Sample records for emissions testing laboratory

  1. Diffusion-controlled reference material for VOC emissions testing: proof of concept.

    PubMed

    Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A

    2010-10-01

    Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.

  2. On-road emissions of light-duty vehicles in europe.

    PubMed

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  3. National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    NVFEL is the primary EPA research laboratory used for fuel and emissions testing. The laboratory supports emission standards for motor vehicles, engines, and fuels, as well as the development of automotive technology.

  4. Technical Capabilities of the National Vehicle and Fuel Emissions Laboratory (NVFEL)

    EPA Pesticide Factsheets

    National Vehicle and Fuel Emissions Laboratory (NVFEL) is a state-of-the-art test facility that conducts a wide range of emissions testing and analysis for EPA’s motor vehicle, heavy-duty engine, and nonroad engine programs.

  5. Vehicle and Fuel Emissions Testing

    EPA Pesticide Factsheets

    EPA's National Vehicle and Fuel Emissions Laboratory's primary responsibilities include: evaluating emission control technology; testing vehicles, engines and fuels; and determining compliance with federal emissions and fuel economy standards.

  6. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    Treesearch

    Gavin R. McMeeking; Sonia M. Kreidenweis; Stephen Baker; Christian M. Carrico; Judith C. Chow; Jeffrey L. Collett; Wei Min Hao; Amanda S. Holden; Thomas W. Kirchstetter; William C. Malm; Hans Moosmuller; Amy P. Sullivan; Cyle E. Wold

    2009-01-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission...

  7. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  8. Comparing the field and laboratory emission cell (FLEC) with traditional emissions testing chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roache, N.F.; Guo, Z.; Fortmann, R.

    1996-12-31

    A series of tests was designed to evaluate the performance of the field and laboratory emission cell (FLEC) as applied to the testing of emissions from two indoor coating materials, floor wax and latex paint. These tests included validation of the repeatability of the test method, evaluation of the effect of different air velocities on source emissions, and a comparison of FLEC versus small chamber characterization of emissions. The FLEC exhibited good repeatability in characterization of emissions when applied to both sources under identical conditions. Tests with different air velocities showed significant effects on the emissions from latex paint, yetmore » little effect on emissions from the floor wax. Comparisons of data from the FLEC and small chamber show good correlation for measurements involving floor wax, but less favorable results for emissions from latex paint. The procedures and findings are discussed; conclusions are limited and include emphasis on the need for additional study and development of a standard method.« less

  9. A Reference Method for Measuring Emissions of SVOCs in ...

    EPA Pesticide Factsheets

    Semivolatile organic compounds (SVOCs) are indoor air pollutants that may may have significant adverse effects on human health, and emission of SVOCs from building materials and consumer products is of growing concern. Few chamber studies have been conducted due to the challenges associated with SVOC analysis and the lack of validation procedures. Thus there is an urgent need for a reliable and accurate chamber test method to verify the performance of these measurements. A reference method employing a specially-designed chamber and experimental protocol has been developed and is undergoing extensive evaluation. A pilot interlaboratory study (ILS) has been conducted with five laboratories performing chamber tests under identical conditions. Results showed inter-laboratory variations at 25% for SVOC emission rates, with greater agreement observed between intra-laboratory measurements for most of the participating laboratories. The measured concentration profiles also compared reasonably well to the mechanistic model, demonstrating the feasibility of the proposed reference method to independently assess laboratory performance and validate SVOC emission tests. There is an urgent need for improved understanding of the measurement uncertainties associated with SVOC emissions testing. The creation of specially-designed chambers and well-characterized materials serves as a critical prerequisite for improving the procedure used to measure SVOCs emitted from indoor

  10. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe.

    PubMed

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-12-04

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given.

  11. Implementation of Portable Emissions Measurement Systems (PEMS) for the Real-driving Emissions (RDE) Regulation in Europe

    PubMed Central

    Giechaskiel, Barouch; Vlachos, Theodoros; Riccobono, Francesco; Forni, Fausto; Colombo, Rinaldo; Montigny, Francois; Le-Lijour, Philippe; Carriero, Massimo; Bonnel, Pierre; Weiss, Martin

    2016-01-01

    Vehicles are tested in controlled and relatively narrow laboratory conditions to determine their official emission values and reference fuel consumption. However, on the road, ambient and driving conditions can vary over a wide range, sometimes causing emissions to be higher than those measured in the laboratory. For this reason, the European Commission has developed a complementary Real-Driving Emissions (RDE) test procedure using the Portable Emissions Measurement Systems (PEMS) to verify gaseous pollutant and particle number emissions during a wide range of normal operating conditions on the road. This paper presents the newly-adopted RDE test procedure, differentiating six steps: 1) vehicle selection, 2) vehicle preparation, 3) trip design, 4) trip execution, 5) trip verification, and 6) calculation of emissions. Of these steps, vehicle preparation and trip execution are described in greater detail. Examples of trip verification and the calculations of emissions are given. PMID:28060306

  12. Emissions from Southeastern U.S. Grasslands and Pine Savannas: Comparison of Aerial and Ground Field Measurements with Laboratory Burns

    EPA Science Inventory

    Emissions from prescribed burns of forest and grass stands in western Florida were measured by simultaneous aerial and ground sampling. Results were compared with biomass gathered from the same stands and tested in an open burn laboratory test facility. Measurements included pol...

  13. 46 CFR 63.25-9 - Incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inspections and tests required by this section; (3) Have documentary proof of the laboratory's qualifications... methods and standards for testing emissions. The methods and standards for testing emissions that the...

  14. Development and application of a mobile laboratory for measuring emissions from diesel engines. 1. Regulated gaseous emissions.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent; Miller, J Wayne; Norbeck, Joseph M

    2004-04-01

    Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.

  15. An inter-laboratory comparison study of the ANSI/BIFMA standard test method M7.1 for furniture

    EPA Science Inventory

    Five laboratories using five different test chambers participated in the study to quantify within- and between-laboratory variability in the measurement of emissions of volatile organic compounds (VOCs) from new commercial furniture test items following ANSI/BIFMA M7.1. Test item...

  16. 40 CFR 1065.920 - PEMS Calibrations and verifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... verification. The verification consists of operating an engine over a duty cycle in the laboratory and... by laboratory equipment as follows: (1) Mount an engine on a dynamometer for laboratory testing...

  17. Emission Factors from Aerial and Ground Measurements of Field and Laboratory Forest Burns in the Southeastern U.S.: PM2.5, Black and Brown Carbon, VOC, and PCDD/PCDF

    EPA Science Inventory

    Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon ...

  18. Building a laboratory foundation for interpreting spectral emission from x-ray binary and black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume

    2016-10-01

    Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  19. Vehicle Certification and Compliance Testing

    EPA Pesticide Factsheets

    The National Vehicle and Fuel Emissions Laboratory (NVFEL) tests a portion of all new cars and trucks to confirm compliance with EPA’s exhaust emissions standards, and to verify the accuracy of fuel economy test results submitted by each manufacturer.

  20. Engine Certification and Compliance Testing

    EPA Pesticide Factsheets

    The National Vehicle and Fuel Emissions Laboratory (NVFEL) tests a portion of all heavy-duty diesel and small gasoline engines intended for sale in the United States to confirm compliance with EPA’s exhaust emissions standards.

  1. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  2. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive onsite assessment that includes proficiency testing and documentation review. The ATL NVLAP accreditation currently applies specifically to its ISO 3744 soundpower- level determination procedure (see the photograph) and supporting ISO 17025 quality system, although all ATL operations are conducted in accordance with its quality system. The ATL staff is currently developing additional procedures to adapt this quality system to the testing of space flight hardware in accordance with International Space Station acoustic emission requirements.<

  3. TEST METHODS TO DETERMINE THE MERCURY EMISSIONS FROM SLUDGE INCINERATION PLANTS

    EPA Science Inventory

    Two test methods for mercury are described along with the laboratory and field studies done in developing and validating them. One method describes how to homogenize and analyze large quantities of sewage sludge. The other test method describes how to measure the mercury emission...

  4. INDOOR AIR EMISSIONS FROM OFFICE EQUIPMENT: TEST METHOD DEVELOPMENT AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report describes the development and evaluation of a large chamber test method for measuring emissions from dry-process photocopiers. The test method was developed in two phases. Phase 1 was a single-laboratory evaluation at Research Triangle Institute (RTI) using four, mid-r...

  5. Comparison of on-road emissions for hybrid and regular transit buses.

    PubMed

    Hallmark, Shauna L; Wang, Bo; Sperry, Robert

    2013-10-01

    Hybrid technology offers an attractive option for transit buses, since it has the potential to significantly reduce operating costs for transit agencies. The main impetus behind use of hybrid transit vehicles is fuel savings and reduced emissions. Laboratory tests have indicated that hybrid transit buses can have significantly lower emissions compared with conventional transit buses. However the number of studies is limited and laboratory tests may not represent actual driving conditions, since in-use vehicle operation differs from laboratory test cycles. This paper describes an on-road evaluation of in-use emission differences between hybrid-electric and conventional transit buses for the Ames, Iowa transit authority, CyRide. Emissions were collected on-road using a portable emissions monitoring system (PEMS) for three hybrid and two control buses. Emissions were collected for at least one operating bus day. Each bus was evaluated over the same route pattern, which utilizes the same driver. The number of passengers embarking or disembarking at each stop was collected by an on-board data collector so that passenger load could be included. Vehicle emissions are correlated to engine load demand, which is a function of factors such as vehicle load, speed, and acceleration. PEMS data are provided second by second and vehicle-specific power (VSP) was calculated for each row of data. Instantaneous data were stratified into the defined VSP bins and then average modal emission rates and standard errors were calculated for each bus for each pollutant. Pollutants were then compared by bus type. Carbon dioxide, carbon monoxide, and hydrocarbon emissions were higher for the regular buses across most VSP bins than for the hybrid buses. Nitrogen oxide emissions were unexpectedly higher for the hybrid buses than for the control buses.

  6. Emission factors from aerial and ground measurements of field and laboratory forest burns in the southeastern US: PM2.5, black and brown carbon, VOC, and PCDD/PCDF.

    PubMed

    Aurell, Johanna; Gullett, Brian K

    2013-08-06

    Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon (BrC), carbon dioxide (CO2), volatile organic compounds (VOCs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were sampled using ground-based and aerostat-lofted platforms for determination of emission factors. The PM2.5 emission factors ranged from 14 to 47 g/kg biomass, up to three times higher than previously published studies. The biomass type was the primary determinant of PM2.5, rather than whether the emission sample was gathered from the laboratory or the field and from aerial- or ground-based sampling. The BC and BrC emission factors ranged from 1.2 to 2.1 g/kg biomass and 1.0 to 1.4 g/kg biomass, respectively. A decrease in BC and BrC emission factors with decreased combustion efficiency was found from both field and laboratory data. VOC emission factors increased with decreased combustion efficiency. No apparent differences in averaged emission factors were observed between the field and laboratory for BC, BrC, and VOCs. The average PCDD/PCDF emission factors ranged from 0.06 to 4.6 ng TEQ/kg biomass.

  7. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    EPA Science Inventory

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  8. The Effect of Developing Nations’ Municipal Waste Composition on PCDD/PCDF Emissions from Open Burning

    EPA Science Inventory

    Open burning tests of municipal waste from two developing nations, Mexico and China, showed composition-related differences in emissions of polychlorinated dibenzodioxin and dibenzofuran (PCDD/PCDF). 26 burn tests were conducted, comparing results from two laboratory combustion ...

  9. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: Comparison of diesel and CNG.

    PubMed

    Vojtíšek-Lom, Michal; Beránek, Vít; Klír, Vojtěch; Jindra, Petr; Pechout, Martin; Voříšek, Tomáš

    2018-03-01

    Exhaust emissions of eight Euro 6 light duty vehicles - two station wagons and six vans - half powered by diesel fuel and half by compressed natural gas (CNG) were examined using both chassis dynamometer and on-road testing. A portable on-board FTIR analyzer was used to measure concentrations of reactive nitrogen compounds - NO, NO 2 and ammonia, of CO, formaldehyde, acetaldehyde and greenhouse gases CO 2 , methane and N 2 O. Exhaust flow was inferred from engine control unit data. Total emissions per cycle were compared and found to be in good agreement with laboratory measurements of NO X , CO and CO 2 during dynamometer tests. On diesel engines, mean NO X emissions were 136-1070mg/km in the laboratory and 537-615mg/km on the road, in many cases nearly an order of magnitude higher compared to the numerical value of the Euro 6 limit. Mean N 2 O emissions were 3-19mg/km and were equivalent to several g/km CO 2 . The measurements suggest that NO X and N 2 O emissions from late-model European light utility vehicles with diesel engines are non-negligible and should be continuously assessed and scrutinized. High variances in NO X emissions among the tested diesel vehicles suggest that large number of vehicles should be tested to offer at least some insights about distribution of fleet emissions among vehicles. CNG engines exhibited relatively low emissions of NO X (12-186mg/km) and NH 3 (10-24mg/km), while mean emissions of methane were 18-45mg/km, under 1g/km CO 2 equivalent, and N 2 O, CO, formaldehyde and acetaldehyde were negligible. The combination of a relatively clean-burning fuel, modern engine technology and a three-way catalyst has resulted in relatively low emissions under the wide variety of operating conditions encountered during the tests. The on-board FTIR has proven to be a useful instrument capable of covering, with the exception of total hydrocarbons, essentially all gaseous pollutants of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fire tests for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1980-01-01

    Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.

  11. Chamber study of PCBemissions from caulking materials and ...

    EPA Pesticide Factsheets

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-liter environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r2 ≥0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. This study supplemented and complemented the field measurements in buildings conducted by U.S. EPA National Exposure Research Laboratory by providing a bette

  12. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What transient duty cycles apply for... Procedures § 1048.510 What transient duty cycles apply for laboratory testing? (a) Starting with the 2007 model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in...

  13. Acoustic Emission of Deformation Twinning in Magnesium.

    PubMed

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K T; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D; Molodov, Dmitri A; Kontsos, Antonios

    2016-08-06

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  14. Acoustic Emission of Deformation Twinning in Magnesium

    PubMed Central

    Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K. T.; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D.; Molodov, Dmitri A.; Kontsos, Antonios

    2016-01-01

    The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach. PMID:28773786

  15. Auto Emission Testing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The photos show automobile engines being tested for nitrous oxide emissions, as required by the Environmental Protection Agency (EPA), at the Research and Engineering Division of Ford Motor Company, Dearborn. Michigan. NASA technical information helped the company develop a means of calculating emissions test results. Nitrous oxide emission readings vary with relative humidity in the test facility. EPA uses a standard humidity measurement, but the agency allows manufacturers to test under different humidity conditions, then apply a correction factor to adjust the results to the EPA standard. NASA's Dryden Flight Research Center developed analytic equations which provide a simple, computer-programmable method of correcting for humidity variations. A Ford engineer read a NASA Tech Brief describing the Dryden development and requested more detailed information in the form of a technical support package, which NASA routinely supplies to industry on request. Ford's Emissions Test Laboratory now uses the Dryden equations for humidity-adjusted emissions data reported to EPA.

  16. Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons

    1999-05-03

    Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found thatmore » oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.« less

  17. ROANOKE WOODSTOVE EMISSION TESTS

    EPA Science Inventory

    The report discusses a project, part of the Integrated Air Cancer Project Roanoke study, that characterizes and quantifies emissions generated by burning authentic Roanoke cordwood. The burning occurred in a controlled laboratory setting using two woodstoves, each operated at two...

  18. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  19. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  20. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  1. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  2. 40 CFR 60.535 - Laboratory accreditation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Wood Heaters § 60.535 Laboratory accreditation. (a)(1) A laboratory may apply for accreditation by the Administrator to conduct wood heater certification tests pursuant to § 60.533. The application shall be in writing to: Emission Measurement Branch (MD-13), U.S. EPA, Research Triangle Park, NC 27711, Attn: Wood...

  3. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  4. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  5. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  6. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in Appendix II to determine whether it meets the transient emission standards in § 1048.101(a). (b) Calculate cycle statistics and compare with the established criteria as specified in 40 CFR 1065.514 to confirm...

  7. Automated, low-power chamber system for measuring nitrous oxide emissions

    USDA-ARS?s Scientific Manuscript database

    Continuous measurement of soil emissions is needed to constrain estimates of N2O loss to the atmosphere. Here, we describe the performance of a low-power, automated chamber system that can continuously measure N2O soil emissions, powered by wind and solar power. Laboratory testing of the Teledyne N2...

  8. Woodstove smoke and CO emissions: comparison of reference methods with the VIP sampler.

    PubMed

    Jaasma, D R; Champion, M C; Shelton, J W

    1990-06-01

    A new field sampler has been developed for measuring the particulate matter (PM) and carbon monoxide emissions of woodburning stoves. Particulate matter is determined by carbon balance and the workup of a sample train which is similar to a room-temperature EPA Method 5G train. A steel tank, initially evacuated, serves as the motive force for sampling and also accumulates a gas sample for post-test analysis of time-averaged stack CO and CO2 concentrations. Workup procedures can be completed within 72 hours of sampler retrieval. The system has been compared to reference methods in two laboratory test series involving six different woodburning appliances and two independent laboratories. The correlation of field sampler emission rates and reference method rates is strong.

  9. Woodstove smoke and CO emissions: Comparison of reference methods with the VIP sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaasma, D.R.; Champion, M.C.; Shelton, J.W.

    1990-06-01

    A new field sampler has been developed for measuring the particulate matter (PM) and carbon monoxide emissions of woodburning stoves. Particulate matter is determined by carbon balance and the workup of a sample train which is similar to a room-temperature EPA Method 5G train. A steel tank, initially evacuated, serves as the motive force for sampling and also accumulates a gas sample for post-test analysis of time-averaged stack CO and CO{sub 2} concentrations. Workup procedures can be completed within 72 hours of sampler retrieval. The system has been compared to reference methods in two laboratory test series involving six differentmore » woodburning appliances and two independent laboratories. The correlation of field sampler emission rates and reference method rates is strong.« less

  10. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holder, A. L.; Gullett, B. K.; Urbanski, S. P.; Elleman, R.; O'Neill, S.; Tabor, D.; Mitchell, W.; Baker, K. R.

    2017-10-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models, and emission inventories. Batch measurements of PM2.5, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs), and continuous measurements of black carbon (BC), particle mass by size, CO, CO2, CH4, and aerosol characteristics were taken at ground level, on an aerostat-lofted instrument package, and from an airplane. Biomass samples gathered from the field were burned in a laboratory combustion facility for comparison with these ground and aerial field measurements. Emission factors for PM2.5, organic carbon (OC), CH4, and CO measured in the field study platforms were typically higher than those measured in the laboratory combustion facility. Field data for Kentucky bluegrass suggest that biomass residue loading is directly proportional to the PM2.5 emission factor; no such relationship was found with the limited wheat data. CO2 and BC emissions were higher in laboratory burn tests than in the field, reflecting greater carbon oxidation and flaming combustion conditions. These distinctions between field and laboratory results can be explained by measurements of the modified combustion efficiency (MCE). Higher MCEs were recorded in the laboratory burns than from the airplane platform. These MCE/emission factor trends are supported by 1-2 min grab samples from the ground and aerostat platforms. Emission factors measured here are similar to other studies measuring comparable fuels, pollutants, and combustion conditions. The size distribution of refractory BC (rBC) was single modal with a log-normal shape, which was consistent among fuel types when normalized by total rBC mass. The field and laboratory measurements of the Angstrom exponent (α) and single scattering albedo (ω) exhibit a strong decreasing trend with increasing MCEs in the range of 0.9-0.99. Field measurements of α and ω were consistently higher than laboratory burns, which is likely due to less complete combustion. When VOC emissions are compared with MCE, the results are consistent for both fuel types: emission factors increase as MCE decreases.

  11. Woodstove Emission Sampling Methods Comparability Analysis and In-situ Evaluation of New Technology Woodstoves.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simons, Carl A.

    1988-06-01

    One major objective of this study was to compare several woodstove particulate emission sampling methods under laboratory and in-situ conditions. The laboratory work compared the EPA Method 5H, EPA Method 5G, and OMNI Automated Woodstove Emission Sampler (AWES)/Data LOG'r particulate emission sampling systems. A second major objective of the study was to evaluate the performance of two integral catalytic, two low emission non-catalytic, and two conventional technology woodstoves under in-situ conditions with AWES/Data LOG'r system. The AWES/Data LOG'r and EPA Method 5G sampling systems were also compared in an in-situ test on one of the integral catalytic woodstove models. 7more » figs., 12 tabs.« less

  12. Initial Plasma Testing of the Ion Proportional Surface Emission Cathode

    DTIC Science & Technology

    2008-07-15

    REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Plasma Testing of the Ion Proportional Surface Emission Cathode 5a. CONTRACT NUMBER...substrate and an adjacent metal cathode element. The substrate potential is held positive of the cathode with gate elements. In plasma , the gate is...eliminated due to ambient ion flux which maintains the substrate potential near plasma ground. Prototype devices have been tested using a laboratory plasma

  13. SPILL ALERT DEVICE FOR EARTH DAM FAILURE WARNING

    EPA Science Inventory

    A spill alert device for determining earth dam safety based on the monitoring of the acoustic emissions generated in a deforming soil mass was developed and field-tested. The acoustic emissions are related to the basic mechanisms from which soils derive their strength. Laboratory...

  14. Experimental investigation on gaseous emissions from the combustion of date palm residues in laboratory scale furnace.

    PubMed

    El may, Yassine; Jeguirim, Mejdi; Dorge, Sophie; Trouvé, Gwenaelle; Said, Rachid

    2013-03-01

    Emissions characteristics from the combustion of five date palm residues, DPR, (Date Palm Leaflets, Date Palm Rachis, Date Palm Trunk, Date Stones and fruitstalk prunings) in a laboratory scale furnace were investigated. Release of gaseous products such as CO2, CO, VOC, NOx and SO2 were measured at 600-800°C. The main goal was to analyze thermal behaviors and gaseous emissions in order to select the most convenient biofuel for an application in domestic boiler installations. Regards to biofuel characteristics, date stone have the highest energy density (11.4GJ/m(3)) and the lowest ash content (close to 1.2%). Combustion tests show that among the tested date palm residues, date stone may be the promising biofuel for the design of combustion processing system. However, a special attention to the design of the secondary air supply should be given to prevent high emissions of CO and volatile matters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Soil emissivity and reflectance spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer andmore » converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.« less

  16. Time-resolved acoustic emission tomography in the laboratory: tracking localised damage in rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.

    2017-12-01

    Over the past three decades, there has been tremendous technological developments of laboratory equipment and studies using acoustic emission and ultrasonic monitoring of rock samples during deformation. Using relatively standard seismological techniques, acoustic emissions can be detected, located in space and time, and source mechanisms can be obtained. In parallel, ultrasonic velocities can be measured routinely using standard pulse-receiver techniques.Despite these major developments, current acoustic emission and ultrasonic monitoring systems are typically used separately, and the poor spatial coverage of acoustic transducers precludes performing active 3D tomography in typical laboratory settings.Here, I present an algorithm and software package that uses both passive acoustic emission data and active ultrasonic measurements to determine acoustic emission locations together with the 3D, anisotropic P-wave structure of rock samples during deformation. The technique is analogous to local earthquake tomography, but tailored to the specificities of small scale laboratory tests. The fast marching method is employed to compute the forward problem. The acoustic emission locations and the anisotropic P-wave field are jointly inverted using the Quasi-Newton method.The method is used to track the propagation of compaction bands in a porous sandstone deformed in the ductile, cataclastic flow regime under triaxial stress conditions. Near the yield point, a compaction front forms at one end of the sample, and slowly progresses towards the other end. The front is illuminated by clusters of Acoustic Emissions, and leaves behind a heavily damaged material where the P-wave speed has dropped by up to 20%.The technique opens new possibilities to track in-situ strain localisation and damage around laboratory faults, and preliminary results on quasi-static rupture in granite will be presented.

  17. Biogenic nitric oxide from wastewater land application

    NASA Astrophysics Data System (ADS)

    Rammon, Desirée A.; Peirce, J. Jeffrey

    The importance of municipal wastewater land application to nitric oxide production and transport in soil was studied through the formulation and conduct of a comprehensive laboratory testing protocol. Nitric oxide (NO) is a precursor in the formation of tropospheric ozone which can directly impact public health and the environment. It is the uncertainty in the NO budget, and its relation to O 3, that motivates the need for measurements and modeling of NO flux from soils. Wastewater-amended soil is potentially one important component of that budget. NO emissions reported here were measured from: a well-characterized unamended soil, water-amended soil, and wastewater-amended soil in the laboratory in a dynamic test chamber. Laboratory results indicate that NO emissions from the selected sandy loam soil ranged from 0.3 to 0.4 ng N m -2 s -1 per cm 2 of unamended soil, while water-amended soil emissions ranged from 0.4 to 0.7 ng N m -2 s -1 per cm 2. NO flux from wastewater-amended soil ranged from 1.0 to 1.2 ng N m -2 s -1 per cm 2 of applied soil.

  18. Stirling engines for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Ernst, William D.

    Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.

  19. Baseline Fuel Economy and Emissions Tests of a Chrysler 1978, 225 CID Engine

    DOT National Transportation Integrated Search

    1980-09-01

    This document reports on baseline engine tests of a Chrysler 1978, 225 CID, six-cylinder engine. The tests were conducted in the Automotive Research Laboratory at the Transportation Systems Center. Test results presented herein are also filed on comp...

  20. LUNAR SAMPLES - APOLLO XI - MSC

    NASA Image and Video Library

    1969-08-03

    S69-40740 (July 1969) --- Dr. Ross Taylor (seated), Australian National University, and John Allen, Brown and Root-Northrop technician, review preliminary data from the optical emission spectrograph in the Spectrographic Laboratory of the Physical-Chemical Test Laboratory. Tests were being conducted on lunar surface material collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.

  1. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  2. VHF Transceiver Emissions in the GPS L1 Band

    DOT National Transportation Integrated Search

    1995-02-27

    VHF transceiver tests described in this report were performed at the Volpe National Transportation Systems Center under Federal Aviation Administration (FAA) sponsorship. Laboratory tests were performed on ten different panel-mount type, General Avia...

  3. Comparability between various field and laboratory wood-stove emission-measurement methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrillis, R.C.; Jaasma, D.R.

    1991-01-01

    The paper compares various field and laboratory woodstove emission measurement methods. In 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). Over the past several years, a number of field studies have been undertaken to determine the actual level of emission reduction achieved by new technology woodstoves in everyday use. The studies have required the development and use of particulate and gaseous emission sampling equipment compatible with operation in private homes. Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatorymore » methods and the inhouse equipment. Two inhouse sampling systems have been used most widely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparing Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less

  4. “Comprehensive emission measurements from prescribed ...

    EPA Pesticide Factsheets

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, chlorinated dioxins and furans, and PM2.5 and continuous samples for black carbon, particle size, and CO2 were taken. Aerial instruments were lofted using a 5 m diameter, helium-filled aerostat that was maneuvered with two remotely-controlled tethers mounted on all-terrain vehicles. A parallel set of instruments on the ground made simultaneous measurements, allowing for a comparison of ground level versus elevated measurements. Ground instruments were supplemented by additional measurements of polycyclic aromatic hydrocarbons and particle aerosol absorption and light scattering. Raw biomass was also gathered on site and tested in a laboratory combustion facility using the same array of instruments. This work compares emissions derived from aerial and ground sampling as well as field and laboratory results. This abstract will likely be the first ever prescribed burn study to compare laboratory and field emission results with results from aerial and and ground sampling. As such it will inform sampling methods for future events and determine the ability of laboratory simulations to mimic events inthe field.

  5. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  6. Acoustic detection of railcar roller bearing defects. Phase I, Laboratory test.

    DOT National Transportation Integrated Search

    2003-06-01

    A series of tests were performed at the Bearing Test Facility at the Transportation Technology Center, Inc. (TTCI) in Pueblo, Colorado, to gather acoustic and acceleration emissions for a number of roller bearing defect types designated by the rail i...

  7. Emissions and climate-relevant optical properties of pollutants emitted from a three-stone fire and the Berkeley-Darfur stove tested under laboratory conditions.

    PubMed

    Preble, Chelsea V; Hadley, Odelle L; Gadgil, Ashok J; Kirchstetter, Thomas W

    2014-06-03

    Cooking in the developing world generates pollutants that endanger the health of billions of people and contribute to climate change. This study quantified pollutants emitted when cooking with a three-stone fire (TSF) and the Berkeley-Darfur Stove (BDS), the latter of which encloses the fire to increase fuel efficiency. The stoves were operated at the Lawrence Berkeley National Laboratory testing facility with a narrow range of fuel feed rates to minimize performance variability. Fast (1 Hz) measurements of pollutants enabled discrimination between the stoves' emission profiles and development of woodsmoke-specific calibrations for the aethalometer (black carbon, BC) and DustTrak (fine particles, PM2.5). The BDS used 65±5% (average±95% confidence interval) of the wood consumed by the TSF and emitted 50±5% of the carbon monoxide emitted by the TSF for an equivalent cooking task, indicating its higher thermal efficiency and a modest improvement in combustion efficiency. The BDS reduced total PM2.5 by 50% but achieved only a 30% reduction in BC emissions. The BDS-emitted particles were, therefore, more sunlight-absorbing: the average single scattering albedo at 532 nm was 0.36 for the BDS and 0.47 for the TSF. Mass emissions of PM2.5 and BC varied more than emissions of CO and wood consumption over all tests, and emissions and wood consumption varied more among TSF than BDS tests. The international community and the Global Alliance for Clean Cookstoves have proposed performance targets for the highest tier of cookstoves that correspond to greater reductions in fuel consumption and PM2.5 emissions of approximately 65% and 95%, respectively, compared to baseline cooking with the TSF. Given the accompanying decrease in BC emissions for stoves that achieve this stretch goal and BC's extremely high global warming potential, the short-term climate change mitigation from avoided BC emissions could exceed that from avoided CO2 emissions.

  8. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility.

    PubMed

    Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F

    2011-05-01

    Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Laboratory Measurements of Biomass Cook-stove Emissions Aged in an Oxidation Flow Reactor: Influence of Combustion and Aging Conditions on Aerosols

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.

    2016-12-01

    Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol composition with aging. These results highlight the importance of both stoves' operating conditions and aging on composition and characteristics of emissions, which have important implications for regional air quality and climate forcing.

  10. Environmental assessment of a crude-oil heater using staged air lances for NOx reduction. Volume 1. Technical results. Final report June 1981-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.

    1984-07-01

    This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the staged air system (low NOx), and the other, without (baseline). Tests included continuous monitoring of flue gas emissions and source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples utilizing gas chromatography (GC), infrared spectrometry (IR), gas chromatography/mass spectroscopy (GC/MS), and low resolution mass spectrometry (SSMS)more » for trace metals. LRMS analysis suggested the presence of eight compound categories in the organic emissions during the baseline test and four in the low-NOx test.« less

  11. A preliminary test method for masonry heater particulate matter and carbon monoxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, C.H.; Jaasma, D.R.; Shelton, J.W.

    1991-08-01

    A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less

  12. Pettit works with the SLICE at the MSG in the U.S. Laboratory

    NASA Image and Video Library

    2012-03-09

    ISS030-E-128918 (9 March 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, works with the Structure and Liftoff In Combustion Experiment (SLICE) at the Microgravity Sciences Glovebox (MSG) in the Destiny laboratory of the International Space Station. Pettit conducted three sets of flame tests, followed by a fan calibration. This test will lead to increased efficiency and reduced pollutant emission for practical combustion devices.

  13. An active interference projector for the electro-optical test facility

    NASA Astrophysics Data System (ADS)

    Crowe, D. G.; Nowak, T. M.

    1980-09-01

    A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.

  14. Source emission and model evaluation of formaldehyde from composite and solid wood furniture in a full-scale chamber

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Mason, Mark A.; Guo, Zhishi; Krebs, Kenneth A.; Roache, Nancy F.

    2015-12-01

    This paper describes the measurement and model evaluation of formaldehyde source emissions from composite and solid wood furniture in a full-scale chamber at different ventilation rates for up to 4000 h using ASTM D 6670-01 (2007). Tests were performed on four types of furniture constructed of different materials and from different manufacturers. The data were used to evaluate two empirical emission models, i.e., a first-order and power-law decay model. The experimental results showed that some furniture tested in this study, made only of solid wood and with less surface area, had low formaldehyde source emissions. The effect of ventilation rate on formaldehyde emissions was also examined. Model simulation results indicated that the power-law decay model showed better agreement than the first-order decay model for the data collected from the tests, especially for long-term emissions. This research was limited to a laboratory study with only four types of furniture products tested. It was not intended to comprehensively test or compare the large number of furniture products available in the market place. Therefore, care should be taken when applying the test results to real-world scenarios. Also, it was beyond the scope of this study to link the emissions to human exposure and potential health risks.

  15. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  16. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  17. 40 CFR 1065.920 - PEMS calibrations and verifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... that your new configuration meets this verification. The verification consists of operating an engine... with data simultaneously generated and recorded by laboratory equipment as follows: (1) Mount an engine...

  18. EMISSIONS FROM BURNING CABINET MAKING SCRAPS

    EPA Science Inventory

    The report gives results of an initial determination of differences in missions when burning ordinary cordwood compared to kitchen cabinet making scraps. he tests were performed in an instrumented woodstove testing laboratory on a stove that simulated units observed in use at a k...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron,more » cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.« less

  20. Emissivity Results on High Temperature Coatings for Refractory Composite Materials

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Daryabeigi, Kamran; Lewis, Ronald K.; Rodriguez, Alvaro C.; Milhoan, James D.; Koenig, John R.

    2007-01-01

    The directional emissivity of various refractory composite materials considered for application for reentry and hypersonic vehicles was investigated. The directional emissivity was measured at elevated temperatures of up to 3400 F using a directional spectral radiometric technique during arc-jet test runs. A laboratory-based relative total radiance method was also used to measure total normal emissivity of some of the refractory composite materials. The data from the two techniques are compared. The paper will also compare the historical database of Reinforced Carbon-Carbon emissivity measurements with emissivity values generated recently on the material using the two techniques described in the paper.

  1. Chamber study of PCB emissions from caulking materials and light ballasts.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H; Roache, Nancy F

    2015-10-01

    The emissions of polychlorinated biphenyl (PCB) congeners from thirteen caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-L environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r(2)⩾0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs. Published by Elsevier Ltd.

  2. Recent NASA/GSFC cryogenic measurements of the total hemispheric emissivity of black surface preparations

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.

    2015-12-01

    High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.

  3. Emissions of air pollutants from scented candles burning in a test chamber

    NASA Astrophysics Data System (ADS)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  4. Acoustic emission non-destructive testing of structures using source location techniques.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one onmore » aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.« less

  5. In-Use Emissions and Estimated Impacts of Traditional, Natural- and Forced-Draft Cookstoves in Rural Malawi

    PubMed Central

    2017-01-01

    Emissions from traditional cooking practices in low- and middle-income countries have detrimental health and climate effects; cleaner-burning cookstoves may provide “co-benefits”. Here we assess this potential via in-home measurements of fuel-use and emissions and real-time optical properties of pollutants from traditional and alternative cookstoves in rural Malawi. Alternative cookstove models were distributed by existing initiatives and include a low-cost ceramic model, two forced-draft cookstoves (FDCS; Philips HD4012LS and ACE-1), and three institutional cookstoves. Among household cookstoves, emission factors (EF; g (kg wood)−1) were lowest for the Philips, with statistically significant reductions relative to baseline of 45% and 47% for fine particulate matter (PM2.5) and carbon monoxide (CO), respectively. The Philips was the only cookstove tested that showed significant reductions in elemental carbon (EC) emission rate. Estimated health and climate cobenefits of alternative cookstoves were smaller than predicted from laboratory tests due to the effects of real-world conditions including fuel variability and nonideal operation. For example, estimated daily PM intake and field-measurement-based global warming commitment (GWC) for the Philips FDCS were a factor of 8.6 and 2.8 times higher, respectively, than those based on lab measurements. In-field measurements provide an assessment of alternative cookstoves under real-world conditions and as such likely provide more realistic estimates of their potential health and climate benefits than laboratory tests. PMID:28060518

  6. Renewable Diesel Testing in UPS Fleet Vehicles | Transportation Research |

    Science.gov Websites

    impact of renewable diesel fuel use in medium- and heavy-duty vehicles operated by UPS. Photo by Dennis Partnership, NREL is comparing the fuel economy and emissions impact of renewable diesel versus petroleum Fuels and Lubricants Laboratory to determine the fuel economy and emissions impact of renewable versus

  7. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    NASA Astrophysics Data System (ADS)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  8. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditionalmore » stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.« less

  9. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that providemore » elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter per hour [{micro}g/m{sup 2}/h]. The dominant sulfur containing compounds in the RSG emission stream were hydrogen sulfide with emission factors between 17-201 {micro}g/m{sup 2}/h, and sulfur dioxide with emission factors between 8-64 {micro}g/m{sup 2}/h. The four highest emitting samples also had a unique signature of VSC emissions including > 40 higher molecular weight sulfur-containing compounds although the emission rate for the VSCs was several orders of magnitude lower than that of the RSGs. All of the high emitting drywall samples were manufactured in China in 2005-2006. Results from Phase 1 provided baseline emission factors for drywall samples manufactured in China and in North America but the results exclude variations in environmental conditions that may exist in homes or other built structures, including various combinations of temperature, RH, ventilation rate and the influence of coatings such as texture and paints. The objective of Phase 2 was to quantify the effect of temperature and RH on the RSG emission factors for uncoated drywall, and to measure the effect of plaster and paint coatings on RSG emission factors from drywall. Additional experiments were also performed to assess the influence of ventilation rate on measured emission factors for drywall.« less

  10. Leak Detection by Acoustic Emission Monitoring. Phase 1. Feasibility Study

    DTIC Science & Technology

    1994-05-26

    various signal processing and noise descrimInation techniques during the Data Processing task. C. TEST DESCRIPTION 1. Laboratory Tests Following normal...success in applying these methods to descriminating between the AE bursts generated by two close AE sources In a section of an aircraft structure

  11. An assessment of the real-world driving gaseous emissions from a Euro 6 light-duty diesel vehicle using a portable emissions measurement system (PEMS)

    NASA Astrophysics Data System (ADS)

    Luján, José M.; Bermúdez, Vicente; Dolz, Vicente; Monsalve-Serrano, Javier

    2018-02-01

    Recent investigations demonstrated that real-world emissions usually exceed the levels achieved in the laboratory based type approval processes. By means of on-board emissions measurements, it has been shown that nitrogen oxides emitted by diesel engines substantially exceed the limit imposed by the Euro 6 regulation. Thus, with the aim of complementing the worldwide harmonized light vehicles test cycle, the real driving emissions cycle will be introduced after 1 September 2017 to regulate the vehicle emissions in real-world driving situations. This paper presents on-board gaseous emissions measurements from a Euro 6 light-duty diesel vehicle in a real-world driving route using a portable emissions measurement system. The test route characteristics follow the requirements imposed by the RDE regulation. The analysis of the raw emissions results suggests that the greatest amount of nitrogen oxides and nitrogen dioxide are emitted during the urban section of the test route, confirming that lower speeds with more accelerations and decelerations lead to higher nitrogen oxides emissions levels than constant high speeds. Moreover, the comparison of the two calculation methods proposed by the real driving emissions regulation has revealed emissions rates differences ranging from 10% to 45% depending on the pollutant emission and the trip section considered (urban or total). Thus, the nitrogen oxides emissions conformity factor slightly varies from one method to the other.

  12. Development and application of a mobile laboratory for measuring emissions from diesel engines. 2. Sampling for toxics and particulate matter.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent C; Zhu, Xiaona; Miller, J Wayne; Norbeck, Joseph M

    2004-12-15

    Limited data are available on the emission rates of speciated volatile and semivolatile organic compounds, as well as the physical and chemical characteristics of fine particulate matter (PM) from mobile, in-use diesel engines operated on the road. A design for the sampling of these fractions and the first data from in-use diesel sources are presented in this paper. Emission rates for carbonyls, 1,3-butadiene, benzene, toluene, xylene, PM, and elemental and organic carbon (EC and OC) are reported for a vehicle driven while following the California Air Resources Board (ARB) four-mode heavy heavy-duty diesel truck (HHDDT) cycle and while transiting through a major transportation corridor. Results show that distance specific emission rates are substantially greater in congested traffic as compared with highway cruise conditions. Specifically, emissions of toxic compounds are 3-15 times greater, and PM is 7 times greater under these conditions. The dependence of these species on driving mode suggests that health and source apportionment studies will need to account for driving patterns in addition to emission factors. Comparison of the PM/NOx ratios obtained for the above tests provides insight into the presence and importance of "off-cycle" emissions during on-road driving. Measurements from a stationary source (operated and tested at constant engine speed) equipped with an engine similar to that in the HHDDT yielded a greater understanding of the relative dependence of emissions on load versus engine transients. These data are indicative of the type of investigations made possible by the development of this novel laboratory.

  13. EPA Nonregulatory Nonroad Duty Cycles

    EPA Pesticide Factsheets

    EPA nonregulatory, nonroad duty cycles for equipment such as agricultural tractors, backhoe loaders,crawlers tractors, excavators, arc welding skid steer loaders, and wheel loaders. Also,test procedures, laboratory methods, and emissions for this equipmen

  14. Evaluation of NOx emissions of a retrofitted Euro 5 passenger car for the Horizon prize "Engine retrofit".

    PubMed

    Giechaskiel, Barouch; Suarez-Bertoa, Ricardo; Lähde, Tero; Clairotte, Michael; Carriero, Massimo; Bonnel, Pierre; Maggiore, Maurizio

    2018-06-13

    The Horizon 2020 prize for the "Engine Retrofit for Clean Air" aims at reducing the pollution in cities by spurring the development of retrofit technology for diesel engines. A Euro 5 passenger car was retrofitted with an under-floor SCR (Selective Catalytic Reduction) for NO x catalyst in combination with a solid ammonia based dosing system as the NO x reductant. The vehicle was tested both on the road and on the chassis dynamometer under various test cycles and ambient temperatures. The NO x emissions were reduced by 350-1100 mg/km (60-85%) in the laboratory depending on the test cycle and engine conditions (cold or hot start), except at type approval conditions. The reduction for cold start urban cycles was < 75 mg/km (< 15%). The on road and laboratory tests were inline. In some high speed conditions significant increase of ammonia (NH 3 ) and nitrous oxide (N 2 O) were measured. No effect was seen on other pollutants (hydrocarbons, carbon monoxide and particles). The results of the present study show that retrofitting high emitting vehicles can significantly reduce vehicle NO x emissions and ultimately pollution in cities. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Materials emission of chemicals--PVC flooring materials.

    PubMed

    Lundgren, B; Jonsson, B; Ek-Olausson, B

    1999-09-01

    Data of chemical emissions from flooring materials have been collected and investigated in a database known as METS. The emission tests are performed using the Field and Laboratory Emission Cell (FLEC). The emission rates of total volatile organic compounds (TVOC) in the boiling point range of hexane to octadecane varies from around 4,000 micrograms/(m2.h) to less than 10 micrograms/(m2.h). Results obtained 1994/95 are presented and compared with the results obtained in 1992 for similar materials. The tests are performed 4 weeks and 26 weeks after the manufacturing of the material. The emission rates of TVOC decrease on the average approximately 60% from 4 to 26 weeks. The differences and trends in emission rates of individual chemicals and their use are discussed. For many VOCs emission rates decrease rapidly and become near to or below 2 micrograms/(m2.h) (the detection limit) after 26 weeks. For a small number of individual compounds the emission rate decrease little over 26 weeks. A small number of chemicals are singled out for particular interest in a health and comfort evaluation based on the emission results.

  16. Operating environmental laboratories--an overview of analysis equipment procurement and management.

    PubMed

    Pandya, G H; Shinde, V M; Kanade, G S; Kondawar, V K

    2003-10-01

    Management of equipment in an environmental laboratory requires planning involving assessment of the workload on a particular equipment, establishment of criteria and specification for the purchase of equipment, creation of infrastructure for installation and testing of the equipment, optimization of analysis conditions, development of preventive maintenance procedures and establishment of in-house repair facilities. The paper reports the results of such an analysis carried for operating environmental laboratories associated with R& D work, serving as an Govt. laboratory or attached to an Industry for analysing industrial emissions.

  17. A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.

    2017-10-01

    Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  18. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S

    2013-06-01

    Industrial gold mining is a significant source of mercury (Hg) emission to the atmosphere. To investigate ways to reduce these emissions, reclamation and dust and mercury control methods used at open pit gold mining operations in Nevada were studied in a laboratory setting. Using this information along with field data, and building off previous work, total annual Hg emissions were estimated for two active gold mines in northern Nevada. Results showed that capping mining waste materials with a low-Hg substrate can reduce Hg emissions from 50 to nearly 100%. The spraying of typical dust control solutions often results in higher Hg emissions, especially as materials dry after application. The concentrated application of a dithiocarbamate Hg control reagent appears to reduce Hg emissions, but further testing mimicking the actual distribution of this chemical within an active leach solution is needed to make a more definitive assessment.

  19. Effect of Temperature and Process on Quantity and Composition of Laboratory-generated Bitumen Emissions.

    PubMed

    Bolliet, Christophe; Kriech, Anthony J; Juery, Catherine; Vaissiere, Mathieu; Brinton, Michael A; Osborn, Linda V

    2015-01-01

    In this study we investigated the impact of temperature on emissions as related to various bitumen applications and processes used in commercial products. Bitumen emissions are very complex and can be influenced in quantity and composition by differences in crude source, refining processes, application temperature, and work practices. This study provided a controlled laboratory environment to study five bitumen test materials from three European refineries; three paving grade, one used for primarily roofing and some paving applications, and one oxidized industrial specialty bitumen. Emissions were generated at temperatures between 140°C and 230°C based on typical application temperatures of each product. Emissions were characterized by aerodynamic particle size, total organic matter (TOM), simulated distillation, 40 individual PACs, and fluorescence (FL-PACs) spectroscopy. Results showed that composition of bitumen emissions is influenced by temperature under studied experimental conditions. A distinction between the oxidized bitumen with flux oil (industrial specialty bitumen) and the remaining bitumens was observed. Under typical temperatures used for paving (150°C-170°C), the TOM and PAC concentrations in the emissions were low. However, bitumen with flux oil produced significantly higher emissions at 230°C, laden with high levels of PACs. Flux oil in this bitumen mixture enhanced release of higher boiling-ranged compounds during application conditions. At 200°C and below, concentrations of 4-6 ring PACs were ≤6.51 μg/m(3) for all test materials, even when flux oil was used. Trends learned about emission temperature-process relationships from this study can be used to guide industry decisions to reduce worker exposure during processing and application of hot bitumen.

  20. Environmental assessment of an enhanced-oil-recovery steam generator equipped with a low-NOx burner. Volume 1. Technical results. Final report, January 1984-January 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.; Lips, H.I.

    1986-02-01

    The report discusses results from sampling flue gas from an enhanced-oil-recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conventional burner, and comprehensive testing of the low-NOx-burner-equipped steamer. Comprehensive test measurements included continuous flue-gas monitoring; source assessment sampling system testing with subsequent laboratory analysis to give total flue-gas organics in two boiling point ranges and specific quantitation on the semivolatile organic priority pollutants; C1 to C6 hydrocarbon sampling; Methods 5/8 sampling for particulate and SO/sub 2/ and SO/sub 3/ emissions; andmore » emitted particle size distribution tests using Andersen impactors. Full-load NOx emissions of 110 ppm (3% O/sub 2/) could be maintained from the low-NOx burner at acceptable CO and smoke emissions, compared to about 300 ppm (3% O/sub 2/) from the conventional-burner-equipped steamer. At the low-NOx condition, CO, SO/sub 2/, and SO/sub 3/ emissions were 93, 594, and 3.1 ppm, respectively. Particulate emissions were 39 mg/dscm with a mean particle diameter of 3 to 4 micrometers. Total organic emissions were 11.1 mg/dscm, almost exclusively volatile (C1 to C6) organics. Three PAHs were detected at from 0.1 to 1.4 micrograms/dscm.« less

  1. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Cao; Hongcang Zhou; Junjie Fan

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, butmore » not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.« less

  2. Diesel Glycerin Emulsion Fuel Project

    DOT National Transportation Integrated Search

    2018-05-30

    The work of the Marine Engine Testing and Emissions Laboratory (METEL) at Maine Maritime Academy (MMA) in the area of emulsion biofuels is presented. An overview of METEL is discussed including its unique capabilities in the fabrication, characteriza...

  3. Quantifying the isotopic composition of NOx emission sources: An analysis of collection methods

    NASA Astrophysics Data System (ADS)

    Fibiger, D.; Hastings, M.

    2012-04-01

    We analyze various collection methods for nitrogen oxides, NOx (NO2 and NO), used to evaluate the nitrogen isotopic composition (δ15N). Atmospheric NOx is a major contributor to acid rain deposition upon its conversion to nitric acid; it also plays a significant role in determining air quality through the production of tropospheric ozone. NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations (and, thus, nitric acid) to a particular source. Several recent studies suggest that variability in the isotopic composition of nitric acid deposition is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, the isotopic composition of most NOx sources has not been thoroughly constrained. Ultimately, the direct capture and quantification of the nitrogen isotopic signatures of NOx sources will allow for the tracing of NOx emissions sources and their impact on environmental quality. Moreover, this will provide a new means by which to verify emissions estimates and atmospheric models. We present laboratory results of methods used for capturing NOx from air into solution. A variety of methods have been used in field studies, but no independent laboratory verification of the efficiencies of these methods has been performed. When analyzing isotopic composition, it is important that NOx be collected quantitatively or the possibility of fractionation must be constrained. We have found that collection efficiency can vary widely under different conditions in the laboratory and fractionation does not vary predictably with collection efficiency. For example, prior measurements frequently utilized triethanolamine solution for collecting NOx, but the collection efficiency was found to drop quickly as the solution aged. The most promising method tested is a NaOH/KMnO4 solution (Margeson and Knoll, Anal. Chem., 1985) which can collect NOx quantitatively from the air. Laboratory tests of previously used methods, along with progress toward creating a suitable and verifiable field deployable collection method will be presented.

  4. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaochi; Aurell, Johanna; Mitchell, William; Tabor, Dennis; Gullett, Brian

    2017-04-01

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and time-integrated sampler system for use on mobile applications such as vehicles, tethered balloons (aerostats) and unmanned aerial vehicles (UAVs) to determine emission factors. The system is particularly applicable to open area sources, such as forest fires, due to its light weight (3.5 kg), compact size (6.75 L), and internal power supply. The sensor system, termed ;Kolibri;, consists of sensors measuring CO2 and CO, and samplers for particulate matter (PM) and volatile organic compounds (VOCs). The Kolibri is controlled by a microcontroller which can record and transfer data in real time through a radio module. Selection of the sensors was based on laboratory testing for accuracy, response delay and recovery, cross-sensitivity, and precision. The Kolibri was compared against rack-mounted continuous emissions monitoring system (CEMs) and another mobile sampling instrument (the ;Flyer;) that has been used in over ten open area pollutant sampling events. Our results showed that the time series of CO, CO2, and PM2.5 concentrations measured by the Kolibri agreed well with those from the CEMs and the Flyer, with a laboratory-tested percentage error of 4.9%, 3%, and 5.8%, respectively. The VOC emission factors obtained using the Kolibri were consistent with existing literature values that relate concentration to modified combustion efficiency. The potential effect of rotor downwash on particle sampling was investigated in an indoor laboratory and the preliminary results suggested that its influence is minimal. Field application of the Kolibri sampling open detonation plumes indicated that the CO and CO2 sensors responded dynamically and their concentrations co-varied with emission transients. The Kolibri system can be applied to various challenging open area scenarios such as fires, lagoons, flares, and landfills.

  5. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions.

    PubMed

    Zosima, Angela T; Tsakanika, Lamprini-Areti V; Ochsenkühn-Petropoulou, Maria Th

    2017-05-12

    The aim of this study was to investigate the impact of biomass combustion with respect to burning conditions and fuel types on particulate matter emissions (PM 10 ) and their metals as well as toxic elements content. For this purpose, different lab scale burning conditions were tested (20 and 13% O 2 in the exhaust gas which simulate an incomplete and complete combustion respectively). Furthermore, two pellet stoves (8.5 and 10 kW) and one open fireplace were also tested. In all cases, 8 fuel types of biomass produced in Greece were used. Average PM 10 emissions ranged at laboratory-scale combustions from about 65 to 170 mg/m 3 with flow oxygen at 13% in the exhaust gas and from 85 to 220 mg/m 3 at 20% O 2 . At pellet stoves the emissions were found lower (35 -85 mg/m 3 ) than the open fireplace (105-195 mg/m 3 ). The maximum permitted particle emission limit is 150 mg/m 3 . Metals on the PM 10 filters were determined by several spectrometric techniques after appropriate digestion or acid leaching of the filters, and the results obtained by these two methods were compared. The concentration of PM 10 as well as the total concentration of the metals on the filters after the digestion procedure appeared higher at laboratory-scale combustions with flow oxygen at 20% in the exhaust gas and even higher at fireplace in comparison to laboratory-scale combustions with 13% O 2 and pellet stoves. Modern combustion appliances and appropriate types of biomass emit lower PM 10 emissions and lower concentration of metals than the traditional devices where incomplete combustion conditions are observed. Finally, a comparison with other studies was conducted resulting in similar results.

  6. High Efficiency, Low Emission Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A.; Sharma, Vishaldeep

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for laboratory and field testing. Laboratory and field testing will demonstrate the high energy efficiency and low environmental impact of the refrigeration system developed in this project.« less

  7. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  8. Gaseous emissions from compressed natural gas buses in urban road and highway tests in China.

    PubMed

    Yue, Tingting; Chai, Fahe; Hu, Jingnan; Jia, Ming; Bao, Xiaofeng; Li, Zhenhua; He, Liqang; Zu, Lei

    2016-10-01

    The natural gas vehicle market is rapidly developing throughout the world, and the majority of such vehicles operate on compressed natural gas (CNG). However, most studies on the emission characteristics of CNG vehicles rely on laboratory chassis dynamometer measurements, which do not accurately represent actual road driving conditions. To further investigate the emission characteristics of CNG vehicles, two CNG city buses and two CNG coaches were tested on public urban roads and highway sections. Our results show that when speeds of 0-10km/hr were increased to 10-20km/hr, the CO 2 , CO, nitrogen oxide (NO x ), and total hydrocarbon (THC) emission factors decreased by (71.6±4.3)%, (65.6±9.5)%, (64.9±9.2)% and (67.8±0.3)%, respectively. In this study, The Beijing city buses with stricter emission standards (Euro IV) did not have lower emission factors than the Chongqing coaches with Euro II emission standards. Both the higher emission factors at 0-10km/hr speeds and the higher percentage of driving in the low-speed regime during the entire road cycle may have contributed to the higher CO 2 and CO emission factors of these city buses. Additionally, compared with the emission factors produced in the urban road tests, the CO emission factors of the CNG buses in highway tests decreased the most (by 83.2%), followed by the THC emission factors, which decreased by 67.1%. Copyright © 2016. Published by Elsevier B.V.

  9. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  10. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    PubMed

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  11. Nitrous oxide emission reduction in temperate biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  12. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  13. AG Dra -- a high density plasma laboratory

    NASA Astrophysics Data System (ADS)

    Young, Peter

    2002-07-01

    A STIS observation of the symbiotic star AG Draconis yielding spectra in the range 1150--10 000 Angstrom is requested. AG Dra is a non-eclipsing binary that shows strong, narrow nebular emission lines that originate in the wind of a K giant, photoionized by a hot white dwarf. The density of the nebula is around 10^10 electrons/cm^3 and is the perfect laboratory for testing the plasma modeling codes cloudy and xstar at high densities. These codes are used for a wide range of astrophysical objects including stellar winds, accretion disks, active galactic nuclei and Seyfert galaxies, and calibrating them against high signal-to-noise spectra from comparatively simple systems is essential. AG Dra is the perfect high density laboratory for this work. In addition, many previously undetected emission lines will be found through the high sensitivity of STIS, which will allow new plasma diagnostics to be tested. These twin objectives are particularly pertinent as the high sensitivity of emphHST/COS will will permit similar high resolution spectroscopy to be applied to a whole new regime of extragalactic objects. By combining far-UV data from Ause with complementary data from STIS, we will determine ratios of emission lines from the same ion, or ions of similar ionization level. These will permit a more complete set of diagnostics than are obtainable from one instrument alone.

  14. Quantification of water content by laser induced breakdown spectroscopy on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapin, W.; Meslin, P. -Y.; Maurice, S.

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less

  15. Quantification of water content by laser induced breakdown spectroscopy on Mars

    DOE PAGES

    Rapin, W.; Meslin, P. -Y.; Maurice, S.; ...

    2017-02-12

    Laser induced breakdown spectroscopy (LIBS), as performed by the ChemCam instrument, provides a new technique to measure hydrogen at the surface of Mars. Using a laboratory replica of the LIBS instrument onboard the Curiosity rover, different types of hydrated samples (basalts, calcium and magnesium sulfates, opals and apatites) covering a range of targets observed on Mars have been characterized and analyzed in this paper. A number of factors related to laser parameters, atmospheric conditions and differences in targets properties can affect the standoff LIBS signal, and in particular the hydrogen emission peak. Dedicated laboratory tests were run to identify amore » normalization of the hydrogen signal which could best compensate for these effects and enable the application of the laboratory calibration to Mars data. We check that the hydrogen signal increases linearly with water content; and normalization of the hydrogen emission peak using to oxygen and carbon emission peaks (related to the breakdown of atmospheric carbon dioxide) constitutes a robust approach. Finally, moreover, the calibration curve obtained is relatively independent of the samples types.« less

  16. Surface emissivity of a reinforced carbon composite material with an oxidation-inhibiting coating

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.

    1973-01-01

    Total effective emissivity and spectral emissivity over the wavelength range of 0.65 to 6.3 microns were determined for temperatures from 1300 t0 2250 deg K. A multi channel radiometer was used in the arcjet and laboratory tests. The black-body-hole method was used to independently check radiometer results. The results show the silicon-carbide coated reinforced carbon composite material is a nongray radiator. The total effective emissivity and the spectral emissivity at 0.65 micron both decreased with increasing temperature, respectively, from approximately 0.8 to 0.6, and from 0.4 to 0.25, over the temperature range. The emissivity values were the same when the sample was viewed normal to the surface or at a 45 deg angle. Recommended emissivity values are presented.

  17. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.

    PubMed

    Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota

    2018-06-13

    European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less

  19. Novel method for on-road emission factor measurements using a plume capture trailer.

    PubMed

    Morawska, L; Ristovski, Z D; Johnson, G R; Jayaratne, E R; Mengersen, K

    2007-01-15

    The method outlined provides for emission factor measurements to be made for unmodified vehicles driving under real world conditions at minimal cost. The method consists of a plume capture trailer towed behind a test vehicle. The trailer collects a sample of the naturally diluted plume in a 200 L conductive bag and this is delivered immediately to a mobile laboratory for subsequent analysis of particulate and gaseous emissions. The method offers low test turnaround times with the potential to complete much larger numbers of emission factor measurements than have been possible using dynamometer testing. Samples can be collected at distances up to 3 m from the exhaust pipe allowing investigation of early dilution processes. Particle size distribution measurements, as well as particle number and mass emission factor measurements, based on naturally diluted plumes are presented. A dilution profile relating the plume dilution ratio to distance from the vehicle tail pipe for a diesel passenger vehicle is also presented. Such profiles are an essential input for new mechanistic roadway air quality models.

  20. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    PubMed

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  1. The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)

    2002-01-01

    NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.

  2. Preliminary Evaluation of the Field and Laboratory Emission Cell (FLEC) for Sampling Attribution Signatures from Building Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; He, Lijian; Wahl, Jon H.

    2012-08-30

    This study provides a preliminary evaluation of the Field and Laboratory Emission Cell (FLEC) for its suitability for sampling building materials for toxic compounds and their associated impurities and residues that might remain after a terrorist chemical attack. Chemical warfare (CW) agents and toxic industrial chemicals were represented by a range of test probes that included CW surrogates. The test probes encompassed the acid-base properties, volatilities, and polarities of the expected chemical agents and residual compounds. Results indicated that dissipation of the test probes depended heavily on the underlying material. Near complete dissipation of almost all test probes occurred frommore » galvanized stainless steel within 3.0 hrs, whereas far stronger retention with concomitant slower release was observed for vinyl composition floor tiles. The test probes displayed immediated permanence on Teflon. FLEC sampling was further evaluated by profiling residues remaining after the evaporation of 2-chloroethyl ethyl sulfide, a sulfur mustard simulant. This study lays the groundwork for the eventual goal of applying this sampling approach for collection of forensic attribution signatures that remain after a terrorist chemical attack.« less

  3. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  4. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  5. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL ...

    EPA Pesticide Factsheets

    During the period of July 8 - July 12, 1985, the Shirco Infrared Systems Portable Pilot Test Unit was in operation at the Times Beach Dioxin Research Facility to demonstrate the capability of Shirco's infrared technology to decontaminate silty soil laden with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a concentration range of 156 to 306 ppb. Emissions sampling and final analysis was performed by Environmental Research & Technology, Inc. (ERT), while laboratory analysis of the emissions and soil samples was performed by Roy F. Weston Inc. Shirco Infrared Systems prepared the testing procedure protocol and operated the furnace system. publish information

  6. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  7. Report: Results of Technical Network Vulnerability Assessment: EPA’s National Vehicle and Fuel Emissions Laboratory

    EPA Pesticide Factsheets

    Report #12-P-0900, September 27, 2012. Vulnerability testing of networked resources located in the NVFEL identified Internet Protocol addresses with potentially 9 critical-risk, 70 high-risk, and 297 medium-risk vulnerabilities.

  8. Microgravity Emissions Laboratory Testing of the Light Microscopy Module Control Box Fan

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Samorezov, Sergey; Haecker, Anthony H.

    2003-01-01

    The Microgravity Emissions Laboratory (MEL) was developed at the NASA Glenn Research Center for the characterization, simulation, and verification of the International Space Station (ISS) microgravity environment. This Glenn lab was developed in support of the Fluids and Combustion Facility (FCF). The MEL is a six-degrees-of-freedom inertial measurement system that can characterize the inertial response forces (emissions) of components, subrack payloads, or rack-level payloads down to 10 7g. The inertial force output data generated from the steady-state or transient operations of the test article are used with finite element analysis, statistical energy analysis, and other analysis tools to predict the on-orbit environment at specific science or rack interface locations. Customers of the MEL have used benefits in isolation performance testing in defining available attenuation during the engineering hardware design phase of their experiment s development. The Light Microscopy Module (LMM) Control Box (LCB) fan was tested in the MEL in June and July of 2002. The LMM is planned as a remotely controllable on-orbit microscope subrack facility that will be accommodated in an FCF Fluids Integrated Rack on the ISS. The disturbances measured in the MEL test resulted from operation of the air-circulation fan within the LCB. The objectives of the testing were (1) to identify an isolator to be added to the LCB fan assembly to reduce fan-speed harmonics and (2) to identify the fan-disturbance forcing functions for use in rack-response analysis of the LMM and Fluids Integrated Rack facility. This report describes the MEL, the testing process, and the results from ground-based MEL LCB fan testing.

  9. Laboratory and field measurements and evaluations of vibration at the handles of riveting hammers

    PubMed Central

    McDOWELL, THOMAS W.; WARREN, CHRISTOPHER; WELCOME, DANIEL E.; DONG, REN G.

    2015-01-01

    The use of riveting hammers can expose workers to harmful levels of hand-transmitted vibration (HTV). As a part of efforts to reduce HTV exposures through tool selection, the primary objective of this study was to evaluate the applicability of a standardized laboratory-based riveting hammer assessment protocol for screening riveting hammers. The second objective was to characterize the vibration emissions of reduced vibration riveting hammers and to make approximations of the HTV exposures of workers operating these tools in actual work tasks. Eight pneumatic riveting hammers were selected for the study. They were first assessed in a laboratory using the standardized method for measuring vibration emissions at the tool handle. The tools were then further assessed under actual working conditions during three aircraft sheet metal riveting tasks. Although the average vibration magnitudes of the riveting hammers measured in the laboratory test were considerably different from those measured in the field study, the rank orders of the tools determined via these tests were fairly consistent, especially for the lower vibration tools. This study identified four tools that consistently exhibited lower frequency-weighted and unweighted accelerations in both the laboratory and workplace evaluations. These observations suggest that the standardized riveting hammer test is acceptable for identifying tools that could be expected to exhibit lower vibrations in workplace environments. However, the large differences between the accelerations measured in the laboratory and field suggest that the standardized laboratory-based tool assessment is not suitable for estimating workplace riveting hammer HTV exposures. Based on the frequency-weighted accelerations measured at the tool handles during the three work tasks, the sheet metal mechanics assigned to these tasks at the studied workplace are unlikely to exceed the daily vibration exposure action value (2.5 m s−2) using any of the evaluated riveting hammers. PMID:22539561

  10. The difference between laboratory and in-situ pixel-averaged emissivity: The effects on temperature-emissivity separation

    NASA Technical Reports Server (NTRS)

    Matsunaga, Tsuneo

    1993-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a Japanese future imaging sensor which has five channels in thermal infrared (TIR) region. To extract spectral emissivity information from ASTER and/or TIMS data, various temperature-emissivity (T-E) separation methods have been developed to date. Most of them require assumptions on surface emissivity, in which emissivity measured in a laboratory is often used instead of in-situ pixel-averaged emissivity. But if these two emissivities are different, accuracies of separated emissivity and surface temperature are reduced. In this study, the difference between laboratory and in-situ pixel-averaged emissivity and its effect on T-E separation are discussed. TIMS data of an area containing both rocks and vegetation were also processed to retrieve emissivity spectra using two T-E separation methods.

  11. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.; Bergevin, Christopher; Kalluri, Radha; Mc Laughlin, Myles; Michelet, Pascal; van der Heijden, Marcel; Joris, Philip X.

    2011-11-01

    Otoacoustic estimates of cochlear frequency selectivity suggest substantially sharper tuning in humans. However, the logic and methodology underlying these estimates remain untested by direct measurements in primates. We report measurements of frequency tuning in macaque monkeys, Old-World primates phylogenetically closer to humans than the small laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, and chinchillas). We find that measurements of tuning obtained directly from individual nerve fibers and indirectly using otoacoustic emissions both indicate that peripheral frequency selectivity in macaques is significantly sharper than in small laboratory animals, matching that inferred for humans at high frequencies. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharper tuning in humans.

  12. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  13. NOx Emission Reduction by Oscillating combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  14. NOx Emission Reduction by Oscillating Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiencymore » for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.« less

  15. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    PubMed

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-07

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  16. Advanced Collaborative Emissions Study (ACES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less

  17. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  18. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    NASA Astrophysics Data System (ADS)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  19. Understanding of the Dynamics of the Stirling Convertor Advanced by Structural Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.

    2003-01-01

    The NASA Glenn Research Center, the U.S. Department of Energy, and the Stirling Technology Company (STC) are developing a highly efficient, long-life, free-piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions, including deep-space and Mars surface applications. As part of this development, four structural dynamic test programs were recently performed on Stirling Technology Demonstration Convertors (TDC's) that were designed and built by STC under contract to the Department of Energy. This testing was performed in Glenn's Structural Dynamics Laboratory and Microgravity Emissions Laboratory. The first test program, in November and December 1999, demonstrated that the Stirling TDC could withstand the harsh random vibration experienced during a typical spacecraft launch and survive with no structural damage or functional power performance degradation. This was a critical step in enabling the use of Stirling convertors for future spacecraft power systems. The most severe test was a 12.3grms random vibration test, with test durations of 3 min per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. The Microgravity Emissions Laboratory is typically used to measure the dynamics produced by operating space experiments and the resulting impact to the International Space Station's microgravity environment. For the second Stirling dynamic test program, performed in January 2001, the Microgravity Emissions Laboratory was used to characterize the structure-borne disturbances produced by the normal operation of a pair of Stirling convertors. The forces and moments produced by the normal operation of a Stirling system must be recognized and controlled, if necessary, so that other nearby spacecraft components, such as cameras, are not adversely affected. The Stirling convertor pair emitted relatively benign tonal forces at its operational frequency and associated harmonics. Therefore, Stirling power systems will not disturb spacecraft science experiments if minimal appropriate mounting efforts are made. The third test program, performed in February and May 2001, resulted in a modal characterization of a Stirling convertor. Since the deflection of the TDC piston rod, under vibration excitation, was of particular interest, the outer pressure shell was removed to allow access to the rod. Through this testing, the Stirling TDC's natural frequencies and modes were identified. This knowledge advanced our understanding of the successful 1999 vibration test and may be utilized to optimize the output power of future Stirling designs. The fourth test program, in April 2001, was conducted to characterize the structural response of a pair of Stirling convertors, as a function of their mounting interface stiffness. The test results provide guidance for the Stirling power package interface design. Properly designed, the interface may lead to increased structural capability and power performance beyond what was demonstrated in the successful 1999 vibration test. Dynamic testing performed to date at Glenn has shown that the Stirling convertors can withstand liftoff random vibration environments and meet "good neighbor" vibratory emission requirements. Furthermore, the future utilization of the information obtained during the tests will allow the corporation selected to be the Stirling system integrator to optimize their convertor and system interfaces designs. Glenn's Thermo-Mechanical Systems Branch provides Stirling technology expertise under a Space Act Agreement with the Department of Energy. Additional vibration testing by Glenn's Structural Systems Dynamics Branch is planned to continue to demonstrate the Stirling power system's vibration capability as its technology and flight system designs progress.

  20. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  1. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  2. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  3. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  4. Experimental modeling of NOx and PM generation from combustion of various biodiesel blends for urban transport buses.

    DOT National Transportation Integrated Search

    2016-08-01

    Biodiesel has diverse sources of feedstock and the amount and composition of its emissions vary significantly depending on : combustion conditions. Results of laboratory and field tests reveal that nitrogen oxides (NOx) and particulate matter (PM) : ...

  5. Chamber study of PCBemissions from caulking materials and light ballasts

    EPA Science Inventory

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 di...

  6. Comparing field investigations with laboratory models to predict landfill leachate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less

  7. Non-exhaust emission measurement system of the mobile laboratory SNIFFER

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Kupiainen, K. J.; Perhoniemi, P.; Tervahattu, H.; Vesala, H.

    In this paper we describe and quality assure the sampling system of a mobile research laboratory SNIFFER which was shown to be a useful tool for studying emission levels of respirable dust from street surfaces. The dust plume had bimodal structure; another mode rising to higher altitudes whereas the other mode remained at lower altitudes. The system was tested on a route in Helsinki, Finland, during spring 2005 and 2006. The PM 2.5 and PM 10 were positively correlated and the PM levels increased with the vehicle speed. SNIFFER was able to identify the characteristic emission levels on different streets. A clear downward trend in the concentrations was observed in all street locations between April and June. The composition of the street dust collected by SNIFFER was compared with springtime PM 10 aerosol samples from the air quality monitoring stations in Helsinki. The results showed similarities in the abundance and composition of the mineral fraction but contained significantly more salt particles.

  8. 3D-CFD analysis of diffusion and emission of VOCs in a FLEC cavity.

    PubMed

    Zhu, Q; Kato, S; Murakami, S; Ito, K

    2007-06-01

    This study is performed as a part of research that examines the emission and diffusion characteristics of volatile organic compounds (VOCs) from indoor building materials. In this paper, the flow field and the emission field of VOCs from the surface of building materials in a Field and Laboratory Emission Cell (FLEC) cavity are examined by 3D Computational Fluid Dynamics (CFD) analysis. The flow field within the FLEC cavity is laminar. With a total flow of 250 ml/min, the air velocity near the test material surface ranges from 0.1 to 4.5 cm/s. Three types of emission from building materials are studied here: (i) emission phenomena controlled by internal diffusion, (ii) emission phenomena controlled by external diffusion, and (iii) emission phenomena controlled by mixed diffusion (internal + external diffusion). In the case of internal diffusion material, with respect to the concentration distribution in the cavity, the local VOC emission rate becomes uniform and the FLEC works well. However, in the case of evaporation type (external diffusion) material, or mixed type materials (internal + external diffusion) when the resistance to transporting VOCs in the material is small, the FLEC is not suitable for emission testing because of the thin FLEC cavity. In this case, the mean emission rate is restricted to a small value, since the VOC concentration in the cavity rises to the same value as the surface concentration through molecular diffusion within the thin cavity, and the concentration gradient normal to the surface becomes small. The diffusion field and emission rate depend on the cavity concentration and on the Loading Factor. That is, when the testing material surface in the cavity is partially sealed to decrease the Loading Factor, the emission rate become higher with the decrease in the exposed area of the testing material. The flow field and diffusion field within the FLEC cavity are investigated by CFD method. After presenting a summary of the velocity distributed over the surface of test material and the emission properties of different type materials in FLEC, the paper pointed out that there is a bias in the airflow inside the FLEC cavity but do not influence the result of test emission rate, and the FLEC method is unsuitable for evaporation type materials in which the mass transfer of the surface controls the emission rate.

  9. Gas Emission Measurements from the RD 180 Rocket Engine

    NASA Technical Reports Server (NTRS)

    Ross, H. R.

    2001-01-01

    The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.

  10. Comparison of particle mass and solid particle number (SPN) emissions from a heavy-duty diesel vehicle under on-road driving conditions and a standard testing cycle.

    PubMed

    Zheng, Zhongqing; Durbin, Thomas D; Xue, Jian; Johnson, Kent C; Li, Yang; Hu, Shaohua; Huai, Tao; Ayala, Alberto; Kittelson, David B; Jung, Heejung S

    2014-01-01

    It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.

  11. Primary and Photochemically Aged Aerosol Emissions from Biomass Cookstoves: Chemical and Physical Characterization.

    PubMed

    Reece, Stephen M; Sinha, Aditya; Grieshop, Andrew P

    2017-08-15

    Secondary organic aerosol (SOA) formation during photo-oxidation of primary emissions from cookstoves used in developing countries may make important contributions to their climate and air quality impacts. We present results from laboratory experiments with a field portable oxidation flow reactor (F-OFR) to study the evolution of emissions over hours to weeks of equivalent atmospheric aging. Lab tests, using dry red oak, measured fresh and aged emissions from a 3 stone fire (TSF), a "rocket" natural draft stove (NDS), and a forced draft gasifier stove (FDGS), in order of increasing modified combustion efficiency (MCE) and decreasing particulate matter emission factors (EF). SOA production was observed for all stoves/tests; organic aerosol (OA) enhancement factor ranged from 1.2 to 3.1, decreasing with increased MCE. In primary emissions, OA mass spectral fragments associated with oxygenated species (primary biomass burning markers) increased (decreased) with MCE; fresh OA from FDGS combustion was especially oxygenated. OA oxygenation increased with further oxidation for all stove emissions, even where minimal enhancement was observed. More efficient stoves emit particles with greater net direct specific warming than TSFs, with the difference increasing with aging. Our results show that the properties and evolution of cookstove emissions are a strong function of combustion efficiency and atmospheric aging.

  12. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  13. Laboratory study of PCBs transport from primary sources to ...

    EPA Pesticide Factsheets

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ

  14. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  15. 40 CFR 98.174 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions using the carbon mass balance procedure in § 98.173(b)(1), you must: (1) Except as provided in... Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory... Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and...

  16. 40 CFR 98.174 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions using the carbon mass balance procedure in § 98.173(b)(1), you must: (1) Except as provided in... Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory... Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and...

  17. 40 CFR 98.174 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions using the carbon mass balance procedure in § 98.173(b)(1), you must: (1) Except as provided in... Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory... Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and...

  18. Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Street, Rachel A.; Duckham, S. Craig; Hewitt, C. Nicholas

    1996-10-01

    Isoprene and monoterpene emission rates were measured from Sitka spruce (Picea sitchensis Bong.) with a dynamic flow-through branch enclosure, both in the laboratory and in the field in the United Kingdom. In the laboratory, emission rates of isoprene comprised over 94% of the identified VOC species, and were exponentially related to temperature over a period of 1 day. This exponential relationship broke down at ˜33°C. Field measurements were taken on five sampling days in 1992 and 1993, in Grizedale Forest, Cumbria. Total emission rates were in the range 36-3771 ng g-1 h-1. Relative emissions were more variable than suggested by laboratory measurements, with monoterpenes contributing at least 64% to the total emissions in most cases. There was a significant variation in the basal emission rate both across the growing season and between different ages of vegetation, the causes of which are as yet unknown. Total emission rates, in July 1993, were estimated to be between 0.01 and 0.27% of assimilated carbon.

  19. Environmental assessment of a wood-waste-fired industrial watertube boiler. Volume 1. Technical results. Final report, March 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.

    1987-03-01

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue-gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less

  20. Environmental assessment of a wood-waste-fired industrial watertube boiler. Volume 2. Data supplement. Final report, March 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.

    1987-03-01

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic and organic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less

  1. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  2. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  3. Infrared Measurements of the Emissivity of Seawater and Foam

    NASA Astrophysics Data System (ADS)

    Branch, R.; Chickadel, C.; Jessup, A.; Carini, R. J.

    2012-12-01

    The emissivity of water has been modeled extensively in the infrared (IR) from 2-14 μm for incidence angles from 0-85° [Masuda et al. 1988, Shaw & Marston 2000, Nalli et al. 2001] but very few measurements have been published for grazing incidence angles, wavelengths from 3-5 μm, or of sea foam. Grazing incidence angles are commonly used for ship and shore based operations as well as sea surface scene simulation. Overall, water emissivity models predict a steep decline at for angles greater than 60 degrees [Masuda et al. 1988], while sea foam maintains a higher emissivity [Niclos et al. 2007]. Emissivity of foam has also been found to be smaller than water at mid-wave IR wavelengths and small incidence angles [Salisbury et al. 1993]. Further complication arises from the observations that foam from actively breaking waves appears warmer than surrounding water [Eisner et al. 1962], but residual foam appears cooler [Marmorino and Smith, 2005]. Here we present measurements of emissivity at grazing incidence angles (up to 87.5 degrees incidence) of natural seawater and sea foam. Our measurements are made using a Fourier-transform infrared (FTIR) spectrometer observing under both natural skies and laboratory conditions. In a laboratory wind tunnel we plan to test the effect of varying heat flux on the formation of cooling foam, by varying surface wind speed. Results will be compared with existing spectral emissivity models for water and foam.

  4. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  5. Crankcase emissions with disabled PCV (positive crankcase ventilation) systems. Final report, September 1984-May 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montalvo, D.A.; Hare, C.T.

    1985-03-01

    The report describes the laboratory testing of nine in-use light-duty gasoline passenger cars using up to four PCV disablement configurations. The nine vehicles included 1975 to 1983 model years, with odometer readings generally between 20,000 and 60,000 miles. No two vehicles were identical in make and engine type, and engine displacements ranged from 89 to 403 cu in. The vehicles were tested over the 1975 Federal Test Procedure, with sampling for crankcase HC conducted during each individual cycle of the 3-bag FTP and during the 10-minute hot soak. Emissions of crankcase HC are provided in g/mi for the 3-bag FTP,more » and in g/min for the 10-minute soak.« less

  6. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.

  7. A driving cycle for vehicle emissions estimation in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; López-Salinas, E

    2005-02-01

    A driving cycle derived from driving behavior and real traffic conditions in Mexico City (MC) is proposed. Data acquisition was carried out over diverse MC routes, representing travel under congested and uncongested conditions, using the chase-car approach. Thirteen different on-road patterns, including the four main access roads to MC, trips in both directions and different timetables, a total of 108 trips spanning 1044 km were evaluated in this study. The MC cycle lasts 1360 seconds with a distance of 8.8 km and average speed of 23.4 km h(-1). Both maximum speed (73.6 km h(-1)) and maximum acceleration (2.22 km h(-1)s(-1)) are lower than those of the new vehicles certification employed in Mexico ,FTP-75 cycle., that is, the MC cycle exhibits less cruising time and more transient events than the FTP cycle. A total of 30 light duty gasoline vehicles were classified into different technological groups and tested in an FTP-75 and MC driving cycles in order to compare their emission factors A potential concern is that in Mexico manufacturers design vehicles to meet the emission standards in the FTP, but emission levels increase significantly in a more representative cycle of present driving patterns in the Metropolitan Area of Mexico City (MAMC). The use of a more representative cycle during certification testing, would provide an incentive for vehicle manufacturers to design emissions control systems to remain effective during operation modes that are not currently represented in the official test procedures used in the certification process. Based on the results of the study, the use of MC cycle, which better represents current day driving patterns during testing of vehicle fleets in emissions laboratories, would improve the accuracy of emissions factors used in the MAMC emissions inventories.

  8. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  9. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.

  10. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Treesearch

    R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker; H. Jung; D. R. Weise

    2013-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...

  11. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires [Discussions

    Treesearch

    R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker III; H. Jung; D. R. Weise

    2012-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series 5 of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...

  12. Leaching of biocides used in façade coatings under laboratory test conditions.

    PubMed

    Schoknecht, Ute; Gruycheva, Jana; Mathies, Helena; Bergmann, Hannelore; Burkhardt, Michael

    2009-12-15

    The European Biocidal Products Directive 98/8/EC requires a risk assessment concerning possible effects of active ingredients on the environment. Biocides can be leached from treated materials exposed to outdoor use. These emissions have to be estimated and evaluated during the authorization procedure. Different immersion and irrigation tests were performed to investigate leaching of biocides from façade coatings. Several marketed formulations of textured coatings and paints spiked with a mixture of commonly used active ingredients (OIT, DCOIT, IPBC, carbendazim, isoproturon, diuron, terbutryn, and Irgarol 1051) were investigated. The emission process can be described by time-dependent functions that depend on the test conditions. The results of all test procedures confirm that leachability is related to water solubility and n-octanol-water partition coefficient of the active ingredients and that leaching of biocides from façade coatings is mainly a diffusion controlled process. Other factors like the composition of the product, availability and transport of water, concentration of active ingredients in the coatings, as well as UV-exposure of the coatings influence biocide emissions.

  13. F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C.

    1998-01-01

    Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc. Tunable Diode Laser System to measure the concentrations of SO2, SO3, NO, NO2, CO2, and H2O. By September 1997, an F100 engine operating at several power levels at sea level and up to six simulated altitudes had been tested with commercial jet fuels with three levels of sulfur content and one military jet fuel. The data are being vigorously analyzed. A complete report is anticipated for the 1998 Atmospheric Effects of Aviation Project Annual Conference.

  14. Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; King, Daniel J.; Herron, Andrew N.

    2016-01-01

    A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across amore » wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.« less

  15. New research assessing the effect of engine operating conditions on regulated emissions of a 4-stroke motorcycle by test bench measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iodice, Paolo, E-mail: paolo.iodice@unina.it; Senatore, Adolfo

    In the latest years the effect of powered two-wheelers on air polluting emissions is generally noteworthy all over the world, notwithstanding advances in internal combustion engines allowed to reduce considerably both fuel consumption and exhaust emissions of SI engines. Nowadays, in fact, these vehicles represent common means of quotidian moving, serving to meet daily urban transport necessities with a significant environmental impact on air quality. Besides, the emissive behavior of the two-wheelers measured under fixed legislative driving standards (and not on the local driving conditions) might not be sufficiently representative of real world motorcycle riding. The purpose of this investigationmore » is a deeper research on emissive levels of in-use motorcycles equipped with last generation SI engines under real world driving behavior. In order to analyze the effect of vehicle instantaneous speed and acceleration on emissive behavior, instantaneous emissions of CO, HC and NO{sub X} were measured in the exhaust of a four-stroke motorcycle, equipped with a three-way catalyst and belonging to the Euro-3 legislative category. Experimental tests were executed on a chassis dynamometer bench in the laboratories of the National Research Council (Italy), during the Type Approval test cycle, at constant speed and under real-world driving cycles. This analytical-experimental investigation was executed with a methodology that improves vehicles emission assessment in comparison with the modeling approaches that are based on fixed legislative driving standards. The statistical processing results so obtained are very useful also in order to improve the database of emission models commonly used for estimating emissions from road transport sector, then they can be used to evaluate the environmental impact of last generation medium-size motorcycles under real driving behaviors.« less

  16. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.

    PubMed Central

    Wei, E T; Shu, H P

    1983-01-01

    The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732

  17. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  18. Evaluation of the econo-mist device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Emission Control Technology Division (ECTD) was contacted by the General Services Administration (GSA) concerning a vapor injection device for use with automobile engines. The device is called the Econo-Mist and is a product of the FAP Corporation of Albuquerque, New Mexico. GSA had received information that the Econo-Mist reduced hydrocarbon and carbon monoxide emissions and increased fuel economy. At the request of GSA, ECTD agreed to test the device. A sample of the device was brought to the EPA laboratory in Ann Arbor, Michigan by FAP Corporation personnel on January 13, 1975.

  19. Emission of methyl bromide from biomass burning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoe, S.; Andreae, M.O.

    1994-03-04

    Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagramsmore » per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ([approximately]30 percent) to the stratospheric bromine budget.« less

  20. SOLPOL: A Solar Polarimeter for Hard X-Rays and Gamma-Rays

    NASA Technical Reports Server (NTRS)

    McConnell, Michael L.

    1999-01-01

    Th goal of this project was to continue the development of a hard X-ray polarimeter for studying solar flares. In earlier work (funded by a previous SR&T grant), we had already achieved several goals, including the following: 1) development of a means of producing a polarized radiation source in the lab that could be used for prototype development; 2) demonstrated the basic Compton scatter polarimeter concept using a simple laboratory setup; 3) used the laboratory results to verify our Monte Carlo simulations; and 4) investigated various detector technologies that could be incorporated into the polarimeter design. For the current one-year program, we wanted to fabricate and test a laboratory science model based on our SOLPOL (Solar Polarimeter) design. The long-term goal of this effort is to develop and test a prototype design that could be used to study flare emissions from either a balloon- or space-borne platform. The current program has achieved its goal of fabricating and testing a science model of the SOLPOL design, although additional testing of the design (and detailed comparison with Monte Carlo simulations) is still desired. This one-year program was extended by six months (no-cost extension) to cover the summer of 1999, when undergraduate student support was available to complete some of the laboratory testing.

  1. The Status of the NASA MEaSUREs Combined ASTER and MODIS Emissivity Over Land (CAMEL) Products

    NASA Astrophysics Data System (ADS)

    Borbas, E. E.; Feltz, M.; Hulley, G. C.; Knuteson, R. O.; Hook, S. J.

    2017-12-01

    As part of a NASA MEaSUREs Land Surface Temperature and Emissivity project, the University of Wisconsin, Space Science and Engineering Center and the NASA's Jet Propulsion Laboratory have developed a global monthly mean emissivity Earth System Data Record (ESDR). The CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The dataset includes monthly global data records of emissivity, uncertainty at 13 hinge points between 3.6-14.3 µm, and Principal Components Analysis (PCA) coefficients at 5 kilometer resolution for years 2003 to 2015. A high spectral resolution algorithm is also provided for HSR applications. The dataset is currently being tested in sounder retrieval algorithm (e.g. CrIS, IASI) and has already been implemented in RTTOV-12 for immediate use in numerical weather modeling and data assimilation. This poster will present the current status of the dataset.

  2. Laboratory and Workplace Assessments of Rivet Bucking Bar Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Warren, Christopher; Xu, Xueyan S.; Welcome, Daniel E.; Dong, Ren G.

    2016-01-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool weight, comfort, worker acceptance, and initial cost can be used to make informed bucking bar selections. PMID:25381185

  3. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    PubMed

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool weight, comfort, worker acceptance, and initial cost can be used to make informed bucking bar selections. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  4. Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels

    NASA Astrophysics Data System (ADS)

    Junga, Robert; Wzorek, Małgorzata; Kaszubska, Mirosława

    2017-10-01

    This paper treats about the impact fuels from biomass wastes and coal combustion on a small boiler operation and the emission of pollutants in this process. Tests were performed in laboratory conditions on a water boiler with retort furnace and the capacity of 10 kW. Fuels from sewage sludge and agriculture wastes (PBZ fuel) and a blend of coal with laying hens mature (CLHM) were taken into account. The results in emission changes of NOx, CO2, CO and SO2 and operating parameters of the tested boiler during combustion were investigated. The obtained results were compared with corresponding results of flame coal (GFC). Combustion of the PBZ fuel turned out to be a stable process in the tested boiler but the thermal output has decreased in about 30% compared to coal combustion, while CO and NOx emission has increased. Similar effect was observed when 15% of the poultry litter was added to the coal. In this case thermal output has also decreased (in about 20%) and increase of CO and NOx emission was observed. As a conclusion, it can be stated that more effective control system with an adaptive air regulation and a modified heat exchanger could be useful in order to achieve the nominal power of the tested boiler.

  5. HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, N; Ikonen, M; Laurikko, J

    2003-08-24

    Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable,more » how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological characterization of particles) for up-to-date diesel and natural gas vehicles. The paper describes the methodology used for the measurements on buses, the test matrix and some preliminary emission data on both regulated and unregulated emissions.« less

  6. Exhaust emissions from engines of the Detroit Diesel Corporation in transit buses: a decade of trends.

    PubMed

    Prucz, J C; Clark, N N; Gautam, M; Lyons, D W

    2001-05-01

    In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.

  7. Polychlorinated Biphenyl Sources, Emissions, and Environmental Levels in school Buildings (PCB Workshop presentation)

    EPA Science Inventory

    Measure PCB emission rates from primary sources in laboratory chambersMeasure transport and sorption by materials and dust in laboratory chambersCharacterize PCBs in school building materialsEstimate PCB emission rates from sources in schoolsExamine congener patterns in sources a...

  8. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    PubMed

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger sample of in-use HD vehicles. Implications Regulatory agencies, civil society, and the public at large have a growing interest in vehicle emission compliance in the real world. Leveraging roadside plume measurements to identify vehicles with malfunctioning emission control systems is emerging as a viable new and useful method to assess in-use performance. This work proposes fuel-based emission factor thresholds for PM and NOx that signify exceedances of emission standards on a work-specific basis by analyzing real-time emissions in the laboratory. These thresholds could be used to pre-screen vehicles before roadside enforcement inspection or other inquiry, enhance and further develop emission inventories, and potentially develop new requirements for heavy-duty inspection and maintenance (I/M) programs, including but not limited to identifying vehicles for further testing.

  9. In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels.

    PubMed

    Hübner, C; Boos, R; Prey, T

    2005-01-01

    Within this project the emissions into the atmosphere of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) of 30 domestic heating appliances in Austrian households were tested. The appliances were single stoves (kitchen stove, continuous burning stove and tiled stove) and central heating boilers for solid fuels up to a nominal heat input of 50 kW. A main objective of this survey was to determine the PCDD/F emissions of domestic heating units under routine conditions. Therefore, the habitual combustion conditions used by the operators were not influenced. The original fuels and lightning supports were used and the operation of the units was carried out by the householders according to their usual practice. The data obtained were used to calculate in-field PCDD/F-emission factors. Most of the appliances have shown PCDD/F emissions within a concentration range of 0.01-0.3 ng TEQ/MJ. Modern fan-assisted wood heating boilers with afterburning and units for continuously burning of wood chips and wood pellets had the lowest emissions. High emissions were caused by unsuitable heating habits such as combustion of wastes and inappropriate operation of the appliances. There were only small differences between single stoves and central heating boilers or between wood and coal-fired appliances. The emission factors calculated are higher than those cited in literature, which are mainly derived from trials on test stands under laboratory conditions.

  10. Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2012-06-05

    In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A keymore » component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.« less

  11. Toluene diisocyanate emission to air and migration to a surface from a flexible polyurethane foam.

    PubMed

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Because of the potential for respiratory sensitization following exposure to TDI, concerns have been raised about potential consumer exposure to TDI from residual 'free TDI' in FPF products. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. Because residual TDI results are most often intended for application in assessment of potential human exposure to TDI from FPF products, testing techniques that more accurately simulated human contact with foam were designed. To represent inhalation exposure to TDI from polyurethane foam, a test that measured the emission of TDI to air was conducted. For simulation of human dermal exposure to TDI from polyurethane foam, a migration test technique was designed. Emission of TDI to air was determined for a representative FPF using three different emission test cells. Two were commercially available cells that employ air flow over the surface of the foam [the Field and Laboratory Emission Cell (FLEC®) and the Micro-Chamber/Thermal Extraction™ cell]. The third emission test cell was of a custom design and features air flow through the foam sample rather than over the foam surface. Emitted TDI in the air of the test cells was trapped using glass fiber filters coated with 1-(2-methoxyphenyl)-piperazine (MP), a commonly used derivatizing agent for diisocyanates. The filters were subsequently desorbed and analyzed by liquid chromatography/mass spectrometry. Measurement of TDI migration from representative foam was accomplished by placing glass fiber filters coated with MP on the outer surfaces of a foam disk and then compressing the filters against the disk using a clamping apparatus for periods of 8 and 24 h. The sample filters were subsequently desorbed and analyzed in the same manner as for the emission tests. Although the foam tested had detectable levels of solvent-extractable TDI (56ng TDI g(-1) foam for the foam used in emissions tests; 240-2800ng TDI g(-1) foam for the foam used in migration tests), no TDI was detected in any of the emission or migration tests. Method detection limits (MDLs) for the emissions tests ranged from 0.03 to 0.5ng TDI g(-1) foam (0.002-0.04ng TDI cm(-2) of foam surface), whereas those for the migration tests were 0.73ng TDI g(-1) foam (0.16ng TDI cm(-2) of foam surface). Of the three emission test methods used, the FLEC® had the lowest relative MDLs (by a factor of 3-10) by virtue of its high chamber loading factor. In addition, the FLEC® cell offers well-established conformity with emission testing standard methods.

  12. Environmental assessment of a firetube boiler firing coal/oil/water mixtures. Volume 2. Data supplement. Final report, February 1981-November 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.

    1984-09-01

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less

  13. Pressurized fluidized-bed component test program shows good promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less

  14. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    USGS Publications Warehouse

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.

  15. Modeling and Qualification of a Modified Emission Unit for Radioactive Air Emissions Stack Sampling Compliance.

    PubMed

    Barnett, J Matthew; Yu, Xiao-Ying; Recknagle, Kurtis P; Glissmeyer, John A

    2016-11-01

    A planned laboratory space and exhaust system modification to the Pacific Northwest National Laboratory Material Science and Technology Building indicated that a new evaluation of the mixing at the air sampling system location would be required for compliance to ANSI/HPS N13.1-2011. The modified exhaust system would add a third fan, thereby increasing the overall exhaust rate out the stack, thus voiding the previous mixing study. Prior to modifying the radioactive air emissions exhaust system, a three-dimensional computational fluid dynamics computer model was used to evaluate the mixing at the sampling system location. Modeling of the original three-fan system indicated that not all mixing criteria could be met. A second modeling effort was conducted with the addition of an air blender downstream of the confluence of the three fans, which then showed satisfactory mixing results. The final installation included an air blender, and the exhaust system underwent full-scale tests to verify velocity, cyclonic flow, gas, and particulate uniformity. The modeling results and those of the full-scale tests show agreement between each of the evaluated criteria. The use of a computational fluid dynamics code was an effective aid in the design process and allowed the sampling system to remain in its original location while still meeting the requirements for sampling at a well mixed location.

  16. A small, lightweight multipollutant sensor system for ground ...

    EPA Pesticide Factsheets

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons (aerostats) and unmanned aerial vehicles (UAVs). The system is particularly applicable to open area sources, such as forest fires, due to its light weight (3.5 kg), compact size (6.75 L), and internal power supply. The sensor system, termed “Kolibri”, consists of sensors measuring CO2 and CO, and samplers for particulate matter (PM) and volatile organic compounds (VOCs). The Kolibri is controlled by a microcontroller which can record and transfer data in real time through a radio module. Selection of the sensors was based on laboratory testing for accuracy, response delay and recovery, cross-sensitivity, and precision. The Kolibri was compared against rack-mounted continuous emissions monitoring system (CEMs) and another mobile sampling instrument (the “Flyer”) that has been used in over ten open area pollutant sampling events. Our results showed that the time series of CO, CO2, and PM2.5 concentrations measured by the Kolibri agreed well with those from the CEMs and the Flyer, with a laboratory-tested percentage error of 4.9%, 3%, and 5.8%, respectively. The VOC emission factors obtained using the Kolibri were consistent with existing literature values that relate concentration

  17. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers wheremore » emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.« less

  18. Evaluation of the emissions from low-sulfur and biodiesel fuel used in a heavy-duty diesel truck during on-road operation

    EPA Science Inventory

    In October of 2004, EPA's National Risk Management Research Laboratory investigated the emissions from diesel powered tractor-trailer operating along a highway at near-zero grade. In place of a dynamometer and standard dilution tunnel, the Diesel Emissions Aerosol Laboratory (DEA...

  19. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 1. Technical results. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less

  20. Imaging Emission Spectra with Handheld and Cellphone Cameras

    ERIC Educational Resources Information Center

    Sitar, David

    2012-01-01

    As point-and-shoot digital camera technology advances it is becoming easier to image spectra in a laboratory setting on a shoestring budget and get immediate results. With this in mind, I wanted to test three cameras to see how their results would differ. Two undergraduate physics students and I used one handheld 7.1 megapixel (MP) digital Cannon…

  1. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  2. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  3. Quality assured measurements of animal building emissions: odor concentrations.

    PubMed

    Jacobson, Larry D; Hetchler, Brian P; Schmidt, David R; Nicolai, Richard E; Heber, Albert J; Ni, Ji-Qin; Hoff, Steven J; Koziel, Jacek A; Zhang, Yuanhui; Beasley, David B; Parker, David B

    2008-06-01

    Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.

  4. Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, Annette L.; Brown, LLoyd C.; Carathers, David C.

    2014-02-01

    This document contains the analysis details and summary of analyses conducted to evaluate the environmental impacts for the Resumption of Transient Fuel and Materials Testing Program. It provides an assessment of the impacts for the two action alternatives being evaluated in the environmental assessment. These alternatives are (1) resumption of transient testing using the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) and (2) conducting transient testing using the Annular Core Research Reactor (ACRR) at Sandia National Laboratory in New Mexico (SNL/NM). Analyses are provided for radiologic emissions, other air emissions, soil contamination, and groundwater contamination that couldmore » occur (1) during normal operations, (2) as a result of accidents in one of the facilities, and (3) during transport. It does not include an assessment of the biotic, cultural resources, waste generation, or other impacts that could result from the resumption of transient testing. Analyses were conducted by technical professionals at INL and SNL/NM as noted throughout this report. The analyses are based on bounding radionuclide inventories, with the same inventories used for test materials by both alternatives and different inventories for the TREAT Reactor and ACRR. An upper value on the number of tests was assumed, with a test frequency determined by the realistic turn-around times required between experiments. The estimates provided for impacts during normal operations are based on historical emission rates and projected usage rates; therefore, they are bounding. Estimated doses for members of the public, collocated workers, and facility workers that could be incurred as a result of an accident are very conservative. They do not credit safety systems or administrative procedures (such as evacuation plans or use of personal protective equipment) that could be used to limit worker doses. Doses estimated for transportation are conservative and are based on transport of the bounding radiologic inventory that will be contained in any given test. The transportation analysis assumes all transports will contain the bounding inventory.« less

  5. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    PubMed Central

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  6. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    PubMed

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  7. Thermal infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements

    NASA Technical Reports Server (NTRS)

    Salisbury, J. W.; Wald, A.; Daria, D. M.

    1993-01-01

    Kirchoff's Law, as originally conceived, applies only to samples in thermal equilibrium with their surroundings. Most laboratory measurements of emissivity only approach this condition and it never applies in remote sensing applications. In particular, the background is often much cooler than the radiating sample, and this has led to a long controversy about the applicability of Kirchhoff's Law under such conditions. It has also led to field and laboratory measurement techniques that use some form of the 'emissivity box' approach, which surrounds the sample with a background as close as possible to the sample temperature. In our experiments, we have heated soil samples in air on a hot plate in the laboratory to a much higher temperature than the room temperature background. Spectral emissivity was measured, except the known emissivities of both the primary and secondary Christiansen features were used, instead of assuming an emissivity of unity at these wavelengths. The results from this investigation are discussed in brief.

  8. Ultrafine particle emissions from essential-oil-based mosquito repellent products.

    PubMed

    Liu, J; Fung, D; Jiang, J; Zhu, Y

    2014-06-01

    Ultrafine particle (UFP) emissions from three essential-oil-based mosquito repellent products (lemon eucalyptus (LE), natural insects (NI), and bite shield (BS)) were tested in a 386 l chamber at a high air exchange rate of 24/h with filtered laboratory air. Total particle number concentration and size distribution were monitored by a condensation particle counter and a scanning mobility particle sizer, respectively. UFPs were emitted from all three products under indoor relevant ozone concentrations (~ 17 ppb). LE showed a nucleation burst followed by a relatively stable and continuous emission while the other two products (NI and BS) showed episodic emissions. The estimated maximum particle emission rate varied from 5.4 × 10(9) to 1.2 × 10(12) particles/min and was directly related to the dose of mosquito repellent used. These rates are comparable to those due to other indoor activities such as cooking and printing. The emission duration for LE lasted for 8-78 min depending on the dose applied while the emission duration for NI and BS lasted for 2-3 h. Certain essential-oil-based mosquito repellents can produce high concentrations of UFPs when applied, even at low ozone levels. Household and personal care products that contain essential oil may need to be tested at indoor relevant ozone levels to determine their potential to increase personal UFP exposures. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. ORNL Fuels, Engines, and Emissions Research Center (FEERC)

    ScienceCinema

    None

    2018-02-13

    This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

  10. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequimmore » MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  11. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI duemore » to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  12. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  13. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishaei, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  14. Development and Application of On-line Monitor for the ZLW-1 Axis Cracks

    NASA Astrophysics Data System (ADS)

    Shi-jun, Yang; Qian-hui, Yang; Jian-guo, Jin

    2018-03-01

    This article mainly introduces a method that uses acoustic emission techniques to achieve on-line monitor for the shaft cracks and crack growth. According to this method, axis crack monitor is produced by acoustic emission techniques. This instrument can apply to all the pressure vessels, pipelines and rotor machines that can bear buckling load. It has the online real-time monitoring, automatic recording, printing, sound and light alarm, collecting crack information function. After a series of tests in both laboratory and field, it shows that this instrument is very versatile and possesses broad prospects of development and application.

  15. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  16. "Fingerprinting" Vehicle Derived Ammonia Utilizing Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Walters, W.; Hastings, M. G.; Colombi, N. K.

    2017-12-01

    Ammonia (NH3) is the primary alkaline molecule in the atmosphere and plays a key role in numerous atmospheric processes that have important implications for human health and climate control. While agriculture activities dominate the global NH3 budget, there are large uncertainties in the urban NH3 emission inventories. The analysis of the nitrogen stable isotope composition of NH3 (δ15N-NH3) might be a useful tool for partitioning NH3 emission sources, as different emission sources tend to emit NH3 with distinctive δ15N signatures or "fingerprints". This novel tool may help improve upon urban emission inventories, which could help to improve modeling of important atmospheric processes involving NH3. However, there is a current lack of δ15N-NH3 measurements of potentially important urban NH3 emission sources, and many of the reported NH3 collection methods have not been verified for its ability to accurately characterize δ15N-NH3. Here we present a laboratory tested method to accurately measure δ15N-NH3 using honeycomb denuders coated with a 2% citric acid solution. Based on laboratory tests, the NH3 collection device has been optimized under a variety of conditions. Near quantitative NH3 collection is found at a sampling rate of 10 SLPM for NH3 concentrations less than 2 ppmv, and δ15N-NH3 precision is found to be approximately 1.0‰. This newly developed NH3 collection device for isotopic characterization has been applied to improve our understanding of the δ15N-NH3 signatures from vehicles. Preliminary results of NH3 collected near a road-side indicate an average δ15N-NH3 of -2.1 ± 1.9‰. This work is ongoing, and plans are in place to collect NH3 directly from tailpipes and from on-road air. Our preliminary results indicate that vehicle derived NH3 has a distinctive δ15N signature compared to agricultural and waste emissions; thus, δ15N(NH3) has the potential to be used to understand urban NH3 emission sources.

  17. Reducing Methyl Halide Emissions from Soils

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.

    2011-12-01

    Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.

  18. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Astrophysics Data System (ADS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-10-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  19. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  20. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  1. Application of modern radiative transfer tools to model laboratory quartz emissivity

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.

    2005-08-01

    Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.

  2. Woodstove emission measurement methods: Comparison and emission factors update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrillis, R.C.; Jaasma, D.R.

    1993-01-01

    Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatory methods and the inhouse equipment. Two inhouse sampling systems have been used mostwidely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparingmore » Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less

  3. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    NASA Astrophysics Data System (ADS)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  4. Cookstove Emissions Quantified with the Aerodyne Mobile Laboratory During the Short Lived Climate Forcing (SLCF) 2013 Campaign in Pátzcuaro Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Abraham, R.; Zavala, M.; Molina, L. T.; Fortner, E.; Wormhoudt, J.; Knighton, B.; Herndon, S.; Roscioli, J. R.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Masera, O.; Berrueta, V.

    2013-12-01

    Black carbon emissions are a major contributor to climate change, with cookstoves being one of the top sources. The SLCF cookstove study was conducted in March 2013 at the Interdisciplinary Group for Appropriate Rural Technology (GIRA) in Pátzcuaro, Mexico. Seven different types of wood-burning cookstoves were measured giving insight to the effects of different designs and operating conditions on particle and gas phase emissions. High-time resolution measurements of emissions were made. For most of the cookstoves, measurements were made throughout a standard water boiling test. The Aerodyne Mobile Laboratory conducted these emission measurements utilizing extractive sampling from the stove exhaust. Sample flow to the gas phase instruments was extracted directly from the stovepipe and then quickly diluted with nitrogen. Sample flows for the particulate instruments were taken at points under a meter from the exit of the stovepipe, after dilution with ambient air. The key particulate instrument was the Aerodyne soot particle aerosol mass spectrometer (SP-AMS), which provided measurements of black carbon, divided into several sub-components, along with other classes of particulate matter classified by chemical composition. Gas phase measurements conducted included CO, CO2, NO, NOx, SO2, CH4, C2H2, C2H6, and a variety of VOCs (including benzene, methanol, acetaldehyde, toluene, acetone, acetonitrile, and terpene) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different cookstove types and different stove operating conditions. Comparisons will be made to previous measurements of cookstove emissions in the literature, with a focus on the variety of particulate measurements reported.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Shendell, Derek G.; Fisk, William J.

    Indoor exposures to toxic and odorous volatile organic compounds (VOCs) are of general concern. Recently, VOCs in portable or relocatable classrooms (RCs) have received particular attention. However, very little was known about indoor environmental quality (IEQ) and the sources, composition, and indoor concentrations of VOCs in RCs. This project task focused on developing and demonstrating a process for selecting interior finish materials for RCs that have relatively low impacts with respect to their emissions of toxic and odorous VOCs. This task was part of a larger project to demonstrate the potential for simultaneous improvements in IEQ and energy efficiency inmore » four new RCs equipped both with a continuously ventilating advanced heating, ventilating, and air conditioning system (HVAC) and a standard HVAC system. These HVACs were operated on alternate weeks. One RC per pair was constructed with standard interior finish materials, and the other included alternate interior materials identified in our prior laboratory study to have low VOC emissions. The RCs were sited in side-by-side pairs at two elementary schools in distinct northern California climate zones. Classroom VOC emission rates (mg hr{sup -1}) and concentrations were predicted based on VOC emission factors ({micro}g m{sup -2} hr{sup -1}) measured for individual materials in the laboratory, the quantities of installed materials and design ventilation rates. Predicted emission rates were compared to values derived from classroom measurements of VOC concentrations and ventilation rates made at pre-occupancy, eight weeks, and 27 weeks. Predicted concentrations were compared to measured integrated VOC indoor minus outdoor concentrations during school hours in the fall cooling season with the advanced HVAC operated. These measured concentrations also were compared between standard and material-modified RCs. Our combined laboratory and field process proved effective by correctly predicting that IEQ impacts of material VOC emissions would be minor when RCs were ventilated at or above code-minimum requirements. Assuming code-minimum ventilation rates are maintained, the benefits attributable to the use of alternate interior finish materials in RC's constructed by the manufacturer associated with this study are small, implying that it is not imperative to use such alternative finishing materials. However, it is essential to avoid materials that can degrade IEQ, and the results of this study demonstrate that laboratory-based material testing combined with modeling and field validation can help to achieve that aim.« less

  6. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul H.; Deter, Dean D.

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  7. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.

  8. AE characteristic for monitoring of fatigue crack in steel bridge members

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Jung, Juong-Chae; Park, Philip; Lee, Seung-Seok

    2000-06-01

    Acoustic emission technique was employed for the monitoring of crack activity in both steel bridge members and laboratory specimen. Laboratory experiment was carried out to identify AE characteristics of fatigue cracks for compact tension specimen. The relationship between a stress intensity factor and AE signals activity as well as conventional AE parameter analysis was discussed. A field test was also conducted on a railway bridge, which contain several fatigue cracks. Crack activities were investigated while in service with strain measurement. From the results, in the laboratory tests, the features of three parameters such as the length of crack growth, the AE energy, and the cumulative AE events, showed the almost same trend in their increase as the number of fatigue cycle increased. From the comparisons of peak amplitude and AE energy with stress intensity factor, it was verified that the higher stress intensity factors generated AE signals with higher peak amplitude and a large number of AE counts. In the field test, real crack propagation signals were captured and the crack activity was verified in two cases.

  9. Evaluation of PCDD/Fs emissions during ceramic production: a laboratory study.

    PubMed

    Lu, Mang; Luo, Yi-Jing; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-08-30

    Because of the ubiquity of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in kaolinitic clays, the ceramic industry is considered to be a potential source of PCDD/Fs. However, studies on the emission of PCDD/Fs from ceramic production are still very scarce. In this study, PCDD/Fs emissions during ceramic production were investigated in an electric laboratory batch kiln. The results showed that the PCDD/Fs were completely removed from the ceramic pieces after 30 min of firing at the peak temperature of 1200°C. Nevertheless, on the mass and international toxic equivalent basis, 27.5% and 46.2% of the total PCDD/Fs amount in the raw clay were released into the atmosphere during firing, respectively. These PCDD/Fs were emitted into the air before the temperature was elevated to a level high enough for their destruction. Dechlorination reactions generated a broad distribution within the PCDD/Fs congeners including a variety of non-2,3,7,8-substituted ones. The emission of PCDD/Fs was decreased to 16.3 wt.% of the total PCDD/Fs amount in the raw clay, when the initial kiln temperature was enhanced to 600°C. The emission of PCDD/Fs could be reduced significantly in the presence of a glaze coating on the ceramic test piece. These results indicated that ceramic production is an un-neglectable source of PCDD/Fs in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Time Resolved Measurements of Speciated Tailpipe Emissions from Motor Vehicles: Trends with Emission Control Technology, Cold Start Effects, and Speciation.

    PubMed

    Drozd, Greg T; Zhao, Yunliang; Saliba, Georges; Frodin, Bruce; Maddox, Christine; Weber, Robert J; Chang, M-C Oliver; Maldonado, Hector; Sardar, Satya; Robinson, Allen L; Goldstein, Allen H

    2016-12-20

    Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to understand changes in vehicle emissions in response to stricter emissions standards over the past 25 years. Measurements included a wide range of volatile organic compounds (VOCs) for a wide range of spark ignition gasoline vehicles meeting varying levels of emissions standards, including all certifications from Tier 0 up to Partial Zero Emission Vehicle. Standard gas chromatography (GC) and high performance liquid chromatography (HLPC) analyses were employed for drive-cycle phase emissions. A proton-transfer-reaction mass spectrometer measured time-resolved emissions for a wide range of VOCs. Cold-start emissions occur almost entirely in the first 30-60 s for newer vehicles. Cold-start emissions have compositions that are not significantly different across all vehicles tested and are markedly different from neat fuel. Hot-stabilized emissions have varying importance depending on species and may require a driving distance of 200 miles to equal the emissions from a single cold start. Average commute distances in the U.S. suggest the majority of in-use vehicles have emissions dominated by cold starts. The distribution of vehicle ages in the U.S. suggests that within several years only a few percent of vehicles will have significant driving emissions compared to cold-start emissions.

  11. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 2. Data supplement. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less

  12. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  13. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less

  14. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be useful for organic aerosol emissions. The two different phases producing organic aerosol, pyrolysis and smouldering, were observed to have different mass spectra. In previous ambient experiments, two organic factors with very comparable signatures to these have been identified using positive matrix factorisation (Young et al., 2015). As such, it is postulated that these ambient organic factors are likely associated with the two combustion phases identified here. References: Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D. and Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 4039-4072 (2011) Young, D. E., Allan, J. D., Williams, P. I., Green, D. C., Harrison, R. M., Yin, J., Flynn, M. J., Gallagher, M. W., Coe, H., Investigating a two-component model of solid fuel organic aerosol in London: processes, PM1 contribution, and seasonality. Atmos. Chem. Phys, 15, 2429-2443 (2015)

  15. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  16. Biomass Burning: Energy and Emissions Performance of Traditional and Improved Cookstoves Under Controlled Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Arora, Pooja

    Indoor air pollution (IAP) from solid biomass fuel burning in traditional cookstoves is a leading problem all the world which is responsible for health and climate related impacts. The immediate solution in order to combat this threat has been introduction of improved cookstoves among rural populations who doesn't have access clean energy. The extent of improvement in new cookstove designs, in terms of higher energy efficiency and lower emissions is in turn dependent on the customary behaviour of the users on field. The field based cookstove testing conducted in various studies show a disagreement between performance measures in the lab and real world conditions. Some of the important variables which reflect the actual user behaviour on field depending on geographical location include fuel characteristics and cooking cycle. In this thesis, the research approach focused on user-centred testing methodology for cookstoves. The variation in cookstove performance in terms of energy and emission parameters was assessed by isolating the impact of individual variables i.e. types of fuel and cooking cycles. The energy parameters which served as indicators of cookstove performance included SEC and power input, and EFs for CO and PM were used as emission parameters. PM emissions were further analysed with the help of physical and chemical characterization studies. The physical characterization focused on size distribution of the particulate using optical and electron microscopy techniques. While chemical characterization was conducted using quantification methods for organic and elemental carbon content of PM using TOR and CBMS techniques. The test variables were identified through field survey and literature review and were replicated under controlled laboratory conditions where emissions were sampled using hood method. The research resulted in six research papers addressing specific hypothesis related the problem identified through literature survey. The results showed that the difference in cooking cycles and fuel usage pattern has a significant impact on the overall performance of cookstoves. The study provided an in depth analysis of the difference in combustion conditions during the simulated and actual cookstove cooking conditions. The cooking cycle of two different regions of India indicated a significant change in cookstove performance in terms of CO and PM emissions in addition to energy consumption. It was also observed that among the different mix fuel conditions (combinations of wood, crop residue and cow dung), wood when used as a single fuel resulted in lowest CO and PM emissions. This was again a misrepresentation of field performance (specifically for regions with wood scarcity) where use of mix fuels is a prevalent practice followed while cooking. The impact of these variables was also significant on chemical characteristics of PM in terms of elemental carbon (EC)/black carbon (BC) and organic carbon (BC). Similar deviations were also found in physical characteristics of PM where PM size taken as test parameter. Therefore, relying on simulated test protocols might not represent the actual cookstove performance that might exist on field. This calls for an immediate attention towards the development of comprehensive test guidelines for cookstoves which not only highlights the technical aspects but also the social preferences of the targeted rural populations.

  17. Numerical simulation of mechanical properties tests of tungsten mud waste geopolymer

    NASA Astrophysics Data System (ADS)

    Paszek, Natalia; Krystek, Małgorzata

    2018-03-01

    Geopolymers are believed to become in the future an environmental friendly alternative for the concrete. The low CO2 emission during the production process and the possibility of ecological management of the industrial wastes are mentioned as main advantages of geopolymers. The main drawback, causing problems with application of geopolymers as a building material is the lack of the theoretical material model. Indicated problem is being solved now by the group of scientists from the Silesian University of Technology. The series of laboratory tests are carried out within the European research project REMINE. The paper introduces the numerical analyses of tungsten mud waste geopolymer samples which have been performed in the Atena software on the basis of the laboratory tests. Numerical models of bended and compressed samples of different shapes are presented in the paper. The results obtained in Atena software were compared with results obtained in Abaqus and Mafem3D software.

  18. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2016-05-05

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office has oversight and stewardship duties associated with the Pacific Northwest National Laboratory Marine Sciences Laboratory located on Battelle Land – Sequim. This report is prepared to document compliance with the 40 CFR Part 61, Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code . The EDE to the MSL MEI due to routine operations in 2015 was 1.1E-04 mrem (1.1E-06 mSv). No non-routine emissions occurred in 2015. The MSL is in compliance with the federalmore » and state 10 mrem/yr standard.« less

  19. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    NASA Astrophysics Data System (ADS)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region can be determined. The TES algorithm has been validated with field measurements using a multi-spectral radiometer having similar bands to ASTER. The ASTER data have now been used to produce a seasonal gridded database of the emissivity for North America and the results compared to laboratory measured emissivities of in-situ rock/sand samples collected at ten validation sites in the Western USA during 2008. The directional hemispherical reflectance of the in-situ samples are measured in the laboratory using a Nicolet Fourier Transform Interferometer (FTIR), converted to emissivity using Kirchoff's law, and convolving to the appropriate sensor spectral response functions. This ASTER database, termed the North American ASTER Land Surface Emissivity Database (NAALSED), was validated using the laboratory results from these ten sites to within 0.015 (1.5%) in emissivity. MODIS has 3 channels in this waveband with 1km spatial resolution and almost daily global coverage. The MODIS data are composited to 5 km resolution and day night pairs of observations are used to derive the emissivities. These results have been validated using the ASTER emissivities over selected test areas.

  20. Multiple Sensitivity Testing for Regional Air Quality Model in summer 2014

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Lee, P.; Pan, L.; Tong, D.; Kim, H. C.; Huang, M.; Wang, J.; McQueen, J.; Lu, C. H.; Artz, R. S.

    2015-12-01

    The NOAA Air Resources laboratory leads to improve the performance of the U.S. Air Quality Forecasting Capability (NAQFC). It is operational in NOAA National Centers for Environmental Prediction (NCEP) which focuses on predicting surface ozone and PM2.5. In order to improve its performance, we tested several approaches, including NOAA Environmental Modeling System Global Aerosol Component (NGAC) simulation derived ozone and aerosol lateral boundary conditions (LBC), bi-direction NH3 emission and HMS(Hazard Mapping System)-BlueSky emission with the latest U.S. EPA Community Multi-scale Air Quality model (CMAQ) version and the U.S EPA National Emission Inventory (NEI)-2011 anthropogenic emissions. The operational NAQFC uses static profiles for its lateral boundary condition (LBC), which does not impose severe issue for near-surface air quality prediction. However, its degraded performance for the upper layer (e.g. above 3km) is evident when comparing with aircraft measured ozone. NCEP's Global Forecast System (GFS) has tracer O3 prediction treated as 3-D prognostic variable (Moorthi and Iredell, 1998) after being initialized with Solar Backscatter Ultra Violet-2 (SBUV-2) satellite data. We applied that ozone LBC to the CMAQ's upper layers and yield more reasonable O3 prediction than that with static LBC comparing with the aircraft data in Discover-AQ Colorado campaign. NGAC's aerosol LBC also improved the PM2.5 prediction with more realistic background aerosols. The bi-direction NH3 emission used in CMAQ also help reduce the NH3 and nitrate under-prediction issue. During summer 2014, strong wildfires occurred in northwestern USA, and we used the US Forest Service's BlueSky fire emission with HMS fire counts to drive CMAQ and tested the difference of day-1 and day-2 fire emission estimation. Other related issues were also discussed.

  1. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine)more » particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.« less

  2. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.

  3. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  4. Ecotoxicological criteria for final storage quality: Possibilities and limits

    NASA Astrophysics Data System (ADS)

    Zeyer, Josef; Meyer, Joseph

    Landfills are complex chemical and biological reactors whose internal processes are often beyond the immediate control of process engineers. Therefore, the concept of a "Final Storage Landfill" may be deceptive. Furthermore, traditional approaches to establishing discharge criteria and treatment requirements for industrial effluents may not work well for landfill emissions. Factories can often be treated as steady-state processes whose inputs and outputs are predictable; however, landfills are batch reactors whose contents and emissions may be unknown and will vary temporally and spatially. If the contents of a landfill are known, the sequence of chemical reactions can be predicted qualitatively. Even if that sequence is predictable, though, quantitative ecotoxicological criteria will be difficult to establish, and risk assessments based on chemical "laundry lists" will be questionable. The situation is not hopeless, though. New approaches can be developed to monitor and predict landfill emissions. We believe these will include (1) testing (biological and chemical) of internal components of landfills as well as emissions; (2) development of laboratory and/or field methods in which the chemical and biological evolution of landfills can be studied at accelerated rates, thus allowing better prediction of future emissions; and (3) flexible ecotoxicological criteria that are adaptable to the evolving nature of landfill emissions. These criteria should be based on complementary chemical analyses and biological tests that fit into a hierarchical (decision-tree) hazard assessment strategy.

  5. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  6. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    NASA Astrophysics Data System (ADS)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in emission control laboratories, whereas C 2-C 9 are not. The revealed strong correlations broadens the usability of data from vehicle emission control laboratories and facilitates the comparison of the ozone formation potential of HCs in exhaust from of old and new vehicle/engine/fuel technologies.

  7. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  8. Apparatus for Measuring Total Emissivity of Small, Low-Emissivity Samples

    NASA Technical Reports Server (NTRS)

    Tuttle, James; DiPirro, Michael J.

    2011-01-01

    An apparatus was developed for measuring total emissivity of small, lightweight, low-emissivity samples at low temperatures. The entire apparatus fits inside a small laboratory cryostat. Sample installation and removal are relatively quick, allowing for faster testing. The small chamber surrounding the sample is lined with black-painted aluminum honeycomb, which simplifies data analysis. This results in the sample viewing a very high-emissivity surface on all sides, an effect which would normally require a much larger chamber volume. The sample and chamber temperatures are individually controlled using off-the-shelf PID (proportional integral derivative) controllers, allowing flexibility in the test conditions. The chamber can be controlled at a higher temperature than the sample, allowing a direct absorptivity measurement. The lightweight sample is suspended by its heater and thermometer leads from an isothermal bar external to the chamber. The wires run out of the chamber through small holes in its corners, and the wires do not contact the chamber itself. During a steady-state measurement, the thermometer and bar are individually controlled at the same temperature, so there is zero heat flow through the wires. Thus, all of sample-temperature-control heater power is radiated to the chamber. Double-aluminized Kapton (DAK) emissivity was studied down to 10 K, which was about 25 K colder than any previously reported measurements. This verified a minimum in the emissivity at about 35 K and a rise as the temperature dropped to lower values.

  9. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor.

    PubMed

    He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei

    2017-03-01

    Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.

  10. Quality-assurance results for routine water analyses in U.S. Geological Survey laboratories, water year 1998

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.; Marsh, Philip S.

    2000-01-01

    The U.S. Geological Survey operates a quality-assurance program based on the analyses of reference samples for two laboratories: the National Water Quality Laboratory and the Quality of Water Service Unit. Reference samples that contain selected inorganic, nutrient, and low-level constituents are prepared and submitted to the laboratory as disguised routine samples. The program goal is to estimate precision and bias for as many analytical methods offered by the participating laboratories as possible. Blind reference samples typically are submitted at a rate of 2 to 5 percent of the annual environmental-sample load for each constituent. The samples are distributed to the laboratories throughout the year. The reference samples are subject to the identical laboratory handling, processing, and analytical procedures as those applied to environmental samples and, therefore, have been used as an independent source to verify bias and precision of laboratory analytical methods and ambient water-quality measurements. The results are stored permanently in the National Water Information System and the Blind Sample Project's data base. During water year 1998, 95 analytical procedures were evaluated at the National Water Quality Laboratory and 63 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic and low-level constituent data for water year 1998 indicated 77 of 78 analytical procedures at the National Water Quality Laboratory met the criteria for precision. Silver (dissolved, inductively coupled plasma-mass spectrometry) was determined to be imprecise. Five of 78 analytical procedures showed bias throughout the range of reference samples: chromium (dissolved, inductively coupled plasma-atomic emission spectrometry), dissolved solids (dissolved, gravimetric), lithium (dissolved, inductively coupled plasma-atomic emission spectrometry), silver (dissolved, inductively coupled plasma-mass spectrometry), and zinc (dissolved, inductively coupled plasma-mass spectrometry). At the National Water Quality Laboratory during water year 1998, lack of precision was indicated for 2 of 17 nutrient procedures: ammonia as nitrogen (dissolved, colorimetric) and orthophosphate as phosphorus (dissolved, colorimetric). Bias was indicated throughout the reference sample range for ammonia as nitrogen (dissolved, colorimetric, low level) and nitrate plus nitrite as nitrogen (dissolved, colorimetric, low level). All analytical procedures tested at the Quality of Water Service Unit during water year 1998 met the criteria for precision. One of the 63 analytical procedures indicated a bias throughout the range of reference samples: aluminum (whole-water recoverable, inductively coupled plasma-atomic emission spectrometry, trace).

  11. A High-Speed Continuous Recording High Flow Gas Sampler for Measuring Methane Emissions from Pneumatic Devices at Oil and Natural Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Ferrara, T.; Howard, T. M.

    2016-12-01

    Studies attempting to reconcile facility level emission estimates of sources at oil and gas facilities with basin wide methane flux measurements have had limited success. Pneumatic devices are commonly used at oil and gas production facilities for process control or liquid pumping. These devices are powered by pressurized natural gas from the well, so they are known methane sources at these sites. Pneumatic devices are estimated to contribute 14% to 25% of the total greenhouse gas emissions (GHG) from production facilities. Measurements of pneumatic devices have shown that malfunctioning or poorly maintained control systems may be emitting significantly more methane than currently estimated. Emission inventories for these facilities use emission factors from EPA that are based on pneumatic device measurements made in the early 1990's. Recent studies of methane emissions from production facilities have attempted to measure emissions from pneumatic devices by several different methods. These methods have had limitations including alteration of the system being measured, the inability to distinguish between leaks and venting during normal operation, or insufficient response time to account of the time based emission events. We have developed a high speed recording high flow sampler that is capable of measuring the transient emissions from pneumatic devices. This sampler is based on the well-established high flow measurement technique used in oil and gas for quantifying component leak rates. In this paper we present the results of extensive laboratory controlled release testing. Additionally, test data from several field studies where this sampler has been used to measure pneumatic device emissions will be presented.

  12. Mobile laboratory measurements of atmospheric emissions from agriculture, oil, and natural gas activities in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Peischl, J.; Neuman, J. A.; Ryerson, T. B.; Wild, R. J.; Perring, A. E.; Brown, S. S.; Aikin, K. C.; Holloway, M.; Roberts, O.

    2014-12-01

    Atmospheric emissions from agriculture are important to air quality and climate, yet their representation in inventories is incomplete. Increased fertilizer use has lead to increased emissions of nitrogen compounds, which can adversely affect ecosystems and contribute to the formation of fine particulates. Furthermore, extraction and processing of oil and natural gas continues to expand throughout northeastern Colorado; emissions from these operations require ongoing measurement and characterization. This presentation summarizes initial data and analysis from a summer 2014 campaign to study emissions of nitrogen compounds, methane, and other species in northeastern Colorado using a new mobile laboratory. A van was instrumented to measure NH3, N2O, NOx, NOy, CH4, CO, CO2, O3, and bioaerosols with high time resolution. By sampling in close proximity to a variety of emissions sources, the mobile laboratory facilitated accurate source identification and quantification of emissions ratios. Measurements were obtained near agricultural sites, natural gas and oil operations, and other point sources. Additionally, extensive measurements were obtained downwind from urban areas and along roadways. The relationship between ammonia and other trace gases is used to characterize sources and constrain emissions inventories.

  13. Cookstove Laboratory Research - Fiscal Year 2016 Report ...

    EPA Pesticide Factsheets

    This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff

  14. ANAB, Certification and Scope of Accreditation (ISO/IEC 17025:2005) for the National Vehicle and Fuel Emissions Laboratory

    EPA Pesticide Factsheets

    This document certifies that the EPA National Vehicle and Fuel Emissions Laboratory has been assessed by the ANSI-ASQ National Accredation Board and accredited in meeting ISO-IEC 17025:2005 quality standards.

  15. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh biochar were observed for the specific biochar used in this study. N2O emission reduction occurred even in the presence of DMPP in the field and in the laboratory microcosms. Our results suggest that simultaneous measurements of soil samples from the same field site in the laboratory yield similar biochar effects to those quantified in the field and that the mechanisms of N2O mitigation seem to be independent of plant growth and application of the commercial nitrification inhibitor DMPP.

  16. Integrated assessment of health, crop, and climate impacts of mitigating excess diesel NOx emissions in 11 major vehicle markets

    NASA Astrophysics Data System (ADS)

    Henze, D. K.; Anenberg, S.; Miller, J.; Vicente, F.; Du, L.; Emberson, L.; Lacey, F.; Malley, C.; Minjares, R. J.

    2016-12-01

    Vehicle emissions contribute to tropospheric ozone and fine particulate matter (PM2.5), impacting human health, crop yields, and climate worldwide. Diesel cars, trucks, and buses produce 70% of global land transportation emissions of nitrogen oxides (NOx), a key PM2.5 and ozone precursor. Despite progressive tightening of regulated NOx emission limits in leading markets, current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that real-world diesel NOx emissions in 11 markets representing 80% of global diesel vehicle sales are on average 24% higher than certification limits indicate. This excess NOx contributed an estimated 33,000 additional ozone- and PM2.5-related premature deaths globally in 2015, including 6% of all EU-28 ozone- and PM2.5-related premature deaths. Next-generation diesel NOx standards and in-use compliance (more stringent than Euro 6/VI standards) could avoid 358,000 (5%) of global PM2.5- and ozone-related premature deaths in 2040 and up to 4% of ozone-related crop production loss regionally. Impacts of NOx-induced changes in aerosols, methane, and ozone on the global climate are found to present a small net positive radiative forcing (i.e., climate disbenefit), likely outweighed by the climate benefits of reductions to co-emitted black carbon aerosol. In some markets (Australia, Brazil, China, Mexico, and Russia), Euro 6/VI standards alone can achieve most (72-98%) of these health benefits. In India and the EU-28, reducing Euro 6 real-world NOx emissions through strengthened type-approval and in-use emissions testing programs (including market surveillance and expanded emissions test procedure boundaries) would achieve one-third of the health benefits from adopting next generation standards. Our results indicate that implementing stringent and technically feasible NOx emission regulations for diesel vehicles can substantially improve public health.

  17. Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX

    NASA Astrophysics Data System (ADS)

    Selimovic, Vanessa; Yokelson, Robert J.; Warneke, Carsten; Roberts, James M.; de Gouw, Joost; Reardon, James; Griffith, David W. T.

    2018-03-01

    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg-1), acetic acid (2.41 g kg-1), nitrous acid (HONO, 0.61 g kg-1), and other trace gases such as glycolaldehyde (0.90 g kg-1) and formic acid (0.36 g kg-1) are significant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg-1, an SSA of ˜ 0.91, and an AAE of ˜ 3.50, with the latter implying that about 86 % of the aerosol absorption at 401 nm is due to BrC.

  18. Cassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies

    NASA Astrophysics Data System (ADS)

    Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.

    2011-12-01

    Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using laboratory spectra, we have analyzed the intensity and identified each spectral feature from the limb or disk emission spectrum. The strongest dipole-allowed transitions of N2 occur in the EUV. The electronic transitions proceed from the X 1Σg+ ground-state to about seven closely spaced (~12-15 eV) Rydberg-valence (RV) states, which are the source of the molecular emissions in the EUV observed by spacecraft and have recently been studied in our laboratory at medium-to-high spectral resolution (delta-λ = 0.1 Å FWHM). Three of these RV states (b 1Πu, b' 1Σu+, and c4' 1Σu+) are highly-perturbed, weakly-to-strongly predissociated, and have significant emission cross sections, which will be summarized in this paper. We will also discuss our recently published proton and electron impact emission cross sections for the LBH (a 1Πg - X 1Σg+) band system of N2, and their significance to the modeling of the day and night FUV spectra of the atmospheres of Earth and Titan.

  19. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  20. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests

    DOE PAGES

    Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...

    2018-06-11

    Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less

  1. Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves.

    PubMed

    Shen, Guofeng; Hays, Michael D; Smith, Kirk R; Williams, Craig; Faircloth, Jerroll W; Jetter, James J

    2018-01-16

    Liquefied petroleum gas (LPG) cookstoves are considered to be an important solution for mitigating household air pollution; however, their performance has rarely been evaluated. To fill the data and knowledge gaps in this important area, 89 laboratory tests were conducted to quantify efficiencies and pollutant emissions from five commercially available household LPG stoves under different burning conditions. The mean thermal efficiency (±standard deviation) for the tested LPG cookstoves was 51 ± 6%, meeting guidelines for the highest tier level (Tier 4) under the International Organization for Standardization, International Workshop Agreement 11. Emission factors of CO 2 , CO, THC, CH 4 , and NO x on the basis of useful energy delivered (MJ d ) were 142 ± 17, 0.77 ± 0.55, 130 ± 196, 5.6 ± 8.2, and 46 ± 9 mg/MJ d , respectively. Approximately 90% of the PM 2.5 data were below the detection limit, corresponding to an emission rate below 0.11 mg/min. For those data above the detection limit, the average emission factor was 2.4 ± 1.6 mg/MJ d , with a mean emission rate of 0.20 ± 0.16 mg/min. Under the specified gas pressure (2.8 kPa), but with the burner control set to minimum air flow rate, less complete combustion resulted in a visually yellow flame, and CO, PM 2.5 , EC, and BC emissions all increased. LPG cookstoves met guidelines for Tier 4 for both CO and PM 2.5 emissions and mostly met the World Health Organization Emission Rate Targets set to protect human health.

  2. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  3. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  4. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    NASA Astrophysics Data System (ADS)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  5. Quality-assurance procedures: Method 5G determination of particulate emissions from wood heaters from a dilution tunnel sampling location

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Hartman, M.W.; Olin, R.C.

    1989-06-01

    Quality-assurance procedures are contained in this comprehensive document intended to be used as an aid for wood-heater manufacturers and testing laboratories in performing particulate matter sampling of wood heaters according to EPA protocol, Method 5G. These procedures may be used in research and development, and as an aid in auditing and certification testing. A detailed, step-by-step quality assurance guide is provided to aid in the procurement and assembly of testing apparatus, to clearly describe the procedures, and to facilitate data collection and reporting. Suggested data sheets are supplied that can be used as an aid for both recordkeeping and certificationmore » applications. Throughout the document, activity matrices are provided to serve as a summary reference. Checklists are also supplied that can be used by testing personnel. Finally, for the purposes of ensuring data quality, procedures are outlined for apparatus operation, maintenance, and traceability. These procedures combined with the detailed description of the sampling and analysis protocol will help ensure the accuracy and reliability of Method 5G emission-testing results.« less

  6. NOAA's Van-Based Mobile Atmospheric Emissions Measurement Laboratory

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Peischl, J.; Neuman, J. A.; Eilerman, S. J.; Holloway, M.; Roberts, O.; Aikin, K. C.; Ryerson, T. B.

    2015-12-01

    The Chemical Science Division (CSD) mobile atmospheric emissions measurement laboratory is the second and latest of two mobile measurement vans outfitted for atmospheric sampling by the NOAA Earth System Research Laboratory. In this presentation we will describe the modifications made to this vehicle to provide a versatile and relatively inexpensive instrument platform including: the 2 kW 120 volt instrument power system; battery back-up system; data acquisition system; real-time display; meteorological, directional, and position sensor package; and the typical atmospheric emissions instrument package. The van conversion uses commercially available, off-the-shelf components from the marine and RV industries, thus keeping the costs quite modest.

  7. Novel microelectrode-based online system for monitoring N2O gas emissions during wastewater treatment.

    PubMed

    Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite

    2014-11-04

    Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.

  8. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  9. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Treesearch

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  10. NESHAP Annual Report for CY 2015 Sandia National Laboratories Tonopah Test Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelo, Stacie

    2016-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  11. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake. However, it was clear that varying fuel types has the largest influence on emissions and therefore has greater potential for reducing emissions compared to stove design. Most notably, alternative fuels such as carbonized crop residue produced far fewer particulates and lower carbon monoxide levels. With particulates and carbon monoxide emissions having the most damaging effects to human health, alternative fuels offer a cleaner burning option. The testing expanded understanding of current stove design and common cooking practices in and around the Arusha region of Tanzania while laying the foundation for future development of a more efficient stove and a cleaner burning biomass fuel.

  12. Brayton-cycle solvent recovery heat pump. A technical brief

    NASA Astrophysics Data System (ADS)

    1994-11-01

    The US Department of Energy's (DOE's) Office of Industrial Technologies (OIT) sponsors research and development (R & D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Working closely with industry, OIT has successfully developed more than 50 new technologies that saved industry approximately 80 trillion Btu (84 quadrillion joules) of energy in 1992. More than 200 other projects are in various stages of development from laboratory research to field tests. The use of solvents in the industrial sector is widespread and results in the emission of volatile organic compounds (VOC's) to the atmosphere. These VOC emissions represent an economic loss to industry and contribute significantly to air pollution. To comply with increasingly strict environmental regulations while keeping costs down, industry must find efficient and cost-effective ways to control emissions from solvent use.

  13. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE PAGES

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; ...

    2015-08-26

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  14. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  15. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  16. QUANTIFYING THE CLIMATE, AIR QUALITY AND HEALTH BENEFITS OF IMPROVED COOKSTOVES: AN INTEGRATED LABORATORY, FIELD AND MODELING STUDY

    EPA Science Inventory

    Expected results and outputs include: extensive dataset of in-field and laboratory emissions data for traditional and improved cookstoves; parameterization to predict cookstove emissions from drive cycle data; indoor and personal exposure data for traditional and improved cook...

  17. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  18. Learning the scientific method using GloFish.

    PubMed

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  19. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  20. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest.

    PubMed

    Yang, Chunyan; Schaefer, Douglas A; Liu, Weijie; Popescu, Viorel D; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W

    2016-08-24

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a 'pure diversity' effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world's stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis.

  1. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    PubMed Central

    Yang, Chunyan; Schaefer, Douglas A.; Liu, Weijie; Popescu, Viorel D.; Yang, Chenxue; Wang, Xiaoyang; Wu, Chunying; Yu, Douglas W.

    2016-01-01

    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis. PMID:27553882

  2. Acoustic emission monitoring of CFRP cables for cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Lanza di Scalea, Francesco

    2001-08-01

    The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.

  3. Field Measurements of Particulate Matter Emissions, Carbon Monoxide, and Exhaust Opacity from Heavy-Duty Diesel Vehicles.

    PubMed

    Clark, Nigel N; Jarrett, Ronald P; Atkinson, Christopher M

    1999-09-01

    Diesel particulate matter (PM) is a significant contributor to ambient air PM 10 and PM 2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.

  4. Photonuclear-based Detection of Nuclear Smuggling in Cargo Containers

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Haskell, K. J.; Hoggan, J. M.; Norman, D. R.; Yoon, W. Y.

    2003-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Los Alamos National Laboratory (LANL) have performed experiments in La Honda, California and at the Idaho Accelerator Center in Pocatello, Idaho to assess and develop a photonuclear-based detection system for shielded nuclear materials in cargo containers. The detection system, measuring photonuclear-related neutron emissions, is planned for integration with the ARACOR Eagle Cargo Container Inspection System (Sunnyvale, CA). The Eagle Inspection system uses a nominal 6-MeV electron accelerator and operates with safe radiation exposure limits to both container stowaways and to its operators. The INEEL has fabricated custom-built, helium-3-based, neutron detectors for this inspection application and is performing an experimental application assessment. Because the Eagle Inspection system could not be moved to LANL where special nuclear material was available, the response of the Eagle had to be determined indirectly so as to support the development and testing of the detection system. Experiments in California have successfully matched the delayed neutron emission performance of the ARACOR Eagle with that of the transportable INEEL electron accelerator (i.e., the Varitron) and are reported here. A demonstration test is planned at LANL using the Varitron and shielded special nuclear materials within a cargo container. Detector results are providing very useful information regarding the challenges of delayed neutron counting near the photofission threshold energy of 5.5 - 6.0 MeV, are identifying the possible utilization of prompt neutron emissions to allow enhanced signal-to-noise measurements, and are showing the overall benefits of using higher electron beam energies.

  5. Evaluation of On-Road Vehicle Emission Trends in the United States

    NASA Astrophysics Data System (ADS)

    Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.

    2010-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.

  6. Investigating the Impact of Marine Ship Emissions on Regional Air Quality using OMI Satellite NO2 Observations and the CMAQ Model

    NASA Astrophysics Data System (ADS)

    Ring, A.; Canty, T. P.; He, H.; Vinciguerra, T.; Lamsal, L. N.; Dickerson, R. R.; Salawitch, R. J.; Cohen, M.; Montgomery, L. N.; Dreessen, J.

    2015-12-01

    Commercial marine vessels (CMVs) emit significant amounts of NOx, an ozone precursor, which may contribute to negative health consequences for people living in areas near shipping lanes. In coastal US states, many metropolitan areas such as Baltimore and New York City are located near ports with CMVs. Many studies estimate that ships account for ~15-30% of the global anthropogenic NOx emissions. EPA developed emissions inventories are widely used by states to construct model scenarios for testing air quality attainment strategies. Currently, CMV emissions are generated by simply applying growth factors to aggregated emissions data from much earlier years. Satellite retrievals from the Ozone Monitoring Instrument (OMI) have been successfully used to improve the veracity of marine emissions by incorporating observational data from the inventory year. In this study we use OMI NO2 observations and Community Multiscale Air Quality (CMAQ) model outputs to improve the EPA marine emission estimates for the Mid-Atlantic region. Back trajectories from the NOAA Air Resources Laboratory HYSPLIT model are used to identify days with minimal continental influence on OMI tropospheric column NO2 over shipping lanes. We perform sensitivity analyses to quantify the impact of marine emissions on air quality and suggest strategies to better meet the EPA mandated ozone standard.

  7. Emissions and Fuel Economy Analysis | Transportation Research | NREL

    Science.gov Websites

    Emissions and Fuel Economy Analysis Emissions and Fuel Economy Analysis Photo of a man hooking up economy and emissions equipment stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy projects help address greenhouse gas and pollutant emissions by advancing the

  8. Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil.

    PubMed

    Maciel, Felipe Jucá; Jucá, José Fernando Thomé

    2011-05-01

    Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH(4) flux rates than the conventional layer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin M.; Taylor, Stuart G.; Park, Gyuhae; Ammerman, Curtt M.

    2012-04-01

    This paper overviews the test setup and experimental methods for structural health monitoring (SHM) of two 9-meter CX-100 wind turbine blades that underwent fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, which was manufactured to standard specifications for the CX-100 design. The second blade was manufactured for the University of Massachusetts, Lowell with intentional simulated defects within the fabric layup. Each blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. The blades underwent harmonic excitation at their first natural frequency using the Universal Resonant Excitation (UREX) system at NREL. Blades were initially excited at 25% of their design load, and then with steadily increasing loads until each blade reached failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured over multi-scale frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed at Los Alamos National Laboratory (LANL). The hardware systems were evaluated for their aptness in data collection for effective application of SHM methods to the blades. The results of this assessment will inform the selection of acquisition hardware and sensor types to be deployed on a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.

  10. Penn State Multi-Discipline Tribology Group and Energy Institute Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Joseph

    This presentation is a summary of the current research activities on fuels and lubricants in the Multi-discipline Tribology group and the engine test group in the Combustion Laboratory of the Pennsylvania State University. The progress areas discussed in this summary include those found in Table 1. Table 1. RESEARCH AREAS: Diesel Engine Emission Reduction; Oxygenated Fuels; Improved Friction Fuels; Vegetable Oil Lubricants; Extended Drain Lubricants; Effect of Chemical Structure on Friction and Wear. The research is of interest either directly or indirectly to the goal of this workshop, diesel engine emissions reduction. The current projects at Penn State in themore » areas listed above will be discussed.« less

  11. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, September 26-December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E. Tillman, D.

    1997-12-01

    Biomass utilization to reduce fossil C0{sub 2} emissions is being supported by sixteen (16) EPRI research projects, each contributing to the commercialization of systems to address greenhouse gas emissions. These projects include: (1) cofiring combustion testing at the Seward Generating Station of GPU Genco; (2) fuel preparation testing at the Greenidge Generating Station of NYSEG; (3) precommercial testing of cofiring at the Allen and Colbert Fossil Plants of TVA; (4) testing of switchgrass cofiring at the Blount St. Station of Madison Gas & Electric; (5) high percentage biomass cofiring with Southern Company; (6) urban wood waste cofiring at the supercriticalmore » cyclone boiler at Michigan City Generating Station of Northern Indiana Public Service Co. (NIPSCO); (7) evaluation of switchgrass cofiring with Nebraska Public Power District at Sandia National Laboratories in Livermore, CA; (8) waste plastics cofiring with Duke Power in a tangentially-fired pulverized coal (PC) boiler; (9) cofiring a mixture of plastics, fiber, and pulp industry wastes with South Carolina Electric and Gas; (10) urban wood waste cofiring evaluation and testing by the University of Pittsburgh in stoker boilers; (11) assessment of toxic emissions from cofiring of wood and coal; (12) development of fuel and power plant models for analysis and interpretation of cofiring results; (13) analysis of C0{sub 2} utilization in algal systems for wastewater treatment; (14) combustion testing and combustor development focusing on high percentage cofiring; (15) analysis of problems and potential solutions to the sale of flyash from coal- fired boilers practicing cofiring; and (16) analysis of C0{sub 2} capture and disposal systems. EPRI is supported in these efforts by numerous contractors including: Foster Wheeler Environmental Corporation, Battelle Columbus Laboratories, New York State Electric and Gas Co., Tennessee Valley Authority (TVA), NIPSCO, the University of Pittsburgh, John Benneman, and others. These projects address various aspects of cofiring for C0{sub 2} mitigation including testing of cofiring with various fuels, and in all types of boilers; development of analytical tools to support the cofiring assessment; addressing specific barriers to cofiring such as the sale of flyash; longer term technology development; and evaluating alternative methods for C0{sub 2} mitigation. Taken together, they address the critical concerns associated with this approach to biofuel utilization. As such, they support implementation of the most promising near-term approach to biomass usage for greenhouse gas mitigation. This report contains a brief description of each project. It then reports the progress made during the first quarter of the contract, focusing upon test results from the Allen Fossil Plant, where precommercial testing at a cyclone boiler was used to evaluate particle size and NO{sub x} emissions from cofiring.« less

  12. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that formmore » as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.« less

  13. Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Nguyen, Ngoc T.; Presto, Albert A.; Gordon, Timothy D.; Lipsky, Eric M.; Karve, Mrunmayi; Gutierrez, Alváro; Robertson, William H.; Zhang, Mang; Brandow, Christopher; Chang, Oliver; Chen, Shiyan; Cicero-Fernandez, Pablo; Dinkins, Lyman; Fuentes, Mark; Huang, Shiou-Mei; Ling, Richard; Long, Jeff; Maddox, Christine; Massetti, John; McCauley, Eileen; Miguel, Antonio; Na, Kwangsam; Ong, Richard; Pang, Yanbo; Rieger, Paul; Sax, Todd; Truong, Tin; Vo, Thu; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M. Matti; Robinson, Allen L.

    2014-05-01

    Tailpipe emissions from sixty-four unique light-duty gasoline vehicles (LDGVs) spanning model years 1987-2012, two medium-duty diesel vehicles and three heavy-duty diesel vehicles with varying levels of aftertreatment were characterized at the California Air Resources Board Haagen-Smit and Heavy-Duty Engine Testing Laboratories. Each vehicle was tested on a chassis dynamometer using a constant volume sampler, commercial fuels and standard duty cycles. Measurements included regulated pollutants such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and particulate matter (PM). Off-line analyses were performed to speciate gas- and particle-phase emissions. The data were used to investigate trends in emissions with vehicle age and to quantify the effects of different aftertreatment technologies on diesel vehicle emissions (e.g., with and without a diesel particulate filter). On average, newer LDGVs that met the most recent emissions standards had substantially lower emissions of regulated gaseous pollutants (CO, THC and NOx) than older vehicles. For example, THC emissions from the median LDGV that met the LEV2 standard was roughly a factor of 10 lower than the median pre-LEV vehicle; there were also substantial reductions in NOx (factor of ∼100) and CO (factor of ∼10) emissions from pre-LEV to LEV2 vehicles. However, reductions in LDGV PM mass emissions were much more modest. For example, PM emission from the median LEV2 vehicle was only a factor of three lower than the median pre-LEV vehicle, mainly due to the reductions in organic carbon emissions. In addition, LEV1 and LEV2 LDGVs had similar PM emissions. Catalyzed diesel particulate filters reduced CO, THC and PM emissions from HDDVs by one to two orders of magnitude. Comprehensive organic speciation was performed to quantify priority air toxic emissions and to estimate the secondary organic aerosol (SOA) formation potential. The data suggest that the SOA production from cold-start LDGVs exhaust will likely exceed primary PM emissions from LDGVs and could potentially exceed SOA formation from on-road diesel vehicles.

  14. Laboratory characterization of PM emissions from combustion of wildland biomass fuels

    Treesearch

    Seyedehsan Hosseini; Shawn Urbanski; P. Dixit; Qi Li; Ian Burling; Robert Yokelson; Timothy E. Johnson; Manish Sharivastava; Heejung Jung; David R. Weise; Wayne Miller; David Cocker

    2013-01-01

    Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as well as SE vegetation...

  15. Laboratory evaluation of surface amendments for controlling greenhouse gas emissions from beef cattle feedlots.

    USDA-ARS?s Scientific Manuscript database

    Pen surface amendments for mitigating emissions of greenhouse gases (GHGs), such as nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from beef cattle feedlots, were evaluated under controlled laboratory conditions. Amendments were organic residues (i.e., sorghum straw, prairie grass, wo...

  16. Odor and odorous chemical emissions from animal buildings: Part 2. Odor emissions

    USDA-ARS?s Scientific Manuscript database

    This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions considering variations in seasons, animal types and olfactometry laboratories. Odor emissions from four of 14 NEAMS sites with nine barns/rooms (two dair...

  17. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less

  18. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  19. Orbital surveys of solar stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  20. Observations of the Kaiser effect under multiaxial stress states: Implications for its use in determining in situ stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, D.J.

    1993-10-08

    Experimental tests of the Kaiser effect, the stress-history dependence of acoustic emission production, show that interactions between principal stresses cannot be ignored as is commonly done when trying to use the Kaiser effect to determine in situ stress. Experimental results obtained under multiaxial stress states are explained in terms of a qualitative model. The results show that the commonly-used technique of loading uniaxially along various directions to determine stress history must be reevaluated as it cannot be justified in terms of the laboratory experiments. One possible resolution of the conflict between laboratory and field results is that the Kaiser effectmore » phenomenon observed in cores retrieved from the earth is not the same phenomenon as is observed in rock loaded under laboratory conditions.« less

  1. Air Emission Inventory for the INEEL -- 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  2. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5more » day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.« less

  3. Development of engine activity cycles for the prime movers of unconventional natural gas well development.

    PubMed

    Johnson, Derek; Heltzel, Robert; Nix, Andrew; Barrow, Rebekah

    2017-03-01

    With the advent of unconventional natural gas resources, new research focuses on the efficiency and emissions of the prime movers powering these fleets. These prime movers also play important roles in emissions inventories for this sector. Industry seeks to reduce operating costs by decreasing the required fuel demands of these high horsepower engines but conducting in-field or full-scale research on new technologies is cost prohibitive. As such, this research completed extensive in-use data collection efforts for the engines powering over-the-road trucks, drilling engines, and hydraulic stimulation pump engines. These engine activity data were processed in order to make representative test cycles using a Markov Chain, Monte Carlo (MCMC) simulation method. Such cycles can be applied under controlled environments on scaled engines for future research. In addition to MCMC, genetic algorithms were used to improve the overall performance values for the test cycles and smoothing was applied to ensure regression criteria were met during implementation on a test engine and dynamometer. The variations in cycle and in-use statistics are presented along with comparisons to conventional test cycles used for emissions compliance. Development of representative, engine dynamometer test cycles, from in-use activity data, is crucial in understanding fuel efficiency and emissions for engine operating modes that are different from cycles mandated by the Code of Federal Regulations. Representative cycles were created for the prime movers of unconventional well development-over-the-road (OTR) trucks and drilling and hydraulic fracturing engines. The representative cycles are implemented on scaled engines to reduce fuel consumption during research and development of new technologies in controlled laboratory environments.

  4. Laboratory simulation of Hg0 emissions from a snowpack.

    PubMed

    Dommergue, Aurélien; Bahlmann, Enno; Ebinghaus, Ralf; Ferrari, Christophe; Boutron, Claude

    2007-05-01

    Snow surfaces play an important role in the biogeochemical cycle of mercury in high-latitude regions. Snowpacks act both as sources and sinks for gaseous compounds. Surprisingly, the roles of each environmental parameter that can govern the air-surface exchange over snow are not well understood owing to the lack of systematic studies. A laboratory system called the laboratory flux measurement system was used to study the emission of gaseous elemental mercury from a natural snowpack under controlled conditions. The first results from three snowpacks originating from alpine, urban and polar areas are presented. Consistent with observations in the field, we were able to reproduce gaseous mercury emissions and showed that they are mainly driven by solar radiation and especially UV-B radiation. From these laboratory experiments, we derived kinetic constants which show that divalent mercury can have a short natural lifetime of about 4-6 h in snow.

  5. Correlations of Platooning Track Test and Wind Tunnel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less

  6. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payette, R.; Chen, Xi You; Wolfe, W.

    1995-12-31

    The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted at the Ohio State University have shown that dry FGD by-products possess certain engineering properties that have proven desirable in a number of construction uses. As a follow on to the laboratory program, a field investigation into engineering uses of dry FGD wastes was initiated. In the present work, an FGD by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankmentmore » are examined.« less

  7. Microwave blackbodies for spaceborne receivers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1985-01-01

    The properties of microwave blackbody targets are explained as they apply to the calibration of spaceborne receivers. Also described are several practicable, blackbody targets used to test and calibrate receivers in the laboratory and in the thermal vacuum chamber. Problems with the precision and the accuracy of blackbody targets, and blackbody target design concepts that overcome some of the accuracy limitations present in existing target designs, are presented. The principle of the Brewster angle blackbody target is described where the blackbody is applied as a fixed-temperature test target in the laboratory and as a variable-temperature target in the thermal vacuum chamber. The reflectivity of a Brewster angle target is measured in the laboratory. From this measurement, the emissivity of the target is calculated. Radiatively cooled thermal suspensions are discussed as the coolants of blackbody targets and waveguide terminations that function as calibration devices in spaceborne receivers. Examples are given for the design of radiatively cooled thermal suspensions. Corrugated-horn antennas used to observe the cosmic background and to provide a cold-calibration source for spaceborne receivers are described.

  8. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  9. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    NASA Astrophysics Data System (ADS)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field, this provides one of the best far field (away from the well bore) measurements to assess hydraulic fracture behavior. It also provides a calibration tool to extend laboratory results to field scale endeavors. The identification of strong microseismic activity at stress states far below fracture initiation confirms that rocks are critically stressed meta-stable materials and that microseismicity is caused by stress changes, not fractures directly. Advancements are necessary to fully exploit the potential of the microseismic method in laboratory sized samples. Both processing and visualization enhancements are necessary to realize the full benefits of this promising technology in the laboratory environment.

  10. The origin of organic pollutants from the combustion of alternative fuels: Phase IV report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.H.; Dellinger, B.; Sidhu, S.K.

    As part of the US-DOE`s on-going interest in the use of alternative automotive fuels, the University of Dayton Research Institute has been conducting research on pollutant emissions resulting from the combustion of candidate fuels. This research, under the direction and sponsorship of the NREL, has been concerned primarily with the combustion of compressed natural gas, liquefied petroleum gas (LPG), methanol, and ethanol. In the first 24 months of this program, studies of the oxygen rich, stoichiometric, and fuel-rich thermal degradation of these fuels in the temperature range of 300 to 1100{degrees}C at atmospheric pressure and for reaction times of 1.0more » and 2.0 s were completed. Trace organic products were identified and quantified for each fuel as a function of temperature. The results of these studies agreed well with the results of tail-pipe emission studies in that the types and quantity of emissions measured in both the laboratory and engine tests were shown to be very similar under certain operating conditions. However, some chemicals were observed in the laboratory studies that were not observed in the engine studies and vice versa. This result is important in that it has implications concerning the origin of these emissions. Experiments concerning the NO perturbed oxidation of methanol, M85, ethanol, and E85 indicated the presence of complex oxidation chemistry. At mild temperatures, NO addition resulted in enhanced fuel conversion. At elevated temperatures, an inhibitory effect was observed through increased yields of both partial oxidation and pyrolysis-type reaction products. Comparison of flow reactor product distributions with engine test results generally indicated improved comparisons when NO was added to the fuel. Analysis of secondary components of alcohol fuels resulted in some unexpected observations. Several previously unidentified species were observed in these experiments which may impact atmospheric reactivity assessments of these fuels.« less

  11. Emissions & Measurements - Black Carbon

    EPA Science Inventory

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near sour...

  12. Laboratory investigation of fire radiative energy and smoke aerosol emissions

    Treesearch

    Charles Ichoku; J. Vanderlei Martins; Yoram J. Kaufman; Martin J. Wooster; Patrick H. Freeborn; Wei Min Hao; Stephen Baker; Cecily A. Ryan; Bryce L. Nordgren

    2008-01-01

    Fuel biomass samples from southern Africa and the United States were burned in a laboratory combustion chamber while measuring the biomass consumption rate, the fire radiative energy (FRE) release rate (Rfre), and the smoke concentrations of carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). The PM mass emission rate (RPM) was quantified from...

  13. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  14. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE PAGES

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  15. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  16. VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air

    PubMed Central

    Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan

    2016-01-01

    Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205

  17. Evaluating the Impact of E15 on Snowmobile Engine Durability and Vehicle Driveability: September 22, 2010 - August 15, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miers, Scott A.; Blough, Jason R.

    The objective of this study was to evaluate the effects of E15 on current and legacy snowmobile engines and vehicles that could occur due to misfueling by the vehicle owner. Three test scenarios were conducted to evaluate the impact of E15, including cold-start performance and emissions, on-snow vehicle driveability, and laboratory exhaust emissions over the useful life of the engine. The eightengines tested represent current and legacy product that may exhibit sensitivity to increased ethanol blended in gasoline. Because a limited number of snowmobile engines were evaluated for this test program, the results are not statistically significant. However, the broadmore » range of engine and mixture preparation technologies, combined with the various test scenarios provide preliminaryinformation to assess potential issues with E15 use in snowmobiles. Cold-start tests were performed at -6.7 degrees C (20 degrees F), -17.8 degrees C (0 degrees F), and -28.9 degrees C (-20 degrees F). The evaluation included time to start or number of pulls to start, engine speed, exhaust gas temperature, and start-up engine emissions concentrations. Statistically significant differences instarting times were not observed for most vehicles. Snowmobile driveability was analyzed using a subjective evaluation on a controlled test course. The drivers could not easily discern which fuel the snowmobiles were using during the subjective evaluation. Durability tests were conducted to measure the emissions and performance of the snowmobiles over the useful life of the vehicles (5,000miles). There were no fuel-related engine failures on E0 or E15. Carbon monoxide emissions were generally reduced by E15 relative to E0, by from 10% to 35%. Occasional misfueling of snowmobiles with E15 is not likely to cause noticeable or immediate problems for consumers. E15 is not approved for snowmobile use, and observations made during this study support the U.S. Environmental ProtectionAgency's decision to not approve E15 for snowmobiles.« less

  18. Remote sensing of smokestack emissions using a mobile environmental laboratory

    NASA Astrophysics Data System (ADS)

    Mosebach, Herbert W.; Eisenmann, T.; Schulz-Spahr, Y.; Neureither, I.; Bittner, Hermann; Rippel, Harald; Schaefer, Klaus; Wehner, Dieter; Haus, Rainer

    1993-03-01

    A mobile environmental laboratory has been developed. This laboratory consists of a van which is equipped with different environmental sensors. The FT-IR system K300 by Kayser- Threde is the key instrument. With this K300 the van can be used for remote measurements of the gaseous emissions from smoke stacks. In addition the laboratory is equipped with standard ambient air analyzers as well as meteorological sensors. A large battery system ensures current source free operation the whole day. Reloading of the batteries takes only one night. remote measurements with this van were carried out at different power plants. Several pollutants could be analyzed. First results are presented.

  19. MOBILE EMISSIONS CHARACTERIZATION TEAM (HANDOUT)

    EPA Science Inventory

    The handout describes the Mobile Emissions Characterization Team of EPA's Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division. The team conducts research to characterize and evaluate emissions of volatile...

  20. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles.

    PubMed

    Trinh, Ha T; Imanishi, Katsuma; Morikawa, Tazuko; Hagino, Hiroyuki; Takenaka, Norimichi

    2017-04-01

    Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NO x ) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NO x emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NO x ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NO x ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NO x emission as well as the estimation of exhaust-induced HONO/NO x ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NO x ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NO x ratios varied from 0.16 to 1.00 %. The HONO/NO x ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles. Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NO x ratio of 0.8% has possibly linked to underestimation of the total HONO budget and consequently underestimation of OH radical budget. The recently reported HONO/NO x ratio of ~1.6% was used to stimulate HONO emission, which resulted in increased HONO concentrations during morning peak hours and its impact of 14% OH increment in the morning. However, the results were still lower than the measured concentrations. More studies should be conducted to establish an updated traffic-induced HONO/NO x ratio.

  1. Controls on mineral dust emissions at four arid locations in the western USA

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Gillies, John A.; Etyemezian, Vicken; Kuhns, Hampden; Baker, Sophie E.; Zhu, Dongzi; Nikolich, George; Kohl, Steven D.

    Dust emission measurements from unique military sources, including tracked and wheeled military vehicles, low flying rotary-winged aircraft, and artillery backblast, were conducted in the course of four field campaigns in 2005-2008, at Yuma Proving Ground (YPG) in Arizona (twice), Yakima Test Center (YTC) in Washington State, and Ft. Carson in Colorado. This paper reports on the observed relationships between levels of dust emission, and the mineralogy, particle size, and chemical composition of the surface sediment and associated airborne mineral dust. We propose a mechanism for the generation of fine particulate matter, providing an explanation for high emissions in certain regions. PM10 (particulate matter with aerodynamic diameter of <10 μm) and PM2.5 (particulate matter with aerodynamic diameter of <2.5 μm) filter as well as bulk samples were collected for laboratory analysis in the course of the field campaigns. Analytical techniques applied include X-ray diffraction, Scanning Electron Microscopy, laser particle size analysis, as well as X-ray fluorescence spectrometry, Ion Chromatography, and Automated Colorimetry. Previous work has shown YTC has higher dust emission factors than YPG and Ft. Carson. The results presented in this paper demonstrate that the high PM10 and PM2.5 emissions measured at YTC can be explained by the high silt and low clay content of the surface sediment, attributed to glacial loess. In the other test areas, the abrasion of microscopic clay and oxide coatings, from and by silicate mineral grains, is considered a factor in the generation of fine particulate matter.

  2. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically significant increases in nitrogen oxides (NOx) emissions for 50% or higher biodiesel blends. The 20% blends of the biodiesels showed no statistically significant effect on NOx emissions on any cycle. In contrast, renewable diesel slightly decreased NOx emissions and the degree of reduction was statistically significant for 50% or higher blends over the UDDS cycle, but not at the 20% blends. The highway cruise cycles did not show a statistically strong NOx emission trend with increasing blend level of renewable diesel. Biodiesel and renewable fuel impacts on two greenhouse gases, CO2 and N2O emissions were of lower magnitude when compared to other regulated pollutants emissions, showing a change in their emissions within approximately ±3% from the CARB ULSD.

  3. Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

    NASA Astrophysics Data System (ADS)

    Kooter, Ingeborg M.; van Vugt, Marcel A. T. M.; Jedynska, Aleksandra D.; Tromp, Peter C.; Houtzager, Marc M. G.; Verbeek, Ruud P.; Kadijk, Gerrit; Mulderij, Mariska; Krul, Cyrille A. M.

    2011-03-01

    This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro III heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as B100 and blends with conventional diesel (B5, B10, and B20) and pure plant oil DIN51605 (PPO). In addition application of a (wall flow) diesel particulate filter (DPF) with conventional diesel EN590 was tested. The use of B100 or PPO as a fuel or the DPF reduced particulate matter (PM) mass and numbers over 80%. Similarly, significant reduction in the emission of chemical constituents (EC 90%, (oxy)-PAH 70%) were achieved. No significant changes in nitro-PAH were observed. The use of B100 or PPO led to a NOx increase of about 30%, and no increase for DPF application. The effects of B100, PPO and the DPF on the biological test results vary strongly from positive to negative depending on the biological end point. The oxidative potential, measured via the DTT assay, of the B100 and PPO or DPF emissions is reduced by 95%. The cytotoxicity is increased for B100 by 200%. The measured mutagenicity, using the Ames assay test with TA98 and YG1024 strains of Salmonella typhimurium indicate a dose response for the nitroarene sensitive YG1024 strain for B100 and PPO (fold induction: 1.6). In summary B100 and PPO have good potential for the use as a second generation biofuel resulting in lower PM mass, similar to application of a DPF, but caution should be made due to potential increased toxicity. Besides regulation via mass, the biological reactivity of exhaust emissions of new (bio)fuels and application of new technologies, needs attention. The different responses of different biological tests as well as differences in results between test laboratories underline the need for harmonization of test methods and international cooperation.

  4. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  5. Measuring the radiative properties of astrophysical matter using the Z X-ray source

    NASA Astrophysics Data System (ADS)

    Bailey, James; ZAPP Team

    2017-06-01

    The Z Astrophysical Plasma Properties (ZAPP) collaboration is staging Z experiments that simultaneously investigate multiple topics in radiative properties of hot dense matter. The four astrophysics questions presently guiding this research are: 1) Why can’t we predict the location of the convection zone base in the Sun?; 2) How does radiation transport affect spectrum formation in accretion-powered objects?; 3) Why doesn’t spectral fitting provide the correct properties for White Dwarfs?; and 4) Why can’t we predict the heating and charge state distribution in photoionized plasmas? Recent progress using Z, the most energetic x-ray source on earth, to address these questions will be described. We emphasize the first two topics. Opacity models are an essential ingredient of stellar models and are highly sophisticated, but laboratory opacity tests have only now become possible at the conditions existing inside stars. Our opacity research emphasizes measuring iron at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9x1022 e/cc, respectively. The results exhibit large disagreements between iron opacity measurements and models and ongoing research is aimed at testing hypotheses for this discrepancy. The second project is motivated by the fact that emission lines from L-shell ions are not observed from iron in black hole accretion disks, but are observed from silicon in x-ray binaries. These disparate observations may be explained by differences in the radiation transport within the plasmas, but models for the spectral line formation and transport in photoionized plasmas have never been tested. We investigate photoionized silicon plasmas using absorption spectroscopy to infer the plasma conditions and emission spectroscopy to determine the dependence of spectral emission on plasma column density.++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  6. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    PubMed

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.

  7. North American Lauraceae: Terpenoid Emissions, Relative Attraction and Boring Preferences of Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    PubMed Central

    Kendra, Paul E.; Montgomery, Wayne S.; Niogret, Jerome; Pruett, Grechen E.; Mayfield, Albert E.; MacKenzie, Martin; Deyrup, Mark A.; Bauchan, Gary R.; Ploetz, Randy C.; Epsky, Nancy D.

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus. PMID:25007073

  8. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Astrophysics Data System (ADS)

    Smith, V.

    2000-11-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  9. Comparison of Commercial Electromagnetic Interface Test Techniques to NASA Electromagnetic Interference Test Techniques

    NASA Technical Reports Server (NTRS)

    Smith, V.; Minor, J. L. (Technical Monitor)

    2000-01-01

    This report documents the development of analytical techniques required for interpreting and comparing space systems electromagnetic interference test data with commercial electromagnetic interference test data using NASA Specification SSP 30237A "Space Systems Electromagnetic Emission and Susceptibility Requirements for Electromagnetic Compatibility." The PSpice computer simulation results and the laboratory measurements for the test setups under study compare well. The study results, however, indicate that the transfer function required to translate test results of one setup to another is highly dependent on cables and their actual layout in the test setup. Since cables are equipment specific and are not specified in the test standards, developing a transfer function that would cover all cable types (random, twisted, or coaxial), sizes (gauge number and length), and layouts (distance from the ground plane) is not practical.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reductionmore » by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.« less

  11. Testing a biofilter cover design to mitigate dairy effluent pond methane emissions.

    PubMed

    Pratt, Chris; Deslippe, Julie; Tate, Kevin R

    2013-01-02

    Biofiltration, whereby CH(4) is oxidized by methanotrophic bacteria, is a potentially effective strategy for mitigating CH(4) emissions from anaerobic dairy effluent lagoons/ponds, which typically produce insufficient biogas for energy recovery. This study reports on the effectiveness of a biofilter cover design at oxidizing CH(4) produced by dairy effluent ponds. Three substrates, a volcanic pumice soil, a garden-waste compost, and a mixture of the two, were tested as media for the biofilters. All substrates were suspended as 5 cm covers overlying simulated dairy effluent ponds. Methane fluxes supplied to the filters were commensurate with emission rates from typical dairy effluent ponds. All substrates oxidized more than 95% of the CH(4) influx (13.9 g CH(4) m(-3) h(-1)) after two months and continued to display high oxidation rates for the remaining one month of the trial. The volcanic soil biofilters exhibited the highest oxidation rates (99% removal). When the influx CH(4) dose was doubled for a month, CH(4) removal rates remained >90% for all substrates (maximum = 98%, for the volcanic soil), suggesting that biofilters have a high capacity to respond to increases in CH(4) loads. Nitrous oxide emissions from the biofilters were negligible (maximum = 19.9 mg N(2)O m(-3) h(-1)) compared with CH(4) oxidation rates, particularly from the volcanic soil that had a much lower microbial-N (75 mg kg(-1)) content than the compost-based filters (>240 mg kg(-1)). The high and sustained CH(4) oxidation rates observed in this laboratory study indicate that a biofilter cover design is a potentially efficient method to mitigate CH(4) emissions from dairy effluent ponds. The design should now be tested under field conditions.

  12. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  13. Status of Superheated Spray and Post Combustor Particulate Modeling for NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Raju, Suri; Wey, Thomas

    2007-01-01

    At supersonic cruise conditions, high fuel temperatures, coupled with low pressures in the combustor, create potential for superheated fuel injection leading to shorter fuel jet break-up time and reduced spray penetration. Another issue particularly important to the supersonic cruise is the aircraft emissions contributing to the climate change in the atmosphere. Needless to say, aircraft emissions in general also contribute to the air pollution in the neighborhood of airports. The objectives of the present efforts are to establish baseline for prediction methods and experimental data for (a) liquid fuel atomization and vaporization at superheated conditions and (b) particle sampling systems and laboratory or engine testing environments, as well as to document current capabilities and identify gaps for future research.

  14. Nuclear Hybrid Energy System Model Stability Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Michael Scott; Cetiner, Sacit M.; Fugate, David W.

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idahomore » National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.« less

  15. Application rate affects the degradation rate and hence emissions of chloropicrin in soil

    USDA-ARS?s Scientific Manuscript database

    Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil acro...

  16. Electromagnetic (EM) earthquake precursor transmission and detection regarding experimental field and laboratory results.

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth B., II; Saxton, Patrick

    2016-04-01

    Aside from understanding the animal kingdom reacting to a per-earthquake signal, a transmission source is apparent. The focus of this investigation is an electromagnetic emission approach and detection capable of becoming both practical and reliable to other plausible earthquake precursors. To better determine this method, several prototype magnetometers were devised and built with each successive version improving upon the next. Two twin (prototype #2) antennae were deployed to field settings outside the NE Texas town of Timpson, TX back in February, 2013 and very recent laboratory tests using the most refined (prototype #4) experimental antenna for detecting unconfined, granitic block fracturing. Field testing encompassed the small NE Texas town of Timpson, TX, which endured an earthquake phenomenon (May, 2012 - September, 2013). A rare sequence of events was strictly attributed to hydraulic fracturing activity in the immediate area all for hydrocarbon capture; thus, a chance to detect and record man-made earthquake activity. By swiveling two directional antennae at three locations, one mobile, the antennae could 'zero' in on a signal source until its pattern was well established and mapped, accordingly. Three signals were detected, two strong and one moderately strong, each with epicenter implications several kilometers from known seismological sites. Six months later, two M4s and a M2.4 earthquake hit over the 2013 Labor Day weekend. Hydraulic pump pressure increased deep Earth pore pressure, reduced friction, and displaced opposing tectonic stresses causing rock to fracture. This was the last earthquake sequence in the Timpson area, due to personal involvement and area citizens in contact with their state representatives. Well and drilling operations have since moved 40-50 miles SE of Timpson, TX and rare earthquake activity has now occurred there. Laboratory testing was next performed using cored granitic blocks and the latest, improved antenna with an increased, variable geometry. The blocks were all successfully fractured with expansionary cement netting consecutive and identical EM emission results very similar to the Timpson pre-earthquake results. Cored granite made up the largest amount of rock test types, due to the large volume occurring as basement rock. EM transmission in the ELF range ascending from depth was theorized to follow paths of least resistance via faults and other fracture spaces than actual penetration through solid rock, which may attenuate both signal strength and frequency response. Fault geometry, fracture orientation/termination, and subsurface reflection may make epicenter determinations problematic; however, EM emissions will continually occur and be detectable with further signal analyses in refining epicentral locations.

  17. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  18. Effects of Carbon Dioxide and Oxygen Levels on Auditory Sensitivity and Frequency Tuning as Measured by the Stimulus Frequency Otoacoustic Emission Test

    DTIC Science & Technology

    2009-09-14

    support of this project in arranging diver schedules so they could serve as study participants. The authors also wish to thank staff at Mimosa Acoustics...however, has now been implemented in a commercial unit, the Mimosa Acoustics SFOAE system. SFOAEs potentially provide more frequency-specific...Medical Research Laboratory, Massachusetts Eye and Ear Infirmary, and Mimosa Acoustics, Inc. (Lapsley Miller, Boege, Marshall, Shera, and Jeng, 2004

  19. The Reduction of Smoke Emissions from Allison T56 Engines

    DTIC Science & Technology

    1990-03-01

    10 P.N. DoogoodD *Royal Australian Air Force _ Approved for public release. (C) COMMONWEALTH OF AUSITALIA 1990 MARCH 1990 This work is copyright. Apart...ALLISON T56 ENGINES by F.W. Skidmore D.R. Hunt * P.N. Doogood *Royal Australian Ar Force SUMMARY Aeronautical Research Laboratory (ARL) has been working ... work consisted of a literature survey, design and manufacture of a water tunnel model, water tunnel testing of various modifications to improve the

  20. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  1. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    NASA Astrophysics Data System (ADS)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified combustion efficiency, initial aerosol concentrations and composition, aerosol size, oxidant exposure, VOC:NOx ratios, and emissions and speciation of SOA precursors.

  2. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

  3. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F. Computational fluid dynamics calculations, with the Glenn developed National Combustor Code, are being performed to optimize the fuel nozzle designs.

  4. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  5. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.

    PubMed

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E

    2004-11-15

    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  7. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  8. Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro

    PubMed Central

    Hayes, Amanda; Bakand, Shahnaz

    2013-01-01

    Diesel exhaust emission is a major health concern because of the complex nature of its gaseous content (e.g., NO2, NO, CO, and CO2) and high concentration of particulate matter (PM) less than 2.5 μm which allows for deeper penetration into the human pulmonary system upon inhalation. The aim of this research was to elucidate the potential toxic effects of diesel exhaust on a human pulmonary-based cellular system. Validation of a dynamic direct exposure method for both laboratory (230 hp Volvo truck engine) and field (Volkswagen Passat passenger car) diesel engines, at idle mode, was implemented. Human pulmonary type II epithelial cells (A549) grown on porous membranes were exposed to unmodified diesel exhaust at a low flow rate (37.5 mL/min). In parallel, diesel emission sampling was also conducted using real-time air monitoring techniques. Induced cellular effects were assessed using a range of in vitro cytotoxicity assays (MTS, ATP, and NRU). Reduction of cell viability was observed in a time-dependent manner following 30–60 mins of exposure with NRU as the most sensitive assay. The results suggest that the dynamic direct exposure method has the potential to be implemented for both laboratory- and field-based in vitro toxicity studies of diesel exhaust emissions. PMID:23986878

  9. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  10. Measurement of RF lightning emissions

    NASA Technical Reports Server (NTRS)

    Lott, G. K., Jr.; Honnell, M. A.; Shumpert, T. H.

    1981-01-01

    A lightning radio emission observation laboratory is described. The signals observed and recorded include HF, VHF and UHF radio emissions, optical signature, electric field measurements, and thunder. The objectives of the station, the equipment used, and the recording methods are discussed.

  11. A wood-strand material for wind erosion control: effects on total sediment loss, PM10 vertical flux, and PM10 loss.

    PubMed

    Copeland, N S; Sharratt, B S; Wu, J Q; Foltz, R B; Dooley, J H

    2009-01-01

    Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter < or = 10 microm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced erosion control; however, its performance for wind erosion mitigation has been less studied, in part because straw is mobile at moderate wind velocities. A wood-based long-strand material has been developed for rainfall-induced erosion control and has shown operational promise for control of wind-induced erosion and dust emissions from disturbed sites. The purpose of this study was to evaluate the efficacy of both agricultural straw and wood-strand materials in controlling wind erosion and fugitive dust emissions under laboratory conditions. Wind tunnel tests were conducted to compare wood strands of several geometries to agricultural wheat straw and bare soil in terms of total sediment loss, PM10 vertical flux, and PM10 loss. Results indicate that the types of wood strands tested are stable at wind speeds of up to 18 m s(-1), while wheat straw is only stable at speeds of up to 6.5 m s(-1). Wood strands reduced total sediment loss and PM10 emissions by 90% as compared to bare soil across the range of wind speeds tested. Wheat straw did not reduce total sediment loss for the range of speeds tested, but did reduce PM10 emissions by 75% compared to a bare soil at wind speeds of up to 11 m s(-1).

  12. The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions

    PubMed Central

    Dhar, Sumitrajit

    2009-01-01

    Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence. PMID:19798532

  13. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2016-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.

  14. Evaluation of the health impact of aerosols emitted from different combustion sources: Comprehensive characterization of the aerosol physicochemical properties as well as the molecular biological and toxicological effects of the aerosols on human lung cells and macrophages.

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; Jalava, P. I.; Happo, M.; Uski, O.

    2017-12-01

    A novel approach to evaluate the health effects of anthropogenic combustion emissions is the detailed comparison of comprehensive physicochemical data on the combustion aerosol properties with the biological response of aerosol-exposed lung cells. In this context the "HICE-Aerosol and Health" project consortium studies the properties as well as the biological and toxicological effects on lung cells induced by different combustion aerosol emissions (e.g. ship diesel exhaust, wood combustion effluents or automobile aerosol). Human alveolar epithelial cells (e.g. A549 cells) as well as murine macrophages were exposed to diluted emissions, using field deployable ALI-exposition systems in a mobile S2-biological laboratory. This allows a realistic lung-cell exposure by simulation of the lung situation. The cellular effects were then comprehensively characterized (cytotoxicology, transcriptomics, proteomics etc.) effects monitoring and put in context with the chemical and physical aerosol data. Emissions of wood combustion, a ship engine as well as diesel and gasoline engines were investigated. Furthermore for some experiments the atmospheric aging of the emission was simulated in a flow tube reactor using UV-light and ozone. Briefly the following order of cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions, regardless if log-wood and pellet burner emissions are investigated. Similarly mild biological effects are observed for gasoline car emissions. The ship diesel engine emissions and construction machine diesel engine induced much more intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions show lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emissions contain high concentrations of known toxicants (metals, polycyclic aromatics). This result was confirmed by experiments with murine macrophages. Detailed analyses suggest a large difference in relative toxicity for different combustion sources. Recently the cell experiments were successively evaluated and verified by animal exposure tests. This is important to develop a reliable animal-test free-monitoring method for aerosol-induced health effects.

  15. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, K.

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehiclesmore » (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.« less

  17. Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing

    NASA Astrophysics Data System (ADS)

    Jomdecha, C.; Jirarungsatian, C.; Suwansin, W.

    Field testing of aboveground storage tank (AST) to monitor corrosion of the bottom plate is presented in this chapter. AE testing data of the ten AST with different sizes, materials, and products were employed to monitor the bottom plate condition. AE sensors of 30 and 150 kHz were used to monitor the corrosion activity of up to 24 channels including guard sensors. Acoustic emission (AE) parameters were analyzed to explore the AE parameter patterns of occurring corrosion compared to the laboratory results. Amplitude, count, duration, and energy were main parameters of analysis. Pattern recognition technique with statistical was implemented to eliminate the electrical and environmental noises. The results showed the specific AE patterns of corrosion activities related to the empirical results. In addition, plane algorithm was utilized to locate the significant AE events from corrosion. Both results of parameter patterns and AE event locations can be used to interpret and locate the corrosion activities. Finally, basic statistical grading technique was used to evaluate the bottom plate condition of the AST.

  18. Testing SgrA{sup *} with the spectrum of its accretion structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Nan; Li, Zilong; Bambi, Cosimo

    2015-09-01

    SgrA{sup *} is the supermassive black hole candidate at the center of the Galaxy and an ideal laboratory to test general relativity. Following previous work by other authors, we use the Polish doughnut model to describe an optically thin and constant angular momentum ion torus in hydrodynamical equilibrium and model the accretion structure around SgrA{sup *}. The radiation mechanisms are bremsstrahlung, synchrotron emission, and inverse Compton scattering. We compute the spectrum as seen by a distant observer in Kerr and non-Kerr spacetimes and we study how an accurate measurement can constrain possible deviations form the Kerr solution. As in themore » case of emission from a thin accretion disk, we find a substantial degeneracy between the determination of the spin and of possible deviations from the Kerr geometry, even when the parameters of the ion torus are fixed. This means that this technique cannot independently test the nature of SgrA{sup *} even in the presence of good data and with the systematics under control. However, it might do it in combination with other measurements (black hole shadow, radio pulsar, etc.)« less

  19. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R.; Gonder, J.

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30%more » to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.« less

  20. Developing a lower-cost atmospheric CO2 monitoring system using commercial NDIR sensor

    NASA Astrophysics Data System (ADS)

    Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Laurent, O.; Vogel, F. R.

    2017-12-01

    Cities release to the atmosphere about 44 % of global energy-related CO2. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. A dense ground-based CO2 monitoring network in cities would potentially allow retrieving sector specific CO2 emission estimates when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for denser observation networks can be the high cost of high precision instruments or high calibration cost of cheaper and unstable instruments. We have developed and tested a novel inexpensive NDIR sensors for CO2 measurements which fulfils cost and typical parameters requirements (i.e. signal stability, efficient handling, and connectivity) necessary for this task. Such sensors are essential in the market of emissions estimates in cities from continuous monitoring networks as well as for leak detection of MRV (monitoring, reporting, and verification) services for industrial sites. We conducted extensive laboratory tests (short and long-term repeatability, cross-sensitivities, etc.) on a series of prototypes and the final versions were also tested in a climatic chamber. On four final HPP prototypes the sensitivity to pressure and temperature were precisely quantified and correction&calibration strategies developed. Furthermore, we fully integrated these HPP sensors in a Raspberry PI platform containing the CO2 sensor and additional sensors (pressure, temperature and humidity sensors), gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the peri-urban site Saclay - next to Paris, and in the urban site Jussieu - Paris, France. These measurements were conducted over several months in order to characterize the long-term drift of our HPP instruments and the ability of the correction and calibration scheme to provide bias free observations. From the lessons learned in the laboratory tests and field measurements, we developed a specific correction and calibration strategy for our NDIR sensors. Latest results and calibration strategies will be shown.

  1. DHS Summary Report -- Robert Weldon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.

    This summer I worked on benchmarking the Lawrence Livermore National Laboratory fission multiplicity capability used in the Monte Carlo particle transport code MCNPX. This work involved running simulations and then comparing the simulation results with experimental experiments. Outlined in this paper is a brief description of the work completed this summer, skills and knowledge gained, and how the internship has impacted my planning for the future. Neutron multiplicity counting is a neutron detection technique that leverages the multiplicity emissions of neutrons from fission to identify various actinides in a lump of material. The identification of individual actinides in lumps ofmore » material crossing our boarders, especially U-235 and Pu-239, is a key component for maintaining the safety of the country from nuclear threats. Several multiplicity emission options from spontaneous and induced fission already existed in MCNPX 2.4.0. These options can be accessed through use of the 6th entry on the PHYS:N card. Lawrence Livermore National Laboratory (LLNL) developed a physics model for the simulation of neutron and gamma ray emission from fission and photofission that was included in MCNPX 2.7.B as an undocumented feature and then was documented in MCNPX 2.7.C. The LLNL multiplicity capability provided a different means for MCNPX to simulate neutron and gamma-ray distributions for neutron induced, spontaneous and photonuclear fission reactions. The original testing on the model for implementation into MCNPX was conducted by Gregg McKinney and John Hendricks. The model is an encapsulation of measured data of neutron multiplicity distributions from Gwin, Spencer, and Ingle, along with the data from Zucker and Holden. One of the founding principles of MCNPX was that it would have several redundant capabilities, providing the means of testing and including various physics packages. Though several multiplicity sampling methodologies already existed within MCNPX, the LLNL fission multiplicity was included to provide a separate capability for computing multiplicity as well as including several new features not already included in MCNPX. These new features include: (1) prompt gamma emission/multiplicity from neutron-induced fission; (2) neutron multiplicity and gamma emission/multiplicity from photofission; and (3) an option to enforce energy correlation for gamma neutron multiplicity emission. These new capabilities allow correlated signal detection for identifying presence of special nuclear material (SNM). Therefore, these new capabilities help meet the missions of the Domestic Nuclear Detection Office (DNDO), which is tasked with developing nuclear detection strategies for identifying potential radiological and nuclear threats, by providing new simulation capability for detection strategies that leverage the new available physics in the LLNL multiplicity capability. Two types of tests were accomplished this summer to test the default LLNL neutron multiplicity capability: neutron-induced fission tests and spontaneous fission tests. Both cases set the 6th entry on the PHYS:N card to 5 (i.e. use LLNL multiplicity). The neutron-induced fission tests utilized a simple 0.001 cm radius sphere where 0.0253 eV neutrons were released at the sphere center. Neutrons were forced to immediately collide in the sphere and release all progeny from the sphere, without further collision, using the LCA card, LCA 7j -2 (therefore density and size of the sphere were irrelevant). Enough particles were run to ensure that the average error of any specific multiplicity did not exceed 0.36%. Neutron-induced fission multiplicities were computed for U-233, U-235, Pu-239, and Pu-241. The spontaneous fission tests also used the same spherical geometry, except: (1) the LCA card was removed; (2) the density of the sphere was set to 0.001 g/cm3; and (3) instead of emitting a thermal neutron, the PAR keyword was set to PAR=SF. The purpose of the small density was to ensure that the spontaneous fission neutrons would not further interact and induce fissions (i.e. the mean free path greatly exceeded the size of the sphere). Enough particles were run to ensure that the average error of any specific spontaneous multiplicity did not exceed 0.23%. Spontaneous fission multiplicities were computed for U-238, Pu-238, Pu-240, Pu-242, Cm-242, and Cm-244. All of the computed results were compared against experimental results compiled by Holden at Brookhaven National Laboratory.« less

  2. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    Treesearch

    I. R. Burling; R. J. Yokelson; D. W. T. Griffith; T. J. Johnson; P. Veres; J. M. Roberts; C. Warneke; S. P. Urbanski; J. Reardon; D. R. Weise; W. M. Hao; J. de Gouw

    2010-01-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared...

  3. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    NASA Astrophysics Data System (ADS)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  4. Response of N2O emissions to biochar amendment in a cultivated sandy loam soil during freeze-thaw cycles

    PubMed Central

    Liu, Xiang; Wang, Quan; Qi, Zhiming; Han, Jiangang; Li, Lanhai

    2016-01-01

    In the last decade, an increasing number of studies have reported that soil nitrous oxide (N2O) emissions can be reduced by adding biochar. However, the effect of biochar amendment on soil N2O emissions during freeze-thaw cycle (FTC) is still unknown. In this laboratory study, biochar (0%, 2% and 4%, w/w) was added into a cultivated sandy loam soil and then treated with 15 times of FTC (each FTC consisted of freeze at −5/−10 °C for 24 h and thaw at 5/10 °C for 24 h), to test whether biochar can mitigate soil N2O emissions during FTC, and estimate the relationships between N2O emissions and soil inorganic nitrogen contents/microbial biomass content/enzyme activities. The results showed that biochar amendment suppressed soil N2O emissions by 19.9–69.9% as compared to soils without biochar amendment during FTC. However, N2O emissions were only significantly correlated to soil nitrate nitrogen (NO3−-N) contents, which decreased after biochar amendment, indicating that the decreased soil nitrification by adding biochar played an important role in mitigating N2O emissions during FTC. Further studies are needed to estimate the effectiveness of biochar amendment on reducing freeze-thaw induced N2O emissions from different soils under field conditions. PMID:27748462

  5. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    PubMed

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  6. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glidden, Ana; Rose, Marvin; Elvis, Martin

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealedmore » area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .« less

  7. Evaluation of Biomass and Coal Briquettes for a Spreader Stoker Boiler Using an Experimental Furnace --- Modeling and Test

    NASA Astrophysics Data System (ADS)

    Wiggins, Gavin Memminger

    The compliance of coal-fired boilers with emissions regulations is a concern for many facilities. The introduction of biomass briquettes in industrial boilers can help to reduce greenhouse gas emissions and coal usage. In this research project, a thermodynamic chemical equilibrium model was derived and analytical simulations performed for a coal boiler system for several types of biomass fuels such as beech, hickory, maple, poplar, white oak, willow, sawdust, torrefied willow, and switchgrass. The biomass emissions were compared to coal and charcoal emissions. The chemical equilibrium analysis numerically estimated the emissions of CO, CO2, NO, NO2, N 2O, SO2, and SO3. When examining the computer results, coal and charcoal emitted the highest CO, CO2, and SO x levels while the lowest (especially for SOx) were reached by the biomass fuels. Similarly, NOx levels were highest for the biomass and lowest for coal and charcoal. To validate these analytical results, a custom traveling grate furnace was designed and fabricated to evaluate different types of biofuels in the laboratory for operation temperatures and emissions. The furnace fuels tested included coal, charcoal, torrefied wood chips, and wood briquettes. As expected, the coal reached the highest temperature while the torrefied wood chips offered the lowest temperature. For CO and NO x emissions, the charcoal emitted the highest levels while the wood briquettes emitted the lowest levels. The highest SO2 emissions were reached by the coal while the lowest were emitted by the wood briquettes. When compared to the coal fuel, charcoal emissions for CO increased by 103%, NO and NOx decreased by 21% and 20% respectively, and SO2 levels decreased by 92%. For torrefied wood, emissions for CO increased by 17%, NO and NOx decreased by 58% and 57% respectively, and SO 2 decreased by 90%. For wood briquettes, emissions for CO decreased by 27%, NO and NOx decreased by 66%, and SO2 levels decreased by 97%. General trends in emissions levels for CO, CO2, SO2, and SO3 among the various fuels were the same for the two methods. From the modeling and experimental results, it is clear that the opportunity exists to reduce boiler emissions using biomass materials. In computer controlled systems, electric motor and connector arcing can cause operational difficulties such as reduced motor life, connector/cable failure, and VFD tripping. To better understand the behavior of electric motors in diverse environments, experimental testing has been conducted on two different 230/460 V 3-phase AC brushless motors at unloaded and loaded conditions. The motors were driven with a 200 VAC or 400 VAC class Hitachi variable-frequency drive (VFD) and operated in air, argon, and helium environments for a duration of eight hours. Voltage transients and temperatures were monitored for these tests. The largest recorded voltage spike of 1,852 V occurred during 480 VAC start/stop tests. In addition, two different cable lengths between the VFD and motor terminals were tested. The experimental results demonstrated that the shorter cable produced smaller voltage spikes when compared to the longer electrical cable. For all tests, both motors operated coolest in the helium environment and warmest in the argon environment.

  8. Meat and bone meal as secondary fuel in fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Fryda; K. Panopoulos; P. Vourliotis

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containingmore » bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.« less

  9. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  10. Critical research and advanced technology (CRT) support project

    NASA Technical Reports Server (NTRS)

    Furman, E. R.; Anderson, D. N.; Hodge, P. E.; Lowell, C. E.; Nainiger, J. J.; Schultz, D. F.

    1983-01-01

    A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished.

  11. Acoustic emission transducers--development of a facility for traceable out-of-plane displacement calibration.

    PubMed

    Theobald, P D; Esward, T J; Dowson, S P; Preston, R C

    2005-03-01

    Acoustic emission (AE) is a widely used technique that has been employed for the integrity testing of a range of vessels and structures for many years. The last decade has seen advances in signal processing, such that the reliability of AE technology is now being recognised by a wider range of industries. Furthermore, the need for quality control at the manufacturing stage, and requirements of in-service testing, is encouraging the issue of traceable measurements to be addressed. Currently, no independent calibration service for acoustic emission transducers is available within Europe. The UKs National Physical Laboratory (NPL) is undertaking work to develop a measurement facility for the traceable calibration of AE sensors. Such calibrations can contribute to greater acceptance of AE techniques in general, by meeting quality system and other traceability requirements. In this paper the key issues surrounding the development of such a facility are reviewed, including the need to establish repeatable AE sources, select suitable test blocks and to understand the limitations imposed by AE sensors themselves. To provide an absolute measurement of the displacement on the surface of a test block, laser interferometry is employed. In this way the output voltage of an AE sensor can be directly related to the displacement detected at the block surface. A possible calibration methodology is discussed and preliminary calibration results are presented for a commercially available AE sensor, showing its response to longitudinal wave modes.

  12. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it is conducted at the geophysical scale. As a characteristic example, we discuss about the case of electromagnetic silence before the global rupture that was first observed in preseismic EME and recently was also observed in the EME measured during laboratory fracture experiments, completely revising the earlier views about the fracture-induced electromagnetic emissions.

  13. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke.

    PubMed

    Margham, Jennifer; McAdam, Kevin; Forster, Mark; Liu, Chuan; Wright, Christopher; Mariner, Derek; Proctor, Christopher

    2016-10-17

    There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were not detected and 21 were present due to laboratory background. Of the 25 detected aerosol constituents, 9 were present at levels too low to be quantified and 16 were generated in whole or in part by the e-cigarette. These comprised major e-liquid constituents (nicotine, propylene glycol, and glycerol), recognized impurities in Pharmacopoeia-quality nicotine, and eight thermal decomposition products of propylene glycol or glycerol. By contrast, approximately 100 measurands were detected in mainstream cigarette smoke. Depending on the regulatory list considered and the puffing regime used, the emissions of toxicants identified for regulation were from 82 to >99% lower on a per-puff basis from the e-cigarette compared with those from Ky3R4F. Thus, the aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants. These data demonstrate that e-cigarettes can be developed that offer the potential for substantially reduced exposure to cigarette toxicants. Further studies are required to establish whether the potential lower consumer exposure to these toxicants will result in tangible public health benefits.

  14. Carbon dioxide and methane emissions from the scale model of open dairy lots.

    PubMed

    Ding, Luyu; Cao, Wei; Shi, Zhengxiang; Li, Baoming; Wang, Chaoyuan; Zhang, Guoqiang; Kristensen, Simon

    2016-07-01

    To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec(-1)), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management. Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.

  15. Thermal emission measurements (5-25 microns) of Hawaiian palagonitic soils with implications for Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bell, James F., III

    1994-01-01

    Careful laboratory studies have shown that the coloring agent in Mars analog Hawaiian palagonitic soils is nanophase iron oxide. We have measured the emissivity of two Mauna Kea palagonitic soils whose transmission spectra exhibit different spectral features and of a thermally-altered volcanic tephra sample that exhibits a wide range of crystallinity and degree of alteration (from black cinders to fully hematitic). Both of these samples may represent analogs for formation mechanisms involving the production of highly-altered secondary weathering products on Mars. The emission spectra of all samples were measured at the TES spectroscopy laboratory at Arizona State University. The data were converted to emissivity using blackbody measurements combined with measurements of each sample at different temperatures.

  16. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  17. Simulating airless and/or hot planetary surfaces in the Planetary Emissivity Laboratory (PEL)

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; D'Amore, M.

    2010-12-01

    A complete and extensive mineralogical survey of extraterrestrial bodies is actually possible only by means of remote sensing spectrometers, measuring the planetary surfaces in a spectral range that goes from the visible to the far infrared. The list of instruments still active today, observing the most interesting planets and bodies in our solar system is far too long to list them in this abstract. The important message is that all of them are sending to Earth a huge amount of data that needs to be correctly analysed, to infer the mineralogical composition of the observed regions on different targets. This requires laboratory data of relevant analogue materials under relevant conditions measured on a wide spectral range. At the Planetary Emissivity Laboratory (PEL) of DLR in Berlin two separate instruments, a Bruker IFS 88 and a Bruker Vertex 80V are operated in parallel and independently to measure reflectance and emissivity of planetary analogue materials to cover the 0.4 to 100 µm spectral range. The older IFS 88 is used to measure under room pressure and for emissivity measurements from low to moderate temperatures (up to 180° C), while the new Vertex 80V can be evacuated (below 1 mbar) and used to measure emissivity of moderate to very hot surfaces, reaching temperatures typical of the daily Mercury (beyond 500° C). The laboratory set-up and the already obtained results will be described, together with details about the online-archival and the standardized structure of the existing dataset.

  18. WOODSTOVE EMISSION MEASUREMENT METHODS COMPARISON AND EMISSION FACTORS UPDATE

    EPA Science Inventory

    This paper compares various field and laboratory woodstove emission measurement methods. n 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). ver the past several years, a number of field studies have been undertaken to determine the a...

  19. Fuel and Emissions Reduction in Electric Power Take-Off Equipped Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, Arnaud; Ragatz, Adam; Prohaska, Robert

    The National Renewable Energy Laboratory (NREL) evaluated the performance of Pacific Gas and Electric plug-in hybrid electric power take off (ePTO) utility trucks equipped with Altec, Inc.'s Jobsite Energy Management System. NREL collected on-road performance data from Class 5 utility 'trouble trucks' and Class 8 material handlers and developed representative drive cycles for chassis dynamometer testing. The drive cycles were analyzed and jobsite energy use was quantified for impacts and potential further hybridization for the utility truck vocation.

  20. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  1. GNOSIS: a novel near-infrared OH suppression unit at the AAT

    NASA Astrophysics Data System (ADS)

    Trinh, C. Q.; Ellis, S. C.; Lawrence, J. S.; Horton, A. J.; Bland-Hawthorn, J.; Leon-Saval, S. G.; Bryant, J.; Case, S.; Colless, M.; Couch, W.; Freeman, K.; Gers, L.; Glazebrook, K.; Haynes, R.; Lee, S.; Löhmannsröben, H.-G.; Miziarski, S.; O'Byrne, J.; Rambold, W.; Roth, M. M.; Schmidt, B.; Shortridge, K.; Smedley, S.; Tinney, C. G.; Xavier, P.; Zheng, J.

    2012-09-01

    GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free spectra.

  2. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Glenn Charles

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, andmore » separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less

  3. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  4. Evolution of aerosol downwind of a major highway

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Staebler, R. M.; Brook, J.; Li, S.; Vlasenko, A. L.; Sjostedt, S. J.; Gordon, M.; Makar, P.; Mihele, C.; Evans, G. J.; Jeong, C.; Wentzell, J. J.; Lu, G.; Lee, P.

    2010-12-01

    Primary aerosol from traffic emissions can have a considerable impact local and regional scale air quality. In order to assess the effect of these emissions and of future emissions scenarios, air quality models are required which utilize emissions representative of real world conditions. Often, the emissions processing systems which provide emissions input for the air quality models rely on laboratory testing of individual vehicles under non-ambient conditions. However, on the sub-grid scale particle evolution may lead to changes in the primary emitted size distribution and gas-particle partitioning that are not properly considered when the emissions are ‘instantly mixed’ within the grid volume. The affect of this modeling convention on model results is not well understood. In particular, changes in organic gas/particle partitioning may result in particle evaporation or condensation onto pre-existing aerosol. The result is a change in the particle distribution and/or an increase in the organic mass available for subsequent gas-phase oxidation. These effects may be missing from air-quality models, and a careful analysis of field data is necessary to quantify their impact. A study of the sub-grid evolution of aerosols (FEVER; Fast Evolution of Vehicle Emissions from Roadways) was conducted in the Toronto area in the summer of 2010. The study included mobile measurements of particle size distributions with a Fast mobility particle sizer (FMPS), aerosol composition with an Aerodyne aerosol mass spectrometer (AMS), black carbon (SP2, PA, LII), VOCs (PTR-MS) and other trace gases. The mobile laboratory was used to measure the concentration gradient of the emissions at perpendicular distances from the highway as well as the physical and chemical evolution of the aerosol. Stationary sites at perpendicular distances and upwind from the highway also monitored the particle size distribution. In addition, sonic anemometers mounted on the mobile lab provided measurements of turbulent dispersion as a function of distance from the highway, and a traffic camera was used to determine traffic density, composition and speed. These measurements differ from previous studies in that turbulence is measured under realistic conditions and hence the relationship of the aerosol evolution to atmospheric stability and mixing will also be quantified. Preliminary results suggest that aerosol size and composition does change on the sub-grid scale, and sub-grid scale parameterizations of turbulence and particle chemistry should be included in models to accurately represent these effects.

  5. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Treesearch

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  6. A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission

    ERIC Educational Resources Information Center

    McBane, George C.; Cannella, Christian; Schaertel, Stephanie

    2018-01-01

    A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…

  7. REAL-TIME MODELING OF MOTOR VEHICLE EMISSIONS FOR ESTIMATING HUMAN EXPOSURES NEAR ROADWAYS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory is developing a real-time model of motor vehicle emissions to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop ...

  8. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  9. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.

  10. Reduction of the Livestock Ammonia Emission under the Changing Temperature during the Initial Manure Nitrogen Biomineralization

    PubMed Central

    Bagdonienė, Indrė; Baležentienė, Ligita

    2013-01-01

    Experimental data were applied for the modelling optimal cowshed temperature environment in laboratory test bench by a mass-flow method. The principal factor affecting exponent growth of ammonia emission was increasing air and manure surface temperature. With the manure temperature increasing from 4°C to 30°C, growth in the ammonia emission grew fourfold, that is, from 102 to 430 mg m−2h−1. Especial risk emerges when temperature exceeds 20°C: an increase in temperature of 1°C contributes to the intensity of ammonia emission by 17 mg m−2h−1. The temperatures of air and manure surface as well as those of its layers are important when analysing emission processes from manure. Indeed, it affects the processes occurring on the manure surface, namely, dehydration and crust formation. To reduce ammonia emission from cowshed, it is important to optimize the inner temperature control and to manage air circulation, especially at higher temperatures, preventing the warm ambient air from blowing direct to manure. Decrease in mean annual temperature of 1°C would reduce the annual ammonia emission by some 5.0%. The air temperature range varied between −15°C and 30°C in barns. The highest mean annual temperature (14.6°C) and ammonia emission (218 mg m−2h−1) were observed in the semideep cowshed. PMID:24453912

  11. TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins.

    PubMed

    Kim, Sumin; Kim, Jin-A; An, Jae-Yoon; Kim, Hyun-Joong; Kim, Shin Do; Park, Jin Chul

    2007-10-01

    Polyvinyl acetate (PVAc) was added as a replacement for melamine-formaldehyde (MF) resin in the formaldehyde-based resin system to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. A variety of techniques, including 20-l chamber, field and laboratory emission cell (FLEC), VOC analyzer and standard formaldehyde emission test (desiccator method), were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with five different MF resin and PVAc blends at MF/PVAc ratios of 100:0, 70:30, 50:50, 30:70 and 0:100. Although urea-formaldehyde (UF) resin had the highest formaldehyde emission, the emission as determined by desiccator method was reduced by exchanging with MF resin. Furthermore, the formaldehyde emission level was decreased with increasing addition of PVAc as the replacement for MF resin. UF resin in the case of beech was over 5.0 mg/l, which exceeded E2 (1.5-5.0 mg/l) grade. However, MF30:PVAc70 was

  12. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions.

    PubMed

    Xie, Mingjie; Hays, Michael D; Holder, Amara L

    2017-08-04

    Light-absorbing organic carbon (OC), also termed brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution of BB to radiative forcing. However, relatively few measurements have been conducted on field-based BB and even fewer measurements have examined BrC from anthropogenic combustion sources like motor vehicle emissions. In this work, the light absorption of methanol-extractable OC from prescribed and laboratory BB and gasoline vehicle emissions was examined using spectrophotometry. The light absorption of methanol extracts showed a strong wavelength dependence for both BB and gasoline vehicle emissions. The mass absorption coefficients at 365 nm (MAC 365 , m 2 g -1 C) - used as a measurement proxy for BrC - were significantly correlated (p < 0.05) to the elemental carbon (EC)/OC ratios when examined by each BB fuel type. No significant correlation was observed when pooling fuels, indicating that both burn conditions and fuel types may impact BB BrC characteristics. The average MAC 365 of gasoline vehicle emission samples is 0.62 ± 0.76 m 2  g -1 C, which is similar in magnitude to the BB samples (1.27 ± 0.76 m 2  g -1 C). These results suggest that in addition to BB, gasoline vehicle emissions may also be an important BrC source in urban areas.

  13. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  14. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE PAGES

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; ...

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  15. On the potential of redox potential measurements for the characterization of greenhouse gas emissions - preliminary results

    NASA Astrophysics Data System (ADS)

    Wang, Jihuan; Bogena, Heye; Brüggemann, Nicolas

    2017-04-01

    Soil greenhouse gas (GHG) emissions contribute to global warming. In order to support mitigation measures against global warming it is important to understand the controlling processes of GHG emissions. Previous studies focused mainly on the paddy rice fields or wetlands showed a strong relationship between soil redox potential and GHG emission (e.g. N2O). Recent sensor developments open the possibility for the long-term monitoring of field scale soil redox potential changes. Here, we performed laboratory lysimeter experiments to investigate how changes in the redox potential, induced by changes in the water level, affect GHG emissions from agricultural soil. Under our experimental conditions, we found that N2O emissions followed closely the changes in redox potential. The dynamics of redox potential were induced by changing the water-table depth in a laboratory lysimeter. During saturated conditions we found a clear negative correlation between redox potentials and N2O emission rates N2O. After switching from saturated to unsaturated conditions, N2O emission quickly decreased. In contrast, the emissions of CO2 increased with increasing soil redox potentials. The level of N2O emission also depended on the fertilization level of the soil. We propose that redox potential measurements are a viable method for better understanding of the controlling factors of GHG emission and the development agricultural management practices to reduce such emissions.

  16. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    NASA Astrophysics Data System (ADS)

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  17. Neutron star evolution and emission

    NASA Astrophysics Data System (ADS)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  18. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory (NERL) has initiated a project to improve the methodology for modeling human exposure to motor vehicle emission. The overall project goal is to develop improved methods for modeling...

  19. Positron Emission Tomography (PET) and Positron Scanning

    Science.gov Websites

    National Laboratory 'Positron Emission Tomography ... [is a medical imaging technique that] can track human brain.' Edited excerpts from from Medical Applications of Non-Medical Research: Applications Technical Report, November 1988 High-resolution PET (Positron Emission Tomography) for Medical Science

  20. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  1. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    NASA Astrophysics Data System (ADS)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave radiation was detected before the return stroke. The microwave emissions in the first positive leader had lower amplitude but presented longer duration whereas the emissions in the three negative downward dart leaders were more impulsive. X-rays were detected in two of the three negative downward dart leaders.

  2. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2006-03-01

    TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derivedmore » from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.« less

  3. Ultra Low Sulfur Home Heating Oil Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directlymore » related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.« less

  4. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES concept and laboratory experiments were worked on for the past several years. Both theoretical studies and laboratory prototype experiments showed that MOES is very competitive compared with other high resolution sounders in terms of complexity and performance and has great potential as a compact and rugged high resolution atmospheric temperature and trace species sounder from the polar platform or the geostationary platform. The logical next step is to convert our laboratory prototype to a balloon instrument, so that field test of MOES can be carried out to prove the feasibility and capability of this new technology. Some of the activities related to the development of MOES for a possible balloon flight demonstration are described. Those research activities include the imaging quality study on the CLIO, the design and construction of a MOES laboratory prototype, the test and calibration of the MOES prototype, and the design of the balloon flight gondola.

  5. Laboratory investigation of supported permeable organic covers for the management of odour emissions from anaerobic piggery waste ponds.

    PubMed

    Hudson, N; Casey, K; Melvin, S; Nicholas, P

    2001-01-01

    Australian research has linked much of the odour arising from intensive livestock operations to pond treatment systems. A reduction in emissions from treatment ponds would therefore generally reduce odour emissions from intensive livestock operations. Published data indicates that the application of straw and other biological materials to effluent pond surfaces as a continuous cover reduces odour emissions. The effectiveness of these covers has not, however, been researched under controlled conditions. Using locally available materials, the efficacy of supported covers has been investigated using a series of laboratory anaerobic digesters treating typical piggery effluent. Research to date has focused on: identifying effective cover and cover support materials; quantifying odour reduction; identifying the impact use these covers may have on greenhouse gas emissions; devising practical and effective methods for constructing these covers. Results have confirmed that a variety of cover materials are effective in reducing pond odour emissions. Supporting the pond cover appears to extend the cover life expectancy. While greenhouse gas emissions appear to vary according to cover type, the overall significance of these emissions is not yet clear. The impact of permeable pond covers on overall pond performance requires additional research.

  6. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    PubMed

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  7. Modernisation of a test rig for determination of vehicle shock absorber characteristics by considering vehicle suspension elements and unsprung masses

    NASA Astrophysics Data System (ADS)

    Maniowski, M.; Para, S.; Knapczyk, M.

    2016-09-01

    This paper presents a modernization approach of a standard test bench for determination of damping characteristics of automotive shock absorbers. It is known that the real-life work conditions of wheel-suspension dampers are not easy to reproduce in laboratory conditions, for example considering a high frequency damper response or a noise emission. The proposed test bench consists of many elements from a real vehicle suspension. Namely, an original tyre-wheel with additional unsprung mass, a suspension spring, an elastic top mount, damper bushings and a simplified wheel guiding mechanism. Each component was tested separately in order to identify its mechanical characteristics. The measured data serve as input parameters for a numerical simulation of the test bench behaviour by using a vibratory model with 3 degrees of freedom. Study on the simulation results and the measurements are needed for further development of the proposed test bench.

  8. Supersonic CO electric-discharge lasers

    NASA Technical Reports Server (NTRS)

    Hason, R. K.; Mitchner, M.; Stanton, A.

    1975-01-01

    Laser modeling activity is described which involved addition of an option allowing N2 as a second diatomic gas. This option is now operational and a few test cases involving N2/CO mixtures were run. Results from these initial test cases are summarized. In the laboratory, a CW double-discharge test facility was constructed and tested. Features include: water-cooled removable electrodes, O-ring construction to facilitate cleaning and design modifications, increased discharge length, and addition of a post-discharge observation section. Preliminary tests with this facility using N2 yielded higher power loadings than obtained in the first-generation facility. Another test-section modification, recently made and as yet untested, will permit injection of secondary gases into the cathode boundary layer. The objective will be to vary and enhance the UV emission spectrum from the auxiliary discharge, thereby influencing the level of photoionization in the main discharge region.

  9. DEVELOPMENT OF REAL-TIME SITE-SPECIFIC MICROSCALE EMISSION FACTOR MODEL FOR THE ASSESSMENT OF HUMAN EXPOSURE TO MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Expsoure Research Laboratory (NERL) has initiated a project to improve the methodology for modeling urban-scale human exposure to mobile source emissions. The modeling project has started by considering the nee...

  10. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  11. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACO: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR CO EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  12. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO (MICROFACCO) FOR PREDICTING REAL-TIME VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  13. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  14. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  15. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  16. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  17. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot

    NASA Astrophysics Data System (ADS)

    Avecilla, Fernando; Panebianco, Juan E.; Mendez, Mariano J.; Buschiazzo, Daniel E.

    2018-06-01

    The PM10 emission efficiency of soils has been determined through different methods. Although these methods imply important physical differences, their outputs have never been compared. In the present study the PM10 emission efficiency was determined for soils through a wide range of textures, using three typical methodologies: a rotary-chamber dust generator (EDG), a laboratory wind tunnel on a prepared soil bed, and field measurements on an experimental plot. Statistically significant linear correlation was found (p < 0.05) between the PM10 emission efficiency obtained from the EDG and wind tunnel experiments. A significant linear correlation (p < 0.05) was also found between the PM10 emission efficiency determined both with the wind tunnel and the EDG, and a soil texture index (%sand + %silt)/(%clay + %organic matter) that reflects the effect of texture on the cohesion of the aggregates. Soils with higher sand content showed proportionally less emission efficiency than fine-textured, aggregated soils. This indicated that both methodologies were able to detect similar trends regarding the correlation between the soil texture and the PM10 emission. The trends attributed to soil texture were also verified for two contrasting soils under field conditions. However, differing conditions during the laboratory-scale and the field-scale experiments produced significant differences in the magnitude of the emission efficiency values. The causes of these differences are discussed within the paper. Despite these differences, the results suggest that standardized laboratory and wind tunnel procedures are promissory methods, which could be calibrated in the future to obtain results comparable to field values, essentially through adjusting the simulation time. However, more studies are needed to extrapolate correctly these values to field-scale conditions.

  18. Introducing the global carbon cycle to middle school students with a 14C research project

    NASA Astrophysics Data System (ADS)

    Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.

    2012-12-01

    Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.

  19. Acoustic emission characteristics of a single cylinder diesel generator at various loads and with a failing injector

    NASA Astrophysics Data System (ADS)

    Dykas, Brian; Harris, James

    2017-09-01

    Acoustic emission sensing techniques have been applied in recent years to dynamic machinery with varying degrees of success in diagnosing various component faults and distinguishing between operating conditions. This work explores basic properties of acoustic emission signals measured on a small single cylinder diesel engine in a laboratory setting. As reported in other works in the open literature, the measured acoustic emission on the engine is mostly continuous mode and individual burst events are generally not readily identifiable. Therefore, the AE are processed into the local (instantaneous) root mean square (rms) value of the signal which is averaged over many cycles to obtain a mean rms AE in the crank angle domain. Crank-resolved spectral representation of the AE is also given but rigorous investigation of the AE spectral qualities is left to future study. Cycle-to-cycle statistical dispersion of the AE signal is considered to highlight highly variable engine processes. Engine speed was held constant but load conditions are varied to investigate AE signal sensitivity to operating condition. Furthermore, during the course of testing the fuel injector developed a fault and acoustic emission signals were captured and several signal attributes were successful in distinguishing this altered condition. The sampling and use of instantaneous rms acoustic emission signal demonstrated promise for non-intrusive and economical change detection of engine injection, combustion and valve events.

  20. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    NASA Astrophysics Data System (ADS)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  1. Optimizing biochars to mitigate N2O emissions in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Cayuela, Maria Luz; Sanchez-Garcia, Maria; Roig, Asuncion; Sanchez-Monedero, Miguel Angel

    2017-04-01

    Some of the most productive agricultural soils stand in Mediterranean-type climate areas of the world (e.g. California's Central Valley, Andalucia region in South Spain, and Lombardy region in Italy). Many of these soils are under intensive agricultural production, bearing the addition of substantial amounts of N fertilizers, which are known to promote soil N2O emissions. Laboratory studies have shown the potential of biochar to decrease N2O emissions in soils from Mediterranean areas. These soils generally have alkaline pH and low concentrations of organic C and several laboratory experiments found that applying biochar at a rate of 2% in weight could decrease N2O emissions up to 90%. However, field studies carried out in areas of California, Italy and Spain (all under Mediterranean climate) showed none or very limited N2O mitigation with biochar. We postulate that this discrepancy may be because biochar-soil combinations were not optimal in field studies and that developing biochars adjusted to specific soil properties is crucial for their successful application to mitigate N2O emissions. Thus, in this study we aimed at (i) collecting and characterizing a variety of the most representative Mediterranean agricultural residues (olive tree, almond and orange tree pruning, olive mill waste, rice straw, horticultural residues, etc.), (ii) exploring their suitability as feedstocks for biochar production and (iii) analyzing their impact on N2O emissions in a Mediterranean agricultural soil. Biochars were produced by slow pyrolysis with a heating rate of 5˚C min-1 at two pyrolysis temperatures (400 and 600˚C) and a retention time of two hours. Soil incubations were set up simulating conditions of highly intensive crop production (high N fertilization, high moisture) to test how the biochars produced from different feedstocks and under two pyrolysis temperatures influence N2O emissions. Our starting hypothesis was that it is possible to optimize biochar characteristics (by appropriately selecting original feedstocks and pyrolysis conditions) in order to mitigate N2O emissions in Mediterranean agricultural soils. Acknowledgements: This contribution was possible thanks to Fundación Séneca (Agencia Regional de Ciencia y Tecnología de la region de Murcia). Grant number 19281/PI/14

  2. Bioavailability and biotransformation of the mutagenic component of particulate emissions present in motor exhaust samples.

    PubMed Central

    Vostal, J J

    1983-01-01

    The pharmacokinetic concepts of bioavailability and biotransformation are introduced into the assessment of public health risk from experimental data concerning the emissions of potentially mutagenic and carcinogenic substances from motor vehicles. The inappropriateness of an automatic application in the risk assessment process of analytical or experimental results, obtained with extracts and procedures incompatible with the biological environment, is illustrated on the discrepancy between short-term laboratory tests predictions that wider use of diesel engines on our roads will increase the risk of respiratory cancer and the widely negative epidemiological evidence. Mutagenic activity of diesel particulates was minimal or negative when tested in extracts obtained with biological fluids, was substantially dependent on the presence of nitroreductase in the microbial tester strain, and disappeared completely 48 hr after the diesel particles had been phagocytized by alveolar macrophages. Similarly, long-term animal inhalation exposures to high concentrations of diesel particles did not induce the activity of hydrocarbon metabolizing enzymes or specific adverse immune response unless organic solvent extracts of diesel particles were administered intratracheally or parenterally in doses that highly exceed the predicted levels of public exposure even by the year 2000. Furthermore, the suspected cancer producing effects of inhaled diesel particles have thus far not been verified by experimental animal models or available long-term epidemiological observations. It is concluded that unless the biological accessibility of the active component on the pollutant as well as its biotransformation and clearance by natural defense mechanisms are considered, lung cancer risk assessment based solely on laboratory microbial tests will remain an arbitrary and unrealistic process and will not provide meaningful information on the potential health hazard of a pollutant. PMID:6186478

  3. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour.

    PubMed

    Forster, Mark; McAughey, John; Prasad, Krishna; Mavropoulou, Eleni; Proctor, Christopher

    2018-03-01

    The tobacco heating product THP1.0, which heats but does not burn tobacco, was tested as part of a modified-risk tobacco product assessment framework for its impacts on indoor air quality and residual tobacco smoke odour. THP1.0 heats the tobacco to less than 240 °C ± 5 °C during puffs. An environmentally controlled room was used to simulate ventilation conditions corresponding to residential, office and hospitality environments. An analysis of known tobacco smoke constituents, included CO, CO 2 , NO, NO 2 , nicotine, glycerol, 3-ethenyl pyridine, sixteen polycyclic aromatic hydrocarbons, eight volatile organic compounds, four carbonyls, four tobacco-specific nitrosamines and total aerosol particulate matter. Significant emissions reductions in comparison to conventional cigarettes were measured for THP1.0. Levels of nicotine, acetaldehyde, formaldehyde and particulate matter emitted from THP1.0 exceeded ambient air measurements, but were more than 90% reduced relative to cigarette smoke emissions within the laboratory conditions defined Residual tobacco smoke odour was assessed by trained sensory panels after exposure of cloth, hair and skin to both mainstream and environmental emissions from the test products. Residual tobacco smoke odour was significantly lower from THP1.0 than from a conventional cigarette. These data show that using THP1.0 has the potential to result in considerably reduced environmental emissions that affect indoor air quality relative to conventional cigarettes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The multisensor payload 'Structura' for the observation of atmospheric night glows from the ISS board

    NASA Astrophysics Data System (ADS)

    Krot, Yury; Beliaev, Boris; Katkovsky, Leonid

    2016-10-01

    Aerospace Research Department of the Institute of Applied Physical Problems at Belarusian State University has developed a prototype of the optical payload intended for a space experiment on the ISS board. The prototype includes four optical modules for the night glows observation, in particular spatial-brightness and spectral characteristics in the altitude range of 80-320 km. Objects of the interest are emitting top layers of the atmosphere including exited OH radicals, atomic and molecular oxygen and sodium layers. The goal of the space experiment is a research of night glows over different regions of the Earth and a connection with natural disasters like earthquakes, cyclones, etc. Two optical modules for spatial distribution of atomic oxygen layers along the altitude consist of input lenses, spectral interferential filters and line CCD detectors. The optical module for registration of exited OH radical emissions is formed from CCD array spectrometer. The payload includes also a panchromatic (400-900 nm) high sensitive imaging camera for observing of the glows general picture. The optical modules of the prototype have been tested and general optical characteristics were determined in laboratory conditions. A solution of an astigmatism reducing of a concave diffraction grating and a method of the second diffraction order correction were applied and improved spectrometer's optical characteristics. Laboratory equipment and software were developed to imitate a dynamic scene of the night glows in laboratory conditions including an imitation of linear spectra and the spatial distribution of emissions.

  5. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension

    NASA Astrophysics Data System (ADS)

    Kupiainen, Kaarle J.; Pirjola, Liisa

    2011-08-01

    In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.

  6. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions

    NASA Astrophysics Data System (ADS)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2017-06-01

    For a common household wood stove and a pellet stove we investigated the dependence of emission factors for various gaseous and particulate pollutants on burning phase, burning condition, and fuel. Ideal and non-ideal burning conditions (dried wood, under- and overload, small logs, logs with bark, excess air) were used. We tested 11 hardwood species (apple, ash, bangkirai, birch, beech, cherry, hickory, oak, olive, plum, sugar maple), 4 softwood species (Douglas fir, pine, spruce, spruce/fir), treated softwood, beech and oak wood briquettes, paper briquettes, brown coal, wood chips, and herbaceous species (miscanthus, Chinese silver grass) as fuel. Particle composition (black carbon, non-refractory, and some semi-refractory species) was measured continuously. Repeatability was shown to be better for the pellet stove than for the wood stove. It was shown that the user has a strong influence on wood stove emission behavior both by selection of the fuel and of the burning conditions: Combustion efficiency was found to be low at both very low and very high burn rates, and influenced particle properties such as particle number, mass, and organic content in a complex way. No marked differences were found for the emissions from different wood species. For non-woody fuels, much higher emission factors could be observed (up to five-fold increase). Strongest enhancement of emission factors was found for burning of small or dried logs (up to six-fold), and usage of excess air (two- to three-fold). Real world pellet stove emissions can be expected to be much closer to laboratory-derived emission factors than wood stove emissions, due to lower dependence on user operation.

  7. Comparative toxicity and mutagenicity of soy-biodiesel and petroleum-diesel emissions: overview of studies from the U.S. EPA, Research Triangle Park, NC.

    PubMed

    Madden, Michael C

    2015-01-01

    Biodiesel use as a fuel is increasing globally as an alternate to petroleum sources. To comprehensively assess the effects of the use of biodiesel as an energy source, end stage uses of biodiesel such as the effects of inhalation of combusted products on human health must be incorporated. To date, few reports concerning the toxicological effects of the emissions of combusted biodiesel or blends of biodiesel on surrogates of health effects have been published. The relative toxicity of the combusted biodiesel emissions compared to petroleum diesel emissions with short term exposures is also not well known. To address the paucity of findings on the toxicity of combusted biodiesel emissions, studies were undertaken at the U.S. Environmental Protection Agency laboratories in Research Triangle Park, North Carolina. The studies used a variety of approaches with nonhuman animal models to examine biological responses of the lung and cardiovascular systems induced by acute and repeated exposures to pure biodiesel and biodiesel blended with petroleum diesel. Effects of the emissions on induction of mutations in bacterial test strains and mammalian DNA adducts were also characterized and normalized to engine work load. The emissions were characterized as to the physicochemical composition in order to determine the magnitude of the differences among the emissions utilized in the studies. This article summarizes the major finding of these studies which are contained within this special issue of Inhalation Toxicology. The findings provided in these articles provide information about the toxicity of biodiesel emissions relative to petroleum diesel emissions and which can be utilized in a life cycle analyses of the effects of increased biodiesel usage.

  8. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  9. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Usemore » in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.« less

  10. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    NASA Astrophysics Data System (ADS)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  11. NETL - Thermogravimetric Analysis Laboratory

    ScienceCinema

    Richards, George

    2018-06-22

    Researchers in NETL's Thermal Analysis Laboratory are investigating chemical looping combustion. As a clean and efficient fossil fuel technology, chemical looping combustion controls CO2 emissions and offers a promising alternative to traditional combustion.

  12. Improving the indoor air quality by using a surface emissions trap

    NASA Astrophysics Data System (ADS)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  13. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  14. Development of a low-cost airborne ultrasound sensor for the detection of brick joints behind a wall painting.

    PubMed

    García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel

    2012-01-01

    Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XV th century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research.

  15. EMC Test Report Electrodynamic Dust Shield

    NASA Technical Reports Server (NTRS)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  16. 40 CFR 61.13 - Emission tests and waiver of emission tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission tests and waiver of emission tests. 61.13 Section 61.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS General Provisions § 61.13 Emission tests and waiver of emission tests....

  17. 3D thermography for improving temperature measurements in thermal vacuum testing

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.

    2017-09-01

    The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.

  18. Gamma radiation-induced thermoluminescence emission of minerals adhered to Mexican sesame seeds

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lazcano, Y.; Correcher, V.; Garcia-Guinea, J.; Cruz-Zaragoza, E.

    2013-02-01

    The thermoluminescence (TL) emission of minerals isolated from Mexican sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) data, the adhered dust in both samples is mainly composed of different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good TL intensity, (ii) high stability of the TL signal during the storage of the material, i.e. low fading, and (iii) are thermally and chemically stable. Blind tests were performed under laboratory conditions, but simulating industrial preservation processes, allow us to distinguish between 1 kGy gamma-irradiated and non-irradiated samples even 15 months after irradiation processing followed the EN 1788 European Standard protocol in sesame samples.

  19. MGS-TES Phase Effects and Thermal Infrared Directional Emissivity Field Measurements of Martian Analog Sites

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Bandfield, J. L.; Wolff, M. J.

    2006-03-01

    We present a set of on- and off-nadir thermal IR field and laboratory emissivity spectra for three undisturbed Mars terrain analog sites and analyze them for presence or absence of directional emissivity effects. Comparisons to moderate and low albedo surface MGS-TES EPF sequences are discussed.

  20. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  1. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems

    EPA Science Inventory

    Ultrafine particle (UFP) emissions and particle number size distributions (PNSD) are critical in the evaluation of air pollution impacts on human health and climate change. Residential cookstove emissions are a major source of many air pollutants; however, data on UFP number emis...

  2. An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Zhang, Chenglong; Mu, Yujing; Cheng, Ye; Zhang, Yuanyuan; Liu, Chengtang; Song, Min; Tian, Di; Liu, Pengfei; Liu, Junfeng; Xue, Chaoyang; Ye, Can

    2016-08-01

    Carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) emissions generated from prevailing domestic coal stoves fueled with raw bituminous coal were studied under alternation cycles of flaming and smoldering combustion. The measurements in the laboratory and the farmer's house indicated that COS and CO emissions mainly occurred under the condition of flame extinguishment after coal loading, whereas SO2 emissions were mainly generated through combustion with flame. The COS emission factors for the domestic stoves in the laboratory and the farmer's house were recorded as 0.57 ± 0.10 g COS kg-1 and 1.43 ± 0.32 g COS kg-1, being approximately a factor of 50 and 125 greater than that generated from coal power plants, respectively. Based on the COS emission factors measured in this study, COS emission from only domestic coal combustion in China would be at least 30.5 ± 5.6 Gg S yr-1 which was 1 magnitude greater than the current COS estimation from the total coal combustion in China.

  3. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    NASA Astrophysics Data System (ADS)

    Omidvarborna, Hamid

    Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients, while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.

  4. Using Nadir and Directional Emissivity as a Probe of Particle Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Bandfield, Joshua L.; Clayton, Geoffrey C.

    Real surfaces are not expected to be diffuse emitters, thus observed emissivity values of surface dust deposits are a function of viewing geometry. Attempts to model infrared emission spectral profiles of surface dust deposits at nadir have not yet matured to match the sophistication of astrophysical dust radiative transfer codes. In the absence of strong thermal gradients, directional emissivity may be obtained theoretically via a combination of reciprocity and Kirchhoff's Law. Owing to a lack of laboratory data on directional emissivity for comparison, theorists have not explored the potential utility of directional emissivity as a direct probe of surface dust microphysical properties. Motivated by future analyses of MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset, we explore the effects of dust particle size and composition on observed radiances at nadir and off-nadir geometries in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to laboratory spectra of standard mineral assemblages will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP).

  5. EPA-Peugeot light duty diesel correlation program (1978). Correlation program report. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is a result of a request for a specific correlation program between the EPA laboratory and Peugeot Automobiles of France. The purpose of the program was to investigate the difference in hydrocarbon emissions measured on diesel vehicles at the EPA and Peugeot. The possibility of the offset being fuel related was of primary concern to Peugeot and the program was designed to explore this. This report presents and discusses data collected thru December 1978. Testing is still being done on the vehicle.

  6. Pulse combustion engineering research laboratory for indirect heating applications (PERL-IH). Final report, October 1, 1989-June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, F.E.

    1993-01-01

    Uncontrolled NOx emissions from a variety of pulse combustors were measured. The implementation of flue-gas recirculation to reduce NOx was studied. A flexible workstation for parametric testing was built and used to study the phasing between pressure and heat release, and effects of fuel/air mixing on performance. Exhaust-pipe heat transfer was analyzed. An acoustic model of pulse combustion was developed. Technical support was provided to manufacturers on noise, ignition and condensation. A computerized bibliographic database on pulse combustion was created.

  7. Molecules in Space: A Chemistry lab using Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Lekberg, M. J.; Pratap, P.

    2000-12-01

    We present the results of a laboratory exercise developed with the support of the NSF Research Experiences for Teachers program at MIT Haystack Observatory. The exercise takes the students beyond the traditional test tubes of a chemistry laboratory into the interstellar medium, where the same principles that they study about in the classroom are found to hold. It also utilizes the true multi-disciplinary nature of radio astronomy and allows the students to realize how much can be learnt by studying the universe at various wavelengths. The astronomical chemistry laboratory is presented wherein students from Chelmsford High School in Massachusetts operate the 37-m telescope at Haystack Observatory via the internet to observe radio signals from galactic chemicals. The laboratory is designed to be the means by which students witness physical evidence for molecular and orbital shapes by observing the radio emission from rotating dipoles. The laboratory described is a lynch pin activity for an integrated unit that moves from the valance shell electron configurations through molecular and orbital geometry to an understanding that many physical and chemical properties of chemicals are ultimately dependent upon the shape/geometry and consequently, dipole of the molecule. Students are expected to interpret and evaluate the nature of molecular dipoles and account for the diversity of rotational spectra using their conceptual knowledge of bonding orbital theory and their knowledge of the electronic atom. Flexibility in the lab allows students to identify individual chemicals by cross referencing radio emission from the galactic sources they have chosen against a prepared catalogue listing or by choosing to "listen" for specific chemicals at exact frequencies. A teacher resource manual containing information and data on a variety of daytime galactic source and individual chemical flux densities of molecular candidates has been prepared. Collaborative exercises and activities, and associated unit topics have also been developed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less

  9. National Bio-fuel Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D andmore » performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.« less

  10. Ultraviolet spectra of extreme nearby star-forming regions - approaching a local reference sample for JWST

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia

    2017-12-01

    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

  11. Rocket-borne observation of singly ionized carbon 158 micron emission from the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Bock, James Joseph

    1994-01-01

    We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.

  12. Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle.

    PubMed

    Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E

    2005-10-15

    New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.

  13. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.

  14. Development of welding emission factors for Cr and Cr(VI) with a confidence level.

    PubMed

    Serageldin, Mohamed; Reeves, David W

    2009-05-01

    Knowledge of the emission rate and release characteristics is necessary for estimating pollutant fate and transport. Because emission measurements at a facility's fence line are generally not readily available, environmental agencies in many countries are using emission factors (EFs) to indicate the quantity of certain pollutants released into the atmosphere from operations such as welding. The amount of fumes and metals generated from a welding process is dependent on many parameters, such as electrode composition, voltage, and current. Because test reports on fume generation provide different levels of detail, a common approach was used to give a test report a quality rating on the basis of several highly subjective criteria; however, weighted average EFs generated in this way are not meant to reflect data precision or to be used for a refined risk analysis. The 95% upper confidence limit (UCL) of the unknown population mean was used in this study to account for the uncertainty in the EF test data. Several parametric UCLs were computed and compared for multiple welding EFs associated with several mild, stainless, and alloy steels. Also, several nonparametric statistical methods, including several bootstrap procedures, were used to compute 95% UCLs. For the nonparametric methods, a distribution for calculating the mean, standard deviation, and other statistical parameters for a dataset does not need to be assumed. There were instances when the sample size was small and instances when EFs for an electrode/process combination were not found. Those two points are addressed in this paper. Finally, this paper is an attempt to deal with the uncertainty in the value of a mean EF for an electrode/process combination that is based on test data from several laboratories. Welding EFs developed with a defined level of confidence may be used as input parameters for risk assessment.

  15. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.

  16. On the effect of emergence angle on emissivity spectra: application to small bodies

    NASA Astrophysics Data System (ADS)

    Maturilli, Alessandro; Helbert, Jörn; Ferrari, Sabrina; D'Amore, Mario

    2016-05-01

    Dependence of laboratory-measured emissivity spectra from the emergence angle is a subject that still needs a lot of investigations to be fully understood. Most of the previous work is based on reflectance measurements in the VIS-NIR spectral region and on emissivity measurements of flat, solid surfaces (mainly metals), which are not directly applicable to the analysis of remote sensing data. Small bodies in particular (c.f. asteroids Itokawa and 1999JU3, the respective targets of JAXA Hayabusa and Hayabusa 2 missions) have a very irregular surface; hence, the spectra from those rough surfaces are difficult to compare with laboratory spectra, where the observing geometry is always close to "nadir." At the Planetary Emissivity Laboratory of the German Aerospace Center (DLR), we have set up a series of spectral measurements to investigate this problem in the 1- to 16-µm spectral region. We measured the emissivity for two asteroid analogue materials (meteorite Millbillillie and a synthetic enstatite) in vacuum and under purged air, at surface temperature of 100 °C, for emergence angles of 0°, 5°, 10°, 20°, 30°, 40°, 50°, and 60°. Emissivity of a serpentinite slab, already used as calibration target for the MARA instrument on Hayabusa 2 MASCOT lander and for the thermal infrared imager spectrometer on Hayabusa 2 orbiter, was measured under the same conditions. Additionally, a second basalt slab was measured. Both slabs were not measured at 5° inclination. Complementary reflectance measurements of the four samples were taken. For all the samples measured, we found that for calibrated emissivity, significant variations from values obtained at nadir (0° emergence angle) appear only for emergence angles ≥40°. Reflectance measurements confirmed this finding, showing the same trend of variations.

  17. Directional emissivity and reflectance: dependence on emergence angle

    NASA Astrophysics Data System (ADS)

    Maturilli, Alessandro; Helbert, Jörn

    2017-04-01

    Dependence of laboratory measured emissivity spectra from the emergence angle is a subject that still needs a lot of investigations to be fully understood. Most of the previous work is based on reflectance measurements in the VIS-NIR spectral region and on emissivity measurements of flat, solid surfaces (mainly metals), which are not directly applicable to the analysis of remote sensing data. Small bodies in particular (c.f. asteroids Itokawa and 1999JU3, the respective targets of JAXA Hayabusa and Hayabusa 2 missions) have a very irregular surface; hence the spectra from those rough surfaces are difficult to compare with laboratory spectra, where the observing geometry is always close to "nadir". At the Planetary Emissivity Laboratory (PEL) of the German Aerospace Center (DLR) we have set-up a series of spectral measurements to investigate this problem in the 1 - 16 µm spectral region. We measured the emissivity for two asteroid analog materials (meteorite Millbillillie and a synthetic enstatite) in vacuum and under purged air, at surface temperature of 100°C, for emergence angles of 0°, 5°, 10°, 20°, 30°, 40°, 50°, and 60°. Emissivity of a serpentinite slab, already used as calibration target for the MARA instrument on Hayabusa 2 MASCOT lander, and for the Thermal Infrared Imager (TIR) spectrometer on Hayabusa 2 orbiter was measured under the same conditions. Additionally a second basalt slab was measured. Both slabs were not measured at 5° inclination. Complementary reflectance measurements of the four samples were taken. For all the samples measured, we found that for calibrated emissivity, significant variations from values obtained at nadir (0° emergence angle) appear only for emergence angles ≥ 40°. Reflectance measurements confirmed this finding, showing the same trend of variations.

  18. Comparative study of radiometric and calorimetric methods for total hemispherical emissivity measurements

    NASA Astrophysics Data System (ADS)

    Monchau, Jean-Pierre; Hameury, Jacques; Ausset, Patrick; Hay, Bruno; Ibos, Laurent; Candau, Yves

    2018-05-01

    Accurate knowledge of infrared emissivity is important in applications such as surface temperature measurements by infrared thermography or thermal balance for building walls. A comparison of total hemispherical emissivity measurement was performed by two laboratories: the Laboratoire National de Métrologie et d'Essais (LNE) and the Centre d'Études et de Recherche en Thermique, Environnement et Systèmes (CERTES). Both laboratories performed emissivity measurements on four samples, chosen to cover a large range of emissivity values and angular reflectance behaviors. The samples were polished aluminum (highly specular, low emissivity), bulk PVC (slightly specular, high emissivity), sandblasted aluminum (diffuse surface, medium emissivity), and aluminum paint (slightly specular surface, medium emissivity). Results obtained using five measurement techniques were compared. LNE used a calorimetric method for direct total hemispherical emissivity measurement [1], an absolute reflectometric measurement method [2], and a relative reflectometric measurement method. CERTES used two total hemispherical directional reflectometric measurement methods [3, 4]. For indirect techniques by reflectance measurements, the total hemispherical emissivity values were calculated from directional hemispherical reflectance measurement results using spectral integration when required and directional to hemispherical extrapolation. Results were compared, taking into account measurement uncertainties; an added uncertainty was introduced to account for heterogeneity over the surfaces of the samples and between samples. All techniques gave large relative uncertainties for a low emissive and very specular material (polished aluminum), and results were quite scattered. All the indirect techniques by reflectance measurement gave results within ±0.01 for a high emissivity material. A commercial aluminum paint appears to be a good candidate for producing samples with medium level of emissivity (about 0.4) and with good uniformity of emissivity values (within ±0.015).

  19. Application of Recent Advances in Forward Modeling of Emissions from Boreal and Temperate Wildfires to Real-time Forecasting of Aerosol and Trace Gas Concentrations

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Kasischke, E. S.; Allen, D. J.

    2005-12-01

    The magnitude of trace gas and aerosol emissions from wildfires is a scientific problem with important implications for atmospheric composition, and is also integral to understanding carbon cycling in terrestrial ecosystems. Recent ecological research on modeling wildfire emissions has integrated theoretical advances derived from ecological fieldwork with improved spatial and temporal databases to produce "post facto" estimates of emissions with high spatial and temporal resolution. These advances have been shown to improve agreement with atmospheric observations at coarse scales, but can in principle be applied to applications, such as forecasting, at finer scales. However, several of the approaches employed in these forward models are incompatible with the requirements of real-time forecasting, requiring modification of data inputs and calculation methods. Because of the differences in data inputs used for real-time and "post-facto" emissions modeling, the key uncertainties in the forward problem are not necessarily the same for these two applications. However, adaptation of these advances in forward modeling to forecasting applications has the potential to improve air quality forecasts, and also to provide a large body of experimental data which can be used to constrain crucial uncertainties in current conceptual models of wildfire emissions. This talk describes a forward modeling method developed at the University of Maryland and its application to the Fire Locating and Modeling of Burning Emissions (FLAMBE) system at the Naval Research Laboratory. Methods for applying the outputs of the NRL aerosol forecasting system to the inverse problem of constraining emissions will also be discussed. The system described can use the feedback supplied by atmospheric observations to improve the emissions source description in the forecasting model, and can also be used for hypothesis testing regarding fire behavior and data inputs.

  20. Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Cai, Z.; Xu, M.

    2016-12-01

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.

  1. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  2. Reducing emissions by using special air filters for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S. A.; Alexa, V.; Crăciun, A. L.; Josan, A.; Budiul-Berghian, A.

    2017-05-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Super absorbing YXV „Air by Corneliu”, patented and homologated by the Romanian Automotive Registry, to which numerous prizes and medals were awarded at national and international innovations salons. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization “Road vehicles” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timisoara. The scope of the study is to optimise the air intake into the engine cylinders by reducing the gas-dynamic resistances caused by the air filter and, therefore, to achieve higher energy efficiency, i.e. fuel consumption reduction and engine performance increase. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter. The data collected shows a reduction in fuel consumption by using this type of filter, which leads to lower emissions.

  3. POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

  4. RESEARCH ON EMISSIONS AND MITIGATION OF POP'S FROM COMBUSTION SOURCES

    EPA Science Inventory

    Chapter summarizes EPA's research on emissions and control of persistent organic pollutants (POPS) from combustion sources, with emphasis on source characterization and measurement, formation and destruction mechanisms, formation prevention, and flue gas cleaning. Laboratory exp...

  5. Combining Data into Complete Engine ALPHA Maps

    EPA Pesticide Factsheets

    The National Center for Advanced Technology (NCAT), part of the National Vehicle and Fuel Emissions Laboratory (NVFEL), assesses the effectiveness of advanced low emission and low fuel consumption technologies for a broad range of key light-duty vehicles.

  6. First In Vivo Measurements of Methane Emissions from Ruminant Livestock Enteric Fermentation in Mexico Using Respiration Chambers

    NASA Astrophysics Data System (ADS)

    Castelan-Ortega, O. A.; Ku-Vera, J. C.; Molina, L. T.; Pedraza-Beltrán, P. E.; Canul-Solis, J. R.; Piñeiro-Vázquez, A.; Hernández-Pineda, G.; Benaouda, M.

    2015-12-01

    Until recently there were no facilities in Mexico to measure in vivo methane (CH4) emission by livestock. Inventories were calculated using emission factors from the IPCC, so the uncertainty in calculation is high. In 2014 the first laboratory equipped to measure CH4 started operations at the Universidad Autónoma de Yucatán. The second laboratory was built at the Universidad Autónoma del Estado de México and it began operations in June 2015. The first laboratory consists of two open-circuit respiration chambers, which are currently used to measure CH4 emissions by cattle in Mexico's tropical regions. Chamber dimensions are: 3.0 x 2.14 x 1.44 m (DxHxW). Air exiting the chambers is drawn by a mass flowmeter (Flowkit 500) at a rate of 500 L/min. The air sample is passed through a multiplexer and then through a chemical desiccant before entering the methane infrared analyzer (MA-10). All the instruments were fabricated by Sable Systems International, Las Vegas, USA. The average CH4 emission factor for Nelore bulls of 350 kg live weight fed with a tropical grass was 117.3 L/day and it increased to 198.6 L/day when 3 kg of concentrate feed were supplemented. For adult crossbred cows also fed with a tropical grass CH4 emission ranged from 92.7 to 137.3 L/day. The second laboratory consist of a respiration chamber of the head box type. It consists of a head box of 1.05 x 0.8 x 1.80 m (WxDxH) made of 3.5 x 3.5 cm stainless steel angle, and on the bottom, top, sides, back and front of the head box, 0.6 cm clear acrylic sheeting was used to provide comfortable vision to the animal, and a metabolic cage of 1.08 x 2.92 x 1.8 m (WxDxH) made of iron tubes with steel sheeting floor adapted for feces and urine collection. The methane analyzer and the mass flowmeter were of the same model as in the first laboratory. Once calibrated, in vivo measurements were performed using high yielding adult Holstein cows with an average live weight of 573 ±71 kg and milk yield of 30kg/day. The cows were fed maize silage, alfalfa hay and 4 kg concentrate feed. The average CH4 production was 484 ± 132 L/day. Emission factors obtained from both laboratories differed substantially from those used previously for inventories calculation in Mexico. IPCC factors are higher than those observed in our work particularly for cattle in the tropical regions of the country.

  7. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  8. Absorption properties and graphitic carbon emission factors of forest fire aerosols

    Treesearch

    E.M. Patterson; Charles K. McMahon; D.E. Ward

    1986-01-01

    Abstract. Data on the optical absorption properties (expressed as a specific absorption, Ba) of the smoke emissions from fires with forest fuels have been determined for a series of low-intensity field fires and a series of laboratory scale fires. The B, data have been used to estimate the emission factors for graphitic...

  9. Urease inhibitor for reducing ammonia emissions from an open-lot beef cattle feedyard in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Reduction of ammonia (NH3) emissions from animal feeding operations is important from the perspective of environmental policy and its impact on agriculture. In laboratory studies, urease inhibitors have been effective in reducing NH3 emissions from beef cattle manure, however there has been little t...

  10. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    Treesearch

    A. L. Holder; B. K. Gullett; S. P. Urbanski; R. Elleman; S. O' Neill; D. Tabor; W. Mitchell; K. R. Baker

    2017-01-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models,...

  11. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  12. Drift waves control using emissive cathodes in the laboratory

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Desangles, V.; De Giorgio, E.; Bousselin, G.; Marino, R.; Pustelnik, N.; Poye, A.

    2017-12-01

    Low frequency plasma fluctuations are known to be the cause of strong transport perpendicular to magnetic guiding field line. These low frequency drift waves have been studied in linear devices in the laboratory over the last two decades. Their excitation or mitigation have been addressed using different drives, such as ring biasing or electromagnetic low frequency fields. Here we present an experimental characterization of the behavior of drift waves when the profile of the background plasma rotation is controlled using hot emissive cathodes. We show that electron emission from the cathodes modify the plasma potential, which in turn controls the rotation profile. Mitigation or enhancement of drift waves (on the amplitude or azimuthal mode number) is observed depending on the plasma rotation profile.

  13. Toxicological Evaluation of Realistic Emission Source Aerosols (TERESA): Introduction and overview

    PubMed Central

    Godleski, John J.; Rohr, Annette C.; Kang, Choong M.; Diaz, Edgar A.; Ruiz, Pablo A.; Koutrakis, Petros

    2013-01-01

    Determining the health impacts of sources and components of fine particulate matter (PM2.5) is an important scientific goal. PM2.5 is a complex mixture of inorganic and organic constituents that are likely to differ in their potential to cause adverse health outcomes. The Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) study focused on two PM sources—coal-fired power plants and mobile sources—and sought to investigate the toxicological effects of exposure to emissions from these sources. The set of papers published here document the power plant experiments. TERESA attempted to delineate health effects of primary particles, secondary (aged) particles, and mixtures of these with common atmospheric constituents. TERESA involved withdrawal of emissions from the stacks of three coal-fired power plants in the United States. The emissions were aged and atmospherically transformed in a mobile laboratory simulating downwind power plant plume processing. Toxicological evaluations were carried out in laboratory rats exposed to different emission scenarios with extensive exposure characterization. The approach employed in TERESA was ambitious and innovative. Technical challenges included the development of stack sampling technology that prevented condensation of water vapor from the power plant exhaust during sampling and transfer, while minimizing losses of primary particles; development and optimization of a photochemical chamber to provide an aged aerosol for animal exposures; development and evaluation of a denuder system to remove excess gaseous components; and development of a mobile toxicology laboratory. This paper provides an overview of the conceptual framework, design, and methods employed in the study. PMID:21639692

  14. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Lindberg, Michael J.

    Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less

  15. Linking Aerosol Optical Properties Between Laboratory, Field, and Model Studies

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Foster, K. A.; Brown, H.; Liu, X.

    2017-12-01

    The optical properties of aerosol emissions from biomass burning have a significant impact on the Earth's radiative balance. Based on measurements made during the Fourth Fire Lab in Missoula Experiment, our group published a series of parameterizations that related optical properties (single scattering albedo and absorption due to brown carbon at multiple wavelengths) to the elemental to total carbon ratio of aerosols emitted from biomass burning. In this presentation, the ability of these parameterizations to simulate the optical properties of ambient aerosol is assessed using observations collected in 2017 from our mobile laboratory chasing wildfires in the Western United States. The ambient data includes measurements of multi-wavelength absorption, scattering, and extinction, size distribution, chemical composition, and volatility. In addition to testing the laboratory parameterizations, this combination of measurements allows us to assess the ability of core-shell Mie Theory to replicate observations and to assess the impact of brown carbon and mixing state on optical properties. Finally, both laboratory and ambient data are compared to the optical properties generated by a prominent climate model (Community Earth System Model (CESM) coupled with the Community Atmosphere Model (CAM 5)). The discrepancies between lab observations, ambient observations and model output will be discussed.

  16. Production and characterization of 228Th calibration sources with low neutron emission for GERDA

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Benato, G.; Carconi, P.; Cattadori, C.; De Felice, P.; Eberhardt, K.; Eichler, R.; Petrucci, A.; Tarka, M.; Walter, M.

    2015-12-01

    The GERDA experiment at the Laboratori Nazionali del Gran Sasso (LNGS) searches for the neutrinoless double beta decay of 76Ge. In view of the GERDA Phase II data collection, four new 228Th radioactive sources for the calibration of the germanium detectors enriched in 76Ge have been produced with a new technique, leading to a reduced neutron emission rate from (α, n) reactions. The gamma activities of the sources were determined with a total uncertainty of ~4% using an ultra-low background HPGe detector operated underground at LNGS. The neutron emission rate was determined using a low background LiI(Eu) detector and a 3He counter at LNGS. In both cases, the measured neutron activity is ~10-6 n/(sṡBq), with a reduction of about one order of magnitude with respect to commercially available 228Th sources. Additionally, a specific leak test with a sensitivity to leaks down to ~10 mBq was developed to investigate the tightness of the stainless steel capsules housing the sources after their use in cryogenic environment.

  17. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    PubMed

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ultrasoft x-ray imaging system for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.

    1999-01-01

    A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (<2 Å) and throughput (⩾tens of kHz) miniature monochromators, and based on multilayer mirrors and absolute photodiodes, is being designed for the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.

  19. Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics

    NASA Astrophysics Data System (ADS)

    Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej

    2017-10-01

    In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.

  20. Assessment of the integrity of concrete bridge structures by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Park, Philip; Jung, Juong-Chae; Lee, Seung-Seok

    2002-06-01

    This study was aimed at developing a new method for assessing the integrity of concrete structures. Especially acoustic emission technique was used in carrying out both laboratory experiment and field application. From the previous laboratory study, we confirmed that AE analysis provided a promising approach for estimating the level of damage and distress in concrete structures. The Felicity ratio, one of the key parameter for assessing damage, exhibits a favorable correlation with the overall damage level. The total number of AE events under stepwise cyclic loading also showed a good agreement with the damage level. In this study, a new suggested technique was applied to several concrete bridges in Korea in order to verify the applicability in field. The AE response was analyzed to obtain key parameters such as the total number and rate of AE events, AE parameter analysis for each event, and the characteristic features of the waveform as well as Felicity ratio analysis. Stepwise loading-unloading procedure for AE generation was introduced in field test by using each different weight of vehicle. According to the condition of bridge, for instance new or old bridge, AE event rate and AE generation behavior indicated many different aspects. The results showed that the suggested analyzing method would be a promising approach for assessing the integrity of concrete structures.

  1. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  2. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE PAGES

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; ...

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  3. Characterization of fine particle and gaseous emissions during school bus idling.

    PubMed

    Kinsey, J S; Williams, D C; Dong, Y; Logan, R

    2007-07-15

    The particulate matter (PM) and gaseous emissions from six diesel school buses were determined over a simulated waiting period typical of schools in the northeastern U.S. Testing was conducted for both continuous idle and hot restart conditions using a suite of on-line particle and gas analyzers installed in the U.S. Environmental Protection Agency's Diesel Emissions Aerosol Laboratory. The specific pollutants measured encompassed total PM-2.5 mass (PM < or = 2.5 microm in aerodynamic diameter), PM-2.5 number concentration, particle size distribution, particle-surface polycyclic aromatic hydrocarbons (PAHs), and a tracer gas (1,1,1,2,3,3,3-heptafluoropropane) in the diluted sample stream. Carbon monoxide (CO), carbon dioxide, nitrogen oxides (NO(x)), total hydrocarbons (THC), oxygen, formaldehyde, and the tracer gas were also measured in the raw exhaust. Results of the study showed little difference in the measured emissions between a 10 min post-restart idle and a 10 min continuous idle with the exception of THC and formaldehyde. However, an emissions pulse was observed during engine restart. A predictive equation was developed from the experimental data, which allows a comparison between continuous idle and hot restart for NO(x), CO, PM2.5, and PAHs and which considers factors such as the restart emissions pulse and periods when the engine is not running. This equation indicates that restart is the preferred operating scenario as long as there is no extended idling after the engine is restarted.

  4. Steel bridge fatigue crack detection with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick

    2010-04-01

    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.

  5. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    DOE PAGES

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; ...

    2016-04-04

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. Previously, we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expandedmore » set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO 2, Al 2O 3, CaO, FeOT, Na 2O, K 2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. But, for MgO the method does not provide improvements while for TiO 2, it yields inconsistent results. Additionally, we observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.« less

  6. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  7. Measuring ionizing radiation in the atmosphere with a new balloon-borne detector

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.

    2017-05-01

    Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.

  8. Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis.

    PubMed

    Dos Santos, Ana Maria Pinto; Dos Santos, Liz Oliveira; Brandao, Geovani Cardoso; Leao, Danilo Junqueira; Bernedo, Alfredo Victor Bellido; Lopes, Ricardo Tadeu; Lemos, Valfredo Azevedo

    2015-07-01

    In this work, a homogeneity study of a corn flour reference material candidate for inorganic analysis is presented. Seven kilograms of corn flour were used to prepare the material, which was distributed among 100 bottles. The elements Ca, K, Mg, P, Zn, Cu, Fe, Mn and Mo were quantified by inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion procedure. The method accuracy was confirmed by analyzing the rice flour certified reference material, NIST 1568a. All results were evaluated by analysis of variance (ANOVA) and principal component analysis (PCA). In the study, a sample mass of 400mg was established as the minimum mass required for analysis, according to the PCA. The between-bottle test was performed by analyzing 9 bottles of the material. Subsamples of a single bottle were analyzed for the within-bottle test. No significant differences were observed for the results obtained through the application of both statistical methods. This fact demonstrates that the material is homogeneous for use as a laboratory reference material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  10. Emission Modeling of an Interturbine Burner Based on Flameless Combustion

    PubMed Central

    2017-01-01

    Since its discovery, the flameless combustion (FC) regime has been a promising alternative to reduce pollutant emissions of gas turbine engines. This combustion mode is characterized by well-distributed reaction zones, which potentially decreases temperature gradients, acoustic oscillations, and NOx emissions. Its attainment within gas turbine engines has proved to be challenging because previous design attempts faced limitations related to operational range and combustion efficiency. Along with an aircraft conceptual design, the AHEAD project proposed a novel hybrid engine. One of the key features of the proposed hybrid engine is the use of two combustion chambers, with the second combustor operating in the FC mode. This novel configuration would allow the facilitation of the attainment of the FC regime. The conceptual design was adapted to a laboratory scale combustor that was tested at elevated temperature and atmospheric pressure. In the current work, the emission behavior of this scaled combustor is analyzed using computational fluid dynamics (CFD) and chemical reactor network (CRN). The CFD was able to provide information with the flow field in the combustor, while the CRN was used to model and predict emissions. The CRN approach allowed the analysis of the NOx formation pathways, indicating that the prompt NOx was the dominant pathway in the combustor. The combustor design can be improved by modifying the mixing between fuel and oxidizer as well as the split between combustion and dilution air. PMID:29910533

  11. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  12. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    Treesearch

    A. A. May; G. R. McMeeking; T. Lee; J. W. Taylor; J. S. Craven; I. Burling; A. P. Sullivan; S. Akagi; J. L. Collett; M. Flynn; H. Coe; S. P. Urbanski; J. H. Seinfeld; R. J. Yokelson; S. M. Kreidenweis

    2014-01-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California...

  13. Effect of urea application rate and water content on nitrous oxide emission from a sandy loam soil - a laboratory study

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a major contributor to global anthropogenic nitrous oxide (N2O, a potent greenhouse gas) emission. Data from a pomegranate orchard indicate that N2O emission is highly variable with nitrogen application rates and irrigation methods. The aim of this study was to investigate the effect ...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, C.M.

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years,more » sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.« less

  15. Laboratory simulation of infrared astrophysical features. [Terrestrial silicate, meteoritic and lunar soil 10-micron spectral comparisons with comets Bennet and Kohoutek

    NASA Technical Reports Server (NTRS)

    Rose, L. A.

    1979-01-01

    Laboratory infrared emission and absorption spectra have been taken of terrestrial silicates, meteorites, and lunar soils in the form of micrometer and submicrometer grains. The emission spectra were taken in a way that imitates telescopic observations. The purpose was to see which materials best simulate the 10-micron astrophysical feature. The emission spectra of dunite, fayalite, and Allende give a good fit to the 10-micron broadband emission feature of comets Bennett and Kohoutek. A study of the effect of grain size on the presence of the 10-micron emission feature of dunite shows that for particles larger than 37 microns no feature is seen. The emission spectrum of the Murray meteorite, a Type 2 carbonaceous chrondrite, is quite similar to the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Hydrous silicates or amorphous magnesium silicates in combination with high-temperature condensates, such as olivine or anorthite, would yield spectra that match the intermediate-resolution spectrum of comet Kohoutek in the 10-micron region. Glassy olivine and glassy anorthite in approximately equal proportions would also give a spectrum that is a good fit to the cometary 10-micron feature.

  16. Unraveling the chemical complexity of biomass burning VOC emissions via H3O+ ToF-CIMS (PTR-ToF): emissions characterization

    NASA Astrophysics Data System (ADS)

    Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.

  17. Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants

    NASA Astrophysics Data System (ADS)

    Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.

    2010-12-01

    Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations, scientists and researchers with temporally and spatially resolved data (including measurements of important greenhouse gases, isotopes and pollutants) necessary for compliance monitoring, hot-spot detection, as well as cap and trade, at any location. Details of extended measurement campaigns (including lessons learned) at the various field sites (urban and rural environments) will be presented.

  18. Development of a Low-Cost Airborne Ultrasound Sensor for the Detection of Brick Joints behind a Wall Painting

    PubMed Central

    García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel

    2012-01-01

    Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XVth century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research. PMID:22438711

  19. In-air RBS measurements at the LAMFI external beam setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, T. F.; Added, N.; Moro, M. V.

    2014-11-11

    This work describes new developments in the external beam setup of the Laboratory of Material Analysis with Ion Beams of the University of São Paulo (LAMFI-USP). This setup was designed to be a versatile analytical station to analyze a broad range of samples. In recent developments, we seek the external beam Rutherford Backscattering Spectroscopy (RBS) analysis to complement the Particle Induced X-ray Emission (PIXE) measurements. This work presents the initial results of the external beam RBS analysis as well as recent developments to improve the energy resolution RBS measurements, in particular tests to seek for sources of resolution degradation. Thesemore » aspects are discussed and preliminary results of in-air RBS analysis of some test samples are presented.« less

  20. 40 CFR 262.206 - Labeling and management standards for containers of unwanted material in the laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Labeling and management standards for containers of unwanted material in the laboratory. 262.206 Section 262.206 Protection of Environment... the laboratory to assure safe storage of the unwanted material, to prevent leaks, spills, emissions to...

Top