dust emissions, similar to those suggested to occur during the rapid warming in the early Holocene. This drastic change already starting to occur makes this system an excellent natural laboratory for investigating the impact of dust storms under past and future climates. This research is focused on analyzing the connections between proglacial valley dust emissions and glacier dynamics, within ancient and modern climates. Measurements made directly in the valley of dust emission frequency, local climatological data analysis, and a remote sensing analysis approach in 2016 and 2017, have been combined to provide an insight into the effects that rapid changes in proglacial systems can have on dust dynamics. Strong interdependencies exist between glacier mass and diurnal winds, as well as air temperature and river levels, that combine to control the magnitude and frequency of dust emissions. The methodology utilized in this study could be applied to similar regions to produce estimates of dust emissions where direct measurements are minimal or difficult to attain, and can be fed directly into regional climate models to improve estimates of the impacts of dust derived aerosol optical depth at high latitudes.

  15. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NASA Astrophysics Data System (ADS)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national (geo-referenced) emission inventories and also to other resources that can be employed when such national inventories are lacking.

  16. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.

  17. Biomass fuels and lung cancer.

    PubMed

    Lim, Wei-Yen; Seow, Adeline

    2012-01-01

    It is estimated that about 2.4 billion people around the world, or about 40% of the world's population, depend on biomass fuels (wood, charcoal, dung, crop residue) to meet their energy needs for cooking and heating. The burden is especially high in Asia. Studies suggest that levels of pollutants including particulate matter <10 µm and polycyclic aromatic hydrocarbons indoors in homes where biomass fuels are used far exceed levels recommended as safe. While in vitro and in vivo studies in animal models suggest that wood smoke emission extracts are mutagenic and carcinogenic, epidemiologic studies have been inconsistent. In this review, we discuss possible carcinogenic mechanisms of action of biomass fuel emissions, summarize the biological evidence for carcinogenesis, and review the epidemiologic evidence in humans of biomass fuel emissions as a risk factor for lung cancer. Finally, we highlight some issues relevant for interpreting the epidemiologic evidence for the relationship between biomass fuel exposure and lung cancer: these include methodologic considerations and recognition of possible effect modification by genetic susceptibility, smoking status, age of exposure and histologic type. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  18. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    PubMed

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  19. Estimation of the emission factors of particle number and mass fractions from traffic at a site where mean vehicle speeds vary over short distances

    NASA Astrophysics Data System (ADS)

    Jones, Alan M.; Harrison, Roy M.

    Emission factors for particle number in three size ranges (11-30; 30-100 and >100 nm) as well as for PM 2.5, PM 2.5-10 and PM 10 mass have been estimated separately for heavy and light-duty vehicles in a heavily trafficked street canyon in London where traffic speeds vary considerably over short distances. Emissions of NO x were estimated from published emission factors, and emissions of other pollutants estimated from their ratio to NO x in the roadside concentration after subtraction of the simultaneously measured urban background. The estimated emission factors are compared with other published data. Despite many differences in the design and implementation of the various studies, the results for particulate matter are broadly similar. Estimates of particle number emissions in this study for light-duty vehicles are very close to other published data, whilst those for heavy-duty vehicles are lower than in the more comparable studies. It is suggested that a contributory factor may be the introduction of diesel particle oxidation traps on some of the bus fleet in London. Estimates of emission factors for particle mass (PM 2.5 and PM 2.5-10) are within the range of other published data, and total mass emissions estimated from the ratio of concentration to NO x are tolerably close to those estimated using emission factors from the National Atmospheric Emissions Inventory (NAEI). However, the method leads to an estimate of carbon monoxide emissions 3-6 times larger than that derived using the NAEI factors.

  20. Global inverse modeling of CH4 sources and sinks: an overview of methods

    NASA Astrophysics Data System (ADS)

    Houweling, Sander; Bergamaschi, Peter; Chevallier, Frederic; Heimann, Martin; Kaminski, Thomas; Krol, Maarten; Michalak, Anna M.; Patra, Prabir

    2017-01-01

    The aim of this paper is to present an overview of inverse modeling methods that have been developed over the years for estimating the global sources and sinks of CH4. It provides insight into how techniques and estimates have evolved over time and what the remaining shortcomings are. As such, it serves a didactical purpose of introducing apprentices to the field, but it also takes stock of developments so far and reflects on promising new directions. The main focus is on methodological aspects that are particularly relevant for CH4, such as its atmospheric oxidation, the use of methane isotopologues, and specific challenges in atmospheric transport modeling of CH4. The use of satellite retrievals receives special attention as it is an active field of methodological development, with special requirements on the sampling of the model and the treatment of data uncertainty. Regional scale flux estimation and attribution is still a grand challenge, which calls for new methods capable of combining information from multiple data streams of different measured parameters. A process model representation of sources and sinks in atmospheric transport inversion schemes allows the integrated use of such data. These new developments are needed not only to improve our understanding of the main processes driving the observed global trend but also to support international efforts to reduce greenhouse gas emissions.

  1. New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iodice, Paolo, E-mail: paolo.iodice@unina.it; Senatore, Adolfo

    In the latest years the effect of powered two-wheelers on air polluting emissions is generally noteworthy all over the world, notwithstanding advances in internal combustion engines allowed to reduce considerably both fuel consumption and exhaust emissions of SI engines. Nowadays, in fact, these vehicles represent common means of quotidian moving, serving to meet daily urban transport necessities with a significant environmental impact on air quality. Besides, the emissive behavior of the two-wheelers measured under fixed legislative driving standards (and not on the local driving conditions) might not be sufficiently representative of real world motorcycle riding. The purpose of this investigationmore » is a deeper research on emissive levels of in-use motorcycles equipped with last generation SI engines under real world driving behavior. In order to analyze the effect of vehicle instantaneous speed and acceleration on emissive behavior, instantaneous emissions of CO, HC and NO{sub X} were measured in the exhaust of a four-stroke motorcycle, equipped with a three-way catalyst and belonging to the Euro-3 legislative category. Experimental tests were executed on a chassis dynamometer bench in the laboratories of the National Research Council (Italy), during the Type Approval test cycle, at constant speed and under real-world driving cycles. This analytical-experimental investigation was executed with a methodology that improves vehicles emission assessment in comparison with the modeling approaches that are based on fixed legislative driving standards. The statistical processing results so obtained are very useful also in order to improve the database of emission models commonly used for estimating emissions from road transport sector, then they can be used to evaluate the environmental impact of last generation medium-size motorcycles under real driving behaviors.« less

  2. Green house gas emissions from composting and mechanical biological treatment.

    PubMed

    Amlinger, Florian; Peyr, Stefan; Cuhls, Carsten

    2008-02-01

    In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01-0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.

  3. Identifying areas of deforestation risk for REDD+ using a species modeling tool

    PubMed Central

    Riveros, Juan Carlos; Forrest, Jessica L

    2014-01-01

    Background To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. Results We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Conclusions Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+. PMID:25489336

  4. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  5. Identifying areas of deforestation risk for REDD+ using a species modeling tool.

    PubMed

    Aguilar-Amuchastegui, Naikoa; Riveros, Juan Carlos; Forrest, Jessica L

    2014-01-01

    To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+.

  6. Integration of biogenic emissions in environmental fate, transport, and exposure systems

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos I.

    Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary air pollutants such as ozone. Understanding major factors contributing to allergic airway diseases requires accurate characterization of emissions and transport/transformation of biogenic emissions. However, biogenic emission estimates are laden with large uncertainties. Furthermore, the current biogenic emission estimation models use low-resolution data for estimating land use, vegetation biomass and VOC emissions. Furthermore, there are currently no established methods for estimating bioaerosol emissions over continental or regional scale, which can impact the ambient levels of pollent that have synergestic effects with other gaseous pollutants. In the first part of the thesis, an detailed review of different approaches and available databases for estimating biogenic emissions was conducted, and multiple geodatabases and satellite imagery were used in a consistent manner to improve the estimates of biogenic emissions over the continental United States. These emissions represent more realistic, higher resolution estimates of biogenic emissions (including those of highly reactive species such as isoprene). The impact of these emissions on tropospheric ozone levels was studied at a regional scale through the application of the USEPA's Community Multiscale Air Quality (CMAQ) model. Minor, but significant differences in the levels of ambient ozone were observed. In the second part of the thesis, an algorithm for estimating emissions of pollen particles from major allergenic tree and plant families in the United States was developed, extending the approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS). A spatio-temporal vegetation map was constructed from different remote sensing sources and local surveys, and was coupled with a meteorological model to develop pollen emissions rates. This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation mapping in traditional pollen emission estimation methods. The pollen emissions model was applied to study the pollen emissions for North East US at 12 km resolution for comparison with ground level tree pollen data. A pollen transport model that simulates complex dispersion and deposition was developed through modifications to the USEPA's Community Multiscale Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak pollen counts measured, thus corroborating independent model verification. Furthermore, the peak predicted pollen concentration estimates were within two days of the peak measured pollen counts, thus providing independent corroboration. The models for emissions and dispersion allow data-independent estimation of pollen levels, and provide an important component in assessing exposures of populations to pollen, especially under different climate change scenarios.

  7. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    NASA Astrophysics Data System (ADS)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard compliance in downwind cities. A health risk assessment showed no increase in cancer or chronic non-cancer risk at locations near natural gas wells in Pennsylvania, but the contribution of natural gas emissions to total risk was 3-6 times higher near wells. These results will assist policy makers, natural gas producers, and citizen stakeholders in crafting effective policies to control VOC emissions from natural gas production activities.

  8. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  9. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual FGD removal efficiency are the main contributors to the uncertainties of SO2 emissions. Biofuel combustion related parameters (i.e., technology divisions, fuel use, and emission factor determinants) are the largest source of OC uncertainties, whereas BC emissions are also sensitive to the parameters of coal combustion in the residential and industrial sectors and the coke-making process. Comparing our results with satellite observations, we find that the trends of estimated emissions in both China and India are in good agreement with the trends of aerosol optical depth (AOD) and SO2 retrievals obtained from different satellites.

  10. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Streets, D. G.

    2011-07-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly fractions for major sectors and gridded emissions at a resolution of 0.1° × 0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and the actual FGD removal efficiency are the main contributors to the uncertainties of SO2 emissions. Biofuel combustion related parameters (i.e., technology divisions, fuel use, and emission factor determinants) are the largest source of OC uncertainties, whereas BC emissions are also sensitive to the parameters of coal combustion in the residential and industrial sectors and the coke-making process. Comparing our results with satellite observations, we find that the trends of estimated emissions in both China and India are in good agreement with the trends of aerosol optical depth (AOD) and SO2 retrievals obtained from different satellites.

  11. Estimates of air emissions from asphalt storage tanks and truck loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbore, D.C.

    1999-12-31

    Title V of the 1990 Clean Air Act requires the accurate estimation of emissions from all US manufacturing processes, and places the burden of proof for that estimate on the process owner. This paper is published as a tool to assist in the estimation of air emission from hot asphalt storage tanks and asphalt truck loading operations. Data are presented on asphalt vapor pressure, vapor molecular weight, and the emission split between volatile organic compounds and particulate emissions that can be used with AP-42 calculation techniques to estimate air emissions from asphalt storage tanks and truck loading operations. Since currentmore » AP-42 techniques are not valid in asphalt tanks with active fume removal, a different technique for estimation of air emissions in those tanks, based on direct measurement of vapor space combustible gas content, is proposed. Likewise, since AP-42 does not address carbon monoxide or hydrogen sulfide emissions that are known to be present in asphalt operations, this paper proposes techniques for estimation of those emissions. Finally, data are presented on the effectiveness of fiber bed filters in reducing air emissions in asphalt operations.« less

  12. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  13. Global Carbon Budget 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components,more » alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), E FF was 9.3 ± 0.5 GtC yr -1, E LUC 1.0 ± 0.5 GtC yr -1, G ATM 4.5 ± 0.1 GtC yr -1, S OCEAN 2.6 ± 0.5 GtC yr -1, and S LAND 3.1 ± 0.9 GtC yr -1. For year 2015 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr -1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr -1 that took place during 2006–2015. Also, for 2015, E LUC was 1.3 ± 0.5 GtC yr -1, G ATM was 6.3 ± 0.2 GtC yr -1, S OCEAN was 3.0 ± 0.5 GtC yr -1, and S LAND was 1.9 ± 0.9 GtC yr -1. G ATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller S LAND for that year. The global atmospheric CO 2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E FF with +0.2 % (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E FF in 2016, the growth rate in atmospheric CO 2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink ( S LAND) in response to El Niño conditions of 2015–2016. From this projection of E FF and assumed constant E LUC for 2016, cumulative emissions of CO 2 will reach 565 ± 55 GtC (2075 ± 205 GtCO 2) for 1870–2016, about 75 % from E FF and 25 % from E LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).« less

  14. Global Carbon Budget 2016

    DOE PAGES

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; ...

    2016-11-14

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components,more » alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), E FF was 9.3 ± 0.5 GtC yr -1, E LUC 1.0 ± 0.5 GtC yr -1, G ATM 4.5 ± 0.1 GtC yr -1, S OCEAN 2.6 ± 0.5 GtC yr -1, and S LAND 3.1 ± 0.9 GtC yr -1. For year 2015 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr -1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr -1 that took place during 2006–2015. Also, for 2015, E LUC was 1.3 ± 0.5 GtC yr -1, G ATM was 6.3 ± 0.2 GtC yr -1, S OCEAN was 3.0 ± 0.5 GtC yr -1, and S LAND was 1.9 ± 0.9 GtC yr -1. G ATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller S LAND for that year. The global atmospheric CO 2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E FF with +0.2 % (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E FF in 2016, the growth rate in atmospheric CO 2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink ( S LAND) in response to El Niño conditions of 2015–2016. From this projection of E FF and assumed constant E LUC for 2016, cumulative emissions of CO 2 will reach 565 ± 55 GtC (2075 ± 205 GtCO 2) for 1870–2016, about 75 % from E FF and 25 % from E LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).« less

  15. Global Carbon Budget 2016

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9.3 ± 0.5 GtC yr-1, ELUC 1.0 ± 0.5 GtC yr-1, GATM 4.5 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 3.1 ± 0.9 GtC yr-1. For year 2015 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1, showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr-1 that took place during 2006-2015. Also, for 2015, ELUC was 1.3 ± 0.5 GtC yr-1, GATM was 6.3 ± 0.2 GtC yr-1, SOCEAN was 3.0 ± 0.5 GtC yr-1, and SLAND was 1.9 ± 0.9 GtC yr-1. GATM was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller SLAND for that year. The global atmospheric CO2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in EFF with +0.2 % (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of EFF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (SLAND) in response to El Niño conditions of 2015-2016. From this projection of EFF and assumed constant ELUC for 2016, cumulative emissions of CO2 will reach 565 ± 55 GtC (2075 ± 205 GtCO2) for 1870-2016, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2016).

  16. Risk-based economic decision analysis of remediation options at a PCE-contaminated site.

    PubMed

    Lemming, Gitte; Friis-Hansen, Peter; Bjerg, Poul L

    2010-05-01

    Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential environmental costs. The health risks costs are associated with the residual contamination left at the site and its migration to groundwater used for drinking water. A probabilistic exposure model using first- and second-order reliability methods (FORM/SORM) is used to estimate the contaminant concentrations at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model. A case study based upon the developed methodology is presented in which the following remediation scenarios are analyzed and compared: (a) no action, (b) excavation and off-site treatment of soil, (c) soil vapor extraction and (d) thermally enhanced soil vapor extraction by electrical heating of the soil. Ultimately, the developed methodology facilitates societal cost estimations of remediation scenarios which can be used for internal ranking of the analyzed options. Despite the inherent uncertainties of placing a value on health and environmental impacts, the presented methodology is believed to be valuable in supporting decisions on remedial interventions. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

  18. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  19. Reconciling Top-Down and Bottom-Up Estimates of Oil and Gas Methane Emissions in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2015-12-01

    Top-down approaches that use aircraft, tower, or satellite-based measurements of well-mixed air to quantify regional methane emissions have typically estimated higher emissions from the natural gas supply chain when compared to bottom-up inventories. A coordinated research campaign in October 2013 used simultaneous top-down and bottom-up approaches to quantify total and fossil methane emissions in the Barnett Shale region of Texas. Research teams have published individual results including aircraft mass-balance estimates of regional emissions and a bottom-up, 25-county region spatially-resolved inventory. This work synthesizes data from the campaign to directly compare top-down and bottom-up estimates. A new analytical approach uses statistical estimators to integrate facility emission rate distributions from unbiased and targeted high emission site datasets, which more rigorously incorporates the fat-tail of skewed distributions to estimate regional emissions of well pads, compressor stations, and processing plants. The updated spatially-resolved inventory was used to estimate total and fossil methane emissions from spatial domains that match seven individual aircraft mass balance flights. Source apportionment of top-down emissions between fossil and biogenic methane was corroborated with two independent analyses of methane and ethane ratios. Reconciling top-down and bottom-up estimates of fossil methane emissions leads to more accurate assessment of natural gas supply chain emission rates and the relative contribution of high emission sites. These results increase our confidence in our understanding of the climate impacts of natural gas relative to more carbon-intensive fossil fuels and the potential effectiveness of mitigation strategies.

  20. U.S. Coast Guard Pollution Abatement Program : Cutter Estimated Exhaust Emissions.

    DOT National Transportation Integrated Search

    1975-09-01

    The gaseous and particulate emissions of the Coast Guard cutter fleet are estimated by using measured emission factors and derived operational duty cycles. These data are compared to previous estimates by using emission factors found in the literatur...

  1. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    NASA Astrophysics Data System (ADS)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected near the oil sands operations.

  2. Fast and optimized methodology to generate road traffic emission inventories and their uncertainties

    NASA Astrophysics Data System (ADS)

    Blond, N.; Ho, B. Q.; Clappier, A.

    2012-04-01

    Road traffic emissions are one of the main sources of air pollution in the cities. They are also the main sources of uncertainties in the air quality numerical models used to forecast and define abatement strategies. Until now, the available models for generating road traffic emission always required a big effort, money and time. This inhibits decisions to preserve air quality, especially in developing countries where road traffic emissions are changing very fast. In this research, we developed a new model designed to fast produce road traffic emission inventories. This model, called EMISENS, combines the well-known top-down and bottom-up approaches to force them to be coherent. A Monte Carlo methodology is included for computing emission uncertainties and the uncertainty rate due to each input parameters. This paper presents the EMISENS model and a demonstration of its capabilities through an application over Strasbourg region (Alsace), France. Same input data as collected for Circul'air model (using bottom-up approach) which has been applied for many years to forecast and study air pollution by the Alsatian air quality agency, ASPA, are used to evaluate the impact of several simplifications that a user could operate . These experiments give the possibility to review older methodologies and evaluate EMISENS results when few input data are available to produce emission inventories, as in developing countries and assumptions need to be done. We show that same average fraction of mileage driven with a cold engine can be used for all the cells of the study domain and one emission factor could replace both cold and hot emission factors.

  3. Quantification of the Impact of Roadway Conditions on Emissions

    DOT National Transportation Integrated Search

    2017-11-01

    The scope of this project involved developing a methodology to quantify the impact of roads condition on emissions and providing guidance to assist TxDOT in improving maintenance strategies to reduce gas emissions. The research quantified vehicle ...

  4. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  5. The impact of municipal solid waste management on greenhouse gas emissions in the United States.

    PubMed

    Weitz, Keith A; Thorneloe, Susan A; Nishtala, Subba R; Yarkosky, Sherry; Zannes, Maria

    2002-09-01

    Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.

  6. Quantification of Greenhouse Gas Emissions from the Predisposal Stage of Municipal Solid Waste Management.

    PubMed

    Zhou, Chuanbin; Jiang, Daqian; Zhao, Zhilan

    2017-01-03

    Municipal solid waste (MSW) disposal represents one of the largest sources of anthropogenic greenhouse gas (GHG) emissions. However, the biogenic GHG emissions in the predisposal stage of MSW management (i.e., the time from waste being dropped off in community or household garbage bins to being transported to disposal sites) are excluded from the IPCC inventory methodology and rarely discussed in academic literature. Herein, we quantify the effluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from garbage bins in five communities along the urban-rural gradient in Beijing in four seasons. We find that the annual average CO 2 , CH 4 , and N 2 O effluxes in the predisposal stage were (1.6 ± 0.9)10 3 , 0.049 ± 0.016, and 0.94 ± 0.54 mg kg -1 h -1 (dry matter basis) and had significant seasonal differences (24- to 159-fold) that were strongly correlated with temperature. According to our estimate, the N 2 O emission in the MSW predisposal stage amounts to 20% of that in the disposal stage in Beijing, making the predisposal stage a nontrivial source of waste-induced N 2 O emissions. Furthermore, the CO 2 and CH 4 emissions in the MSW predisposal account for 5% (maximum 10% in summer) of the total carbon contents in a Beijing's household food waste stream, which has significance in the assessment of MSW-related renewable energy potential and urban carbon cycles.

  7. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Megan F., E-mail: mfking@uvic.ca; Gutberlet, Jutta, E-mail: gutber@uvic.ca

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solidmore » waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.« less

  8. A simplified approach to determine the carbon footprint of a region: Key learning points from a Galician study.

    PubMed

    Roibás, Laura; Loiseau, Eléonore; Hospido, Almudena

    2018-07-01

    On a previous study, the carbon footprint (CF) of all production and consumption activities of Galicia, an Autonomous Community located in the north-west of Spain, was determined and the results were used to devise strategies aimed at the reduction and mitigation of the greenhouse gas (GHG) emissions. The territorial LCA methodology was used there to perform the calculations. However, that methodology was initially designed to compute the emissions of all types of polluting substances to the environment (several thousands of substances considered in the life cycle inventories), aimed at performing complete LCA studies. This requirement implies the use of specific modelling approaches and databases that in turn raised some difficulties, i.e., need of large amounts of data (which increased gathering times), low temporal, geographical and technological representativeness of the study, lack of data, and presence of double counting issues when trying to combine the sectorial CF results into those of the total economy. In view of these of difficulties, and considering the need to focus only on GHG emissions, it seems important to improve the robustness of the CF computation while proposing a simplified methodology. This study is the result of those efforts to improve the aforementioned methodology. In addition to the territorial LCA approach, several Input-Output (IO) based alternatives have been used here to compute direct and indirect GHG emissions of all Galician production and consumption activities. The results of the different alternatives were compared and evaluated under a multi-criteria approach considering reliability, completeness, temporal and geographical correlation, applicability and consistency. Based on that, an improved and simplified methodology was proposed to determine the CF of the Galician consumption and production activities from a total responsibility perspective. This methodology adequately reflects the current characteristics of the Galician economy, thus increasing the representativeness of the results, and can be applied to any region in which IO tables and environmental vectors are available. This methodology could thus provide useful information in decision making processes to reduce and prevent GHG emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Determining the Uncertainties in Prescribed Burn Emissions Through Comparison of Satellite Estimates to Ground-based Estimates and Air Quality Model Evaluations in Southeastern US

    NASA Astrophysics Data System (ADS)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2016-12-01

    Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if spatial and temporal patterns in the differences reveal the sources of the uncertainty in the prescribed burn emission estimates.

  10. Global carbon budget 2014

    DOE PAGES

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; ...

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. COmore » 2 emissions from fossil fuel combustion and cement production ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), E FF was 8.9 ± 0.4 GtC yr⁻¹, E LUC 0.9 ± 0.5 GtC yr⁻¹, G ATM 4.3 ± 0.1 GtC yr⁻¹, S OCEAN 2.6 ± 0.5 GtC yr⁻¹, and S LAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr⁻¹, G ATM was 5.4 ± 0.2 GtC yr⁻¹, S OCEAN was 2.9 ± 0.5 GtC yr⁻¹, and S LAND was 2.5 ± 0.9 GtC yr⁻¹. G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004–2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO 2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E FF and assumed constant E LUC for 2014, cumulative emissions of CO 2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO 2) for 1870–2014, about 75% from E FF and 25% from E LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  11. Global carbon budget 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.

    Accurate assessment of anthropogenic carbon dioxide (CO 2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. COmore » 2 emissions from fossil fuel combustion and cement production ( E FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), E FF was 8.9 ± 0.4 GtC yr⁻¹, E LUC 0.9 ± 0.5 GtC yr⁻¹, G ATM 4.3 ± 0.1 GtC yr⁻¹, S OCEAN 2.6 ± 0.5 GtC yr⁻¹, and S LAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr⁻¹, G ATM was 5.4 ± 0.2 GtC yr⁻¹, S OCEAN was 2.9 ± 0.5 GtC yr⁻¹, and S LAND was 2.5 ± 0.9 GtC yr⁻¹. G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004–2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO 2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E FF and assumed constant E LUC for 2014, cumulative emissions of CO 2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO 2) for 1870–2014, about 75% from E FF and 25% from E LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  12. Selection of emission factor standards for estimating emissions from diesel construction equipment in building construction in the Australian context.

    PubMed

    Zhang, Guomin; Sandanayake, Malindu; Setunge, Sujeeva; Li, Chunqing; Fang, Jun

    2017-02-01

    Emissions from equipment usage and transportation at the construction stage are classified as the direct emissions which include both greenhouse gas (GHG) and non-GHG emissions due to partial combustion of fuel. Unavailability of a reliable and complete inventory restricts an accurate emission evaluation on construction work. The study attempts to review emission factor standards readily available worldwide for estimating emissions from construction equipment. Emission factors published by United States Environmental Protection Agency (US EPA), Australian National Greenhouse Accounts (AUS NGA), Intergovernmental Panel on Climate Change (IPCC) and European Environmental Agency (EEA) are critically reviewed to identify their strengths and weaknesses. A selection process based on the availability and applicability is then developed to help identify the most suitable emission factor standards for estimating emissions from construction equipment in the Australian context. A case study indicates that a fuel based emission factor is more suitable for GHG emission estimation and a time based emission factor is more appropriate for estimation of non-GHG emissions. However, the selection of emission factor standards also depends on factors like the place of analysis (country of origin), data availability and the scope of analysis. Therefore, suitable modifications and assumptions should be incorporated in order to represent these factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A technology-based mass emission factors of gases and aerosol precursor and spatial distribution of emissions from on-road transport sector in India

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Habib, Gazala

    2018-05-01

    This study presents a new emission estimate of gaseous pollutants including CO, CO2, and NOX from on-road transport sector of India for the base year 2013. For the first time, a detailed vintage-wise on-road measured emission factors used for reducing uncertainties in emission estimates. The consumptions of diesel, gasoline, and compressed natural gas (CNG) were also estimated at the national level and disaggregated at the state level. The national average use of diesel, gasoline, and CNG and their 95% confidence interval estimated as 52 (39-66), 24 (18-30), and 1.6 (1.2-2.0) MTy-1 for the year 2013. The CO, CO2, and NOX emissions were estimated as 7349 (3220-11477) Gg y-1, 261 (179-343) Tg y-1, and 4052 (2127-5977) Gg y-1, respectively from on-road transport sector for the year 2013. New vehicles registered after 2005 emit 70-80% of national level CO2, and NOX, while rest 20-30% were emitted by old vehicles registered before 2005. Old and new vehicles both equally contributed to CO emissions. Superemitters accounted for 14% of total traffic volume, but they were responsible for 17-57% of total CO2, CO and NOX emissions. The uncertainties in emission estimates were reduced to 48-56% compared to previous estimates (62-136%). The comparison with recent studies for nationwide emission estimates from 4-wheelers indicated that use of emission factors from dynamometer studies can underestimate the emissions by 32-92% for various pollutants, while an overestimation by 20-82% was seen with the use of emission model derived emission factors. Similarly for Delhi city recent CO and NOx emission estimates for 4-wheelers based on emission factors reported from dynamometer studies were 23-89% lower than present work. The present work revealed the need for representative vintage wise emission factor database development from on-road measurement and the more comprehensive assessment of activity data through survey.

  14. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    NASA Technical Reports Server (NTRS)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  15. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation.

    PubMed

    Akbar, Ruzbeh; Cosh, Michael H; O'Neill, Peggy E; Entekhabi, Dara; Moghaddam, Mahta

    2017-07-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithm's performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3/cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  16. Assessing Methods for Mapping 2D Field Concentrations of CO2 Over Large Spatial Areas for Monitoring Time Varying Fluctuations

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.

    2014-12-01

    This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, C.M.

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years,more » sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.« less

  18. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review

    NASA Astrophysics Data System (ADS)

    Dramićanin, Miroslav D.

    2016-12-01

    Temperature is important because it has an effect on even the tiniest elements of daily life and is involved in a broad spectrum of human activities. That is why it is the most commonly measured physical quantity. Traditional temperature measurements encounter difficulties when used in some emerging technologies and environments, such as nanotechnology and biomedicine. The problem may be alleviated using optical techniques, one of which is luminescence thermometry. This paper reviews the state of luminescence thermometry and presents different temperature read-out schemes with an emphasis on those utilizing the downshifting emission of lanthanide-doped metal oxides and salts. The read-out schemes for temperature include those based on measurements of spectral characteristics of luminescence (band positions and shapes, emission intensity and ratio of emission intensities), and those based on measurements of the temporal behavior of luminescence (lifetimes and rise times). This review (with 140 references) gives the basics of the fundamental principles and theory that underlie the methods presented, and describes the methodology for the estimation of their performance. The major part of the text is devoted to those lanthanide-doped metal oxides and salts that are used as temperature probes, and to the comparison of their performance and characteristics.

  19. Study and interpretation of the millimeter-wave spectrum of Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1992-01-01

    The effects of the Venus atmospheric constituents on its millimeter wavelength emission are investigated. Specifically, this research describes the methodology and the results of laboratory measurements which are used to calculate the opacity of some of the major absorbers in the Venus atmosphere. The pressure broadened absorption of gaseous SO2/CO2 and gaseous H2SO4/CO2 has been measured at millimeter wavelengths. We have also developed new formalisms for computing the absorptivities of these gases based on our laboratory work. The complex dielectric constant of liquid sulfuric acid has been measured and the expected opacity from the liquid sulfuric acid cloud layer found in the atmosphere of Venus has been evaluated. The partial pressure of gaseous H2SO4 has been measured which results in a more accurate estimate of the dissociation factor of H2SO4. A radiative transfer model has been developed in order to understand how each atmospheric constituent affects the millimeter wave emissions from Venus. Our results from the radiative transfer model are compared with recent observations of the micro-wave and millimeter wave emissions from Venus. Our main conclusion from this work is that gaseous H2SO4 is the most likely cause of the variation in the observed emission from Venus at 112 GHz.

  20. Methodologies for assessing the use-phase power consumption and greenhouse gas emissions of telecommunications network services.

    PubMed

    Chan, Chien A; Gygax, André F; Wong, Elaine; Leckie, Christopher A; Nirmalathas, Ampalavanapillai; Kilper, Daniel C

    2013-01-02

    Internet traffic has grown rapidly in recent years and is expected to continue to expand significantly over the next decade. Consequently, the resulting greenhouse gas (GHG) emissions of telecommunications service-supporting infrastructures have become an important issue. In this study, we develop a set of models for assessing the use-phase power consumption and carbon dioxide emissions of telecom network services to help telecom providers gain a better understanding of the GHG emissions associated with the energy required for their networks and services. Due to the fact that measuring the power consumption and traffic in a telecom network is a challenging task, these models utilize different granularities of available network information. As the granularity of the network measurement information decreases, the corresponding models have the potential to produce larger estimation errors. Therefore, we examine the accuracy of these models under various network scenarios using two approaches: (i) a sensitivity analysis through simulations and (ii) a case study of a deployed network. Both approaches show that the accuracy of the models depends on the network size, the total amount of network service traffic (i.e., for the service under assessment), and the number of network nodes used to process the service.

  1. Likelihood of achieving air quality targets under model uncertainties.

    PubMed

    Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W

    2011-01-01

    Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.

  2. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  3. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  4. Evaluation of a new inference method for estimating ammonia volatilisation from multiple agronomic plots

    NASA Astrophysics Data System (ADS)

    Loubet, Benjamin; Carozzi, Marco; Voylokov, Polina; Cohan, Jean-Pierre; Trochard, Robert; Génermont, Sophie

    2018-06-01

    Tropospheric ammonia (NH3) is a threat to the environment and human health and is mainly emitted by agriculture. Ammonia volatilisation following application of nitrogen in the field accounts for more than 40 % of the total NH3 emissions in France. This represents a major loss of nitrogen use efficiency which needs to be reduced by appropriate agricultural practices. In this study we evaluate a novel method to infer NH3 volatilisation from small agronomic plots consisting of multiple treatments with repetition. The method is based on the combination of a set of NH3 diffusion sensors exposed for durations of 3 h to 1 week and a short-range atmospheric dispersion model, used to retrieve the emissions from each plot. The method is evaluated by mimicking NH3 emissions from an ensemble of nine plots with a resistance analogue-compensation point-surface exchange scheme over a yearly meteorological database separated into 28-day periods. A multifactorial simulation scheme is used to test the effects of sensor numbers and heights, plot dimensions, source strengths, and background concentrations on the quality of the inference method. We further demonstrate by theoretical considerations in the case of an isolated plot that inferring emissions with diffusion sensors integrating over daily periods will always lead to underestimations due to correlations between emissions and atmospheric transfer. We evaluated these underestimations as -8 % ± 6 % of the emissions for a typical western European climate. For multiple plots, we find that this method would lead to median underestimations of -16 % with an interquartile [-8-22 %] for two treatments differing by a factor of up to 20 and a control treatment with no emissions. We further evaluate the methodology for varying background concentrations and NH3 emissions patterns and demonstrate the low sensitivity of the method to these factors. The method was also tested in a real case and proved to provide sound evaluations of NH3 losses from surface applied and incorporated slurry. We hence showed that this novel method should be robust and suitable for estimating NH3 emissions from agronomic plots. We believe that the method could be further improved by using Bayesian inference and inferring surface concentrations rather than surface fluxes. Validating against controlled source is also a remaining challenge.

  5. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-08-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis), the model predicts significant increases of 59 Tg C a-2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use change shows limited impacts on global carbon fluxes and BVOC emissions, but there are regional contrasting impacts over Europe (afforestation) and China (deforestation).

  6. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    NASA Astrophysics Data System (ADS)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the importance of characterizing not only the emission strength, but also the emission volatility distribution.

  7. Methane Emissions from the Natural Gas Transmission and Storage System in the United States.

    PubMed

    Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L

    2015-08-04

    The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.

  8. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling

    PubMed Central

    2013-01-01

    Background A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Methods Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. Results The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. Conclusions The model developed in this study allows a quantitative assessment and prediction of respiratory health outcomes as it relates to the location and timing of wildland fire emissions relevant for application to future wildfire scenarios. An important aspect of the resulting model is its generality thus allowing its ready use for geospatial assessments of respiratory health impacts under possible future wildfire conditions in the San Diego region. The coupled statistical and process-based modeling demonstrates an end-to-end methodology for generating reasonable estimates of wildland fire PM concentrations and health effects at resolutions compatible with syndromic surveillance data. PMID:24192051

  9. Environmental assessment of biofuel chains based on ecosystem modelling, including land-use change effects

    NASA Astrophysics Data System (ADS)

    Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.

    2012-04-01

    The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40% reduction in the overall life-cycle GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73% compared to fossile-derived equivalents, while this figure reached 88% for 2nd generation bioethanol from miscanthus. Including iLUC reduced the savings to less than 5% for bio-diesel from rapeseed, 10 to 45% for 1st generation bioethanol and to 60% for miscanthus. These figures apply to the year 2007 and should be extended to a larger number of years, but the magnitude of N2O emissions was similar between 2007, 2008 and 2009 over the Ile de France region.

  10. A bottom up approach to on-road CO2 emissions estimates: improved spatial accuracy and applications for regional planning.

    PubMed

    Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N

    2013-03-05

    On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.

  11. A quantitative integrated assessment of pollution prevention achieved by integrated pollution prevention control licensing.

    PubMed

    Styles, David; O'Brien, Kieran; Jones, Michael B

    2009-11-01

    This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine 'no-improvement' emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical 'no-improvement' pollution. It was estimated that environmental regulation avoided 20% of 'no-improvement' pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a(-1) for CO(2) to 88% and 598 t a(-1) for SO(x). Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SO(x) and NO(x) to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a(-1) for phosphorus emissions to water to 49% and 3143 t a(-1) for SO(x) emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector - through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and performance targets specified in environmental management plans. This compliant sector offers a positive, but not necessarily typical, case study of IPPC effectiveness.

  12. Environment, Health and Climate: Impact of African aerosols

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Doumbia, T.; Assamoi, E.; Galy-Lacaux, C.; Baeza, A.; Penner, J. E.; Val, S.; Cachier, H.; Xu, L.; Criqui, P.

    2012-12-01

    Fossil fuel and biofuel emissions of particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities. In addition to biomass burning emissions prevailing in these areas, air quality degradation is then expected with important consequences on population health and climatic/radiative impact. In our group, we are constructing a new integrated methodology to study the relations between emissions, air quality and their impacts. This approach includes: (1) African combustion emission characterizations; (2) joint experimental determination of aerosol chemistry from ultrafine to coarse fractions and health issues (toxicology and epidemiology). (3) integrated environmental, health and radiative modeling. In this work, we show some results illustrating our first estimates of African anthropogenic emission impacts: - a new African anthropogenic emission inventory adapted to regional specificities on traffic, biofuel and industrial emissions has been constructed for the years 2005 and 2030. Biomass burning inventories were also improved in the frame of AMMA (African Monsoon) program. - carbonaceous aerosol radiative impact in Africa has been modeled with TM5 model and Penner et al. (2011) radiative code for these inventories for 2005 and 2030 and for two scenarios of emissions : a reference scenario, with no further emission controls beyond those achieved in 2003 and a ccc* scenario including planned policies in Kyoto protocol and regulations as applied to African emission specificities. In this study we will show that enhanced heating is expected with the ccc* scenarios emissions in which the OC fraction is relatively lower than in the reference scenario. - results of short term POLCA intensive campaigns in Bamako and Dakar in terms of aerosol chemical characterization linked to specific emissions sources and their inflammatory impacts on the respiratory tract through in vitro studies. In this study, organic carbon particles have appeared quite biologically active. Quite importantly, air quality improvement obtained through regulations in the ccc* scenario are accompanied by stronger heating impact.

  13. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  14. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.

    PubMed

    O'Brien, D; Capper, J L; Garnsworthy, P C; Grainger, C; Shalloo, L

    2014-03-01

    Life-cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply an LCA method to compare carbon footprints of high-performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high-performance Irish grass-based dairy system and a top-performing United Kingdom (UK) confinement dairy system. For the US confinement dairy system, data from the top 5% of herds of a national database were used. Life-cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on- and off-farm GHG sources associated with dairy production until milk is sold from the farm in kilograms of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing GHG emissions attributed to milk per tonne of energy-corrected milk (ECM). The comparison showed that when GHG emissions were only attributed to milk, the carbon footprint of milk from the Irish grass-based system (837 kg of CO2-eq/t of ECM) was 5% lower than the UK confinement system (884 kg of CO2-eq/t of ECM) and 7% lower than the US confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per tonne of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 3 to 22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In comparison to recent reports that assess the carbon footprint of milk from average Irish, UK, and US dairy systems, this case study indicates that top-performing herds of the respective nations have carbon footprints 27 to 32% lower than average dairy systems. Although differences between studies are partly explained by methodological inconsistency, the comparison suggests that potential exists to reduce the carbon footprint of milk in each of the nations by implementing practices that improve productivity. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data

    PubMed Central

    Kan, Zihan; Zhang, Xia

    2018-01-01

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles’ mobile activities (MA) and stationary activities (SA). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA, SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles’ activities in road networks. PMID:29561813

  16. Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data.

    PubMed

    Kan, Zihan; Tang, Luliang; Kwan, Mei-Po; Zhang, Xia

    2018-03-21

    The energy consumption and emissions from vehicles adversely affect human health and urban sustainability. Analysis of GPS big data collected from vehicles can provide useful insights about the quantity and distribution of such energy consumption and emissions. Previous studies, which estimated fuel consumption/emissions from traffic based on GPS sampled data, have not sufficiently considered vehicle activities and may have led to erroneous estimations. By adopting the analytical construct of the space-time path in time geography, this study proposes methods that more accurately estimate and visualize vehicle energy consumption/emissions based on analysis of vehicles' mobile activities ( MA ) and stationary activities ( SA ). First, we build space-time paths of individual vehicles, extract moving parameters, and identify MA and SA from each space-time path segment (STPS). Then we present an N-Dimensional framework for estimating and visualizing fuel consumption/emissions. For each STPS, fuel consumption, hot emissions, and cold start emissions are estimated based on activity type, i.e., MA , SA with engine-on and SA with engine-off. In the case study, fuel consumption and emissions of a single vehicle and a road network are estimated and visualized with GPS data. The estimation accuracy of the proposed approach is 88.6%. We also analyze the types of activities that produced fuel consumption on each road segment to explore the patterns and mechanisms of fuel consumption in the study area. The results not only show the effectiveness of the proposed approaches in estimating fuel consumption/emissions but also indicate their advantages for uncovering the relationships between fuel consumption and vehicles' activities in road networks.

  17. Speed Profiles for Improvement of Maritime Emission Estimation.

    PubMed

    Yau, Pui Shan; Lee, Shun-Cheng; Ho, Kin Fai

    2012-12-01

    Maritime emissions play an important role in anthropogenic emissions, particularly for cities with busy ports such as Hong Kong. Ship emissions are strongly dependent on vessel speed, and thus accurate vessel speed is essential for maritime emission studies. In this study, we determined minute-by-minute high-resolution speed profiles of container ships on four major routes in Hong Kong waters using Automatic Identification System (AIS). The activity-based ship emissions of NO(x), CO, HC, CO(2), SO(2), and PM(10) were estimated using derived vessel speed profiles, and results were compared with those using the speed limits of control zones. Estimation using speed limits resulted in up to twofold overestimation of ship emissions. Compared with emissions estimated using the speed limits of control zones, emissions estimated using vessel speed profiles could provide results with up to 88% higher accuracy. Uncertainty analysis and sensitivity analysis of the model demonstrated the significance of improvement of vessel speed resolution. From spatial analysis, it is revealed that SO(2) and PM(10) emissions during maneuvering within 1 nautical mile from port were the highest. They contributed 7%-22% of SO(2) emissions and 8%-17% of PM(10) emissions of the entire voyage in Hong Kong.

  18. Temperature - Emissivity Separation Assessment in a Sub-Urban Scenario

    NASA Astrophysics Data System (ADS)

    Moscadelli, M.; Diani, M.; Corsini, G.

    2017-10-01

    In this paper, a methodology that aims at evaluating the effectiveness of different TES strategies is presented. The methodology takes into account the specific material of interest in the monitored scenario, sensor characteristics, and errors in the atmospheric compensation step. The methodology is proposed in order to predict and analyse algorithms performances during the planning of a remote sensing mission, aimed to discover specific materials of interest in the monitored scenario. As case study, the proposed methodology is applied to a real airborne data set of a suburban scenario. In order to perform the TES problem, three state-of-the-art algorithms, and a recently proposed one, are investigated: Temperature-Emissivity Separation '98 (TES-98) algorithm, Stepwise Refining TES (SRTES) algorithm, Linear piecewise TES (LTES) algorithm, and Optimized Smoothing TES (OSTES) algorithm. At the end, the accuracy obtained with real data, and the ones predicted by means of the proposed methodology are compared and discussed.

  19. Comparison of two U.S. power-plant carbon dioxide emissions data sets

    USGS Publications Warehouse

    Ackerman, K.V.; Sundquist, E.T.

    2008-01-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  20. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE PAGES

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH 4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH 4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH 4 emissions are estimated from the product of Baymore » Area Air Quality Management District (BAAQMD) emission inventory CO and the slope of ambient local CH 4 to CO. The resulting top-down estimates of CH 4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH 4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH 4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH 4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH 4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH 4 sources.« less

Top