Laboratory Studies of Carbon Emission from Biomass Burning for use in Remote Sensing
NASA Technical Reports Server (NTRS)
Wald, Andrew E.; Kaufman, Yoram J.
1998-01-01
Biomass burning is a significant source of many trace gases in the atmosphere. Up to 25% of the total anthropogenic carbon dioxide added to the atmosphere annually is from biomass burning. However, this gaseous emission from fires is not directly detectable from satellite. Infrared radiance from the fires is. In order to see if infrared radiance can be used as a tracer for these emitted gases, we made laboratory measurements to determine the correlation of emitted carbon dioxide, carbon monoxide and total burned biomass with emitted infrared radiance. If the measured correlations among these quantities hold in the field, then satellite-observed infrared radiance can be used to estimate gaseous emission and total burned biomass on a global, daily basis. To this end, several types of biomass fuels were burned under controlled conditions in a large-scale combustion laboratory. Simultaneous measurements of emitted spectral infrared radiance, emitted carbon dioxide, carbon monoxide, and total mass loss were made. In addition measurements of fuel moisture content and fuel elemental abundance were made. We found that for a given fire, the quantity of carbon burned can be estimated from 11 (micro)m radiance measurements only within a factor of five. This variation arises from three sources, 1) errors in our measurements, 2) the subpixel nature of the fires, and 3) inherent differences in combustion of different fuel types. Despite this large range, these measurements can still be used for large-scale satellite estimates of biomass burned. This is because of the very large possible spread of fire sizes that will be subpixel as seen by Moderate Resolution Imaging Spectroradiometer (MODIS). Due to this large spread, even relatively low-precision correlations can still be useful for large-scale estimates of emitted carbon. Furthermore, such estimates using the MODIS 3.9 (micro)m channel should be even more accurate than our estimates based on 11 (micro)m radiance.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Actual contributions to global warming depend upon the quantities emitted. See additional comments 1, 2.... Actual contributions to global warming depend upon the quantities of PFCs emitted. See additional.... Actual contributions to global warming depend upon the quantities of PFCs emitted. See additional...
Emissions of sulfur gases from wetlands
NASA Technical Reports Server (NTRS)
Hines, Mark E.
1992-01-01
Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens.
Forest fires and air quality issues in southern Europe
Ana Isabel Miranda; Enrico Marchi; Marco Ferretti; Millán M. Millán
2009-01-01
Each summer forest fires in southern Europe emit large quantities of pollutants to the atmosphere. These fires can generate a number of air pollution episodes as measured by air quality monitoring networks. We analyzed the impact of forest fires on air quality of specific regions of southern Europe. Data from several summer seasons were studied with the aim of...
The contribution of low tar cigarettes to environmental tobacco smoke
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chortyk, O.T.; Schlotzhauer, W.S.
A series of low tar cigarettes (LTC) were smoked and the quantities of condensable mainstream (inhaled) and sidestream (between puffs) smoke compounds were determined and compared to those produced by a high tar, nonfilter cigarette. It was found that the LTC produced large quantities of sidestream smoke condensates, about equal to the high tar cigarette, and contained very high levels of toxic or cocarcinogenic phenols. On an equal weight basis, the LTC emitted more of these hazardous compounds into sidestream and environmental tobacco smoke. Higher smoke yields of a flavor additive and a sugar degradation product indicated addition of suchmore » compounds during the manufacture of LTC. It was concluded that, compared to a high tar cigarette, smoking LTC may be better for the smoker, but not for the nearby nonsmoker. Information should be developed to allow smokers to choose LTC that produce lower levels of hazardous compounds in their environmentally emitted sidestream smoke.« less
NASA Astrophysics Data System (ADS)
Tapanainen, Maija; Jalava, Pasi I.; Mäki-Paakkanen, Jorma; Hakulinen, Pasi; Happo, Mikko S.; Lamberg, Heikki; Ruusunen, Jarno; Tissari, Jarkko; Nuutinen, Kati; Yli-Pirilä, Pasi; Hillamo, Risto; Salonen, Raimo O.; Jokiniemi, Jorma; Hirvonen, Maija-Riitta
2011-12-01
Residential wood combustion appliances emit large quantities of fine particles which are suspected to cause a substantial health burden worldwide. Wood combustion particles contain several potential health-damaging metals and carbon compounds such as polycyclic aromatic hydrocarbons (PAH), which may determine the toxic properties of the emitted particles. The aim of the present study was to characterize in vitro immunotoxicological and chemical properties of PM 1 ( Dp ≤ 1 μm) emitted from a pellet boiler and a conventional masonry heater. Mouse RAW264.7 macrophages were exposed for 24 h to different doses of the emission particles. Cytotoxicity, production of the proinflammatory cytokine TNF-α and the chemokine MIP-2, apoptosis and phases of the cell cycle as well as genotoxic activity were measured after the exposure. The type of wood combustion appliance had a significant effect on emissions and chemical composition of the particles. All the studied PM 1 samples induced cytotoxic, genotoxic and inflammatory responses in a dose-dependent manner. The particles emitted from the conventional masonry heater were 3-fold more potent inducers of programmed cell death and DNA damage than those emitted from the pellet boiler. Furthermore, the particulate samples that induced extensive DNA damage contained also large amounts of PAH compounds. Instead, significant differences between the studied appliances were not detected in measurements of inflammatory mediators, although the chemical composition of the combustion particles differed considerably from each other. In conclusion, the present results show that appliances representing different combustion technology have remarkable effects on physicochemical and associated toxicological and properties of wood combustion particles. The present data indicate that the particles emitted from incomplete combustion are toxicologically more potent than those emitted from more complete combustion processes.
LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien
2010-08-01
Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demandmore » for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.« less
NASA Astrophysics Data System (ADS)
Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson
2015-01-01
We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.
1988-08-01
Mauna Loa and Kilauea volcanoes . Both are shield volcanoes , having a broad summit and base. The southeastern flanks of the volcanoes are riddled with... Kilauea volcano frequently inundate the area a few miles north of Palima Point. The large system of cracks and fissures which are common in the...the island is the Mauna Kea volcano , which emits substantial quantities of S0 2 . The island of Hawaii is currently in attainment for all criteria
Extratropical influence of upper tropospheric water vapor on Greenhouse warming
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Hu, Hua
1997-01-01
Despite its small quantity, the importance of upper tropospheric water vapor is its ability to trap the longwave radiation emitted from the Earth's surface, namely the greenhouse effect. The greenhouse effect is defined quantitatively as the difference between the longwave flux emitted by the Earth's surface and the outgoing longwave radiation (OLR) flux emitted from the top of the atmosphere (TOA) (Raval and Ramanathan 1989).
Spectroscopic diagnostics of solar flares
NASA Astrophysics Data System (ADS)
Bely-Dubau, F.; Dubau, J.; Faucher, P.; Loulergue, M.; Steenman-Clarke, L.
Observations made with the X-ray polychromator (XRP) on board the Solar Maximum Mission satellite were analyzed. Data from the bent crystal spectrometer portion of the XRP experiment, in the spectral domain 1 to 3 A, with high spectral and temporal resolution, were used. Results for the spectrum analysis of iron are given. The possibility of polarization effects is considered. Although it is demonstrated that hyperfine analyses of a given spectrum are obtainable, provided calculations include large quantities of high precision atomic data, the interpretation is limited by the hypothesis of homogeneity of the emitting plasma.
Air quality and composite wood products
Melissa G. D. Baumann
1999-01-01
Research at the USDA Forest Service, Forest Products Laboratory (FPL) is being conducted to identify the compounds emitted from wood products during their manufacture and subsequent use. The FPL researchers are measuring the types and quantities of VOCs that are emitted from particleboard and MDF products to provide quantitative emissions information. This information...
40 CFR 63.5 - Preconstruction review and notification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) [Reserved] (H) The type and quantity of hazardous air pollutants emitted by the source, reported in units... actual emissions data are not yet available, an estimate of the type and quantity of hazardous air..., operating design capacity, and method of operation of the source, including an identification of each type...
Will, Kipling W.; Gill, Aman S.; Lee, Hyeunjoo; Attygalle, Athula B.
2010-01-01
This study is the first to measure the quantity of pygidial gland secretions released defensively by carabid beetles (Coleoptera: Carabidae) and to accurately measure the relative quantity of formic acid contained in their pygidial gland reservoirs and spray emissions. Individuals of three typical formic acid producing species were induced to repeatedly spray, ultimately exhausting their chemical compound reserves. Beetles were subjected to faux attacks using forceps and weighed before and after each ejection of chemicals. Platynus brunneomarginatus (Mannerheim) (Platynini), P. ovipennis (Mannerheim) (Platynini) and Calathus ruficollis Dejean (Sphodrini), sprayed average quantities with standard error of 0.313 ± 0.172 mg, 0.337 ± 0.230 mg, and 0.197 ± 0.117 mg per spray event, respectively. The quantity an individual beetle released when induced to spray tended to decrease with each subsequent spray event. The quantity emitted in a single spray was correlated to the quantity held in the reservoirs at the time of spraying for beetles whose reserves are greater than the average amount emitted in a spray event. For beetles with a quantity less than the average amount sprayed in reserve there was no significant correlation. For beetles comparable in terms of size, physiological condition and gland reservoir fullness, the shape of the gland reservoirs and musculature determined that a similar effort at each spray event would mechanically meter out the release so that a greater amount was emitted when more was available in the reservoir. The average percentage of formic acid was established for these species as 34.2%, 73.5% and 34.1% for for P. brunneomarginatus, P. ovipennis and C. ruficollis, respectively. The average quantities of formic acid released by individuals of these species was less than two-thirds the amount shown to be lethal to ants in previously published experiments. However, the total quantity from multiple spray events from a single individual could aggregate to quantities at or above the lethal level, and lesser quantities are known to act as ant alarm pheromones. Using a model, one directed spray of the formic acid and hydrocarbon mix could spread to an area of 5–8 cm diameter and persisted for 9–22 seconds at a threshold level known to induce alarm behaviors in ants. These results show that carabid defensive secretions may act as a potent and relatively prolonged defense against ants or similar predators even at a sub-lethal dose. PMID:20575743
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process.
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-07-20
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-01-01
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm; green QY: ~85%, FWHM: 41 nm; red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell. PMID:27435428
Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process
NASA Astrophysics Data System (ADS)
Park, Joong Pill; Lee, Jae-Joon; Kim, Sang-Wook
2016-07-01
InP-based quantum dots (QDs) have attracted much attention for use in optical applications, and several types of QDs such as InP/ZnS, InP/ZnSeS, and InP/GaP/ZnS have been developed. However, early synthetic methods that involved rapid injection at high temperatures have not been able to reproducibly produce the required optical properties. They were also not able to support commercialization efforts successfully. Herein, we introduce a simple synthetic method for InP/GaP/ZnS core/shell/shell QDs via a heating process. The reaction was completed within 0.5 h and a full color range from blue to red was achieved. For emitting blue color, t-DDT was applied to prevent particle growth. From green to orange, color variation was achieved by adjusting the quantity of myristic acid. Utilizing large quantities of gallium chloride led to red color. With this method, we produced high-quality InP/GaP/ZnS QDs (blue QY: ~40%, FWHM: 50 nm green QY: ~85%, FWHM: 41 nm red QY: ~60%, FWHM: 65 nm). We utilized t-DDT as a new sulfur source. Compared with n-DDT, t-DDT was more reactive, which allowed for the formation of a thicker shell.
Markiewicz, Anna; Björklund, Karin; Eriksson, Eva; Kalmykova, Yuliya; Strömvall, Ann-Margret; Siopi, Anna
2017-02-15
A large number of organic pollutants (OPs) emitted from vehicles and traffic-related activities exhibit environmental persistence and a tendency to bioaccumulate, and may have detrimental long-term effects on aquatic life. The aim of the study was to establish a list of significant sources of OPs occurring in road runoff, identify the OPs emitted from these sources, select a number of priority pollutants (PP), and estimate the quantity of PPs emitted in a road environment case study using substance flow analysis (SFA). The priority pollutants included in the SFA were selected from a list of approximately 1100 compounds found after comprehensive screening, including literature and database searches, expert judgments, the Ranking and Identification of Chemical Hazards method, and chemical analysis of sediments. The results showed the following priority order: polycyclic aromatic hydrocarbons (PAHs)>alkanes C 20 -C 40 >alkylphenols>phthalates>aldehydes>phenolic antioxidants>bisphenol A>oxygenated-PAHs>naphtha C 5 -C 12 >amides>amines. Among these, PAHs were chosen for a SFA, which was performed for a highway case study area in Gothenburg (Sweden). The SFA showed that the main sources of PAHs emitted in the area were vehicle exhaust gases, followed by tyre wear, motor lubricant oils, road surface wear, and brake linings. Only 2-6% of the total 5.8-29kg annually emitted PAHs/ha ended up in the stormwater sewer system. The measured PAH loads were found in much smaller amounts than the calculated loads and the outflow to stormwater contained much more of the hazardous PAHs than the total loads emitted in the catchment area. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Volcanic plume and bomb field masses from thermal infrared camera imagery
NASA Astrophysics Data System (ADS)
Harris, A. J. L.; Delle Donne, D.; Dehn, J.; Ripepe, M.; Worden, A. K.
2013-03-01
Masses erupted during normal explosions at Stromboli volcano (Italy) are notoriously difficult to measure. We present a method that uses thermal infrared video for cooling bomb fields to obtain the total power emitted by all hot particles emitted during an explosion. A given mass of magma (M) will emit a finite amount of thermal power, defined by M cp(Te-T0), cp and Te being magma specific heat capacity and temperature, and T0 being ambient temperature. We use this relation to convert the total power emitted by the bomb field to the mass required to generate that power. To do this we extract power flux curves for the field and integrate this through time to obtain total power (E). This is used to estimate mass (Q) in Q=E/cp(Te-T0). When applied to individual bombs we obtain masses of between 1 and 9 kg per bomb, or a volume of 970 and 6500 cm3. These volumes equate to spheres with diameters 12 and 27 cm. For the entire bomb field we obtain volumes of 7-28 m3. We calculate masses for 32 eruptions and obtain typical bomb masses of between 103 and 104 kg per eruption. In addition, we estimate that between 102 and 103 kg of gas and ash are emitted as part of a mixed plume of bombs, gas and ash. We identify two types of eruption on the basis of the erupted bomb masses and the ratio of the plume's gas-and-ash component to the bomb component. The first type is bomb-dominated, is characterized by bomb masses of 104 kg and has ash-gas/ bomb ratios of ˜0.02. The second type is ash-and-gas dominated, is characterized by erupted bomb masses of 103 kg and has ash-gas/bomb ratios of around one, and as high as two. There is no correlation between the quantity of bombs and quantity of gas-ash erupted. In addition, while source pressure for each explosion correlates with the quantity of gas and ash erupted, the mass of bombs emitted varies independently of pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.; Loftin, B.; Abramczyk, G.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels withinmore » the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.« less
NASA Astrophysics Data System (ADS)
Shang, Xiaoxia; Chazette, Patrick; Totems, Julien
2018-04-01
This paper presents the first, to our knowledge, lidar measurement of an industrial fire plume, which covered the north of the Paris area on 17th April 2015. The fire started in a textile warehouse and rapidly spread by emitting large quantities of aerosols into the low troposphere. A ground based N2-Raman lidar performed continuous measurements during this event. Vertical profiles of the aerosol extinction coefficient, depolarization and lidar ratio are derived. A Monte Carlo algorithm was used to assess the uncertainties on the optical parameters, and to evaluate lidar inversion methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, P.R.; Greenberg, J.P.; Wandiga, S.O.
Termites are emitting large quantities of CH/sub 4/, CO/sub 2/, and H/sub 2/ into the atmosphere, especially in cleared tropical forest areas. Researchers estimate that these annual global emissions could amount to 0.3 trillion lb of CH/sub 4/, 11 trillion lb of CO/sub 2/ (more than twice the net global input from fossil-fuel combustion), and 0.4 trillion lb of H/sub 2/. However, they stress that because of many uncertainties, the acutal production of these gases could vary by a factor of two; i.e., methane production could range from 0.2 to 0.7 trillion lb. Occurring on about two-thirds of the earth's
NASA Astrophysics Data System (ADS)
Miyazaki, Jun
2013-10-01
We present an analytical method for quantifying exciton hopping in an energetically disordered system with quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability, average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage) are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.
X-ray compass for determining device orientation
Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.
1999-01-01
An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.
X-ray compass for determining device orientation
Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.
1999-06-15
An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.
Gravitational wave production by Hawking radiation from rotating primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu
In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the totalmore » energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.« less
Total OH reactivity in a mediterranean forest of downy oaks
NASA Astrophysics Data System (ADS)
Zannoni, Nora; Gros, Valerie; Sarda, Roland; Lanza, Matteo; Bonsang, Bernard; Kalogridis, Cerise; Preunkert, Suzanne; Legrand, Michel; Jambert, Corinne; Boissard, Christophe; Lathiere, Juliette
2015-04-01
Forests emit large quantities of reactive molecules which can affect the concentration of the most important oxidizing agent in the atmosphere, the hydroxyl radical OH. There are still many unknowns on how biogenic compounds interact with the atmosphere. Among those, we still lack to fully understand the species that can potentially influence the atmospheric oxidative capacity and thus the OH cleansing effect over several forested areas. We conducted total OH reactivity measurements during spring 2014 inside and above the canopy height of a forest dominated at 80% by downy oaks in the Mediterranean basin (Observatoire Haute Provence site, France). Downy oak trees are capable to emit almost exclusively isoprene (~99%), the most abundant volatile organic compound and among the most reactive towards the OH radical. We measured the total OH reactivity with the Comparative Reactivity Method together with atmospheric concentrations of the primary compounds emitted by the forest, main secondary species generated from the oxidation of isoprene, and main atmospheric constituents. We then compared the OH reactivity inferred by measured compounds and their oxidation rate coefficients with the measured total OH reactivity. This approach permits to identify the presence of any primary emitted biogenic compound, unknown before and relevant for OH oxidation; or any secondary generated compound whose associated chemical mechanism is not well established. Our results show higher OH reactivity inside the canopy, with peaks up to 78 s-1, when isoprene concentration reached ~20 ppb due to temperature and PAR increase. Such high level of OH reactivity has only been observed in the tropics so far. Furthermore, our measured total OH reactivity closes the total amount of reactive species present in this specific forest, suggesting that we quantified precisely both the primary emitted species as well as the secondary generated products.
Automotive sulfate emission data.
Somers, J H
1975-01-01
This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932
NASA Astrophysics Data System (ADS)
Gallardo, Athena Marie
Past nuclear accidents, such as Chernobyl, resulted in a large release of radionuclides into the atmosphere. Radiological assessment of the vicinity of the site of the incident is vital to assess the exposure levels and dose received by the population and workers. Therefore, it is critical to thoroughly understand the situation and risks associated with a particular event in a timely manner in order to properly manage the event. Current atmospheric radiological assessments of alpha emitting radioisotopes include acquiring large quantities of air samples, chemical separation of radionuclides, sample mounting, counting through alpha spectrometry, and analysis of the data. The existing methodology is effective, but time consuming and labor intensive. Autoradiography, and the properties of phosphor imaging films, may be used as an additional technique to facilitate and expedite the alpha analysis process in these types of situations. Although autoradiography is not as sensitive to alpha radiation as alpha spectrometry, autoradiography may benefit alpha analysis by providing information about the activity as well as the spatial distribution of radioactivity in the sample under investigation. The objective for this research was to develop an efficient method for quantification and visualization of air filter samples taken in the aftermath of a nuclear emergency through autoradiography using 241Am and 239Pu tracers. Samples containing varying activities of either 241Am or 239Pu tracers were produced through microprecipitation and assayed by alpha spectroscopy. The samples were subsequently imaged and an activity calibration curve was produced by comparing the digital light units recorded from the image to the known activity of the source. The usefulness of different phosphor screens was examined by exposing each type of film to the same standard nuclide for varying quantities of time. Unknown activity samples created through microprecipiation containing activities of either 241Am or 239Pu as well as air filters doped with beta and alpha emitting nuclides were imaged and activities were determined by comparing the image to the activity calibration curve.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2004-12-01
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O3) produced from nitrogen oxides (NOx = NO + NO2) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air Quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NOx emitted from individual sources can have on the downwind concentration of surface O3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting ozone-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NOx regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NOx emissions from one place or time to another could result in large changes in the health effects due to ozone formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NOx emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
Occupational exposure of aldehydes resulting from the storage of wood pellets.
Rahman, Mohammad Arifur; Rossner, Alan; Hopke, Philip K
2017-06-01
An exposure assessment was conducted to investigate the potential for harmful concentrations of airborne short chain aldehydes emitted from recently stored wood pellets. Wood pellets can emit a number of airborne aldehydes include acetaldehyde, formaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and hexanal. Exposure limits have been set for these compounds since they can result in significant irritation of the upper respiratory system at elevated concentrations. Formaldehyde is a recognized human carcinogen and acetaldehyde is an animal carcinogen. Thus, air sampling was performed in a wood pellet warehouse at a pellet mill, two residential homes with bulk wood pellet storage bins, and in controlled laboratory experiments to evaluate the risk to occupants. Using NIOSH method 2539, sampling was conducted in five locations in the warehouse from April-June 2016 when it contained varying quantities of bagged pellets as well as two homes with ten ton bulk storage bins. The aldehyde concentrations were found to increase with the amount of stored pellets. Airborne concentrations of formaldehyde were as high as 0.45 ppm in the warehouse exceeding the NIOSH REL-C, and ACGIH TLV-C occupational exposure limits (OELs). The concentrations of aldehydes measured in the residential bins were also elevated indicating emissions may raise indoor air quality concerns for occupants. While individual exposures are of concern the combined irritant effect of all the aldehydes is a further raise the concerns for building occupants. To minimize exposure and the risk of adverse health effects to a building's occupants in storage areas with large quantities of pellets, adequate ventilation must be designed into storage areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltz, R. A.; Danagoulian, A.; Sheets, S.
Theoretical calculations indicate that the value of the Feynman variance, Y2F for the emitted distribution of neutrons from ssionable exhibits a strong monotonic de- pendence on a the multiplication, M, of a quantity of special nuclear material. In 2012 we performed a series of measurements at the Passport Inc. facility using a 9- MeV bremsstrahlung CW beam of photons incident on small quantities of uranium with liquid scintillator detectors. For the set of objects studies we observed deviations in the expected monotonic dependence, and these deviations were later con rmed by MCNP simulations. In this report, we modify the theorymore » to account for the contri- bution from the initial photo- ssion and benchmark the new theory with a series of MCNP simulations on DU, LEU, and HEU objects spanning a wide range of masses and multiplication values.« less
NASA Astrophysics Data System (ADS)
Guan, S.; Reuter, G. W.
1996-08-01
Large oil refineries emit heat, vapor, and cloud condensation nuclei (CCN), all of which can affect the formation of cloud and precipitation. This study quantities the relative contributions of the three factors on cloud development in calm wind conditions using an axisymmetric cloud model. The factor separation technique is applied to isolate the net contributions of waste heat, vapor, and CCN on the rainfall of a cumulus developing in the industrial plume. The mutual-interactive contributions of two or three of the factors are also computed.The simulations for midlatitude and tropical conditions indicate that the sensible heat provides the major stimulus for cloud development and rain formation. The pure contribution of the industrial CCN is to enhance the condensation, causing an increase in the mass of total cloud water. The simulation results indicate that mutual interactions between waste heat and industrial CCN are large for both cases considered.
Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada).
Glaz, Patricia; Bartosiewicz, Maciej; Laurion, Isabelle; Reichwaldt, Elke S; Maranger, Roxane; Ghadouani, Anas
2016-09-15
Waste stabilisation ponds (WSPs) are highly enriched environments that may emit large quantities of greenhouse gases (GHG), including CO2, CH4 and N2O. However, few studies provide detailed reports on these emissions. In the present study, we investigated GHG emissions from WSPs in Western Australia and Quebec, Canada, and compared emissions to WSPs from other climatic regions and to other types of aquatic ecosystems. Surface water GHG concentrations were related to phytoplankton biomass and nutrients. The CO2 was either emitted or absorbed by WSPs, largely as a function of phytoplankton dynamics and strong stratification in these shallow systems, whereas efflux of CH4 and N2O to the atmosphere was always observed albeit with highly variable emission rates, dependent on treatment phase and time of the day. The total global warming potential index (GWP index, calculated as CO2 equivalent) of emitted GHG from WSPs in Western Australia averaged 12.8 mmol m(-2) d(-1) (median), with CO2, CH4 and N2O respectively contributing 0%, 96.7% and 3.3% of the total emissions, while in Quebec WSPs this index was 194 mmol m(-2) d(-1), with a relative contribution of 93.8, 3.0 and 3.2% respectively. The CO2 fluxes from WSPs were of the same order of magnitude as those reported in hydroelectric reservoirs and constructed wetlands in tropical climates, whereas CH4 fluxes were considerably higher compared to other aquatic ecosystems. N2O fluxes were in the same range of values reported for WSPs in subtropical climate. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamane, Takashi; Yasuda, Tetsuya
2014-02-01
Although mating status affects future mating opportunities, the biochemical changes that occur in response to mating are not well understood. This study investigated the effects of mating status on the quantities of sex pheromone components found in whole-body extracts and volatile emissions of females of the rice leaf bug, Trigonotylus caelestialium. When sampled at one of four time points within a 4-day postmating period, females that had copulated with a male had greater whole-body quantities of sex pheromone components than those of virgin females sampled at the same times. The quantities of sex pheromone components emitted by virgin females over a 24-h period were initially high but then steadily decreased, whereas 24-h emissions were persistently low among mated females when measured at three time points within the 4 days after mating. As a result, soon after mating, the mated females emitted less sex pheromones than virgin females, but there were no significant differences between mated and virgin females at the end of the experiment. Thus, postmating reduction in the rate of emission of sex pheromones could explain previously observed changes in female attractiveness to male T. caelestialium.
ISOPRENE EMISSION CAPACITY FOR U.S. TREE SPECIES
Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina...
760 nm high-performance VCSEL growth and characterization
NASA Astrophysics Data System (ADS)
Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer
2006-04-01
High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2018-04-01
Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.
NASA Astrophysics Data System (ADS)
Mauzerall, Denise L.; Sultan, Babar; Kim, Namsoug; Bradford, David F.
We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3) produced from nitrogen oxides (NO=NO+NO) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3, depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3-related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used "cap and trade" approach to NO x regulation, which presumes that shifts of emissions over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage.
Bio-inspired digital signal processing for fast radionuclide mixture identification
NASA Astrophysics Data System (ADS)
Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.
2015-05-01
Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.
Modeling of fugitive dust emission for construction sand and gravel processing plant.
Lee, C H; Tang, L W; Chang, C T
2001-05-15
Due to rapid economic development in Taiwan, a large quantity of construction sand and gravel is needed to support domestic civil construction projects. However, a construction sand and gravel processing plant is often a major source of air pollution, due to its associated fugitive dust emission. To predict the amount of fugitive dust emitted from this kind of processing plant, a semiempirical model was developed in this study. This model was developed on the basis of the actual dust emission data (i.e., total suspended particulate, TSP) and four on-site operating parameters (i.e., wind speed (u), soil moisture (M), soil silt content (s), and number (N) of trucks) measured at a construction sand and gravel processing plant. On the basis of the on-site measured data and an SAS nonlinear regression program, the expression of this model is E = 0.011.u2.653.M-1.875.s0.060.N0.896, where E is the amount (kg/ton) of dust emitted during the production of each ton of gravel and sand. This model can serve as a facile tool for predicting the fugitive dust emission from a construction sand and gravel processing plant.
Shot noise in radiobiological systems.
Datesman, A
2016-11-01
As a model for human tissue, this report considers the rate of free radical generation in a dilute solution of water in which a beta-emitting radionuclide is uniformly dispersed. Each decay dissipates a discrete quantity of energy, creating a large number of free radicals in a short time within a small volume determined by the beta particle range. Representing the instantaneous dissipated power as a train of randomly-spaced pulses, the time-averaged dissipated power p¯ and rate of free radical generation g¯ are derived. The analogous result in the theory of electrical circuits is known as the shot noise theorem. The reference dose of X-rays D ref producing an identical rate of free radical generation and level of oxidative stress is shown a) to increase with the square root of the absorbed dose, D, and b) to be far larger than D. This finding may have important consequences for public health in cases where the level of shot noise exceeds some noise floor corresponding to equilibrium biological processes. An estimate of this noise floor is made using the example of potassium-40, a beta-emitting radioisotope universally present in living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of beta-amyloid peptides in specific cells using a photo thin-film transistor
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Chae, Cheol-Joo; Shin, Hye-Rim; Song, Ki-Bong
2012-01-01
The existence of beta-amyloid [Aβ] peptides in the brain has been regarded as the most archetypal biomarker of Alzheimer's disease [AD]. Recently, an early clinical diagnosis has been considered a great importance in identifying people who are at high risk of AD. However, no microscale electronic sensing devices for the detection of Aβ peptides have been developed yet. In this study, we propose an effective method to evaluate a small quantity of Aβ peptides labeled with fluorescein isothiocyanate [FITC] using a photosensitive field-effect transistor [p-FET] with an on-chip single-layer optical filter. To accurately evaluate the quantity of Aβ peptides within the cells cultured on the p-FET device, we measured the photocurrents which resulted from the FITC-conjugated Aβ peptides expressed from the cells and measured the number of photons of the fluorochrome in the cells using a photomultiplier tube. Thus, we evaluated the correlation between the generated photocurrents and the number of emitted photons. We also evaluated the correlation between the number of emitted photons and the amount of FITC by measuring the FITC volume using AFM. Finally, we estimated the quantity of Aβ peptides of the cells placed on the p-FET sensing area on the basis of the binding ratio between FITC molecules and Aβ peptides.
Methane Recovery from Animal Manures The Current Opportunities Casebook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lusk, P.
1998-09-22
Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewablemore » fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.« less
Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Simon, J. D.; Drout, M. R.; Piro, A. L.; Morrell, N.; Prieto, J. L.; Kasen, D.; Holoien, T. W.-S.; Kollmeier, J. A.; Kelson, D. D.; Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Siebert, M. R.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.; Bañados, E.; Baughman, J.; Bernstein, R. A.; Bitsakis, T.; Boutsia, K.; Bravo, J. R.; Di Mille, F.; Higgs, C. R.; Ji, A. P.; Maravelias, G.; Marshall, J. L.; Placco, V. M.; Prieto, G.; Wan, Z.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source
NASA Astrophysics Data System (ADS)
Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Neutron production mechanism in a plasma focus.
NASA Technical Reports Server (NTRS)
Lee, J. H.; Shomo, L. P.; Williams, M. D.; Hermansdorfer, H.
1971-01-01
The neutrons emitted by a plasma focus were analyzed by using a time-of-flight method. Flight paths as large as 80 m were used to obtain better than 10% energy resolution. The energy spectrum of neutrons from d-d reactions in the plasma focus shows a sharp onset with average maximum energies of 2.8 and 3.2 MeV in the radial and the axial directions, respectively. The average half-width of the energy spectrum was 270 keV with a shot-to-shot variation between 150 and 400 keV. Simultaneous measurements in the axial and radial directions showed no appreciable difference in the half-widths and thus indicated randomly oriented ion velocities in the plasma. A converging ion model is described which is found to be in agreement with the measured quantities.
Effects of Nitrogen Inputs on Freshwater Wetland Ecosystem Services–A Bayesian Network Analysis
Wetlands can provide a balance between regulating water quality and one aspect of mitigating climate change, by reducing the quantity of reactive nitrogen (Nr) reaching downstream receiving water bodies, while emitting negligible amounts of nitrous oxide (N2O) during incomplete d...
An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet
NASA Astrophysics Data System (ADS)
Coello, Jonathan; Williams, Ian; Hudson, Dominic A.; Kemp, Simon
2015-08-01
The fishing industry is heavily reliant on the use of fossil fuel and emits large quantities of greenhouse gases and other atmospheric pollutants. Methods used to calculate fishing vessel emissions inventories have traditionally utilised estimates of fuel efficiency per unit of catch. These methods have weaknesses because they do not easily allow temporal and geographical allocation of emissions. A large proportion of fishing and other small commercial vessels are also omitted from global shipping emissions inventories such as the International Maritime Organisation's Greenhouse Gas Studies. This paper demonstrates an activity-based methodology for the production of temporally- and spatially-resolved emissions inventories using data produced by Automatic Identification Systems (AIS). The methodology addresses the issue of how to use AIS data for fleets where not all vessels use AIS technology and how to assign engine load when vessels are towing trawling or dredging gear. The results of this are compared to a fuel-based methodology using publicly available European Commission fisheries data on fuel efficiency and annual catch. The results show relatively good agreement between the two methodologies, with an estimate of 295.7 kilotons of fuel used and 914.4 kilotons of carbon dioxide emitted between May 2012 and May 2013 using the activity-based methodology. Different methods of calculating speed using AIS data are also compared. The results indicate that using the speed data contained directly in the AIS data is preferable to calculating speed from the distance and time interval between consecutive AIS data points.
A mechanism for the production of ultrafine particles from concrete fracture.
Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia
2017-03-01
While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA
Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...
Most global methane (CH4) budgets have failed to include emissions from a diverse group of minor anthropogenic sources. Individually, these minor sources emit small quantities of CH4, but collectively, their contributions to the budget may be significant. In this paper, CH4 emiss...
Wildland fire emits a substantial quantity of aerosol to the atmosphere. These aerosols typically comprise a complex mixture of organic matter and refractory elemental or black carbon with a relatively minor contribution of inorganic matter from soils and plant micronutrients. Id...
40 CFR 63.11444 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Examples of APCD currently used on glaze spray booths include, but are not limited to...? 63.11444 Section 63.11444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11444 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Examples of APCD currently used on glaze spray booths include, but are not limited to...? 63.11444 Section 63.11444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11444 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Examples of APCD currently used on glaze spray booths include, but are not limited to...? 63.11444 Section 63.11444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11444 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Examples of APCD currently used on glaze spray booths include, but are not limited to...? 63.11444 Section 63.11444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11444 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Examples of APCD currently used on glaze spray booths include, but are not limited to...? 63.11444 Section 63.11444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...
40 CFR 63.366 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of (initial) startup of the source. (8) The type and quantity of hazardous air pollutants emitted by.... New or reconstructed sources subject to these emissions standards with an initial startup date before... application shall be submitted as soon as practicable before the initial startup date but no later than 60...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... will be used for determining continuing compliance; (iv) The type and quantity of HAP emitted by your... this part, including a notification of performance tests; a performance test report; a startup... must also submit a startup, shutdown, and malfunction report. [64 FR 57579, Oct. 26, 1999, as amended...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... will be used for determining continuing compliance; (iv) The type and quantity of HAP emitted by your... this part, including a notification of performance tests; a performance test report; a startup... must also submit a startup, shutdown, and malfunction report. [64 FR 57579, Oct. 26, 1999, as amended...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...
40 CFR 63.366 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of (initial) startup of the source. (8) The type and quantity of hazardous air pollutants emitted by.... New or reconstructed sources subject to these emissions standards with an initial startup date before... application shall be submitted as soon as practicable before the initial startup date but no later than 60...
40 CFR 63.366 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of (initial) startup of the source. (8) The type and quantity of hazardous air pollutants emitted by.... New or reconstructed sources subject to these emissions standards with an initial startup date before... application shall be submitted as soon as practicable before the initial startup date but no later than 60...
40 CFR 63.1590 - What reports must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... will be used for determining continuing compliance; (iv) The type and quantity of HAP emitted by your... this part, including a notification of performance tests; a performance test report; a startup... must also submit a startup, shutdown, and malfunction report. [64 FR 57579, Oct. 26, 1999, as amended...
40 CFR 63.366 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of (initial) startup of the source. (8) The type and quantity of hazardous air pollutants emitted by.... New or reconstructed sources subject to these emissions standards with an initial startup date before... application shall be submitted as soon as practicable before the initial startup date but no later than 60...
NASA Technical Reports Server (NTRS)
Head, D. E.; Mitchell, K. L.
1967-01-01
Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.
Newly patented process enables low-cost solution for increasing white light spectrum of LEDs
NASA Astrophysics Data System (ADS)
Spanard, Jan-Marie
2017-10-01
A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.
HONO fluxes from soil surfaces: an overview
NASA Astrophysics Data System (ADS)
Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina
2016-04-01
Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Drout, M. R.; Piro, A. L.; Shappee, B. J.; Kilpatrick, C. D.; Simon, J. D.; Contreras, C.; Coulter, D. A.; Foley, R. J.; Siebert, M. R.; Morrell, N.; Boutsia, K.; Di Mille, F.; Holoien, T. W.-S.; Kasen, D.; Kollmeier, J. A.; Madore, B. F.; Monson, A. J.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.; Bañados, E.; Baughman, J.; Beers, T. C.; Bernstein, R. A.; Bitsakis, T.; Campillay, A.; Hansen, T. T.; Higgs, C. R.; Ji, A. P.; Maravelias, G.; Marshall, J. L.; Moni Bidin, C.; Prieto, J. L.; Rasmussen, K. C.; Rojas-Bravo, C.; Strom, A. L.; Ulloa, N.; Vargas-González, J.; Wan, Z.; Whitten, D. D.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Industrial concessions, fires and air pollution in Equatorial Asia
NASA Astrophysics Data System (ADS)
Spracklen, D. V.; Reddington, C. L.; Gaveau, D. L. A.
2015-09-01
Forest and peatland fires in Indonesia emit large quantities of smoke leading to poor air quality across Equatorial Asia. Marlier et al (2015 Environ. Res. Lett. 10 085005) explore the contribution of fires occurring on oil palm, timber (wood pulp and paper) and natural forest logging concessions to smoke emissions and exposure of human populations to the resulting air pollution. They find that one third of the population exposure to smoke across Equatorial Asia is caused by fires in oil palm and timber concessions in Sumatra and Kalimantan. Logging concessions have substantially lower fire emissions, and contribute less to air quality degradation. This represents a compelling justification to prevent reclassification of logging concessions into oil palm or timber concessions after logging. This can be achieved by including logged forests in the Indonesian moratorium on new plantations in forested areas.
VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shu; Jiang, B. W.; Li, Aigen, E-mail: shuwang@mail.bnu.edu.cn, E-mail: bjiang@bnu.edu.cn, E-mail: wanshu@missouri.edu, E-mail: lia@missouri.edu
The sizes of interstellar grains are widely distributed, ranging from a few angstroms to a few micrometers. The ultraviolet (UV) and optical extinction constrains the dust in the size range of a couple hundredths of micrometers to several submicrometers. The near and mid infrared (IR) emission constrains the nanometer-sized grains and angstrom-sized very large molecules. However, the quantity and size distribution of micrometer-sized grains remain unknown because they are gray in the UV/optical extinction and they are too cold and emit too little in the IR to be detected by IRAS, Spitzer, or Herschel. In this work, we employ themore » ∼3–8 μm mid-IR extinction, which is flat in both diffuse and dense regions to constrain the quantity, size, and composition of the μm-sized grain component. We find that, together with nano- and submicron-sized silicate and graphite (as well as polycyclic aromatic hydrocarbons), μm-sized graphite grains with C/H ≈ 137 ppm and a mean size of ∼1.2 μm closely fit the observed interstellar extinction of the Galactic diffuse interstellar medium from the far-UV to the mid-IR, as well as the near-IR to millimeter thermal emission obtained by COBE/DIRBE, COBE/FIRAS, and Planck up to λ ≲ 1000 μm. The μm-sized graphite component accounts for ∼14.6% of the total dust mass and ∼2.5% of the total IR emission.« less
USDA-ARS?s Scientific Manuscript database
Denitrification results in a significant loss of plant-available nitrogen from agricultural systems and contributes to climate change, due to the emissions of both the potent greenhouse gas nitrous oxide and environmentally benign dinitrogen. However total quantities of the gases emitted and the ra...
Code of Federal Regulations, 2011 CFR
2011-07-01
... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...
Carbon Footprint Calculations: An Application of Chemical Principles
ERIC Educational Resources Information Center
Treptow, Richard S.
2010-01-01
Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…
40 CFR 63.8665 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Bag leak...? 63.8665 Section 63.8665 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11459 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart are defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air...? 63.11459 Section 63.11459 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.8665 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Bag leak...? 63.8665 Section 63.8665 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11459 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart are defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air...? 63.11459 Section 63.11459 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11459 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart are defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air...? 63.11459 Section 63.11459 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.11459 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart are defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air...? 63.11459 Section 63.11459 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.8665 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Bag leak...? 63.8665 Section 63.8665 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.8665 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... defined in the Clean Air Act, in § 63.2, and in this section as follows: Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air. Bag leak...? 63.8665 Section 63.8665 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although...
Code of Federal Regulations, 2012 CFR
2012-07-01
... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...
Code of Federal Regulations, 2013 CFR
2013-07-01
... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...
Specification of High Activity Gamma-Ray Sources.
ERIC Educational Resources Information Center
International Commission on Radiation Units and Measurements, Washington, DC.
The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…
A Herschel and CARMA synergistic study of turbulent gas in Hickson Compact Groups
NASA Astrophysics Data System (ADS)
Appleton, Philip N.; Alatalo, Katherine A.; Lisenfeld, Ute; Bitsakis, Thodoris; Guillard, Pierre; Charmandaris, Vassilis; Cluver, Michelle; Dopita, Michael A.; Freeland, Emily; Hickson Compact Group Team
2015-01-01
We have performed deep PACS and SPIRE imaging, [CII] and [OI] spectroscopy and CARMA CO J= 1-0 imaging of a dozen Hickson Compact Groups (HCGs). The observations attempt to explore the physical conditions of the gas in a subset of galaxies containing large quantities of warm molecular hydrogen based on previous Spitzer IRS observations. The H2 is too powerful to be heated in PDR regions, and is most likely powered by turbulence and shocks. Such galaxies are found to fall in a region of the IR color-color space believed to show galaxies rapidly transitioning from the blue cloud to the red sequence, and so shocks may play a role in quenching star formation. We explore far-IR line luminosities and surface densities for extended diffuse [CII] emission and compare this to similar quanties in the CO emitting gas, and the far-IR continuum. Preliminary results suggest that high [CII]/FIR and [CII]/CO ratios are common in these systems, and in some cases correlate with peculiar velocities in the CO emitting gas. Star formation suppression may be seen in some of the systems with the highest warm H2/PAH ratios found by Spitzer, implying that turbulence may suppress star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CorAL is a software Library designed to aid in the analysis of femtoscipic data. Femtoscopic data are a class of measured quantities used in heavy-ion collisions to characterize particle emitting source sizes. The most common type of this data is two-particle correleations induced by the Hanbury-Brown/Twiss (HBT) Effect, but can also include correlations induced by final-state interactions between pairs of emitted particles in a heavy-ion collision. Because heavy-ion collisions are complex many particle systems, modeling hydrodynamical models or hybrid techniques. Using the CRAB module, CorAL can turn the output from these models into something that can be directley compared tomore » experimental data. CorAL can also take the raw experimentally measured correlation functions and image them by inverting the Koonin-Pratt equation to extract the space-time emission profile of the particle emitting source. This source function can be further analyzed or directly compared to theoretical calculations.« less
Acicular photomultiplier photocathode structure
Craig, Richard A.; Bliss, Mary
2003-09-30
A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.
Wood decomposition in Amazonian hydropower reservoirs: An additional source of greenhouse gases
NASA Astrophysics Data System (ADS)
Abril, Gwenaël; Parize, Marcelo; Pérez, Marcela A. P.; Filizola, Naziano
2013-07-01
Amazonian hydroelectric reservoirs produce abundant carbon dioxide and methane from large quantities of flooded biomass that decompose anaerobically underwater. Emissions are extreme the first years after impounding and progressively decrease with time. To date, only water-to-air fluxes have been considered in these estimates. Here, we investigate in two Amazonian reservoirs (Balbina and Petit Saut) the fate of above water standing dead trees, by combining a qualitative analysis of wood state and density through time and a quantitative analysis of the biomass initially flooded. Dead wood was much more decomposed in the Balbina reservoir 23 years after flooding than in the Petit Saut reservoir 10 years after flooding. Termites apparently played a major role in wood decomposition, occurring mainly above water, and resulting in a complete conversion of this carbon biomass into CO2 and CH4 at a timescale much shorter than reservoir operation. The analysis of pre-impounding wood biomass reveals that above-water decomposition in Amazonian reservoirs is a large, previously unrecognized source of carbon emissions to the atmosphere, representing 26-45% of the total reservoir flux integrated over 100 years. Accounting for both below- and above-water fluxes, we could estimate that each km2 of Amazonian forest converted to reservoir would emit over 140 Gg CO2-eq in 100 years. Hydropower plants in the Amazon should thus generate 0.25-0.4 MW h per km2 flooded area to produce lower greenhouse gas emissions than gas power plants. They also have the disadvantage to emit most of their greenhouse gases the earliest years of operation.
Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...
ERIC Educational Resources Information Center
Lopes, Fernando S.; Coelho, Lucia H. G.; Gutz, Ivano G. R.; Vitz, Ed
2010-01-01
Vast quantities, on the order of megatons, of pollutants are emitted monthly to the atmosphere both by natural and anthropogenic sources. The evaluation of rainwater composition has great importance in understanding the atmospheric chemical composition, as water drops scavenge particles and soluble atmospheric pollutants. Most students are aware…
Scaling beta-delayed neutron measurements to large detector areas
NASA Astrophysics Data System (ADS)
Sutanto, F.; Nattress, J.; Jovanovic, I.
2017-08-01
We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.
NASA Astrophysics Data System (ADS)
Toftum, J.; Freund, S.; Salthammer, T.; Weschler, C. J.
This study examined the formation and growth of secondary organic aerosols (SOA) generated when ozone was added to a 1 m 3 glass chamber that contained either pine shelving, oriented strand board (OSB), beech boards, or beach boards painted with an "eco" paint. The experiments were conducted at close to real-world conditions; the chamber was ventilated at ˜0.5 air changes/h; the loadings (exposed surface of building materials to chamber volume) were in the range of 1-2.5 m 2 m -3; and the initial O 3 concentrations were between 15 and 40 ppb. Throughout each experiment particles were measured with both a condensation nuclei counter and an optical counter, while terpenes were measured before and after the ozone exposure period using sorbent tubes. The pine boards emitted primarily α-pinene and 3-carene and lesser amounts of 5 other terpenes; when O 3 was introduced, the particle counts increased dramatically; the mass concentration reached ˜15 μg m -3 at ˜20 ppb O 3, and ˜95 μg m -3 at ˜40 ppb O 3. The OSB emitted primarily limonene and α-pinene. Although the particle counts increased when O 3 was introduced, the increase was not as large as anticipated based on the terpene concentrations. The beech boards emitted negligible quantities of terpenes, and the introduction of O 3 resulted in almost no increase in the particle concentration. Beech boards painted with an "eco" paint emitted large amounts of limonene and lesser amounts of carvone; upon introduction of O 3 the particle counts increased sharply with the mass concentration reaching ˜20 μg m -3 at ˜15 ppb O 3 and ˜160 μg m -3 at ˜35 ppb O 3. These experiments demonstrate that the emission of terpenes and potential generation of SOA varies greatly among different types of wood and pressed wood materials. In the case of the pine boards and painted beech boards, the SOA concentrations generated at modest O 3 concentrations approach or exceed current guideline levels for PM 2.5 established by the US EPA and the World Health Organization.
NASA Astrophysics Data System (ADS)
Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen
2018-06-01
With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Use of LEU in the aqueous homogeneous medical isotope production reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, R.M.
1997-08-01
The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its largemore » negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.« less
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Populations of trap-nesting wasps near a major source of fluoride emissions in western Tennessee
Beyer, W.N.; Miller, G.W.; Fleming, W.J.
1987-01-01
Trap-nesting wasps were collected from eight sites at distances of from 1.2-33.0 km from an aluminum reduction plant in western Tennessee. The sites had similar topographies, soils, and vegetation, but differed in their exposure to fluoride, which was emitted in large quantities from the plant. It was postulated that if fluoride emissions had greatly changed the insect community then relative densities of their predators would have varied accordingly. However, the degree of fluoride pollution was unrelated to the relative densities of the wasps and to the number of cells provisioned with prey. Monobia quadridens, Trypargilum clavatum, and T. lactitarse were found to have two complete generations in western Tennessee. Trypargilum collinum rubrocinctum has at least two generations, and Euodynerus megaera probably has three generations. Six other wasp species and a megachilid bee were also collected.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire Granier
2006-01-01
Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and temporal variations, as well as the magnitude of these biogenic isoprene emissions, are expected to change. This paper presents...
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
Code of Federal Regulations, 2014 CFR
2014-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
Code of Federal Regulations, 2013 CFR
2013-07-01
...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.
Chloride, Cl –, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl – is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.
Atmospheric emissions from the Windscale accident of October 1957
NASA Astrophysics Data System (ADS)
Garland, J. A.; Wakeford, R.
Although it occurred nearly 50 years ago, the nuclear reactor fire of October 1957 at Windscale Works, Sellafield, England, continues to attract interest. Several attempts have been made to quantify the releases of radionuclides and their radiological consequences, but additional information and a re-analysis of meteorological data encourage a further examination of emissions. The limited instrumentation of the reactor provided little relevant information and, as in previous estimates, the discharges are deduced from environmental evidence, but here the recent meteorological analysis is used. The interpretation of the meteorological and environmental evidence requires both timing and quantity of the emitted radionuclides to be considered together. Significant fission product emission continued from about 15:00 or 16:00 on 10 October 1957 until noon the following day. There were two main peaks in discharge rate, during the evening and early hours and from roughly 06:00 until 10:30, and the amounts emitted during each of these periods were probably comparable. Iodine-131 ( 131I), caesium-137 ( 137Cs) and polonium-210 ( 210Po) activities dominated the radioactive emissions and there is sufficient environmental evidence for releases of these radionuclides to be estimated within a factor of about two. (Some additional 131I may have escaped in a chemical form that was not included in the estimate, but it appears likely that the fraction was small.) There is evidence that the plume extended further east than accepted in previous assessments and the estimates of quantities emitted have been increased to allow for this. For other radionuclides the environmental measurements were fewer and the uncertainties are greater.
NASA Technical Reports Server (NTRS)
Roth, Timothy E.
1995-01-01
Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.
Rapid production of positron emitting labeled compounds for use in cardiology PET studies
NASA Astrophysics Data System (ADS)
Bolomey, Leonard
1985-05-01
Large scale clinical application of positron emission tomography requires a variety of short-lived positron emitting radionuclides to be produced in Curie quantities up to 20 times per day. Rapid routine production of these radiopharmaceuticals requires the collaboration of engineers and chemists to achieve production targetry compatible with high beam current (up to 100 μA) and radionuclide production in a chemical form compatible with the rapid radiochemical synthesis. Chemical processing is further complicated by the need to repeat the procedures several times per day and maintain sterility within the shielded area. At our cyclotron facility primary production targets for 11C, 13N, 15O, and 18F (half lives from 2 min to 2 h) are mounted on a vertical gantr that indexes to position the required target on the beam line. Target changes are handled under microprocessor control remotely from the control room such that all valves, cooling, evacuation of target manifold, and testing of interlocks are handled automatically. This system enables us to change targets, energy and particles in less than five minutes. Since the installation of the cyclotron up to fifteen batches of routine radiopharmaceuticals have been produced per day with very low radiation doses to all personnel involved. These radiopharmaceuticals will be used to measure perfusion, metabolism and other biochemical functions in man non invasively with PET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, D.D.; Pennypacker, S.P.
1978-08-01
There is an increasing trend to locate fossil-fuel electric generating stations in rural areas. These stations emit large quantities of air pollutants capable of causing serious alterations to the surrounding environment. The major phytotoxic air pollutant emitted is sulfur dioxide (SO/sub 2/). The best way to predict the potential impact of new or expanded sources in rural areas would be to develop a computer model to simulate and predict SO/sub 2/ injury to vegetation. The proposed simulator would provide valuable input information for tasks such as site selection and compilation of environmental impact statements. Such a model would also providemore » data to management operators for the regulation of emissions. The model would also aid in our basic understanding of the complex interactions which influence plant susceptibility to air pollution. Input to the model would consist of biological and physical data and the output would include the probability of SO/sub 2/ injuring vegetation near existing or proposed sites. The model would be validated using a field situation. This report presents the results obtained during the first year of the project (August 1, 1977 to July 31, 1978).« less
Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E; Stephens, Brent
2016-02-02
Previous research has shown that desktop 3D printers can emit large numbers of ultrafine particles (UFPs, particles less than 100 nm) and some hazardous volatile organic compounds (VOCs) during printing, although very few filament and 3D printer combinations have been tested to date. Here we quantify emissions of UFPs and speciated VOCs from five commercially available filament extrusion desktop 3D printers utilizing up to nine different filaments by controlled experiments in a test chamber. Median estimates of time-varying UFP emission rates ranged from ∼10(8) to ∼10(11) min(-1) across all tested combinations, varying primarily by filament material and, to a lesser extent, bed temperature. The individual VOCs emitted in the largest quantities included caprolactam from nylon-based and imitation wood and brick filaments (ranging from ∼2 to ∼180 μg/min), styrene from acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (HIPS) filaments (ranging from ∼10 to ∼110 μg/min), and lactide from polylactic acid (PLA) filaments (ranging from ∼4 to ∼5 μg/min). Results from a screening analysis of potential exposure to these products in a typical small office environment suggest caution should be used when operating many of the printer and filament combinations in poorly ventilated spaces or without the aid of combined gas and particle filtration systems.
New localized/delocalized emitting state of Eu 2+ in orange-emitting hexagonal EuAl 2O 4
Liu, Feng; Meltzer, Richard S.; Li, Xufan; ...
2014-11-18
Eu 2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu 2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu 2+ ions in a new hexagonal EuAl 2O 4 phosphor whose Eu 2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emissionmore » exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f 65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu 2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less
NASA Technical Reports Server (NTRS)
1981-01-01
Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.
Emissions of volatile organic compounds during the decomposition of plant litter
NASA Astrophysics Data System (ADS)
Gray, Christopher M.; Monson, Russell K.; Fierer, Noah
2010-09-01
Volatile organic compounds (VOCs) are emitted during plant litter decomposition, and such VOCs can have wide-ranging impacts on atmospheric chemistry, terrestrial biogeochemistry, and soil ecology. However, we currently have a limited understanding of the relative importance of biotic versus abiotic sources of these VOCs and whether distinct types of litter emit different types and quantities of VOCs during decomposition. We analyzed VOCs emitted by microbes or by abiotic mechanisms during the decomposition of litter from 12 plant species in a laboratory experiment using proton transfer reaction mass spectrometry (PTR-MS). Net emissions from litter with active microbial populations (non-sterile litters) were between 0 and 11 times higher than emissions from sterile controls over a 20-d incubation period, suggesting that abiotic sources of VOCs are generally less important than biotic sources. In all cases, the sterile and non-sterile litter treatments emitted different types of VOCs, with methanol being the dominant VOC emitted from litters during microbial decomposition, accounting for 78 to 99% of the net emissions. We also found that the types of VOCs released during biotic decomposition differed in a predictable manner among litter types with VOC profiles also changing as decomposition progressed over time. These results show the importance of incorporating both the biotic decomposition of litter and the species-dependent differences in terrestrial vegetation into global VOC emission models.
The effects of the cathode array on emitted hard x-ray from a small plasma focus device
NASA Astrophysics Data System (ADS)
Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.
2017-08-01
In this study, the effects of the cathode array variations on emitted hard x-rays from a small Mather type plasma focus device (450 J) were investigated. The gradual elimination of the cathode rods inside the cathode array of the device lowered the quality and quantity of the emitted hard x-rays at different pressure values of argon gas. We theorized that the variations of the cathode array were able to change some discharge parameters that could vary the number of the energetic runaway electrons generated during the pinch phase which were responsible for the created features of the emitted hard x-rays. On the other hand, we hypothesized that the removal of the cathode rods could influence the current sheath dynamics during all the phases of a shot including its average axial velocity which was demonstrated by using two axial magnetic probes. We also theorized that cathode rod omission from the cathode array could also increase the initial inductance and the impedance of the system, and the impurities inside the plasma during the pinch phase which could lead to the growth of the instabilities. Moreover, by using the wavelet technique and studying the Mirnov signals, it was shown that the decrease of the cathode rod number increased the plasma magnetic field fluctuations or instabilities (MHD activities) that adversely affected the pinch quality, and reduced the emitted hard x-rays.
2016-01-04
Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon Article in Scientific Reports · January 2016 DOI : 10.1038/srep18860 CITATIONS 5 READS...1Scientific RepoRts | 6:18860 | DOI : 10.1038/srep18860 www.nature.com/scientificreports Printed Large-Area Single-Mode Photonic Crystal Bandedge...bandgap group III-V materials on Si1,4–11 through wafer bonding, printing, and direct-growth. Most lasers demonstrated so far are edge-emitting
The Event Horizon Telescope: Future Polarimetric Capabilities
NASA Astrophysics Data System (ADS)
Fish, Vincent L.; Doeleman, S. S.; EHT Collaboration
2010-01-01
The Event Horizon Telescope (EHT) is a (sub)mm wavelength VLBI network that will achieve angular resolutions sufficient to resolve and image the Event Horizons of the nearest supermassive black holes. Recent millimeter observations with the initial three stations of the EHT (located in Hawaii, Arizona, and California) have constrained the size of the emitting region of Sgr A*, the Galactic Center radio/infrared/X-ray source associated with a supermassive black hole, to be no more than a few Schwarzschild radii. While EHT observations have heretofore focused on detecting Sgr A* in total intensity, theoretical models predict large polarization signatures well in excess of the few percent linear polarization detected by low resolution arrays (e.g., SMA). Here, we generalize our previous total intensity simulations of future EHT observations to include full polarimetric quantities. Ratios of polarimetric visibilities provide baseline-based observables that are robust against most calibration errors. We find that the shortest VLBI baselines track the integrated polarization fraction and position angle, as presently observed by connected-element arrays, while longer VLBI baselines are sensitive to highly-polarized substructures that are beam-diluted at lower angular resolution. Ratios of polarized visibilities may be even more sensitive to detecting periodic structural changes, as might be expected from a hot spot near the innermost stable circular orbit of the black hole, than closure quantities obtained from total intensity quantities. These results suggest that high priority should be given to upgrading telescopes in the EHT collaboration in order to allow full polarimetric observations of Sgr A* and other supermassive black hole sources. This research is made possible thanks to funding provided by the National Science Foundation.
[Emission and control of gases and odorous substances from animal housing and manure depots].
Hartung, J
1992-02-01
Agricultural animal production in increasingly regarded as a source of gases which are both aggravating and ecologically harmful. An overview of the origin, number and quantity of trace gases emitted from animal housing and from manure stores is presented and possible means of preventing or reducing them are discussed. Of the 136 trace gases in the air of animal houses, odorous substances, ammonia and methane are most relevant to the environment. The role played by the remaining gases is largely unknown. Quantitative information is available for 23 gases. The gases are emitted principally from freshly deposited and stored faeces, from animal feed and from the animals themselves. Future work should determine sources and quantities of the gases emitted from animal housing more precisely and should aim to investigate the potential of these gases to cause damage in man, animals and environment. Odorous substances have an effect on the area immediately surrounding the animal housing. They can lead to considerable aggravation in humans. For years, VDI1 guidelines (3471/72), which prescribe distances between residential buildings and animal housing, have been valuable in preventing odour problems of this kind. Coverings are suitable for outside stores. The intensity of the odour from animal housing waste air increases from cattle through to hens and pigs; it is also further affected by the type of housing, the age of the animals and the purpose for which they are being kept. Methods of cleaning waste air (scrubbers/biofilters) are available for problematic cases. The need for guidelines to limit emissions from individual outside manure stores (lagoons) is recognised. Total ammonia emissions from animal production in the Federal Republic of Germany (up to 1989) are estimated at approximately 300,000 to 600,000 t/year. There is a shortage of satisfactory and precise research on the extent of emissions, in particular on those from naturally ventilated housing. It is calculated that between 12 and 21 kg/ha of nitrogen a year enter the soil via the air, the average of which is higher than the average "critical loads" for most natural habitats. Ammonia has a direct effect on the trees in the area surrounding animal housing and is transported long distances through the air causing eutrophication and acidification of water and vegetation. This frequently results in changes in plant sociology. Reduction measures must begin with the housing and manure removal systems and with feeding and management.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.
2013-01-01
The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.
NASA Astrophysics Data System (ADS)
Lowry, David; Fisher, Rebecca; Zazzeri, Giulia; al-Shalaan, Aalia; France, James; Lanoisellé, Mathias; Nisbet, Euan
2017-04-01
Large landfill sites remain a significant source of methane emissions in developed and developing countries, with a global estimated flux of 29 Tg / yr in the EDGAR 2008 database. This is significantly lower than 20 years ago due to the introduction of gas extraction systems, but active cells still emit significant amounts of methane before the gas is ready for extraction. Historically the methane was either passively oxidized through topsoil layers or flared. Oxidation is still the primary method of methane removal in many countries, and covered, remediated cells across the world continue to emit small quantities of methane. The isotopic signatures of methane from landfill gas wells, and that emitted from active and closed cells have been characterized for more than 20 UK landfills since 2011, with more recent work in Kuwait and Hong Kong. Since 2013 the emission plumes have been identified by a mobile measurement system (Zazzeri et al., 2015). Emissions in all 3 countries have a characteristic δ13C signature of -58 ± 3 ‰ dominated by emissions from the active cells, despite the hot, dry conditions of Kuwait and the hot, humid conditions of Hong Kong. Gas well samples define a similar range. Surface emissions from closed cells and closed landfills are mostly in the range -56 to -52 ‰Ṫhese are much more depleted values than those observed in the 1990s (up to -35 ) when soil oxidation was the dominant mechanism of methane removal. Calculations using isotopic signatures of the amount of methane oxidised in these closed areas before emission to atmosphere range from 5 to 15%, but average less than 10%, and are too small to calculate from the high-emitting active cells. Compared to other major methane sources, landfills have the most consistent isotopic signature globally, and are distinct from the more 13C-enriched natural gas, combustion and biomass burning sources. Zazzeri, G. et al. (2015) Plume mapping and isotopic characterization of anthropogenic methane sources, Atmospheric Environment, 110, 151-162, doi.org/10.1016/j.atmosenv.2015.03.029.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.
2013-01-01
The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less
Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Yamashiki, Y; Scott, T B
2016-01-01
On the 12th of March 2011, The Great Tōhoku Earthquake occurred 70 km off the eastern coast of Japan, generating a large 14 m high tsunami. The ensuing catalogue of events over the succeeding 12 d resulted in the release of considerable quantities of radioactive material into the environment. Important to the large-scale remediation of the affected areas is the accurate and high spatial resolution characterisation of contamination, including the verification of decontaminated areas. To enable this, a low altitude unmanned aerial vehicle equipped with a lightweight gamma-spectrometer and height normalisation system was used to produce sub-meter resolution maps of contamination. This system provided a valuable method to examine both contaminated and remediated areas rapidly, whilst greatly reducing the dose received by the operator, typically in localities formerly inaccessible to ground-based survey methods. The characterisation of three sites within Fukushima Prefecture is presented; one remediated (and a site of much previous attention), one un-remediated and a third having been subjected to an alternative method to reduce emitted radiation dose. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mercury emissions from biomass burning in China.
Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei
2011-11-01
Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.
High-pressure swing system for measurements of radioactive fission gases in air samples
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.
1999-01-01
Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.
Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power
NASA Astrophysics Data System (ADS)
Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua
2012-03-01
The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.
Zhang, Zhikun; Du, Jinhong; Zhang, Dingdong; Sun, Hengda; Yin, Lichang; Ma, Laipeng; Chen, Jiangshan; Ma, Dongge; Cheng, Hui-Ming; Ren, Wencai
2017-01-01
The large polymer particle residue generated during the transfer process of graphene grown by chemical vapour deposition is a critical issue that limits its use in large-area thin-film devices such as organic light-emitting diodes. The available lighting areas of the graphene-based organic light-emitting diodes reported so far are usually <1 cm2. Here we report a transfer method using rosin as a support layer, whose weak interaction with graphene, good solubility and sufficient strength enable ultraclean and damage-free transfer. The transferred graphene has a low surface roughness with an occasional maximum residue height of about 15 nm and a uniform sheet resistance of 560 Ω per square with about 1% deviation over a large area. Such clean, damage-free graphene has produced the four-inch monolithic flexible graphene-based organic light-emitting diode with a high brightness of about 10,000 cd m−2 that can already satisfy the requirements for lighting sources and displays. PMID:28233778
Aspermy, Sperm Quality and Radiation in Chernobyl Birds
Møller, Anders Pape; Bonisoli-Alquati, Andrea; Mousseau, Timothy A.; Rudolfsen, Geir
2014-01-01
Background Following the Chernobyl nuclear power plant accident, large amounts of radionuclides were emitted and spread in the environment. Animals living in such contaminated areas are predicted to suffer fitness costs including reductions in the quality and quantity of gametes. Methodology/Principal Findings We studied whether aspermy and sperm quality were affected by radioactive contamination by examining ejaculates from wild caught birds breeding in areas varying in background radiation level by more than three orders of magnitude around Chernobyl, Ukraine. The frequency of males with aspermy increased logarithmically with radiation level. While 18.4% of males from contaminated areas had no sperm that was only the case for 3.0% of males from uncontaminated control areas. Furthermore, there were negative relationships between sperm quality as reflected by reduced sperm velocity and motility, respectively, and radiation. Conclusions/Significance Our results suggest that radioactive contamination around Chernobyl affects sperm production and quality. We are the first to report an interspecific difference in sperm quality in relation to radioactive contamination. PMID:24963711
NASA Technical Reports Server (NTRS)
Sigurdsson, Haraldur; Laj, Paolo
1990-01-01
Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.
Light absorption of organic aerosol from pyrolysis of corn stalk
NASA Astrophysics Data System (ADS)
Li, Xinghua; Chen, Yanju; Bond, Tami C.
2016-11-01
Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.
Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere.
Berndt, Torsten; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Herrmann, Hartmut; Kulmala, Markku; Hansel, Armin
2018-03-26
Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO 2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas-phase reactions of two RO 2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO 2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO 2 . This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO 2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interplay of Zero-Field Splitting and Excited State Geometry Relaxation in fac-Ir(ppy)3.
Gonzalez-Vazquez, José P; Burn, Paul L; Powell, Benjamin J
2015-11-02
The lowest energy triplet state, T1, of organometallic complexes based on iridium(III) is of fundamental interest, as the behavior of molecules in this state determines the suitability of the complex for use in many applications, e.g., organic light-emitting diodes. Previous characterization of T1 in fac-Ir(ppy)3 suggests that the trigonal symmetry of the complex is weakly broken in the excited state. Here we report relativistic time dependent density functional calculations of the zero-field splitting (ZFS) of fac-Ir(ppy)3 in the ground state (S0) and lowest energy triplet (T1) geometries and at intermediate geometries. We show that the energy scale of the geometry relaxation in the T1 state is large compared to the ZFS. Thus, the natural analysis of the ZFS and the radiative decay rates, based on the assumption that the structural distortion is a small perturbation, fails dramatically. In contrast, our calculations of these quantities are in good agreement with experiment.
Explosion Hazards Associated with Spills of Large Quantities of Hazardous Materials. Phase I
1974-10-01
quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gils (LPG), or ethylene. The principal results are (1) a...associated with spills of large quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gas (LPG), or ethylene. The...liquified natural gas ( LNG ). Unfortunately, as the quantity of material shipped at one time increases, so does the potential hazard associated with
Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar
2014-07-01
Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.
Greenhouse gas emissions from vegetation fires in Southern Africa.
Scholes, R J
1995-01-01
Methane (CH4), carbon monoxide (CO), nitrogen oxides (NOx), volatile organic carbon, and aerosols emitted as a result of the deliberate or accidental burning of natural vegetation constitute a large component of the greenhouse gas emissions of many African countries, but the data needed for calculating these emissions by the IPCC methodology is sparse and subject to estimation errors. An improved procedure for estimating emissions from fires in southern Africa has been developed. The proposed procedure involves reclassifying existing vegetation maps into one of eleven broad, functional vegetation classes. Fuel loads are calculated within each 0.5 × 0.5° cell based on empirical relationships to climate data for each class. The fractional area of each class that burns is estimated by using daily low-resolution satellite fire detection, which is calibrated against a subsample of pre- and post-fire high-resolution satellite images. The emission factors that relate the quantity of gas released to the mass of fuel burned are based on recent field campaigns in Africa and are related to combustion efficiency, which is in turn related to the fuel mix. The emissions are summed over the 1989 fire season for Africa south of the equator. The estimated emissions from vegetation burning in the subcontinent are 0.5 Tg CH4, 14.9 Tg CO, 1.05 Tg NOx, and 1.08 Tg of particles smaller than 2.5µm. The 324 Tg CO2 emitted is expected to be reabsorbed in subsequent years. These estimates are smaller than previous estimates.
Control of gas contaminants in air streams through biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, T.; Lackey, L.
1996-11-01
According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. Themore » concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.« less
1994-03-01
Epitaxial structure of vertical cavity surface - emitting laser ( VCSEL ...diameter (75 tum < d< 150 prm) vertical - cavity surface - emitting lasers fabricated from an epitaxial structure containing a single In0 .2Ga 8.,As quantum...development of vertical - cavity surface - emitting lasers ( VCSELs ) [1] has enabled III-V semiconductor technology to be applied to cer- tain optical
Relative risk analysis of the use of radiation-emitting medical devices: A preliminary application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E.D.
This report describes the development of a risk analysis approach for evaluating the use of radiation-emitting medial devices. This effort was performed by Lawrence Livermore National Laboratory for the US Nuclear Regulatory Commission (NRC). The assessment approach has bee applied to understand the risks in using the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step to evaluate the potential role of risk analysis for developing regulations and quality assurance requirements in the use of nuclear medical devices. The risk approach identifies and assesses the most likely risk contributors and their relative importance for the medicalmore » system. The approach uses expert screening techniques and relative risk profiling to incorporate the type, quality, and quantity of data available and to present results in an easily understood form.« less
Bower, Kenneth E.; Weeks, Donald R.
1997-01-01
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.
Bower, K.E.; Weeks, D.R.
1997-08-12
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.
A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter
Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; ...
2015-07-06
Chloride, Cl –, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl – is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.
FABRICATION OF NEUTRON SOURCES
Birden, J.H.
1959-01-20
A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.
NASA Astrophysics Data System (ADS)
West, Raymond E.; Findsen, Eric W.; Isailovic, Dragan
2013-10-01
We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system ( Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.
Cole-Dai, Jihong; Peterson, Kari Marie; Kennedy, Joshua Andrew; Cox, Thomas S; Ferris, David G
2018-06-26
A 300-year (1700-2007) chronological record of environmental perchlorate, reconstructed from high-resolution analysis of a central Greenland ice core, shows that perchlorate levels in the post-1980 atmosphere were two-to-three times those of the pre-1980 environment. While this confirms recent reports of increased perchlorate in Arctic snow since 1980 compared with the levels for the prior decades (1930-1980), the longer Greenland record demonstrates that the Industrial Revolution and other human activities, which emitted large quantities of pollutants and contaminants, did not significantly impact environmental perchlorate, as perchlorate levels remained stable throughout the eighteenth, nineteenth, and much of the twentieth centuries. The increased levels since 1980 likely result from enhanced atmospheric perchlorate production, rather than from direct release from perchlorate manufacturing and applications. The enhancement is probably influenced by the emission of organic chlorine compounds in the last several decades. Prior to 1980, no significant long-term temporal trends in perchlorate concentration are observed. Brief (a few years) high concentration episodes appear frequently over an apparently stable and low background (~1 ng kg‒1). Several such episodes coincide in time with large explosive volcanic eruptions including the 1912 Novarupta/Katmai eruption in Alaska. It appears that atmospheric perchlorate production is impacted by large eruptions in both high and low latitudes, but not by small eruptions and non-explosive degassing.
NASA Technical Reports Server (NTRS)
Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.
2004-01-01
Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).
Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei
2017-11-22
Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.
Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts
Harrah, Larry A.; Renschler, Clifford L.
1986-01-01
In a radiation or high energy particle responsive system useful as a scintillator, and comprising, a first component which interacts with said radiation or high energy particle to emit photons in a certain first wavelength range; and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range; an improvement is provided wherein at least one of said components absorbs substantially no photons in said wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.
Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts
Harrah, L.A.; Renschler, C.L.
1984-08-01
A radiation or high energy particle responsive system useful as a scintillator comprises, a first component which interacts with radiation or high energy particles to emit photons in a certain first wavelength range, and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range. An improvement is provided wherein at least one of said components absorbs substantially no photons in the wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.
A small quantity of sodium arsenite will kill large cull hardwoods
Francis M. Rushmore
1956-01-01
Although it is well known that sodium arsenite is an effective silvicide, forestry literature contains little information about the minimum quantities of this chemical that are required to kill large cull trees. Such information would be of value because if small quantities of a chemical will produce satisfactory results, small holes or frills in the tree will hold it...
Groundwater drainage from fissures as a source for lahars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.
One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have beenmore » heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. In this paper, we consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 10 3 m 3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. Finally, this simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.« less
Groundwater drainage from fissures as a source for lahars
NASA Astrophysics Data System (ADS)
Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.; Lowry, C. S.; Sonder, I.; Pulgarín, B. A.; Santacoloma, C. C.; Agudelo, A.
2018-04-01
One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have been heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. We consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 103 m3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. This simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.
Groundwater drainage from fissures as a source for lahars
Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.; ...
2018-03-22
One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have beenmore » heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. In this paper, we consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 10 3 m 3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. Finally, this simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.« less
Amazon River carbon dioxide outgassing fuelled by wetlands.
Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio
2014-01-16
River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.
Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai
2012-05-01
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.
NASA Astrophysics Data System (ADS)
Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro
2017-12-01
The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.
Development of a Charged-Particle Accumulator Using an RF Confinement Method
2007-03-12
antiparticles (antiprotons and positrons), and to produce a large quantity of antimatter . Antihydrogen atoms have recently been produced using Penning...ultimate goal is to trap a large number of antiparticles and to produce a large quantity of antimatter . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, D.; Gurney, Kevin R.; Geethakumar, Sarath
2013-04-01
In this study we present onroad fossil fuel CO2 emissions estimated by the Vulcan Project, an effort quantifying fossil fuel CO2 emissions for the U.S. in high spatial and temporal resolution. This high-resolution data, aggregated at the state-level and classified in broad road and vehicle type categories, is compared to a commonly used national-average approach. We find that the use of national averages incurs state-level biases for road groupings that are almost twice as large as for vehicle groupings. The uncertainty for all groups exceeds the bias, and both quantities are positively correlated with total state emissions. States with themore » largest emissions totals are typically similar to one another in terms of emissions fraction distribution across road and vehicle groups, while smaller-emitting states have a wider range of variation in all groups. Errors in reduction estimates as large as ±60% corresponding to ±0.2 MtC are found for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class, such as passenger gas vehicles or heavy diesel trucks. Recommendations are made for reducing CO2 emissions uncertainty by addressing its main drivers: VMT and fuel efficiency uncertainty.« less
Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland
NASA Astrophysics Data System (ADS)
Bouwman, A. F.; Beusen, A. H. W.; Lassaletta, L.; van Apeldoorn, D. F.; van Grinsven, H. J. M.; Zhang, J.; Ittersum van, M. K.
2017-01-01
In recent decades farmers in high-income countries and China and India have built up a large reserve of residual soil P in cropland. This reserve can now be used by crops, and in high-income countries the use of mineral P fertilizer has recently been decreasing with even negative soil P budgets in Europe. In contrast to P, much of N surpluses are emitted to the environment via air and water and large quantities of N are transported in aquifers with long travel times (decades and longer). N fertilizer use in high-income countries has not been decreasing in recent years; increasing N use efficiency and utilization of accumulated residual soil P allowed continued increases in crop yields. However, there are ecological risks associated with the legacy of excessive nutrient mobilization in the 1970s and 1980s. Landscapes have a memory for N and P; N concentrations in many rivers do not respond to increased agricultural N use efficiency, and European water quality is threatened by rapidly increasing N:P ratios. Developing countries can avoid such problems by integrated management of N, P and other nutrients accounting for residual soil P, while avoiding legacies associated with the type of past or continuing mismanagement of high-income countries, China and India.
NASA Astrophysics Data System (ADS)
Czerny, J.; Ramos, J. Barcelos E.; Riebesell, U.
2009-09-01
The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing) in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium) and heterocystous (Nodularia) cyanobacteria.
Chatrchyan, Serguei
2014-07-23
Dijet production has been measured in pPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. A data sample corresponding to an integrated luminosity of 35 inverse-nanobarns was collected using the Compact Muon Solenoid detector at the Large Hadron Collider. The dijet transverse momentum balance, azimuthal angle correlations, and pseudorapidity distributions are studied as a function of the transverse energy in the forward calorimeters (more » $$E_T^{4\\lt |\\eta| \\lt 5.2}$$). For pPb collisions, the dijet transverse momentum ratio and the width of the distribution of dijet azimuthal angle difference are comparable to the same quantities obtained from a simulated pp reference and insensitive to $$E_T^{4\\lt |\\eta| \\lt 5.2}$$. In contrast, the mean value of the dijet pseudorapidity is found to change monotonically with increasing $$E_T^{4\\lt |\\eta| \\lt 5.2}$$, indicating a correlation between the energy emitted at large pseudorapidity and the longitudinal motion of the dijet frame. As a result, the pseudorapidity distribution of the dijet system is compared with next-to-leading-order perturbative QCD predictions obtained from both nucleon and nuclear parton distribution functions, and the data more closely match the latter.« less
Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland
Bouwman, A. F.; Beusen, A. H. W.; Lassaletta, L.; van Apeldoorn, D. F.; van Grinsven, H. J. M.; Zhang, J.; Ittersum van, M. K.
2017-01-01
In recent decades farmers in high-income countries and China and India have built up a large reserve of residual soil P in cropland. This reserve can now be used by crops, and in high-income countries the use of mineral P fertilizer has recently been decreasing with even negative soil P budgets in Europe. In contrast to P, much of N surpluses are emitted to the environment via air and water and large quantities of N are transported in aquifers with long travel times (decades and longer). N fertilizer use in high-income countries has not been decreasing in recent years; increasing N use efficiency and utilization of accumulated residual soil P allowed continued increases in crop yields. However, there are ecological risks associated with the legacy of excessive nutrient mobilization in the 1970s and 1980s. Landscapes have a memory for N and P; N concentrations in many rivers do not respond to increased agricultural N use efficiency, and European water quality is threatened by rapidly increasing N:P ratios. Developing countries can avoid such problems by integrated management of N, P and other nutrients accounting for residual soil P, while avoiding legacies associated with the type of past or continuing mismanagement of high-income countries, China and India. PMID:28084415
Kinetic description of finite-wall catalysis for monatomic molecular recombination
NASA Astrophysics Data System (ADS)
Yano, Ryosuke; Suzuki, Kojiro
2011-11-01
In our previous study on hypothetical diatomic molecular dissociation and monatomic molecular recombination, A2 + M ↔ A + A + M [Yano et al., Phys. Fluids 21, 127101 (2009)], the interaction between the wall and A2* intermediates was not formulated. In this paper, we consider the effect of finite-wall catalysis on recombination of a monatomic molecule A via the interaction between the wall and A2*. According to the proposed Boltzmann model equation, the catalytic recombination rate depends on two quantities; the vibrational temperature and the translational temperature of A2* intermediates that are emitted from the wall. In particular, the translational temperature of A2* is related to its lifetime. In this paper, we investigate the change in the catalytic recombination rate of A upon changing the vibrational temperature of A2* intermediates that are emitted from the wall. As an object of analysis, the rarefied hypersonic flow around a cylinder with a finite wall-catalysis is considered using the proposed Boltzmann model equation. Numerical results confirm that a decrease in the vibrational temperature of A2* intermediates that are emitted from the wall results in an increase in recombination of A near the wall.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; House, F. B.
1979-01-01
Six months of data from the wide-field-of-view low resolution infrared radiometers on the Environmental Science Services Administration (ESSA) 7 satellite were analyzed. Earth emitted and earth reflected irradiances were computed at satellite altitude using data from a new in-flight calibration technique. Flux densitites and albedos were computed for the top of the earth's atmosphere. Monthly averages of these quantities over 100 latitude zones, each hemisphere, and the globe are presented for each month analyzed, and global distributions are presented for typical months. Emitted flux densities are generally lower and albedos higher than those of previous studies. This may be due, in part, to the fact that the ESSA 7 satellite was in a 3 p.m. Sun-synchronous orbit and some of the comparison data were obtained from satellites in 12 noon sun-synchronous orbits. The ESSA 7 detectors seem to smooth out spatial flux density variations more than scanning radiometers or wide-field-of-view fixed-plate detectors. Significant longitudinal and latitudinal variations of emitted flux density and albedo were identified in the tropics in a zone extending about + or - 25 deg in latitude.
Wang, Bin; Shuman, Jacquelyn; Shugart, Herman H; Lerdau, Manuel T
2018-03-30
Air quality is closely associated with climate change via the biosphere because plants release large quantities of volatile organic compounds (VOC) that mediate both gaseous pollutants and aerosol dynamics. Earlier studies, which considered only leaf physiology and simply scale up from leaf-level enhancements of emissions, suggest that climate warming enhances whole forest VOC emissions, and these increased VOC emissions aggravate ozone pollution and secondary organic aerosol formation. Using an individual-based forest VOC emissions model, UVAFME-VOC, that simulates system-level emissions by explicitly simulating forest community dynamics to the individual tree level, ecological competition among the individuals of differing size and age, and radiative transfer and leaf function through the canopy, we find that climate warming only sometimes stimulates isoprene emissions (the single largest source of non-methane hydrocarbon) in a southeastern U.S. forest. These complex patterns result from the combination of higher temperatures' stimulating emissions at the leaf level but decreasing the abundance of isoprene-emitting taxa at the community level by causing a decline in the abundance of isoprene-emitting species (Quercus spp.). This ecological effect eventually outweighs the physiological one, thus reducing overall emissions. Such reduced emissions have far-reaching implications for the climate-air-quality relationships that have been established on the paradigm of warming-enhancement VOC emissions from vegetation. This local scale modeling study suggests that community ecology rather than only individual physiology should be integrated into future studies of biosphere-climate-chemistry interactions. © 2018 by the Ecological Society of America.
Towards fully spray coated organic light emitting devices
NASA Astrophysics Data System (ADS)
Gilissen, Koen; Stryckers, Jeroen; Manca, Jean; Deferme, Wim
2014-10-01
Pi-conjugated polymer light emitting devices have the potential to be the next generation of solid state lighting. In order to achieve this goal, a low cost, efficient and large area production process is essential. Polymer based light emitting devices are generally deposited using techniques based on solution processing e.g.: spin coating, ink jet printing. These techniques are not well suited for cost-effective, high throughput, large area mass production of these organic devices. Ultrasonic spray deposition however, is a deposition technique that is fast, efficient and roll to roll compatible which can be easily scaled up for the production of large area polymer light emitting devices (PLEDs). This deposition technique has already successfully been employed to produce organic photovoltaic devices (OPV)1. Recently the electron blocking layer PEDOT:PSS2 and metal top contact3 have been successfully spray coated as part of the organic photovoltaic device stack. In this study, the effects of ultrasonic spray deposition of polymer light emitting devices are investigated. For the first time - to our knowledge -, spray coating of the active layer in PLED is demonstrated. Different solvents are tested to achieve the best possible spray-able dispersion. The active layer morphology is characterized and optimized to produce uniform films with optimal thickness. Furthermore these ultrasonic spray coated films are incorporated in the polymer light emitting device stack to investigate the device characteristics and efficiency. Our results show that after careful optimization of the active layer, ultrasonic spray coating is prime candidate as deposition technique for mass production of PLEDs.
NASA Astrophysics Data System (ADS)
Rini, E. F.; Putri, R. A.; Mulyanto; Handayani, N.
2018-03-01
A city should accommodate the citizen needs, especially for children. The absence of elementary school in a neighborhood unit (NU) will increase the use of transportation by children in the NU, every day at the same time. This activity will produce large quantities of - carbon dioxide (CO2) that can trigger climate change. This article aims at discovering the ecological impacts of CO2 emitted from the transportation used by children when commuting to their school, based on the conformity of each NU to the criteria of the a child-friendly city. Quantitative and spatial analysis techniques were employed in these four stages: (1) dividing the NU; (2) constructing the NU’s typology based on a child-friendly criteria; (3) identifying the characteristic of children movements in each NU when accessing their elementary school; and (4) analyzing the ecological impacts (in CO2 form). The result shows that 88.14% of CO2 emissions in Surakarta can be reduced by interventions through the fulfillment of all NU’s child-friendly criterias.
Sources of Radioactive Isotopes for Dirty Bombs
NASA Astrophysics Data System (ADS)
Lubenau, Joel
2004-05-01
From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.
Different Technical Applications of Carbon Nanotubes.
Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A
2015-12-01
Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.
XRF-analysis of fine and ultrafine particles emitted from laser printing devices.
Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan
2011-09-15
In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Wang, Qi; Ren, Jie; Peng, Xue-Feng; Ji, Xia-Xia; Yang, Xiao-Hui
2017-09-06
Low-dimensional organometallic halide perovskites are actively studied for the light-emitting applications due to their properties such as solution processability, high luminescence quantum yield, large exciton binding energy, and tunable band gap. Introduction of large-group ammonium halides not only serves as a convenient and versatile method to obtain layered perovskites but also allows the exploitation of the energy-funneling process to achieve a high-efficiency light emission. Herein, we investigate the influence of the addition of ethylammonium bromide on the morphology, crystallite structure, and optical properties of the resultant perovskite materials and report that the phase transition from bulk to layered perovskite occurs in the presence of excess ethylammonium bromide. On the basis of this strategy, we report green perovskite light-emitting devices with the maximum external quantum efficiency of ca. 3% and power efficiency of 9.3 lm/W. Notably, blue layered perovskite light-emitting devices with the Commission Internationale de I'Eclairage coordinates of (0.16, 0.23) exhibit the maximum external quantum efficiency of 2.6% and power efficiency of 1 lm/W at 100 cd/m 2 , representing a large improvement over the previously reported analogous devices.
Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A
2016-02-01
Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.
Biochemical characterization of an isoprene synthase from Campylopus introflexus (heath star moss).
Lantz, Alexandra T; Cardiello, Joseph F; Gee, Taylor A; Richards, Michaelin G; Rosenstiel, Todd N; Fisher, Alison J
2015-09-01
Each year, plants emit terragram quantities of the reactive hydrocarbon isoprene (2-methyl-1,3-butadiene) into the earth's atmosphere. In isoprene-emitting plants, the enzyme isoprene synthase (ISPS) catalyzes the production of isoprene from the isoprenoid intermediate dimethylallyl diphosphate (DMADP). While isoprene is emitted from all major classes of land plants, to date ISPSs from angiosperms only have been characterized. Here, we report the identification and initial biochemical characterization of a DMADP-dependent ISPS from the isoprene-emitting bryophyte Campylopus introflexus (heath star moss). The partially-purified C. introflexus ISPS (CiISPS) exhibited a Km for DMADP of 0.37 ± 0.28 mM, a pH optimum of 8.6 ± 0.5, and a temperature optimum of 40 ± 3 °C in vitro. Like ISPSs from angiosperms, the CiISPS required the presence of a divalent cation. However, unlike angiosperm ISPSs, the CiISPS utilized Mn(2+) preferentially over Mg(2+). Efforts are currently underway in our laboratory to further purify the CiISPS and clone the cDNA sequence encoding this novel enzyme. Our discovery of the first bryophyte ISPS paves the way for future studies concerning the evolutionary origins of isoprene emission in land plants and may help generate new bryophyte model systems for physiological and biochemical research on plant isoprene function. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
40 CFR 273.37 - Response to releases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 273.37 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.37... of universal wastes and other residues from universal wastes. (b) A large quantity handler of...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2012 CFR
2012-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2014 CFR
2014-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2013 CFR
2013-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
NASA Astrophysics Data System (ADS)
Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong
2015-11-01
In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.
1994-06-01
charge clouds. These finitely-remote fields are then used to compute asymptotic radiation fields in the limit of the field point going to infinity in a 0...like to thank Doug Beason for providing an environment conducive to performing the research reported on here and Michelle Tafoya for her excellent...radiation quantities, however, are obtained only in the limit of the field point going to infinity ; we thus demonstrate the existence of this limit and
Water Electrolyzers and the Zero-Point Energy
NASA Astrophysics Data System (ADS)
King, M. B.
The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.
The Electron Drift Instrument for Cluster
NASA Technical Reports Server (NTRS)
Paschmann, G.; Melzner, F.; Frenzel, R.; Vaith, H.; Parigger, P.; Pagel, U.; Bauer, O. H.; Haerendel, G.; Baumjohann, W.; Scopke, N.
1997-01-01
The Electron Drift Instrument (EDI) measures the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and the gradient in the magnetic field, and these quantities can, by use of different electron energies, be determined separately. As a by-product, the magnetic field strength is also measured. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument.
Large-scale preparation of plasmid DNA.
Heilig, J S; Elbing, K L; Brent, R
2001-05-01
Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.
40 CFR 273.33 - Waste management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...
Ramana, M V; Devi, Archana
2016-08-02
Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.
Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.
Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna
2016-09-01
Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis.
McEwan, Thomas E.
1995-01-01
An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.
McEwan, T.E.
1995-10-10
An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... services for Large Quantity Generator (``LQG'') customers in the states of Kansas, Missouri, Nebraska, and...; Oklahoma City, Oklahoma; Omaha, Nebraska; and Booneville, Missouri; LQG customer contracts associated with... collection and treatment services for large quantity generator (``LQG'') customers. The resulting combination...
Hole trap formation in polymer light-emitting diodes under current stress
NASA Astrophysics Data System (ADS)
Niu, Quan; Rohloff, Roland; Wetzelaer, Gert-Jan A. H.; Blom, Paul W. M.; Crǎciun, N. Irina
2018-06-01
Polymer light-emitting diodes (PLEDs) are attractive for use in large-area displays and lighting panels, but their limited stability under current stress impedes commercialization. In spite of large efforts over the last two decades a fundamental understanding of the degradation mechanisms has not been accomplished. Here we demonstrate that the voltage drift of a PLED driven at constant current is caused by the formation of hole traps, which leads to additional non-radiative recombination between free electrons and trapped holes. The observed trap formation rate is consistent with exciton-free hole interactions as the main mechanism behind PLED degradation, enabling us to unify the degradation behaviour of various poly(p-phenylene) derivatives. The knowledge that hole trap formation is the cause of PLED degradation means that we can suppress the negative effect of hole traps on voltage and efficiency by blending the light-emitting polymer with a large-bandgap semiconductor. Owing to trap-dilution these blended PLEDs show unprecedented stability.
NASA Astrophysics Data System (ADS)
Venterea, R. T.; Baker, J. M.
2009-12-01
Cropped fields in the upper Midwest have the potential to emit relatively large quantities of N2O and NO resulting from soil transformation of N fertilizers applied to crops such as corn and potatoes. The mitigation of N2O emissions may be an effective strategy for offsetting greenhouse gas emissions. While the rate of N fertilizer application exerts some control over N trace gas emission rates, a variety of other management practices and environmental factors interact to regulate these emissions. Observation-based studies are essential for improving models, developing accurate inventories, and documenting offsets. Since 2003, we have been examining the effects of management factors including: tillage, crop rotation, irrigation, and fertilizer chemical form and application method on N2O and NO emissions from corn and potato production systems using chamber-based measurement techniques. A summary of our findings will be presented, including: Application of anhydrous ammonia resulted in twice the N2O emissions compared to urea fertilizer, and twice the NO emissions compared to liquid urea ammonium nitrate (UAN) fertilizer. Growing corn continuously compared to in rotation with soybeans did not alter the amount of N2O emitted during the corn growing season. Reduced tillage (RT), often promoted as a means of reducing carbon losses to the atmosphere, also altered soil N2O emissions. However, the impact of RT on N2O emissions was found to vary, in both magnitude and direction, as a function of N fertilizer management. In addition to these studies, our efforts to overcome some of the inherent limitations of chamber-based flux measurement techniques will be discussed.
Estimation of fire emissions from satellite-based measurements
NASA Astrophysics Data System (ADS)
Ichoku, C. M.; Kaufman, Y. J.
2004-12-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.
Estimation of Fire Emissions from Satellite-Based Measurements
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2004-01-01
Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.
Gray, Dennis W.; Breneman, Steven R.; Topper, Lauren A.; Sharkey, Thomas D.
2011-01-01
2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ∼90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K+, whereas isoprene production is inhibited by K+ such that, at physiologically relevant [K+], little or no isoprene emission should be detected from MBO-emitting trees. The Km of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. PMID:21504898
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzey, Bruce R.; Myer, Michael
2013-03-01
This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relativelymore » high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.« less
Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan
2010-05-01
The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.
NASA Astrophysics Data System (ADS)
Kong, Bo Hyun; Han, Won Suk; Kim, Young Yi; Cho, Hyung Koun; Kim, Jae Hyun
2010-06-01
We grew heterojunction light emitting diode (LED) structures with various n-type semiconducting layers by magnetron sputtering on p-type GaN at high temperature. Because the undoped ZnO used as an active layer was grown under oxygen rich atmosphere, all LED devices showed the EL characteristics corresponding to orange-red wavelength due to high density of oxygen interstitial, which was coincident with the deep level photoluminescence emission of undoped ZnO. The use of the Ga doped layers as a top layer provided the sufficient electron carriers to active region and resulted in the intense EL emission. The LED sample with small quantity of Mg incorporated in MgZnO as an n-type top layer showed more intense emission than the LED with ZnO, in spite of the deteriorated electrical and structural properties of the MgZnO film. This might be due to the improvement of output extraction efficiency induced by rough surface.
NASA Technical Reports Server (NTRS)
Gehrz, R. D.; Johnson, C. H.; Magnuson, S. D.; Ney, E. P.; Hayward, T. L.
1995-01-01
A close examination of the 0.7- to 23-micron infrared data base acquired by Gehrz and Ney (1992), suggests that the nucleus of Comet P/Halley 1986 III emitted a burst of small dust grains during a 3-day period commencing within hours of perihelion passage on 1986 February 9.46 UT. The outburst was characterized by significant increases in the coma's grain color temperature T(sub obs), temperature excess (superheat: S = T(sub obs)/T(sub BB)), infrared luminosity, albedo, and 10-micron silicate emission feature strength. These changes are all consistent with the sudden ejection from the nucleus of a cloud of grains with radii of approximately 0.5 micron. This outburst may have produced the dust that was responsible for some of the tail streamers photographed on 1986 February 22 UT. The peak of the dust outburst occurred about 3 days before a pronounced increase in the water production rate measured by the Pioneer Venus Orbiter Ultraviolet Spectrometer. We suggest that jets that release large quantities of small particles may be largely responsible for some of the variable infrared behavior that has been reported for P/Halley and other comets during the past two decades. Such jets may also account for some of the differences IR Type I and IR Type II comets.
A Hyperbolic Solver for Black Hole Initial Data in Numerical Relativity
NASA Astrophysics Data System (ADS)
Babiuc, Maria
2016-03-01
Numerical relativity is essential to the efforts of detecting gravitational waves emitted at the inspiral and merger of binary black holes. The first requirement for the generation of reliable gravitational wave templates is an accurate method of constructing initial data (ID). The standard approach is to solve the constraint equations for general relativity by formulating them as an elliptic system. A shortcoming of the ID constructed this way is an initial burst of spurious unphysical radiation (junk radiation). Recently, Racz and Winicour formulated the constraints as a hyperbolic problem, requiring boundary conditions only on a large sphere surrounding the system, where the physical behavior of the gravitational field is well understood. We investigate the applicability of this new approach, by developing a new 4th order numerical code that implements the fully nonlinear constraints equations on a two dimensional stereographic foliation, and evolves them radially inward using a Runge-Kutta integrator. The tensorial quantities are written as spin-weighted fields and the angular derivatives are replaced with ``eth'' operators. We present here results for the simulation of nonlinear perturbations to Schwarzschild ID in Kerr-Schild coordinates. The code shows stability and convergence at both large and small radii. Our long-term goal is to develop this new approach into a numerical scheme for generating ID for binary black holes and to analyze its performance in eliminating the junk radiation.
Lensless magneto-optic speed sensor
Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.
1998-02-17
Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.
Lensless Magneto-optic speed sensor
Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.
1998-01-01
Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Levitt, Steven D.; List, John A.; Neckermann, Susanne; Nelson, David
2016-01-01
We report on a natural field experiment on quantity discounts involving more than 14 million consumers. Implementing price reductions ranging from 9–70% for large purchases, we found remarkably little impact on revenue, either positively or negatively. There was virtually no increase in the quantity of customers making a purchase; all the observed changes occurred for customers who already were buyers. We found evidence that infrequent purchasers are more responsive to discounts than frequent purchasers. There was some evidence of habit formation when prices returned to pre-experiment levels. There also was some evidence that consumers contemplating small purchases are discouraged by the presence of extreme quantity discounts for large purchases. PMID:27382146
Multilayer white lighting polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Gong, Xiong; Wang, Shu; Heeger, Alan J.
2006-08-01
Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.
2000-06-23
when Nitrogen concentration is increased [91. In molecular beam epitaxy (MBE) one of the reasons of this is the surface quality degradation due to the...cavity surface emitting laser ( VCSEL ) emitting at 1.18 /tm was also reported [7 1. The main problem in the InGaAsN epitaxy is a large difference in the...vertical cavity surface emitting lasers ( VCSELs ). This stimulates attempts to fabricate high quality 1.3 /tm lasers on GaAs substrates. The best results
Growing Large Quantities of Containerized Seedlings
Tim Pittman
2002-01-01
The sowing of large quantities of longleaf pine (Pinus palustris Mill.) seed into trays depends on the quality of the seed and the timing of seed sowing. This can be accomplished with mechanization. Seed quality is accomplished by using a gravity table. Tray filling can be accomplished by using a ribbon-type soil mixer and an automated tray-filling...
USDA-ARS?s Scientific Manuscript database
Lunasin is a 5-kDa soybean bioactive peptide with demonstrated anti-cancer and anti-inflammatory properties. The use of lunasin as a chemopreventive agent in large-scale animal studies and human clinical trials is hampered by the paucity of large quantities of lunasin. Recently, purification methods...
NASA Technical Reports Server (NTRS)
Pawson, Steven; Nielsen, J. Eric
2011-01-01
Attribution of observed atmospheric carbon concentrations to emissions on the country, state or city level is often inferred using "inversion" techniques. Such computations are often performed using advanced mathematical techniques, such as synthesis inversion or four-dimensional variational analysis, that invoke tracing observed atmospheric concentrations backwards through a transport model to a source region. It is, to date, not well understood how well such techniques can represent fine spatial (and temporal) structure in the inverted flux fields. This question is addressed using forward-model computations with idealized tracers emitted at the surface in a large number of grid boxes over selected regions and examining how distinctly these emitted tracers can be detected downstream. Initial results show that tracers emitted in half-degree grid boxes over a large region of the Eastern USA cannot be distinguished from each other, even at short distances over the Atlantic Ocean, when they are emitted in grid boxes separated by less than five degrees of latitude - especially when only total-column observations are available. A large number of forward model simulations, with varying meteorological conditions, are used to assess how distinctly three types observations (total column, upper tropospheric column, and surface mixing ratio) can separate emissions from different sources. Inferences inverse modeling and source attribution will be drawn.
The reduction of dioxin emissions from the processes of heat and power generation.
Wielgosiński, Grzegorz
2011-05-01
The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat
2008-09-01
The measurement accuracy in the photometric quantities measured through photometer head is determined by the value of the spectral mismatch correction factor ( c( St, Ss)), which is defined as a function of spectral power distribution of light sources, besides illuminance responsivity of the photometer head used. This factor is more important when photometric quantities of the light-emitting diode (LED) style optical sources, which radiate within relatively narrow spectral bands as compared with that of other optical sources, are being measured. Variations of the illuminance responsivities of various V( λ)-adopted photometer heads are discussed. High-power-colored LEDs, manufactured by Lumileds Lighting Co., were used as light sources and their relative spectral power distributions (RSPDs) were measured using a spectrometer-based optical setup. Dependences of the c( St, Ss) factors of three types of photometer heads ( f1'=1.4%, f1'=0.8% and f1'=0.5%) with wavelength and influences of the factors on the illuminance responsivities of photometer heads are presented.
Energetic neutral atoms from a trans-Europa gas torus at Jupiter.
Mauk, B H; Mitchell, D G; Krimigis, S M; Roelof, E C; Paranicas, C P
2003-02-27
The space environments--or magnetospheres--of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped energetic ions and cold neutral atoms, and they carry significant amounts of energy and mass from the magnetospheres. Imaging their distribution allows us to investigate the structure of planetary magnetospheres. Here we report the analysis of 50-80 keV ENA images of Jupiter's magnetosphere, where two distinct emission regions dominate: the upper atmosphere of Jupiter itself, and a torus of emission residing just outside the orbit of Jupiter's satellite Europa. The trans-Europa component shows that, unexpectedly, Europa generates a gas cloud comparable in gas content to that associated with the volcanic moon Io. The quantity of gas found indicates that Europa has a much greater impact than hitherto believed on the structure of, and the energy flow within, Jupiter's magnetosphere.
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Cadillo-Quiroz, H.
2015-12-01
Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.
Sexual selection on receptor organ traits: younger females attract males with longer antennae
NASA Astrophysics Data System (ADS)
Johnson, Tamara L.; Symonds, Matthew R. E.; Elgar, Mark A.
2017-06-01
Sexual selection theory predicts that female choice may favour the evolution of elaborate male signals. Darwin also suggested that sexual selection can favour elaborate receiver structures in order to better detect sexual signals, an idea that has been largely ignored. We evaluated this unorthodox perspective by documenting the antennal lengths of male Uraba lugens Walker (Lepidoptera: Nolidae) moths that were attracted to experimentally manipulated emissions of female sex pheromone. Either one or two females were placed in field traps for the duration of their adult lives in order to create differences in the quantity of pheromone emissions from the traps. The mean antennal length of males attracted to field traps baited with a single female was longer than that of males attracted to traps baited with two females, a pattern consistent with Darwin's prediction assuming the latter emits higher pheromone concentrations. Furthermore, younger females attracted males with longer antennae, which may reflect age-specific changes in pheromone emission. These field experiments provide the first direct evidence of an unappreciated role for sexual selection in the evolution of sexual dimorphism in moth antennae and raise the intriguing possibility that females select males with longer antennae through strategic emission of pheromones.
Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis.
Cazoir, D; Fine, L; Ferronato, C; Chovelon, J-M
2012-10-15
In order to prevent hydrocarbon discharge at sea from the bilge of ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which effluents are now limited to those with maximum oil content of 15 ppmv. Thus, photocatalysis and air-stripping were combined for the hydrocarbon removal from a real oily bilgewater sample and an original monitoring of both aqueous and gaseous phases was performed by GC/MS to better understand the process. Our results show that the hydrocarbon oil index [HC] can be reduced to its maximum permissible value of 15 ppmv (MARPOL) in only 8.5h when photocatalysis and air-stripping are used together in a synergistic way, as against 17 h when photocatalysis is used alone. However, this air-assisted photocatalytic process emits a large quantity of volatile organic compounds (VOC) and, within the first four hours, ca. 10% of the hydrocarbon removal in the aqueous phase is actually just transferred into the gaseous one. Finally, we highlight that the n-alkanes with a number of carbon atoms higher than 15 (N(C)>15) are those which most decrease the rate of [HC] removal. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugedo, J.Z.A.
Termites are reported to emit large quantities of methane, carbon dioxide, carbon monoxide, hydrogen and dimethyl sulfide. The emission of other trace gases, namely C{sub 2} to C{sub 10} hydrocarbons, is also documented. We have carried out, both in the field and in the laboratory, measurements of methane emissions by Macrotermes subhyalinus (Macrotermitinae), Trinervitermes bettonianus (Termitinae), and unidentified Cubitermes and Microcerotermes species. Measured CH{sub 4} field flux rates ranged from 3.66 to 98.25g per m{sup 2} of termite mound per year. Laboratory measurements gave emission rates that ranged from 14.61 to 165.05 mg CH{sub 4} per termite per year. Gaseousmore » production in all species sampled varied both within species and from species to species. Recalculated global emission of methane from termites was found to be 14.0 x 10{sup 12} g CH{sub 4}, per year. From our study, termites contribution to atmospheric methane content is between 1.11% and 4.25% per year. This study discusses the greenhouse effects as well as photochemical disposal of methane in the lower atmosphere in the tropics and the impacts on the chemistry of HO{sub x} systems and CL{sub x} cycles.« less
NASA Astrophysics Data System (ADS)
Sarrafzadeh, M.; Hastie, D. R.
2013-12-01
Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.
Utilities and manufacturers: Pioneering partnerships and their lessons for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartsch, C.; DeVaul, D.
1994-12-31
Manufacturers who, in partnership with utilities, improved their production process through energy efficiency and waste minimization strategies are discussed. Frequently these investments changed the corporate culture and resulted in a commitment to continuous improvement that may ensure the industrialists adapt to a rapidly evolving marketplace. The Northeast-Midwest Institute`s work to record these case studies developed out of the observation that older manufacturing facilities too often are run until no longer competitive, then closed, and new plants are built somewhere else - increasingly overseas. Unemployment, poverty, and cycles of economic and social deterioration too often follow if a new economic basemore » cannot be created. At the same time, inefficient industrial plants tend to emit large quantities of waste materials; industry produces more than 600 million tons of hazardous wastes and approximately 13 billion tons of solid wastes each year. To help identify how to avoid such pitfalls, the Institute sought out manufacturers who modernized successfully. Case studies are presented that show that utilities often are instrumental in catalyzing change in their industrial partners. In fact, much can be gained from utilities and industries working together. Many manufacturers need technical and financial assistance to maintain peak productivity.« less
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339
Jenks, Tyler C.; Bailey, Matthew D.; Hovey, Jessica L.; Fernando, Shanilke; Basnayake, Gihan; Cross, Michael E.; Li, Wen
2017-01-01
We report the first catalytic use of a divalent lanthanide in visible-light-promoted bond-forming reactions. Our new precatalyst uses europium in the +2 oxidation state and is active in the presence of blue light from light-emitting diodes. The use of low-energy visible light reduces the occurrence of potential side reactions that might be induced by higher-energy UV light. The system described here uses zinc metal as a sacrificial reductant and is tolerant to wet, protic solvents. The catalyst can be made in situ from relatively inexpensive and air-stable EuCl3·6H2O, and the ligand can be synthesized in large quantities in two steps. With 0.5% loading of precatalyst, an average of 120 turnovers was observed in six hours for reductive coupling of benzyl chloride. We expect that the results will initiate the study of visible-light-promoted photoredox catalysis using divalent europium in a variety of reactions. PMID:29675173
Biennial Hazardous Waste Report
Federal regulations require large quantity generators to submit a report (EPA form 8700-13A/B) every two years regarding the nature, quantities and disposition of hazardous waste generated at their facility.
Discovery of Newer Therapeutic Leads for Prostate Cancer
2009-06-01
promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of
Electrohydrodynamically driven large-area liquid ion sources
Pregenzer, Arian L.
1988-01-01
A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.
Development of optical monitor of alpha radiations based on CR-39.
Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K
2013-11-01
Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment. © 2013 Elsevier Ltd. All rights reserved.
Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G
2016-08-01
Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.
Geology and occurrence of ground water in Lyon County, Minnesota
Rodis, Harry G.
1963-01-01
Large quantities of ground water are available from melt-water channels in the county. Moderate quantities, adequate for domestic and small industrial needs, are available from many of the small isolated deposits of sand and gravel in the till. Small quantities of ground water, adequate only for domestic supply, generally can be obtained from Cretaceous sandstone.
Quantity Representation in Children and Rhesus Monkeys: Linear Versus Logarithmic Scales
ERIC Educational Resources Information Center
Beran, Michael J.; Johnson-Pynn, Julie S.; Ready, Christopher
2008-01-01
The performances of 4- and 5-year-olds and rhesus monkeys were compared using a computerized task for quantity assessment. Participants first learned two quantity anchor values and then responded to intermediate values by classifying them as similar to either the large anchor or the small anchor. Of primary interest was an assessment of where the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert
2015-09-07
Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with themore » latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.« less
Lehenberger, Silvia; Barkhausen, Christoph; Cohrs, Susan; Fischer, Eliane; Grünberg, Jürgen; Hohn, Alexander; Köster, Ulli; Schibli, Roger; Türler, Andreas; Zhernosekov, Konstantin
2011-08-01
The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging. The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate. We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Wang, Shuai; Zheng, Min
2015-10-14
In this paper, gallium nitride (GaN) based white light-emitting diodes (WLEDs) with modulated quantities of blue (In{sub 0.15}Ga{sub 0.85}N) quantum wells (QWs) and cyan QWs (In{sub 0.18}Ga{sub 0.82}N) in multiple QW (MQW) structures have been investigated numerically and experimentally. It is demonstrated that the optical performance of LEDs is sensitive to the quantities of cyan QWs in dual-wavelength MQW structures. Compared to the LEDs with respective 0, 4, and 8 cyan QWs (12 QWs in total), the optical performance of the sample with 6 cyan QWs is the best. The deterioration of the optical performance in the sample with lessmore » (4 pairs) cyan QWs or more (8 pairs) cyan QWs than 6 cyan QWs may be ascribed to weakened reservoir effect or more defects induced. Compared to conventional blue LEDs (12 blue QWs), the sample with 6 cyan QWs could effectively suppress the efficiency droop (the experimental droop ratio decreases from 50.3% to 39.5% at 80 A/cm{sup 2}) and significantly improve the color rendering index (CRI, increases from 66.4 to 77.0) simultaneously. We attribute the droop suppression to the strengthened reservoir effect and carrier confinement of deeper QWs (higher indium composition) incorporated in the dual-wavelength MQW structures, which lead to the better hole spreading and enhanced radiative recombination. Meanwhile, the remarkable experimental CRI improvement may result from the wider full-width at half-maximum of electroluminescence spectra and higher cyan intensity in WLED chips with dual-wavelength MQW structures.« less
Jayaratne, E R; Morawska, L; Ristovski, Z D; He, C
2007-07-15
Pollutant concentrations measured in the exhaust plume of a vehicle may be related to the pollutant emission factor using the CO2 concentration as a measure of the dilution factor. We have used this method for the rapid identification of high particle number (PN) emitting on-road vehicles. The method was validated for PN using a medium-duty vehicle and successfully applied to measurements of PN emissions from a large fleet of on-road diesel buses. The ratio of PN concentration to CO2 concentration, Z, in the exhaust plume was estimated for individual buses. On the average, a bus emitted about 1.5 x 10(9) particles per mg of CO2 emitted. A histogram of the number of buses as a function of Z showed, for the first time, that the PN emissions from diesel buses followed a gamma distribution, with most of the values within a narrow range and a few buses exhibiting relatively large values. It was estimated that roughly 10% and 50% of the PN emissions came from just 2% and 25% of the buses, respectively. A regression analysis showed that there was a positive correlation between Z and age of buses, with the slope of the best line being significantly different from zero. The mean Z value for the pre-Euro buses was significantly greater than each of the values for the Euro I and II buses.
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
NASA Astrophysics Data System (ADS)
Chen, Xin; Sánchez-Arriaga, Gonzalo
2018-02-01
To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.
ICRP Publication 107. Nuclear decay data for dosimetric calculations.
Eckerman, K; Endo, A
2008-01-01
In this report, the Commission provides an electronic database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. This database supersedes the data of Publication 38 (ICRP, 1983), and will be used in future ICRP publications of dose coefficients for the intake of or exposure to radionuclides in the workplace and the environment.The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements. The CD accompanying the publication provides electronic access to complete tables of the emitted radiations, as well as the beta and neutron spectra. The database has been constructed such that user-developed software can extract the data needed for further calculations of a radionuclide of interest. A Windows-based application is provided to display summary information on a user-specified radionuclide, as well as the general characterisation of the nuclides contained in the database. In addition, the application provides a means by which the user can export the emissions of a specified radionuclide for use in subsequent calculations.
Removal of floral microbiota reduces floral terpene emissions
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-01-01
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793
Removal of floral microbiota reduces floral terpene emissions
NASA Astrophysics Data System (ADS)
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-10-01
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.
Removal of floral microbiota reduces floral terpene emissions.
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-10-22
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.
An Assessment of the Role of Solid Rocket Motors in the Generation of Orbital Debris
NASA Technical Reports Server (NTRS)
Mulrooney, Mark
2004-01-01
Through an intensive collection and assimilation effort of Solid Rocket Motor (SRM) related data and resources, the author offers a resolution to the uncertainties surrounding SRM particulate generation, sufficiently so to enable a first-order incorporation of SRMs as a source term in space debris environment definition. The following five key conclusions are derived: 1) the emission of particles in the size regime of greatest concern from an orbital debris hazard perspective (D > 100 micron), and in significant quantities, occurs only during the Tail-off phase of SRM burn activity, 2) the velocity of these emissions is correspondingly small - between 0 and 100 m/s, 3) the total Tail-off emitted mass is between approximately 0.04 and 0.65% of the initial propellant mass, 4) the majority of Tail-off emissions occur during the 30 second period that begins as the chamber pressure declines below approximately 34.5 kPa (5 psia) and 5) the size distribution for the emitted particles ranges from 100 micron
THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Matthew; Oestlin, Goeran; Duval, Florent
2013-03-10
We report on new imaging observations of the Lyman alpha emission line (Ly{alpha}), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Ly{alpha}, H{alpha}, and the far ultraviolet continuum. We show that Ly{alpha} is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20% radius, R{sub P20}, Ly{alpha} radii are larger than those of H{alpha} by factors ranging from 1 to 3.6, with an average ofmore » 2.4. The average ratio of Ly{alpha}-to-FUV radii is 2.9. This suggests that much of the Ly{alpha} light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Ly{alpha} compared to H{alpha}, {xi}{sub Ly{alpha}} = R {sup Ly{alpha}}{sub P20}/R {sup H{alpha}}{sub P20}, we find {xi}{sub Ly{alpha}} to be uncorrelated with total Ly{alpha} luminosity. However, {xi}{sub Ly{alpha}} is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Ly{alpha} photons throughout the interstellar medium and drive a large extended Ly{alpha} halo.« less
Iacovino, Kayla; Ju-Song, Kim; Sisson, Thomas; Lowenstern, Jacob; Kuk-Hun, Ri; Jong-Nam, Jang; Kun-Ho, Song; Song-Hwan, Ham; Oppenheimer, Clive; Hammond, James O. S.; Donovan, Amy; Liu, Kosima W.; Kum-Ran, Ryu
2016-01-01
Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People’s Republic of Korea and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km3 dense rock equivalent) circa 946 CE, which resulted in the release of copious magmatic volatiles (H2O, CO2, sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is challenging, particularly for events before the satellite era. We use a geochemical technique to quantify volatile composition and upper bounds to yields for the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate that the ME could have emitted as much as 45 Tg of S to the atmosphere. This is greater than the quantity of S released by the 1815 eruption of Tambora, which contributed to the “year without a summer.” Our maximum gas yield estimates place the ME among the strongest emitters of climate-forcing gases in the Common Era. However, ice cores from Greenland record only a relatively weak sulfate signal attributed to the ME. We suggest that other factors came into play in minimizing the glaciochemical signature. This paradoxical case in which high S emissions do not result in a strong glacial sulfate signal may present a way forward in building more generalized models for interpreting which volcanic eruptions have produced large climate impacts. PMID:28138521
Iacovino, Kayla; Ju-Song, Kim; Sisson, Thomas; Lowenstern, Jacob; Kuk-Hun, Ri; Jong-Nam, Jang; Kun-Ho, Song; Song-Hwan, Ham; Oppenheimer, Clive; Hammond, James O S; Donovan, Amy; Liu, Kosima W; Kum-Ran, Ryu
2016-11-01
Paektu volcano (Changbaishan) is a rhyolitic caldera that straddles the border between the Democratic People's Republic of Korea and China. Its most recent large eruption was the Millennium Eruption (ME; 23 km 3 dense rock equivalent) circa 946 CE, which resulted in the release of copious magmatic volatiles (H 2 O, CO 2 , sulfur, and halogens). Accurate quantification of volatile yield and composition is critical in assessing volcanogenic climate impacts but is challenging, particularly for events before the satellite era. We use a geochemical technique to quantify volatile composition and upper bounds to yields for the ME by examining trends in incompatible trace and volatile element concentrations in crystal-hosted melt inclusions. We estimate that the ME could have emitted as much as 45 Tg of S to the atmosphere. This is greater than the quantity of S released by the 1815 eruption of Tambora, which contributed to the "year without a summer." Our maximum gas yield estimates place the ME among the strongest emitters of climate-forcing gases in the Common Era. However, ice cores from Greenland record only a relatively weak sulfate signal attributed to the ME. We suggest that other factors came into play in minimizing the glaciochemical signature. This paradoxical case in which high S emissions do not result in a strong glacial sulfate signal may present a way forward in building more generalized models for interpreting which volcanic eruptions have produced large climate impacts.
Monolithically integrated Si gate-controlled light-emitting device: science and properties
NASA Astrophysics Data System (ADS)
Xu, Kaikai
2018-02-01
The motivation of this study is to develop a p-n junction based light emitting device, in which the light emission is conventionally realized using reverse current driving, by voltage driving. By introducing an additional terminal of insulated gate for voltage driving, a novel three-terminal Si light emitting device is described where both the light intensity and spatial light pattern of the device are controlled by the gate voltage. The proposed light emitting device employs injection-enhanced Si in avalanche mode where electric field confinement occurs in the corner of a reverse-biased p+n junction. It is found that, depending on the bias conditions, the light intensity is either a linear or a quadratic function of the applied gate voltage or the reverse-bias. Since the light emission is based on the avalanching mode, the Si light emitting device offers the potential for very large scale integration-compatible light emitters for inter- or intra-chip signal transmission and contactless functional testing of wafers.
An entangled-light-emitting diode.
Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J
2010-06-03
An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.
Production and separation of {sup 55}Co via the {sup 58}Ni(p,{alpha}){sup 55}Co reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastren, T.; Sultan, D.; Lapi, S. E.
2012-12-19
{sup 55}Co is a positron emitting isotope that is of interest to the nuclear medicine imaging community. {sup 55}Co was produced by the {sup 58}Ni(p,{alpha}){sup 55}Co reaction and purified by chromatography. Our method has produced {sup 55}Co in millicurie quantities with a final recovery of 78% and an effective specific activity of 28{mu}Ci/{mu}mol. The only radioactive impurity recovered with {sup 55}Co is {sup 57}Co(271.8d) and is at a concentration of {approx}0.182% that of {sup 55}Co.
Rapid determination of lead for industrial hygiene surveys
NASA Astrophysics Data System (ADS)
Schneider, E. W.; Hill, R. F.
1982-02-01
Emphasis on the continued reduction of personnel exposure to airborne lead has led to the development and evaluation of portable instrumentation for the rapid determination of microgram quantities of lead collected on air filter samples. The instrumentation is based on radioisotope-induced X-ray fluorescence; a cadmium-109 radioisotope source is used for sample excitation, and the characteristic lead X-rays emitted are measured by a proportional detector. The effects of excitation source geometry, particle size, and interferences from other elements were investigated. This type of portable instrumentation appears ideally suited for in-plant measurements intended to monitor lead and evaluate new control measures.
A microscopic description of black hole evaporation via holography
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
2016-07-19
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
A microscopic description of black hole evaporation via holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan
Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
Chemodiversity of a Scots pine stand and implications for terpene air concentrations
NASA Astrophysics Data System (ADS)
Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.
2012-02-01
Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ significantly between trees. The atmospheric concentrations at the site were found to reflect the species and/or chemodiversity rather than the emissions measured from any single tree, and were strongly dominated by α-pinene. We also tested the effect of chemodiversity on modeled monoterpene concentrations at the site and found out that since it significantly influences the distributions and hence the chemical reactions in the atmosphere, it should be taken into account in atmospheric modeling.
Chemodiversity in terpene emissions at a boreal Scots pine stand
NASA Astrophysics Data System (ADS)
Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.
2011-10-01
Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes to the surrounding air. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 47-yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ significantly between trees. The atmospheric concentrations at the site were found to reflect the species and/or chemodiversity rather than the emissions measured from any single tree, and were strongly dominated by α-pinene. We also tested the effect of chemodiversity on modeled monoterpene concentrations at the site and found out that since it significantly influences the distributions and hence the chemical reactions in the atmosphere, it should be taken into account in atmospheric modeling.
ERIC Educational Resources Information Center
Cheema, Jehanzeb R.; Zhang, Bo
2013-01-01
This study looked at the effect of both quantity and quality of computer use on achievement. The Program for International Student Assessment (PISA) 2003 student survey comprising of 4,356 students (boys, n = 2,129; girls, n = 2,227) was used to predict academic achievement from quantity and quality of computer use while controlling for…
A large source of low-volatility secondary organic aerosol
NASA Astrophysics Data System (ADS)
Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.
2014-02-01
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
A large source of low-volatility secondary organic aerosol.
Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F
2014-02-27
Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.
Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.
1994-01-01
Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.
Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande
2016-01-01
Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
Huijbregts, Mark A J; Geelen, Loes M J; Hertwich, Edgar G; McKone, Thomas E; van de Meent, Dik
2005-02-01
In life-cycle assessment (LCA) and comparative risk assessment, potential human exposure to toxic pollutants can be expressed as the population intake fraction (iF), which represents the fraction of the quantity emitted that enters the human population. To assess the influence of model differences in the calculation of the population iF ingestion and inhalation iFs of 365 substances emitted to air, freshwater, and soil were calculated with two commonly applied multimedia fate and exposure models, CalTOX and the uniform system for evaluation of substances adapted for life-cycle assessment (USES-LCA). The model comparison showed that differences in the iFs due to model choices were the lowest after emission to air and the highest after emission to soil. Inhalation iFs were more sensitive to model differences compared to ingestion iFs. The choice for a continental seawater compartment, vertical stratification of the soil compartment, rain and no-rain scenarios, and drinking water purification mainly clarify the relevant model differences found in population iFs. Furthermore, pH correction of chemical properties and aerosol-associated deposition on plants appeared to be important for dissociative organics and metals emitted to air, respectively. Finally, it was found that quantitative structure-activity relationship estimates for superhydrophobics may introduce considerable uncertainty in the calculation of population intake fractions.
NASA Astrophysics Data System (ADS)
Koudelka, Petr; Hanulak, Patrik; Jaros, Jakub; Papes, Martin; Latal, Jan; Siska, Petr; Vasinek, Vladimir
2015-07-01
This paper discusses the implementation of a light emitting diode based visible light communication system for optical vehicle-to-vehicle (V2V) communications in road safety applications. The widespread use of LEDs as light sources has reached into automotive fields. For example, LEDs are used for taillights, daytime running lights, brake lights, headlights, and traffic signals. Future in the optical vehicle-to-vehicle (V2V) communications will be based on an optical wireless communication technology that using LED transmitter and a camera receiver (OCI; optical communication image sensor). Utilization of optical V2V communication systems in automotive industry naturally brings a lot of problems. Among them belongs necessity of circuit implementation into the current concepts of electronic LED lights control that allows LED modulation. These circuits are quite complicated especially in case of luxury cars. Other problem is correct design of modulation circuits so that final vehicle lightning using optical vehicle-to-vehicle (V2V) communication meets standard requirements on Photometric Quantities and Beam Homogeneity. Authors of this article performed research on optical vehicle-to-vehicle (V2V) communication possibilities of headlight (Jaguar) and taillight (Skoda) in terms of modulation circuits (M-PSK, M-QAM) implementation into the lamp concepts and final fulfilment of mandatory standards on Photometric Quantities and Beam Homogeneity.
Unleashing Empirical Equations with "Nonlinear Fitting" and "GUM Tree Calculator"
NASA Astrophysics Data System (ADS)
Lovell-Smith, J. W.; Saunders, P.; Feistel, R.
2017-10-01
Empirical equations having large numbers of fitted parameters, such as the international standard reference equations published by the International Association for the Properties of Water and Steam (IAPWS), which form the basis of the "Thermodynamic Equation of Seawater—2010" (TEOS-10), provide the means to calculate many quantities very accurately. The parameters of these equations are found by least-squares fitting to large bodies of measurement data. However, the usefulness of these equations is limited since uncertainties are not readily available for most of the quantities able to be calculated, the covariance of the measurement data is not considered, and further propagation of the uncertainty in the calculated result is restricted since the covariance of calculated quantities is unknown. In this paper, we present two tools developed at MSL that are particularly useful in unleashing the full power of such empirical equations. "Nonlinear Fitting" enables propagation of the covariance of the measurement data into the parameters using generalized least-squares methods. The parameter covariance then may be published along with the equations. Then, when using these large, complex equations, "GUM Tree Calculator" enables the simultaneous calculation of any derived quantity and its uncertainty, by automatic propagation of the parameter covariance into the calculated quantity. We demonstrate these tools in exploratory work to determine and propagate uncertainties associated with the IAPWS-95 parameters.
Tóth, Gábor; Sándor, Gábor László; Kleiner, Dénes; Szentmáry, Nóra; Kiss, Huba J; Blázovics, Anna; Nagy, Zoltán Zsolt
2016-11-01
Femtosecond laser is a revolutionary, innovative treatment method used in cataract surgery. To evaluate free radical quantity in the anterior chamber of the eye, during femtosecond laser assisted capsulotomy, in a porcine eye model. Seventy fresh porcine eyes were collected within 2 hours post mortem, were transported at 4 ºC and treated within 7 hours. Thirty-five eyes were used as control and 35 as femtosecond laser assisted capsulotomy group. A simple luminol-dependent chemiluminescence method was used to measure the total scavenger capacity in the aqueous humour, as an indicator of free radical production. The emitted photons were expressed in relative light unit %. The relative light unit % was lower in the control group (median 1%, interquartile range [0.4-3%]) than in the femtosecond laser assisted capsulotomy group (median 4.4%, interquartile range [1.5%-21%]) (p = 0.01). Femtosecond laser assisted capsulotomy decreases the antioxidant defense of the anterior chamber, which refers to a significant free radical production during femtosecond laser assisted capsulotomy. Orv. Hetil., 2016, 157(47), 1880-1883.
Lozano-Hernández, Luis-Abraham; Maldonado, José-Luis; Garcias-Morales, Cesar; Espinosa Roa, Arian; Barbosa-García, Oracio; Rodríguez, Mario; Pérez-Gutiérrez, Enrique
2018-01-30
Four low molecular weight compounds-three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group-were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated. OLEDs based on carbazole derivatives show luminances up to 4130 cd/m², large current efficiencies about 20 cd/A and, cautiously, a very impressive External Quantum Efficiency (EQE) up to 9.5%, with electroluminescence peaks located around 490 nm (greenish blue region). Whereas, devices manufactured with TPD derivatives, present luminance up to 1729 cd/m², current efficiencies about 4.5 cd/A and EQE of 1.5%. These results are very competitive regarding previous reported materials/devices.
Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald
2015-01-01
Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant–plant interactions. PMID:25851141
Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald
2015-05-01
Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zero-gravity quantity gaging system
NASA Technical Reports Server (NTRS)
1989-01-01
The Zero-Gravity Quantity Gaging System program is a technology development effort funded by NASA-LeRC and contracted by NASA-JSC to develop and evaluate zero-gravity quantity gaging system concepts suitable for application to large, on-orbit cryogenic oxygen and hydrogen tankage. The contract effective date was 28 May 1985. During performance of the program, 18 potential quantity gaging approaches were investigated for their merit and suitability for gaging two-phase cryogenic oxygen and hydrogen in zero-gravity conditions. These approaches were subjected to a comprehensive trade study and selection process, which found that the RF modal quantity gaging approach was the most suitable for both liquid oxygen and liquid hydrogen applications. This selection was made with NASA-JSC concurrence.
Propagation of Respiratory Aerosols by the Vuvuzela
Lai, Ka-Man; Bottomley, Christian; McNerney, Ruth
2011-01-01
Vuvuzelas, the plastic blowing horns used by sports fans, recently achieved international recognition during the FIFA World Cup soccer tournament in South Africa. We hypothesised that vuvuzelas might facilitate the generation and dissemination of respiratory aerosols. To investigate the quantity and size of aerosols emitted when the instrument is played, eight healthy volunteers were asked to blow a vuvuzela. For each individual the concentration of particles in expelled air was measured using a six channel laser particle counter and the duration of blowing and velocity of air leaving the vuvuzela were recorded. To allow comparison with other activities undertaken at sports events each individual was also asked to shout and the measurements were repeated while using a paper cone to confine the exhaled air. Triplicate measurements were taken for each individual. The mean peak particle counts were 658×103 per litre for the vuvuzela and 3.7×103 per litre for shouting, representing a mean log10 difference of 2.20 (95% CI: 2.03,2.36; p<0.001). The majority (>97%) of particles captured from either the vuvuzela or shouting were between 0.5 and 5 microns in diameter. Mean peak airflows recorded for the vuvuzela and shouting were 6.1 and 1.8 litres per second respectively. We conclude that plastic blowing horns (vuvuzelas) have the capacity to propel extremely large numbers of aerosols into the atmosphere of a size able to penetrate the lower lung. Some respiratory pathogens are spread via contaminated aerosols emitted by infected persons. Further investigation is required to assess the potential of the vuvuzela to contribute to the transmission of aerosol borne diseases. We recommend, as a precautionary measure, that people with respiratory infections should be advised not to blow their vuvuzela in enclosed spaces and where there is a risk of infecting others. PMID:21629778
The rare-earth elements: Vital to modern technologies and lifestyles
Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R.
2014-01-01
Until recently, the rare-earth elements (REEs) were familiar to a relatively small number of people, such as chemists, geologists, specialized materials scientists, and engineers. In the 21st century, the REEs have gained visibility through many media outlets because of (1) the public has recognized the critical, specialized properties that REEs contribute to modern technology, as well as (2) China's dominance in production and supply of the REEs and (3) international dependence on China for the majority of the world's REE supply.Since the late 1990s, China has provided 85–95 percent of the world’s REEs. In 2010, China announced their intention to reduce REE exports. During this timeframe, REE use increased substantially. REEs are used as components in high technology devices, including smart phones, digital cameras, computer hard disks, fluorescent and light-emitting-diode (LED) lights, flat screen televisions, computer monitors, and electronic displays. Large quantities of some REEs are used in clean energy and defense technologies. Because of the many important uses of REEs, nations dependent on new technologies, such as Japan, the United States, and members of the European Union, reacted with great concern to China’s intent to reduce its REE exports. Consequently, exploration activities intent on discovering economic deposits of REEs and bringing them into production have increased.
Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A
2017-02-07
Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.
Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin
2015-01-01
Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. PMID:25727256
From Beamline to Scanner with 225Ac
NASA Astrophysics Data System (ADS)
Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna
2016-09-01
Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (< 1 mCi) quantities for in-house chemistry and imaging research that aims to improve and assess 225Ac radiopharmaceutical targeting. This presentation provides an overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.
New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis.
Wu, Qingru; Wang, Shuxiao; Hui, Mulin; Wang, Fengyang; Zhang, Lei; Duan, Lei; Luo, Yao
2015-03-17
The mercury (Hg) flow paths from three zinc (Zn) smelters indicated that a large quantity of Hg, approximately 38.0-57.0% of the total Hg input, was stored as acid slag in the landfill sites. Approximately 15.0-27.1% of the Hg input was emitted into water or stored as open-dumped slags, and 3.3-14.5% of the Hg input ended in sulfuric acid. Atmospheric Hg emissions, accounting for 1.4-9.6% of the total Hg input, were from both the Zn production and waste disposal processes. Atmospheric Hg emissions from the waste disposal processes accounted for 40.6, 89.6, and 94.6% of the total atmospheric Hg emissions of the three studied smelters, respectively. The Zn production process mainly contributed to oxidized Hg (Hg2+) emissions, whereas the waste disposal process generated mostly elemental Hg (Hg0) emissions. When the emissions from these two processes are considered together, the emission proportion of the Hg2+ mass was 51, 46, and 29% in smelters A, B, and C, respectively. These results indicated that approximately 10.8±5.8 t of atmospheric Hg emissions from the waste disposal process were ignored in recent inventories. Therefore, the total atmospheric Hg emissions from the Zn industry of China should be approximately 50 t.
NASA Astrophysics Data System (ADS)
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-03-01
Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.
Chen, Shuming; Kwok, Hoi Sing
2010-01-04
Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.
Fish scale terrace GaInN/GaN light-emitting diodes with enhanced light extraction
NASA Astrophysics Data System (ADS)
Stark, Christoph J. M.; Detchprohm, Theeradetch; Zhao, Liang; Paskova, Tanya; Preble, Edward A.; Wetzel, Christian
2012-12-01
Non-planar GaInN/GaN light-emitting diodes were epitaxially grown to exhibit steps for enhanced light emission. By means of a large off-cut of the epitaxial growth plane from the c-plane (0.06° to 2.24°), surface morphologies of steps and inclined terraces that resemble fish scale patterns could controllably be achieved. These patterns penetrate the active region without deteriorating the electrical device performance. We find conditions leading to a large increase in light-output power over the virtually on-axis device and over planar sapphire references. The process is found suitable to enhance light extraction even without post-growth processing.
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
NASA Astrophysics Data System (ADS)
Na, Jun-Seok; Kwon, Oh-Kyong
2014-01-01
We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.
Study of Polyolefines Waste Thermo-Destruction in Large Laboratory and in Industrial Installations
2014-12-15
coke ”–waste after thermo-destruction carried out on the module No 2 showed an content to 46.1% of ash [20]. This ash content indicates a very large... coke (post-production waste) from the wastes thermo-destruction on 2 modules of vertical modular installation for thermo-destruction of used polymer...of receivedwaste water, the quantity of received coke , the quantity of gaseous product in periods of carrying out installation work before (first
Partitioning factor of mercury during coal combustion in low capacity domestic heating units.
Hlawiczka, Stanislaw; Kubica, Krystyna; Zielonka, Urszula
2003-08-01
Data from an experiment concerning Hg emission from coal combustion in a furnace of 5.6 kW capacity are presented. The goal of the experiment was to define how much of the mercury in coal combusted in the stove was emitted to the atmosphere in gaseous form because vapors contribute mainly to human intake of the metal from ambient air. The partitioning factor kappa, defined as the ratio of gaseous mercury mass emitted to the air and mercury mass contained in the unit coal mass before combustion was evaluated. The mean value of the kappa factors determined in the study was 0.52 indicating that on average only 52% of the mercury was emitted to the air in gaseous form during coal combustion in an apparatus similar to a domestic furnace. The kappa value determined seems relatively low indicating that besides mercury emitted to the atmosphere in gaseous form, a large portion of the mercury is present in particulate matter trapped in the chimney duct and emitted to the air.
Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto
2015-10-06
The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and fractal prefactor, is insignificant.
NASA Astrophysics Data System (ADS)
Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.
2018-04-01
Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.
Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use
NASA Astrophysics Data System (ADS)
Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy; Pugh, Thomas A. M.; Arneth, Almut
2017-04-01
Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901-2 100 based on the dynamic global vegetation model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century, changes in natural vegetation composition caused a decreasing trend for monoterpene emissions. Future global isoprene and monoterpene emissions depend strongly on the climate and land-use scenarios considered. Over the 21st century, global isoprene emissions are simulated to either remain stable (RCP 4.5), or decrease further (RCP 8.5), with important differences depending on the underlying land-use scenario. Future monoterpene emissions are expected to continue their present decreasing trend for all scenarios, possibly stabilizing from 2050 onwards (RCP 4.5). These results demonstrate the importance to take both natural vegetation dynamics and anthropogenic changes in land-use into account when estimating past and future BVOC emissions. They also indicate that a future global increase in BVOC emissions is improbable.
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...
Morphological transformations of BNCO nanomaterials: Role of intermediates
NASA Astrophysics Data System (ADS)
Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.
2018-06-01
Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.
The production of multiprotein complexes in insect cells using the baculovirus expression system.
Abdulrahman, Wassim; Radu, Laura; Garzoni, Frederic; Kolesnikova, Olga; Gupta, Kapil; Osz-Papai, Judit; Berger, Imre; Poterszman, Arnaud
2015-01-01
The production of a homogeneous protein sample in sufficient quantities is an essential prerequisite not only for structural investigations but represents also a rate-limiting step for many functional studies. In the cell, a large fraction of eukaryotic proteins exists as large multicomponent assemblies with many subunits, which act in concert to catalyze specific activities. Many of these complexes cannot be obtained from endogenous source material, so recombinant expression and reconstitution are then required to overcome this bottleneck. This chapter describes current strategies and protocols for the efficient production of multiprotein complexes in large quantities and of high quality, using the baculovirus/insect cell expression system.
The plasma separation process as a pre-cursor for large scale radioisotope production
NASA Astrophysics Data System (ADS)
Stevenson, Nigel R.
2001-07-01
Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.
Jambor, Helena; Mejstrik, Pavel; Tomancak, Pavel
2016-01-01
Isolation of large quantities of tissue from organisms is essential for many techniques such as genome-wide screens and biochemistry. However, obtaining large quantities of tissues or cells is often the rate-limiting step when working in vivo. Here, we present a rapid method that allows the isolation of intact, single egg chambers at various developmental stages from ovaries of adult female Drosophila flies. The isolated egg chambers are amenable for a variety of procedures such as fluorescent in situ hybridization, RNA isolation, extract preparation, or immunostaining. Isolation of egg chambers from adult flies can be completed in 5 min and results, depending on the input amount of flies, in several milliliters of material. The isolated egg chambers are then further processed depending on the exact requirements of the subsequent application. We describe high-throughput in situ hybridization in 96-well plates as example application for the mass-isolated egg chambers.
Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming
2014-06-03
Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.
Single-photon emitting diode in silicon carbide.
Lohrmann, A; Iwamoto, N; Bodrog, Z; Castelletto, S; Ohshima, T; Karle, T J; Gali, A; Prawer, S; McCallum, J C; Johnson, B C
2015-07-23
Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.
Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster
NASA Astrophysics Data System (ADS)
Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom
2018-04-01
In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.
NASA Astrophysics Data System (ADS)
Zebelo, S.; Gnavi, G.; Bertea, C.; Bossi, S.; Andrea, O.; Cordero, C.; Rubiolo, P.; Bicchi, C.; Maffei, M.
2011-12-01
Secondary plant metabolites play an important role in insect plant interactions. The Lamiaceae family, especially Mentha species, accumulate secondary plant metabolites in their glandular trichomes, mainly mono and sesquiterpenes. Here we show that mint plants respond to herbivory by changing the quality and quantity of leaf secondary plant metabolite components. The volatiles from herbivore damaged, mechanical damage and healthy plant were collected by HS-SPME and analyzed by GC-MS. Plants with the same treatment were kept for genomic analysis. Total RNA was extracted from the above specified treatments. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran and the other major monoterpene (+)-pulegone emitted by healthy and mechanically damaged plants. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. In addition we analysed the VOC composition of C. herbacea frass from insects feeding on Mentha aquatica. VOCs were sampled by HS-SPME and analyzed by GCxGC-qMS, and the results compared through quantitative comparative analysis of 2D chromatographic data. Most terpenoids from M. aquatica were completely catabolized by C. herbacea and were absent in the frass volatile fraction. On the other hand, the monoterpene 1,8-cineole was oxidized and frass yielded several new hydroxy-1,8-cineoles, among which 2α-OH-, 3α-OH-, 3β-OH- and 9-OH-1,8-cineole. The role of VOC emitted during herbivory and frass excretion on secondary organic aerosol formation is discussed.
Wagner, Patrick; Kuttler, Wilhelm
2014-03-15
Isoprene is emitted in large quantities by vegetation, exhaled by human beings and released in small quantities by road traffic. As a result of its high reactivity, isoprene is an important ozone precursor in the troposphere and can play a key role in atmospheric chemistry. Measurements of isoprene in urban areas in Central Europe are scarce. Thus, in Essen, Germany, the isoprene concentration was measured at various sites during different seasons using two compact online GC-PID systems. Isoprene concentrations were compared with those of benzene and toluene, which represent typical anthropogenic VOCs. In the summer, the diurnal variation in isoprene concentration was dependent on the biogenic emissions in the city. It was found that its maximum concentration occurred during the day, in contrast to the benzene and toluene concentrations. During the measurement period in the summer of 2012, the average hourly isoprene concentrations reached 0.13 to 0.17 ppb between 10 and 20 LST. At high air temperatures, the isoprene concentration exceeded the benzene and toluene concentrations at many of the sites. Isoprene became more important than toluene with regard to ozone formation in the city area during the afternoon hours of summer days with high air temperatures. This finding was demonstrated by the contributions to OH reactivity and ozone-forming potential. It contradicts the results of other studies, which were based on daily or seasonal average values. With an isoprene/benzene ratio of 0.02, the contribution of anthropogenic isoprene decreased substantially to a very low level during the last 20 years in Central Europe due to a strong reduction in road traffic emissions. In the vicinity of many people, isoprene concentrations of up to 0.54 ppb and isoprene/benzene ratios of up to 1.34 were found in the atmosphere due to isoprene exhaled by humans. Copyright © 2013. Published by Elsevier B.V.
Gao, Xingbao; Ji, Bingjing; Yan, Dahai; Huang, Qifei; Zhu, Xuemei
2017-04-01
Degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash is beneficial to its risk control. Fly ash was treated in a full-scale thermal degradation system (capacity 1 t d -1 ) to remove polychlorinated dibenzo- p-dioxins and dibenzofurans. Apart from the confirmation of the polychlorinated dibenzo- p-dioxin and dibenzofuran decomposition efficiency, we focused on two major issues that are the major obstacles for commercialising this decomposition technology in China, desorption and regeneration of dioxins and control of secondary air pollution. The toxic equivalent quantity values of polychlorinated dibenzo- p-dioxins and dibenzofurans decreased to <6 ng kg -1 and the detoxification rate was ⩾97% after treatment for 1 h at 400 °C under oxygen-deficient conditions. About 8.49% of the polychlorinated dibenzo- p-dioxins and dibenzofurans in toxic equivalent quantity (TEQ) of the original fly ash were desorbed or regenerated. The extreme high polychlorinated dibenzo- p-dioxin and dibenzofuran levels and dibenzo- p-dioxin and dibenzofuran congener profiles in the dust of the flue gas showed that desorption was the main reason, rather than de novo synthesis of polychlorinated dibenzo- p-dioxins and dibenzofurans in the exhaust pipe. Degradation furnace flue gas was introduced to the municipal solid waste incinerator economiser, and then co-processed in the air pollution control system. The degradation furnace released relatively large amounts of cadmium, lead and polychlorinated dibenzo- p-dioxins and dibenzofurans compared with the municipal solid waste incinerator, but the amounts emitted to the atmosphere did not exceed the Chinese national emission limits. Thermal degradation can therefore be used as a polychlorinated dibenzo- p-dioxin and dibenzofuran abatement method for municipal solid waste incinerator source in China.
Quantity, Revisited: An Object-Oriented Reusable Class
NASA Technical Reports Server (NTRS)
Funston, Monica Gayle; Gerstle, Walter; Panthaki, Malcolm
1998-01-01
"Quantity", a prototype implementation of an object-oriented class, was developed for two reasons: to help engineers and scientists manipulate the many types of quantities encountered during routine analysis, and to create a reusable software component to for large domain-specific applications. From being used as a stand-alone application to being incorporated into an existing computational mechanics toolkit, "Quantity" appears to be a useful and powerful object. "Quantity" has been designed to maintain the full engineering meaning of values with respect to units and coordinate systems. A value is a scalar, vector, tensor, or matrix, each of which is composed of Value Components, each of which may be an integer, floating point number, fuzzy number, etc., and its associated physical unit. Operations such as coordinate transformation and arithmetic operations are handled by member functions of "Quantity". The prototype has successfully tested such characteristics as maintaining a numeric value, an associated unit, and an annotation. In this paper we further explore the design of "Quantity", with particular attention to coordinate systems.
Variability and Maintenance of Turbulence in the Very Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Mahrt, Larry
2010-04-01
The relationship of turbulence quantities to mean flow quantities, such as the Richardson number, degenerates substantially for strong stability, at least in those studies that do not place restrictions on minimum turbulence or non-stationarity. This study examines the large variability of the turbulence for very stable conditions by analyzing four months of turbulence data from a site with short grass. Brief comparisons are made with three additional sites, one over short grass on flat terrain and two with tall vegetation in complex terrain. For very stable conditions, any dependence of the turbulence quantities on the mean wind speed or bulk Richardson number becomes masked by large scatter, as found in some previous studies. The large variability of the turbulence quantities is due to random variations and other physical influences not represented by the bulk Richardson number. There is no critical Richardson number above which the turbulence vanishes. For very stable conditions, the record-averaged vertical velocity variance and the drag coefficient increase with the strength of the submeso motions (wave motions, solitary waves, horizontal modes and numerous more complex signatures). The submeso motions are on time scales of minutes and not normally considered part of the mean flow. The generation of turbulence by such unpredictable motions appears to preclude universal similarity theory for predicting the surface stress for very stable conditions. Large variation of the stress direction with respect to the wind direction for the very stable regime is also examined. Needed additional work is noted.
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...
NASA Astrophysics Data System (ADS)
Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun
2013-09-01
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.
Do Social Conditions Affect Capuchin Monkeys' (Cebus apella) Choices in a Quantity Judgment Task?
Beran, Michael J; Perdue, Bonnie M; Parrish, Audrey E; Evans, Theodore A
2012-01-01
Beran et al. (2012) reported that capuchin monkeys closely matched the performance of humans in a quantity judgment test in which information was incomplete but a judgment still had to be made. In each test session, subjects first made quantity judgments between two known options. Then, they made choices where only one option was visible. Both humans and capuchin monkeys were guided by past outcomes, as they shifted from selecting a known option to selecting an unknown option at the point at which the known option went from being more than the average rate of return to less than the average rate of return from earlier choices in the test session. Here, we expanded this assessment of what guides quantity judgment choice behavior in the face of incomplete information to include manipulations to the unselected quantity. We manipulated the unchosen set in two ways: first, we showed the monkeys what they did not get (the unchosen set), anticipating that "losses" would weigh heavily on subsequent trials in which the same known quantity was presented. Second, we sometimes gave the unchosen set to another monkey, anticipating that this social manipulation might influence the risk-taking responses of the focal monkey when faced with incomplete information. However, neither manipulation caused difficulty for the monkeys who instead continued to use the rational strategy of choosing known sets when they were as large as or larger than the average rate of return in the session, and choosing the unknown (riskier) set when the known set was not sufficiently large. As in past experiments, this was true across a variety of daily ranges of quantities, indicating that monkeys were not using some absolute quantity as a threshold for selecting (or not) the known set, but instead continued to use the daily average rate of return to determine when to choose the known versus the unknown quantity.
Nebulization Reflux Concentrator
NASA Technical Reports Server (NTRS)
Cofer, Wesley R., III; Collins, V. G.
1986-01-01
Nebulization reflux concentrator extracts and concentrates trace quantities of water-soluble gases for subsequent chemical analysis. Hydrophobic membrane and nebulizing nozzles form scrubber for removing trace quantities of soluble gases or other contaminants from atmosphere. Although hydrophobic membrane virtually blocks all transport of droplets, it offers little resistance to gas flow; hence, device permits relatively large volumes of gas scrubbed efficiently with very small volumes of liquid. This means analyzable quantities of contaminants concentrate in extracting solutions in much shorter times than with conventional techniques.
Analysis and Modeling of Echolocation Signals Emitted by Mediterranean Bottlenose Dolphins
NASA Astrophysics Data System (ADS)
Greco, Maria; Gini, Fulvio
2006-12-01
We analyzed the echolocation sounds emitted by Mediterranean bottlenose dolphins. We extracted the click trains by visual inspection of the data files recorded along the coast of the Tuscany with the collaboration of the CETUS Research Center. We modeled the extracted sonar clicks as Gaussian or exponential multicomponent signals, we estimated the characteristic parameters and compared the data with the reconstructed signals based on the estimates. Results about the estimation and the data fitting are largely shown in the paper.
Soil moisture estimation using reflected solar and emitted thermal infrared radiation
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.
1978-01-01
Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.
Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.
2003-03-04
A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.
Pires, C V; Schaefer, C E R G; Hashigushi, A K; Thomazini, A; Filho, E I F; Mendonça, E S
2017-10-15
The ongoing trend of increasing air temperatures will potentially affect soil organic matter (SOM) turnover and soil C-CO 2 emissions in terrestrial ecosystems of Maritime Antarctica. The effects of SOM quality on this process remain little explored. We evaluated (i) the quantity and quality of soil organic matter and (ii) the potential of C release through CO 2 emissions in lab conditions in different soil types from Maritime Antarctica. Soil samples (0-10 and 10-20cm) were collected in Keller Peninsula and the vicinity of Arctowski station, to determine the quantity and quality of organic matter and the potential to emit CO 2 under different temperature scenarios (2, 5, 8 and 11°C) in lab. Soil organic matter mineralization is low, especially in soils with low organic C and N contents. Recalcitrant C form is predominant, especially in the passive pool, which is correlated with humic substances. Ornithogenic soils had greater C and N contents (reaching to 43.15gkg -1 and 5.22gkg -1 for total organic carbon and nitrogen, respectively). C and N were more present in the humic acid fraction. Lowest C mineralization was recorded from shallow soils on basaltic/andesites. C mineralization rates at 2°C were significant lower than at higher temperatures. Ornithogenic soils presented the lowest values of C-CO 2 mineralized by g of C. On the other hand, shallow soils on basaltic/andesites were the most sensitive sites to emit C-CO 2 by g of C. With permafrost degradation, soils on basaltic/andesites and sulfates are expected to release more C-CO 2 than ornithogenic soils. With greater clay contents, more protection was afforded to soil organic matter, with lower microbial activity and mineralization. The trend of soil temperature increases will favor C-CO 2 emissions, especially in the reduced pool of C stored and protected on permafrost, or in occasional Histosols. Copyright © 2016 Elsevier B.V. All rights reserved.
Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C
2017-12-01
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.
Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee
2013-01-01
The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.
K/Na-triggered bioluminescence in the oceanic squid Symplectoteuthis oualaniensis.
Tsuji, F I; Leisman, G B
1981-11-01
A distinctive type of luminescent system present in the large dorsal luminous organ of the oceanic squid Symplectoteuthis oualaniensis is described. The organ produces an intense blue flash of light followed by a rapid decay in light intensity. Luminescence originates from numerous oval granules present in the luminous organ. The essential light-emitting components are membrane bound. Intact granules or washed homogenates of the granules are triggered to emit light by monovalent cations such as, in decreasing order of effectiveness, potassium, rubidium, sodium, cesium, ammonium, and lithium. Calcium, magnesium, and strontium ions do not trigger light emission. Analysis of the kinetics of the decay of light intensity suggests that two light-emitting components are involved, one decaying faster than the other. The light-emitting reaction has an absolute requirement for molecular oxygen. The optimum KCl or NaCl concentration is approximately 0.6 M and the optimum pH is approximately 7.8. A free sulfhydryl group is essential for activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn
2014-04-15
Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range ofmore » 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.« less
Center for Electro Optics & Plasma Research
1990-04-01
inversely proportional to the diameter of the plasma ring , the device had a large resistance and thus a large portion of the stored energy dissipated within...which produced an array of plasma rings concentric with the dye tube. These plasma rings emitted intense radiation over a wide range of the spectrum. The
NASA Technical Reports Server (NTRS)
Allen, N. C.
1978-01-01
Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.
NASA Astrophysics Data System (ADS)
Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN
2017-11-01
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
Testing of transition-region models: Test cases and data
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Dinavahi, Surya; Iyer, Venkit
1991-01-01
Mean flow quantities in the laminar turbulent transition region and in the fully turbulent region are predicted with different models incorporated into a 3-D boundary layer code. The predicted quantities are compared with experimental data for a large number of different flows and the suitability of the models for each flow is evaluated.
Large-scale generation of cell-derived nanovesicles
NASA Astrophysics Data System (ADS)
Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.
2014-09-01
Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.
Liebman, M B; Jonasson, O J; Wiese, R N
2011-01-01
Currently more than 3 billion people live in urban areas. The urban population is predicted to increase by a further 3 billion by 2050. Rising oil prices, unreliable rainfall and natural disasters have all contributed to a rise in global food prices. Food security is becoming an increasingly important issue for many nations. There is also a growing awareness of both 'food miles' and 'virtual water'. Food miles and virtual water are concepts that describe the amount of embodied energy and water that is inherent in the food and other goods we consume. Growing urban agglomerations have been widely shown to consume vast quantities of energy and water whilst emitting harmful quantities of wastewater and stormwater runoff through the creation of massive impervious areas. In this paper it is proposed that there is an efficient way of simultaneously addressing the problems of food security, carbon emissions and stormwater pollution. Through a case study we demonstrate how it is possible to harvest and store stormwater from densely populated urban areas and use it to produce food at relatively low costs. This reduces food miles (carbon emissions) and virtual water consumption and serves to highlight the need for more sustainable land-use planning.
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less
Approaches to Manufacturing Alpha Emitters For Radioimmunotherapeutic Drugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaylord King, A.; Givens, Kenneth R.; Miller, William H.
Several alpha emitting isotopes have been proposed for radioimmunotherapy. To produce these nuclides reliably and in quantities needed, unique manufacturing approaches will be required. This paper describes the approaches that are being developed for the manufacture of 225Actinium (225 Ac) that decays to 213Bismuth (213 Bi) and the commercial manufacturing approaches. Oak Ridge National Laboratory (ORNL) currently supplies the actinium used for research and medical use. Today the ORNL 233U stockpiles only provide sufficient material for research quantities of 213 Bi. At the Institute for Transuranium Elements (ITU), in Karlsruhe, researchers have also developed a method of irradiating radium-226 withmore » protons in a cyclotron to produce actinium- 225 through the reaction 226Ra (p, 2n) 225Ac. Researchers from the Missouri University (MU), the Missouri University Research Reactor (MURR), MedActinium, Inc. and Los Alamos National Laboratory (LANL) are working on a collaborative effort to benchmark and optimize the production of 213Bi via neutron bombardment of 226Ra. MedActinium, Inc., in collaboration with commercial and institutional investigators at PG Research Foundation (PGRF) and Memorial Sloan Kettering Cancer Center (MSKCC), is developing commercial approaches to manufacturing these unique radioimmunotherapeutic drugs.« less
NASA Astrophysics Data System (ADS)
Anthony, Abigail Walker
This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load problems, pricing approaches are not well suited to ensure system reliability. This research shows that direct quantity controls are better suited for avoiding catastrophic failure that results when demand exceeds supply capacity.
NASA Astrophysics Data System (ADS)
Endo, Kuniaki; Adachi, Chihaya
2014-03-01
We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.
High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.
Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan
2016-05-15
A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.
Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.
Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh
2016-10-14
Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.
Application of sensitivity-analysis techniques to the calculation of topological quantities
NASA Astrophysics Data System (ADS)
Gilchrist, Stuart
2017-08-01
Magnetic reconnection in the corona occurs preferentially at sites where the magnetic connectivity is either discontinuous or has a large spatial gradient. Hence there is a general interest in computing quantities (like the squashing factor) that characterize the gradient in the field-line mapping function. Here we present an algorithm for calculating certain (quasi)topological quantities using mathematical techniques from the field of ``sensitivity-analysis''. The method is based on the calculation of a three dimensional field-line mapping Jacobian from which all the present topological quantities of interest can be derived. We will present the algorithm and the details of a publicly available set of libraries that implement the algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Vicente; Bonney, Matthew; Schroeder, Benjamin
When very few samples of a random quantity are available from a source distribution of unknown shape, it is usually not possible to accurately infer the exact distribution from which the data samples come. Under-estimation of important quantities such as response variance and failure probabilities can result. For many engineering purposes, including design and risk analysis, we attempt to avoid under-estimation with a strategy to conservatively estimate (bound) these types of quantities -- without being overly conservative -- when only a few samples of a random quantity are available from model predictions or replicate experiments. This report examines a classmore » of related sparse-data uncertainty representation and inference approaches that are relatively simple, inexpensive, and effective. Tradeoffs between the methods' conservatism, reliability, and risk versus number of data samples (cost) are quantified with multi-attribute metrics use d to assess method performance for conservative estimation of two representative quantities: central 95% of response; and 10 -4 probability of exceeding a response threshold in a tail of the distribution. Each method's performance is characterized with 10,000 random trials on a large number of diverse and challenging distributions. The best method and number of samples to use in a given circumstance depends on the uncertainty quantity to be estimated, the PDF character, and the desired reliability of bounding the true value. On the basis of this large data base and study, a strategy is proposed for selecting the method and number of samples for attaining reasonable credibility levels in bounding these types of quantities when sparse samples of random variables or functions are available from experiments or simulations.« less
How tobacco companies have used package quantity for consumer targeting.
Persoskie, Alexander; Donaldson, Elisabeth A; Ryant, Chase
2018-05-31
Package quantity refers to the number of cigarettes or amount of other tobacco product in a package. Many countries restrict minimum cigarette package quantities to avoid low-cost packs that may lower barriers to youth smoking. We reviewed Truth Tobacco Industry Documents to understand tobacco companies' rationales for introducing new package quantities, including companies' expectations and research regarding how package quantity may influence consumer behaviour. A snowball sampling method (phase 1), a static search string (phase 2) and a follow-up snowball search (phase 3) identified 216 documents, mostly from the 1980s and 1990s, concerning cigarettes (200), roll-your-own tobacco (9), smokeless tobacco (6) and 'smokeless cigarettes' (1). Companies introduced small and large packages to motivate brand-switching and continued use among current users when faced with low market share or threats such as tax-induced price increases or competitors' use of price promotions. Companies developed and evaluated package quantities for specific brands and consumer segments. Large packages offered value-for-money and matched long-term, heavy users' consumption rates. Small packages were cheaper, matched consumption rates of newer and lighter users, and increased products' novelty, ease of carrying and perceived freshness. Some users also preferred small packages as a way to try to limit consumption or quit. Industry documents speculated about many potential effects of package quantity on appeal and use, depending on brand and consumer segment. The search was non-exhaustive, and we could not assess the quality of much of the research or other information on which the documents relied. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores.
Fukunaga, Gaku; Takayasu, Hideki; Takayasu, Misako
2016-01-01
The ability to ascertain the extent of product sale fluctuations for each store and locality is indispensable to inventory management. This study analyzed POS data from 158 convenience stores in Kawasaki City, Kanagawa Prefecture, Japan and found a power scaling law between the mean and standard deviation of product sales quantities for several product categories. For the statistical domains of low sales quantities, the power index was 1/2; for large sales quantities, the power index was 1, so called Taylor's law holds. The value of sales quantities with changing power indixes differed according to product category. We derived a Poissonian compound distribution model taking into account fluctuations in customer numbers to show that the scaling law could be explained theoretically for most of items. We also examined why the scaling law did not hold in some exceptional cases.
A solenoid failure detection system for cold gas attitude control jet valves
NASA Technical Reports Server (NTRS)
Johnston, P. A.
1970-01-01
The development of a solenoid valve failure detection system is described. The technique requires the addition of a radioactive gas to the propellant of a cold gas jet attitude control system. Solenoid failure is detected with an avalanche radiation detector located in the jet nozzle which senses the radiation emitted by the leaking radioactive gas. Measurements of carbon monoxide leakage rates through a Mariner type solenoid valve are presented as a function of gas activity and detector configuration. A cylindrical avalanche detector with a factor of 40 improvement in leak sensitivity is proposed for flight systems because it allows the quantity of radioactive gas that must be added to the propellant to be reduced to a practical level.
Influence of the solar wind/interplanetary medium on Saturnian kilometric radiation
NASA Technical Reports Server (NTRS)
Rucker, Helmut O.; Desch, M. D.
1990-01-01
Previous studies on the periodicities of the Saturnian kilometric radiation (SKR) suggested a considerable solar wind influence on the occurrence of SKR, so it was obvious to investigate the relationship between parameters of the solar wind/interplanetary medium and this Saturnian radio component. Voyager 2 data from the Plasma Science experiment, the Magnetometer experiment and the Planetary Radio Astronomy experiment were used to analyze the external control of SKR. Out of the examined quantities known to be important in controlling magnetospheric processes this investigation yielded a dominance of the solar wind momentum, ram pressure and kinetic energy flux, in stimulating SKR and controlling its activity and emitted energy, and confirmed the results of the Voyager 1 analysis.
Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report
NASA Technical Reports Server (NTRS)
Camperchioli, William
2005-01-01
A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.
The Electron Drift Technique for Measuring Electric and Magnetic Fields
NASA Technical Reports Server (NTRS)
Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)
1998-01-01
The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.
A Functional Model for Management of Large Scale Assessments.
ERIC Educational Resources Information Center
Banta, Trudy W.; And Others
This functional model for managing large-scale program evaluations was developed and validated in connection with the assessment of Tennessee's Nutrition Education and Training Program. Management of such a large-scale assessment requires the development of a structure for the organization; distribution and recovery of large quantities of…
Chemical Waste Management for the Conditionally Exempt Small Quantity Generator
NASA Astrophysics Data System (ADS)
Zimmer, Steven W.
1999-06-01
Management of hazardous chemical wastes generated as a part of the curriculum poses a significant task for the individual responsible for maintaining compliance with all rules and regulations from the Environmental Protection Agency and the Department of Transportation while maintaining the principles of OSHA's Lab Standard and the Hazard Communication Standard. For schools that generate relatively small quantities of waste, an individual can effectively manage the waste program without becoming overly burdened by the EPA regulations required for those generating large quantities of waste, if given the necessary support from the institution.
The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.
2018-07-01
The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜30 per cent. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the centre of elliptical galaxies.
Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi
2017-05-18
GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.
The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.
2018-04-01
The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜ 20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜ 30%. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the center of elliptical galaxies.
1992-12-27
quantities, but they are not continuously dependent on these quantities. This pure open-loop programmed-control-like behaviour is called precognitive . Like...and largely accomplished by the precognitive action and then may be completed with compeisatory eor-reducuon operations. 304. A quasilinear or
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...
NASA Technical Reports Server (NTRS)
Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena;
2018-01-01
Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.
A Global Perspective of Atmospheric CO2 Concentrations
NASA Technical Reports Server (NTRS)
Putman, William M.; Ott, Lesley; Darmenov, Anton; daSilva, Arlindo
2016-01-01
Carbon dioxide (CO2) is the most important greenhouse gas affected by human activity. About half of the CO2 emitted from fossil fuel combustion remains in the atmosphere, contributing to rising temperatures, while the other half is absorbed by natural land and ocean carbon reservoirs. Despite the importance of CO2, many questions remain regarding the processes that control these fluxes and how they may change in response to a changing climate. The Orbiting Carbon Observatory-2 (OCO-2), launched on July 2, 2014, is NASA's first satellite mission designed to provide the global view of atmospheric CO2 needed to better understand both human emissions and natural fluxes. This visualization shows how column CO2 mixing ratio, the quantity observed by OCO-2, varies throughout the year. By observing spatial and temporal gradients in CO2 like those shown, OCO-2 data will improve our understanding of carbon flux estimates. But, CO2 observations can't do that alone. This visualization also shows that column CO2 mixing ratios are strongly affected by large-scale weather systems. In order to fully understand carbon flux processes, OCO-2 observations and atmospheric models will work closely together to determine when and where observed CO2 came from. Together, the combination of high-resolution data and models will guide climate models towards more reliable predictions of future conditions.
NASA Astrophysics Data System (ADS)
Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting
2018-02-01
Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.
Revisiting Supernova 1987A constraints on dark photons
Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.
2017-01-25
We revisit constraints on dark photons with masses below ~ 100 MeV from the observations of Supernova 1987A. If dark photons are produced in sufficient quantity, they reduce the amount of energy emitted in the form of neutrinos, in conflict with observations. For the first time, we include the effects of finite temperature and density on the kinetic-mixing parameter,ϵ, in this environment. This causes the constraints on ϵ to weaken with the dark-photon mass below ~ 15 MeV. For large-enough values of ϵ, it is well known that dark photons can be reabsorbed within the supernova. Since the rates ofmore » reabsorption processes decrease as the dark-photon energy increases, we point out that dark photons with energies above the Wien peak can escape without scattering, contributing more to energy loss than is possible assuming a blackbody spectrum. Furthermore, we estimate the systematic uncertainties on the cooling bounds by deriving constraints assuming one analytic and four different simulated temperature and density profiles of the proto-neutron star. Finally, we estimate also the systematic uncertainty on the bound by varying the distance across which dark photons must propagate from their point of production to be able to affect the star. Finally, this work clarifies the bounds from SN1987A on the dark-photon parameter space.« less
NASA Astrophysics Data System (ADS)
Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.
2018-01-01
Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NO
NASA Astrophysics Data System (ADS)
Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.
2016-12-01
Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.
Crombie, Andrew T; Khawand, Myriam El; Rhodius, Virgil A; Fengler, Kevin A; Miller, Michael C; Whited, Gregg M; McGenity, Terry J; Murrell, J Colin
2015-09-01
Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Countermeasure for Radiation Protection and Repair
NASA Technical Reports Server (NTRS)
2008-01-01
Exposure to ionizing radiation during long-duration space missions is expected to cause short-term illness and increase long-term risk of cancer for astronauts. Radiation-induced free radicals overload the antioxidant defense mechanisms and lead to cellular damage at the membrane, enzyme, and chromosome levels. A large number of radioprotective agents were screened, but most had significant side effects. But there is increasing evidence that significant radioprotective benefit is achieved by increasing the dietary intake of foods with high antioxidant potential. Early plant-growing systems for space missions will be limited in both size and volume to minimize power and mass requirements. These systems will be well suited to producing plants containing high concentrations of bioprotective antioxidants. This project explored whether the production of bioprotective compounds could be increased by altering the lighting system, without increasing the space or power requirements for production, and evaluated the effects of environmental conditions (light quantity, light quality, and carbon dioxide [CO2] concentration) on the production of bioprotective compounds in lettuce, which provide a biological countermeasure for radiation exposure. The specific deliverables were to develop a database of bioprotectant compounds in plants that are suitable for use on longduration space missions, develop protocols for maintaining and increasing bioprotectant production under light emitting diodes (LEDs), recommend lighting requirements to produce dietary countermeasures of radiation, and publish results in the Journal of the American Society for Horticultural Science.
Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria.
Ogundele, Lasun T; Owoade, Oyediran K; Hopke, Philip K; Olise, Felix S
2017-07-01
Iron and steel smelting facilities generate large quantities of airborne particulate matter (PM) through their various activities and production processes. The resulting PM that contains a variety of heavy metals has potentially detrimental impacts on human health and the environment. This study was conducted to assess the potential health effects of the pollution from the heavy metals in the airborne PM sampled in the vicinity of secondary smelting operations in Ile-Ife, Nigeria. X-ray fluorescence (XRF) was used to determine the elemental concentration of Pb, Cr, Cd, Zn, Mn, As, Fe, Cu, and Ni in the size-segregated PM samples. Pollution Indices (PI) consisting of Contamination Factor (CF), Degree of Contamination (DC) and Pollution Index Load (PLI) and Target Hazard Quotient (THQ) were employed to assess the pollution risk associated with the heavy metals in the PM. CF, DC and PLI values were 3< CF <6, >32 and >1, respectively for the three sites, indicating deterioration of the ambient air quality in the vicinity of the smelter. The heavy metals in the airborne PM pose a severe health risk to people living in vicinity of the facility and to its workers. The diminished air quality with the associated health risks directly depends on the industrial emissions from steel production and control measures are recommended to mitigate the likely risks. Copyright © 2017 Elsevier Inc. All rights reserved.
Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle
2018-04-06
Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
Room temperature polariton light emitting diode with integrated tunnel junction.
Brodbeck, S; Jahn, J-P; Rahimi-Iman, A; Fischer, J; Amthor, M; Reitzenstein, S; Kamp, M; Schneider, C; Höfling, S
2013-12-16
We present a diode incorporating a large number (12) of GaAs quantum wells that emits light from exciton-polariton states at room temperature. A reversely biased tunnel junction is placed in the cavity region to improve current injection into the device. Electroluminescence studies reveal two polariton branches which are spectrally separated by a Rabi splitting of 6.5 meV. We observe an anticrossing of the two branches when the temperature is lowered below room temperature as well as a Stark shift of both branches in a bias dependent photoluminescence measurement.
Wang, C.L.
1981-05-14
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Attractive potential around a thermionically emitting microparticle.
Delzanno, G L; Lapenta, G; Rosenberg, M
2004-01-23
We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of thermionic electron emission from the grain. It is shown that the orbit motion limited theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well can form, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create nonconventional dust crystals or macromolecules.
Wang, Ching L.
1983-09-13
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Elberson, Benjamin W.; Whisenant, Ty E.; Cortes, D. Marien; Cuello, Luis G.
2017-01-01
The Erwinia chrisanthemi ligand-gated ion channel, ELIC, is considered an excellent structural and functional surrogate for the whole pentameric ligand-gated ion channel family. Despite its simplicity, ELIC is structurally capable of undergoing ligand-dependent activation and a concomitant desensitization process. To determine at the molecular level the structural changes underlying ELIC’s function, it is desirable to produce large quantities of protein. This protein should be properly folded, fully-functional and amenable to structural determinations. In the current paper, we report a completely new protocol for the expression and purification of milligram quantities of fully-functional, more stable and crystallizable ELIC. The use of an autoinduction media and inexpensive detergents during ELIC extraction, in addition to the high-quality and large quantity of the purified channel, are the highlights of this improved biochemical protocol. PMID:28279818
Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S
2003-07-01
A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use.
Sun, Xiankai; Yariv, Amnon
2008-06-09
We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.
Large scale EMF in current sheets induced by tearing modes
NASA Astrophysics Data System (ADS)
Mizerski, Krzysztof A.
2018-02-01
An extension of the analysis of resistive instabilities of a sheet pinch from a famous work by Furth et al (1963 Phys. Fluids 6 459) is presented here, to study the mean electromotive force (EMF) generated by the developing instability. In a Cartesian configuration and in the presence of a current sheet first the boundary layer technique is used to obtain global, matched asymptotic solutions for the velocity and magnetic field and then the solutions are used to calculate the large-scale EMF in the system. It is reported, that in the bulk the curl of the mean EMF is linear in {{j}}0\\cdot {{B}}0, a simple pseudo-scalar quantity constructed from the large-scale quantities.
Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin
2016-01-01
Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes. PMID:26915756
Paper-based α-amylase detector for point-of-care diagnostics.
Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar
2016-04-15
We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase. Copyright © 2015 Elsevier B.V. All rights reserved.
Bt rice does not disrupt the host-searching behavior of the parasitoid Cotesia chilonis
Liu, Qingsong; Romeis, Jörg; Yu, Huilin; Zhang, Yongjun; Li, Yunhe; Peng, Yufa
2015-01-01
We determined whether plant volatiles help explain why Cotesia chilonis (a parasitoid of the target pest Chilo suppressalis) is less abundant in Bt than in non-Bt rice fields. Olfactometer studies revealed that C. chilonis females responded similarly to undamaged Bt and non-Bt rice plants. Parasitoids preferred rice plants damaged by 3rd-instar larvae of C. suppressalis, but did not differentiate between caterpillar-infested Bt and non-Bt plants. According to GC-MS analyses of rice plant volatiles, undamaged Bt and non-Bt rice plants emitted the same number of volatile compounds and there were no significant differences in the quantity of each volatile compound between the treatments. When plants were infested with and damaged by C. suppressalis larvae, both Bt and non-Bt rice plants emitted higher numbers and larger amounts of volatile compounds than undamaged plants, but there were no significant differences between Bt and non-Bt plants. These results demonstrate that the volatile-mediated interactions of rice plants with the parasitoid C. chilonis were not disrupted by the genetic engineering of the plants. We infer that parasitoid numbers are lower in Bt than in non-Bt fields because damage and volatile induction by C. suppressalis larvae are greatly reduced in Bt fields. PMID:26470012
NASA Astrophysics Data System (ADS)
Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.
2016-12-01
We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method of enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.
We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less
White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode
2010-01-01
We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour. PMID:20672120
Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.
2016-12-12
We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less
Masked red-emitting carbopyronine dyes with photosensitive 2-diazo-1-indanone caging group.
Kolmakov, Kirill; Wurm, Christian; Sednev, Maksim V; Bossi, Mariano L; Belov, Vladimir N; Hell, Stefan W
2012-03-01
Caged near-IR emitting fluorescent dyes are in high demand in optical microscopy but up to now were unavailable. We discovered that the combination of a carbopyronine dye core and a photosensitive 2-diazo-1-indanone residue leads to masked near-IR emitting fluorescent dyes. Illumination of these caged dyes with either UV or visible light (λ < 420 nm) efficiently generates fluorescent compounds with absorption and emission at 635 nm and 660 nm, respectively. A high-yielding synthetic route with attractive possibilities for further dye design is described in detail. Good photostability, high contrast, and a large fluorescence quantum yield after uncaging are the most important features of the new compounds for non-invasive imaging in high-resolution optical microscopy. For use in immunolabelling the caged dyes were decorated with a (hydrophilic) linker and an (activated) carboxyl group.
Non-symbolic arithmetic in adults and young children.
Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Dehaene, Stanislas; Kanwisher, Nancy; Spelke, Elizabeth
2006-01-01
Five experiments investigated whether adults and preschool children can perform simple arithmetic calculations on non-symbolic numerosities. Previous research has demonstrated that human adults, human infants, and non-human animals can process numerical quantities through approximate representations of their magnitudes. Here we consider whether these non-symbolic numerical representations might serve as a building block of uniquely human, learned mathematics. Both adults and children with no training in arithmetic successfully performed approximate arithmetic on large sets of elements. Success at these tasks did not depend on non-numerical continuous quantities, modality-specific quantity information, the adoption of alternative non-arithmetic strategies, or learned symbolic arithmetic knowledge. Abstract numerical quantity representations therefore are computationally functional and may provide a foundation for formal mathematics.
Property of Fluctuations of Sales Quantities by Product Category in Convenience Stores
Fukunaga, Gaku; Takayasu, Hideki; Takayasu, Misako
2016-01-01
The ability to ascertain the extent of product sale fluctuations for each store and locality is indispensable to inventory management. This study analyzed POS data from 158 convenience stores in Kawasaki City, Kanagawa Prefecture, Japan and found a power scaling law between the mean and standard deviation of product sales quantities for several product categories. For the statistical domains of low sales quantities, the power index was 1/2; for large sales quantities, the power index was 1, so called Taylor’s law holds. The value of sales quantities with changing power indixes differed according to product category. We derived a Poissonian compound distribution model taking into account fluctuations in customer numbers to show that the scaling law could be explained theoretically for most of items. We also examined why the scaling law did not hold in some exceptional cases. PMID:27310915
NASA Astrophysics Data System (ADS)
Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika M.; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.; Stone, Elizabeth A.
2015-03-01
In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5 × 1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85 to 0.98. Recommendations for future research on this under-characterized source are also provided.
NASA Astrophysics Data System (ADS)
Khairullah; Effendy, S.; Makmur, E. E. S.
2017-03-01
Forest and vegetation peat-fire is one of the main sources of air pollution in Kalimantan, predominantly during the dry period. In 2015, forest and vegetation fire in Central Kalimantan and South Kalimantan emit large quantities of smoke leading to poor air quality. Haze is a phenomenon characterized by high concentration of particulate matter. This research objective is to analyze trajectory and dispersion of concentration particulate matter, PM10 in Banjarbaru and Palangka Raya. Dynamics of PM10 (Particulate matter less than or 10 µm in size) on vegetation peat-fire is done using GDAS (Global Data Assimilation System) output with a horizontal resolution 1º which corresponds to 100 km × 100 km for input model. Climate conditions in the period September to October 2015 at generally during dry season of El Nino year. The Hybrid-single Langrangian Integrated Trajectory (HYSPLIT) model was used to investigate concentration and long-range movement of this pollutant from the source to the receptor area. We used time-series data on PM10 readings obtained from two stations Banjarbaru (South Kalimantan) and Palangka Raya (Central Kalimantan) belonging to Meteorology Climatology and Geophysics Agency (BMKG). We also used weather parameter such as wind speed and direction. We investigated trajectory run from hotspots information MoF (Sipongi Output Programs) and HYSPLIT. We compared concentration obtained from PM10 observation and its concentrations trend. The dispersion pattern, as simulated by HYSPLIT showed that the distribution of PM10 was greatly influenced by the wind direction and topography. There is a large difference between the concentration of PM10 Palangka Raya and Banjarbaru.
NASA Astrophysics Data System (ADS)
Pecha, Petr; Pechova, Emilie
2014-06-01
This article focuses on derivation of an effective algorithm for the fast estimation of cloudshine doses/dose rates induced by a large mixture of radionuclides discharged into the atmosphere. A certain special modification of the classical Gaussian plume approach is proposed for approximation of the near-field dispersion problem. Specifically, the accidental radioactivity release is subdivided into consecutive one-hour Gaussian segments, each driven by a short-term meteorological forecast for the respective hours. Determination of the physical quantity of photon fluence rate from an ambient cloud irradiation is coupled to a special decomposition of the Gaussian plume shape into the equivalent virtual elliptic disks. It facilitates solution of the formerly used time-consuming 3-D integration and provides advantages with regard to acceleration of the computational process on a local scale. An optimal choice of integration limit is adopted on the basis of the mean free path of γ-photons in the air. An efficient approach is introduced for treatment of a wide range of energetic spectrum of the emitted photons when the usual multi-nuclide approach is replaced by a new multi-group scheme. The algorithm is capable of generating the radiological responses in a large net of spatial nodes. It predetermines the proposed procedure such as a proper tool for online data assimilation analysis in the near-field areas. A specific technique for numerical integration is verified on the basis of comparison with a partial analytical solution. Convergence of the finite cloud approximation to the tabulated semi-infinite cloud values for dose conversion factors was validated.
Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa
2016-12-01
Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C 19 C 33 ), n-fatty acids (C 12 C 30 ) and n-alcohols (C 16 C 32 ) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles; Stone, Elizabeth A.
2014-01-01
In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies’ findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg−1), particle number (3.5×1016 kg−1), PM2.5 (5.3 g kg−1), EC (2.37 g kg−1), and 19 individual PAH (totaling 56 mg kg−1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided. PMID:25663800
NASA Astrophysics Data System (ADS)
Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah
2018-03-01
Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.
NASA Astrophysics Data System (ADS)
Khan, M. Naziruddin; Aldalbahi, Ali; Almohammedi, Abdullah
2018-07-01
Colloidal porous silicon (PSi) in different solvents was synthesized by simple chemical etching. Colloidal solutions were then prepared using different quantities of silicon wafer pieces (Pcs) and chloroplatinic (Pt) acid in catalyst solution. The effect on the properties of the colloidal solutions and composite rods were investigated using various optical characterization techniques. Absorption and photoluminescence (PL) intensity of the colloidal PSi solutions are observed to depend on the quantity of wafer Pcs, the Pt-solution, and the porosity formation on the wafer surface. The morphological structure of the PSi in a solvent and the solid-rod environments were studied using field-emission scanning electron microscopy (FE-SEM) and were observed to have different structures. A mono-oriented structure of PSi exists in tetrahydrofuran, which has stereo orientation in dioxane and dimethylsulfoxide (approximately 5-8 nm as confirmed using high resolution transmission electron microscopy). Subsequently, some colloidal PSi solutions were directly embedded in three types of sol-gel-based matrices, silica, ormosils (or organically modified silica) and polymer, which easily generated solid rods. Spontaneous emission (SE) of the PSi solutions and their composite rods were examined using a high power picosecond 355 nm laser source. The emitted PL and SE signals of the colloidal PSi solutions were dependent on the Pt volume, nature of the solvent, quantity of Si wafer piece, and pumping energy. The response of SE signals from the PSi composites rods is an interesting phenomenon, and such nanocomposites may be used for future research on light amplification.
Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors
Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...
2016-05-09
Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less
Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei
Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less
Isotope separation apparatus and method
Cotter, Theodore P.
1982-12-28
The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.
In situ characterization of the oxidative degradation of a polymeric light emitting device
NASA Astrophysics Data System (ADS)
Cumpston, B. H.; Parker, I. D.; Jensen, K. F.
1997-04-01
Light-emitting devices with polymeric emissive layers have great promise for the production of large-area, lightweight, flexible color displays, but short lifetimes currently limit applications. We address mechanisms of bulk polymer degradation in these devices and show through in situ Fourier transform infrared characterization of working light-emitting devices with active layers of poly[2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] that oxygen is responsible for the degradation of the polymer film. A mechanism is given based on the formation of singlet oxygen from oxygen impurities in the film via energy transfer from a nonradiative exciton. Fourier transform infrared and x-ray photoelectron spectroscopy results are consistent with the mechanism, involving singlet oxygen attack followed by free radical processes. We further show that oxygen readily diffuses into the active polymer layer, changing the electrical characteristics of the film even at low concentrations. Thus, polyphenylene-vinylene-based light-emitting devices will self-destruct during operation if fabricated without special attention to eliminating oxygen contamination during fabrication and device operation.
ORNL Demonstrates Large-Scale Technique to Produce Quantum Dots
Graham, David; Moon, Ji-Won
2018-01-16
A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at Oak Ridge National Laboratory.
Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6
NASA Technical Reports Server (NTRS)
Wolfe, A. M
1993-01-01
The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.
2011-01-01
Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662
Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang
2011-12-01
Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.
Multiple wavelength tunable surface-emitting laser arrays
NASA Astrophysics Data System (ADS)
Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei
1991-06-01
Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.
Automatic localization of backscattering events due to particulate in urban areas
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, Andrea; Parracino, Stefano; Richetta, M.; Murari, A.; Vega, J.
2014-10-01
Particulate matter (PM), emitted by vehicles in urban traffic, can greatly affect environment air quality and have direct implications on both human health and infrastructure integrity. The consequences for society are relevant and can impact also on national health. Limits and thresholds of pollutants emitted by vehicles are typically regulated by government agencies. In the last few years, the interest in PM emissions has grown substantially due to both air quality issues and global warming. Lidar-Dial techniques are widely recognized as a costeffective alternative to monitor large regions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable, automatic monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi-Event Locator (UMEL), is applied to the problem of automatically indentifying the time location of peaks in Lidar measurements for the detection of particulate matter emitted by anthropogenic sources like vehicles. The method developed is based on Support Vector Regression and presents various advantages with respect to more traditional techniques. In particular, UMEL is based on the morphological properties of the signals and therefore the method is insensitive to the details of the noise present in the detection system. The approach is also fully general, purely software and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data acquired during an experimental campaign in the field in Rome.
Aerosol optical properties and their radiative effects in northern China
NASA Astrophysics Data System (ADS)
Li, Zhanqing; Xia, Xiangao; Cribb, Maureen; Mi, Wen; Holben, Brent; Wang, Pucai; Chen, Hongbin; Tsay, Si-Chee; Eck, T. F.; Zhao, Fengsheng; Dutton, E. G.; Dickerson, R. E.
2007-11-01
As a fast developing country covering a large territory, China is experiencing rapid environmental changes. High concentrations of aerosols with diverse properties are emitted in the region, providing a unique opportunity for understanding the impact of environmental changes on climate. Until very recently, few observational studies were conducted in the source regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) attempts to characterize the physical, optical and chemical properties of the aerosols and their effects on climate over China. This study presents some preliminary results using continuous high-quality measurements of aerosol, cloud and radiative quantities made at the first EAST-AIRE baseline station at Xianghe, about 70 km east of Beijing over a period of one year (September 2004 to September 2005). It was found that the region is often covered by a thick layer of haze (with a yearly mean aerosol optical depth equal to 0.82 at 500 nm and maximum greater than 4) due primarily to anthropogenic emissions. An abrupt "cleanup" of the haze often took place in a matter of one day or less because of the passage of cold fronts. The mean single scattering albedo is approximately 0.9 but has strong day-to-day variations with maximum monthly averages occurring during the summer. Large aerosol loading and strong absorption lead to a very large aerosol radiative effect at the surface (the annual 24-hour mean values equals 24 W m-2), but a much smaller aerosol radiative effect at the top of the atmosphere (one tenth of the surface value). The boundary atmosphere is thus heated dramatically during the daytime, which may affect atmospheric stability and cloud formation. In comparison, the cloud radiative effect at the surface is only moderately higher (-41 W m-2) than the aerosol radiative effect at the surface.
Hansen, Mark; Howd, Peter; Sallenger, Asbury; Wright, C. Wayne; Lillycrop, Jeff
2007-01-01
Hurricane Katrina severely impacted coastal Mississippi, creating large quantities of building and vegetation debris. This paper summarizes techniques to estimate vegetation and nonvegetation debris quantities from light detection and ranging (lidar) data and presents debris volume results for Harrison County, Miss.
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
A Kinetic Study Using Evaporation of Different Types of Hand-Rub Sanitizers
ERIC Educational Resources Information Center
Pinhas, Allan R.
2010-01-01
Alcohol-based hand-rub sanitizers are the types of products that hospital professionals use very often. These sanitizers can be classified into two major groups: those that contain a large quantity of thickener, and thus are a gel, and those that contain a small quantity of thickener, and thus remain a liquid. In an effort to create a laboratory…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in
Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pumpmore » power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.« less
Large number discrimination by mosquitofish.
Agrillo, Christian; Piffer, Laura; Bisazza, Angelo
2010-12-22
Recent studies have demonstrated that fish display rudimentary numerical abilities similar to those observed in mammals and birds. The mechanisms underlying the discrimination of small quantities (<4) were recently investigated while, to date, no study has examined the discrimination of large numerosities in fish. Subjects were trained to discriminate between two sets of small geometric figures using social reinforcement. In the first experiment mosquitofish were required to discriminate 4 from 8 objects with or without experimental control of the continuous variables that co-vary with number (area, space, density, total luminance). Results showed that fish can use the sole numerical information to compare quantities but that they preferentially use cumulative surface area as a proxy of the number when this information is available. A second experiment investigated the influence of the total number of elements to discriminate large quantities. Fish proved to be able to discriminate up to 100 vs. 200 objects, without showing any significant decrease in accuracy compared with the 4 vs. 8 discrimination. The third experiment investigated the influence of the ratio between the numerosities. Performance was found to decrease when decreasing the numerical distance. Fish were able to discriminate numbers when ratios were 1:2 or 2:3 but not when the ratio was 3:4. The performance of a sample of undergraduate students, tested non-verbally using the same sets of stimuli, largely overlapped that of fish. Fish are able to use pure numerical information when discriminating between quantities larger than 4 units. As observed in human and non-human primates, the numerical system of fish appears to have virtually no upper limit while the numerical ratio has a clear effect on performance. These similarities further reinforce the view of a common origin of non-verbal numerical systems in all vertebrates.
Photosynthesis-related quantities for education and modeling.
Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa
2013-11-01
A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.
Parrish, Audrey E.; Beran, Michael J.
2014-01-01
The context in which food is presented can alter quantity judgments leading to sub-optimal choice behavior. Humans often over-estimate food quantity on the basis of how food is presented. Food appears larger if plated on smaller dishes than larger dishes and liquid volumes appear larger in taller cups than shorter cups. Moreover, smaller but fuller containers are preferred in comparison to larger, but less full containers with a truly larger quantity. Here, we assessed whether similar phenomena occur in chimpanzees. Four chimpanzees chose between two amounts of food presented in different sized containers, a large (2 oz.) and small (1 oz.) cup. When different quantities were presented in the same-sized cups or when the small cup contained the larger quantity, chimpanzees were highly accurate in choosing the larger food amount. However, when different-sized cups contained the same amount of food or the smaller cup contained the smaller amount of food (but looked relatively fuller), the chimpanzees often showed a bias to select the smaller but fuller cup. These findings contribute to our understanding of how quantity estimation and portion judgment is impacted by the surrounding context in which it is presented. PMID:24374384
Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources
NASA Astrophysics Data System (ADS)
Malin, Martha J.
Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP was established. Four clinically relevant 125I brachytherapy sources were measured with the instrument. The accuracy of the measured EP was compared to an air-kerma strength-derived EP to test the accuracy of the instrument. The instrument was accurate to within 10%, with three out of the four source measurements accurate to within 4%.
The NCI Cohort Consortium is an extramural-intramural partnership formed by the National Cancer Institute to address the need for large-scale collaborations to pool the large quantity of data and biospecimens necessary to conduct a wide range of cancer studies.
Carbon capture and sequestration (CCS)
DOT National Transportation Integrated Search
2009-06-19
Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...
27 CFR 40.183 - Record of tobacco products.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES... quantities of all tobacco products, by kind (small cigars-large cigars; small cigarettes-large cigarettes... inventory; (e) Removed subject to tax (itemize large cigars by sale price in accordance with § 40.22, except...
27 CFR 40.183 - Record of tobacco products.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES... quantities of all tobacco products, by kind (small cigars-large cigars; small cigarettes-large cigarettes... inventory; (e) Removed subject to tax (itemize large cigars by sale price in accordance with § 40.22, except...
27 CFR 40.183 - Record of tobacco products.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES... quantities of all tobacco products, by kind (small cigars-large cigars; small cigarettes-large cigarettes... inventory; (e) Removed subject to tax (itemize large cigars by sale price in accordance with § 40.22, except...
The Electron Drift Instrument for MMS
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Vaith, H.; Granoff, M.; Widholm, M.; Gaidos, J. A.; Briggs, B. H.; Dors, I. G.; Chutter, M. W.; Macri, J.; Argall, M.; Bodet, D.; Needell, J.; Steller, M. B.; Baumjohann, W.; Nakamura, R.; Plaschke, F.; Ottacher, H.; Hasiba, J.; Hofmann, K.; Kletzing, C. A.; Bounds, S. R.; Dvorsky, R. T.; Sigsbee, K.; Kooi, V.
2016-03-01
The Electron Drift Instrument (EDI) on the Magnetospheric Multiscale (MMS) mission measures the in-situ electric and magnetic fields using the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and, to a lesser extent, the gradient in the magnetic field. Although these two quantities can be determined separately by use of different electron energies, for MMS regions of interest the magnetic field gradient contribution is negligible. As a by-product of the drift determination, the magnetic field strength and constraints on its direction are also determined. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument on MMS.
Photosynthesis under artificial light: the shift in primary and secondary metabolism
Darko, Eva; Heydarizadeh, Parisa; Schoefs, Benoît; Sabzalian, Mohammad R.
2014-01-01
Providing an adequate quantity and quality of food for the escalating human population under changing climatic conditions is currently a great challenge. In outdoor cultures, sunlight provides energy (through photosynthesis) for photosynthetic organisms. They also use light quality to sense and respond to their environment. To increase the production capacity, controlled growing systems using artificial lighting have been taken into consideration. Recent development of light-emitting diode (LED) technologies presents an enormous potential for improving plant growth and making systems more sustainable. This review uses selected examples to show how LED can mimic natural light to ensure the growth and development of photosynthetic organisms, and how changes in intensity and wavelength can manipulate the plant metabolism with the aim to produce functionalized foods. PMID:24591723
Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration
NASA Astrophysics Data System (ADS)
Dodd, Brandon M.; Tepper, Gary
2017-09-01
Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.
Experimental investigations of the parameter space of sonoluminescence
NASA Astrophysics Data System (ADS)
Weninger, Keith Roger
Sonoluminescence is the process in which a gas bubble levitated within an ensonicated liquid converts sound energy into brief flashes of light. Hydrophone and pulsed light scattering measurements of the runaway collapse of the bubble which leads to the emission of light show bubble wall speeds greater than 1.5 km/sec and accelerations larger than 1011 g. The parameter space for sonoluminescence is expanded to include host fluids other than water. Measurements are reported of the sensitivity of sonoluminescence to small quantities of organic impurities. Sonoluminescence has been obtained from a hemispherical bubble on a solid surface and the light emitted is shown to be similar to the usual sonoluminescence from a bubble in the bulk of a liquid although the surface bubbles are about 10 times larger.
The role of commercial tanning beds and ultraviolet A light in the treatment of psoriasis.
Su, Johanna; Pearce, Daniel J; Feldman, Steven R
2005-01-01
Phototherapy is an effective, safe psoriasis treatment administered via office-based units or home devices. There is controversy over the use of commercial tanning beds; ultraviolet B (UVB) has documented efficacy although commercial beds emit largely UVA. To determine the efficacy of UVA and the role of commercial tanning beds in treating psoriasis. A literature search of UVA and commercial tanning was performed. UVA can be effective for psoriasis, but achieving the high doses required may not be practical. Tanning beds do emit UVB although amounts are variable. Because of variability in UVA and UVB output in different tanning bulbs, it is difficult to predict response rates using commercial tanning beds. UVA can be used to treat psoriasis but may not be practical. Commercial tanning beds, emitting both UVA and UVB, have a role in treating psoriasis as an alternative to office-based therapy.
Methane emissions from tundra environments in the Yukon-Kuskokwin Delta, Alaska
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Sass, Ronald L.; Harriss, Robert C.; Dise, Nancy B.
1992-01-01
This paper reports CH4 flux to the atmosphere from a variety of tundra environments near Bethel, Alaska during the summer months of 1988. Emissions from wet meadow tundra averaged 144 +/- 31 mg/sq m/d and ranged from 15.6 to 426 mg/sq m/d varying with soil moisture and temperature. Flux from the drier upland tundra was about two orders of magnitude lower and averaged 2.3 +/- 1.1 mg/sq m/d. Tundra lakes emit CH4 from the open water surface as well as from fringing aquatic vegetation; the presence of vegetation significantly enhanced flux over open water rates. Calculated diffusive fluxes from open water varied with lake size, the large lakes emitting 3.8 mg/sq m/d and small lakes emitting an average of 77 mg/sq m/d. An updated estimate of global emissions from tundra indicates an annual fluxes of approximately 11 +/- 3 Tg CH4.
NASA Astrophysics Data System (ADS)
Yamamoto, Toshihiro; Nakajima, Yoshiki; Takei, Tatsuya; Fujisaki, Yoshihide; Fukagawa, Hirohiko; Suzuki, Mitsunori; Motomura, Genichi; Sato, Hiroto; Tokito, Shizuo; Fujikake, Hideo
2011-02-01
A new driving scheme for an active-matrix organic light emitting diode (AMOLED) display was developed to prevent the picture quality degradation caused by the hysteresis characteristics of organic thin film transistors (OTFTs). In this driving scheme, the gate electrode voltage of a driving-OTFT is directly controlled through the storage capacitor so that the operating point for the driving-OTFT is on the same hysteresis curve for every pixel after signal data are stored in the storage capacitor. Although the number of OTFTs in each pixel for the AMOLED display is restricted because OTFT size should be large enough to drive organic light emitting diodes (OLEDs) due to their small carrier mobility, it can improve the picture quality for an OTFT-driven flexible OLED display with the basic two transistor-one capacitor circuitry.
Mohan, T Jency; Bahulayan, D
2017-08-01
A highly efficient "Click with MCR" strategy for the three-step synthesis of two types of blue emitting chromene peptidomimetics is described. The peptidomimetics were synthesized via a copper-catalyzed [3[Formula: see text]2] azide-alkyne cycloaddition between chromene alkynes obtained from a three-component reaction and the peptide azides obtained from Ugi or Mannich type multicomponent reactions. The photophysical properties of the peptidomimetics are comparable with commercial fluorophores. Computational studies using drug property descriptors support the possibility of using these molecules for modulating difficult target classes having large, flat, and groove-shaped binding sites.
Highly stable red-emitting polymer dots for cellular imaging
NASA Astrophysics Data System (ADS)
Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Thachoth Chandran, Hrisheekesh; Lee, Chun-Sing
2017-07-01
Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P3HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P3HT Pdots a promising fluorescent probe material for bioimaging.
Highly stable red-emitting polymer dots for cellular imaging.
Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Chandran, Hrisheekesh Thachoth; Lee, Chun-Sing
2017-07-14
Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P 3 HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P 3 HT Pdots a promising fluorescent probe material for bioimaging.
Wang, C.L.
1983-09-13
Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.
Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes
NASA Astrophysics Data System (ADS)
Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson
2015-03-01
Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.
Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi
2015-01-01
Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Papenberg, Martin; Musch, Jochen
2017-01-01
In multiple-choice tests, the quality of distractors may be more important than their number. We therefore examined the joint influence of distractor quality and quantity on test functioning by providing a sample of 5,793 participants with five parallel test sets consisting of items that differed in the number and quality of distractors.…
USDA-ARS?s Scientific Manuscript database
Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeeds...
Polynomial complexity despite the fermionic sign
NASA Astrophysics Data System (ADS)
Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F.
2017-04-01
It is commonly believed that in unbiased quantum Monte Carlo approaches to fermionic many-body problems, the infamous sign problem generically implies prohibitively large computational times for obtaining thermodynamic-limit quantities. We point out that for convergent Feynman diagrammatic series evaluated with a recently introduced Monte Carlo algorithm (see Rossi R., arXiv:1612.05184), the computational time increases only polynomially with the inverse error on thermodynamic-limit quantities.
Toward scatter-free phosphors in white phosphor-converted light-emitting diodes
Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young
2012-01-01
Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113
Eastern Colorado mobility study : final report
DOT National Transportation Integrated Search
2002-04-01
Colorado, with an economy based in large part on agriculture, has a need to transport large quantities of commodities. The rapidly growing urban areas in the state also need many products and goods to support the growth. Furthermore, Colorado is stra...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, A.T.; Wooley, J.D.; Daisey, J.M.
1993-03-01
This study was undertaken to quantify the emissions of volatile organic compounds (VOCs) released by new carpets. Samples of four typical carpets, including two with styrene-butadiene rubber (SBR) latex adhesive and two with different backings, were collected from the finish lines at manufacturers' mills. Individual VOCs released from these samples were identified, and their concentrations, emission rates and mass emissions were measured under simulated indoor conditions in a 20 m[sup 3] environmental chamber over one week periods. Concentrations and emission rates of VOCs emitted by a new SBR carpet were also measured in a house. The carpets emitted a varietymore » of VOCs. The two SBR carpets primarily emitted 4-phenylcyclohexene (4-PCH), the source of [open quotes]new carpet[close quotes] odor, and styrene. The concentrations and emission rates of 4-PCH were similar for the two carpets, while the styrene values varied significantly. The carpet with a polyvinyl chloride backing emitted formaldehyde, vinyl acetate, isooctane, 1,2-propanediol, and 2-ethyl-1-hexanol. Of these, vinyl acetate and propanediol had the highest concentrations and emission rates. The carpet with a polyurethane backing primarily emitted butylated hydroxytoluene. With the exception of formaldehyde, little is known about the health effects of these VOCs at low concentrations. 23 refs., 3 figs., 6 tabs.« less
Free-ranging dogs assess the quantity of opponents in intergroup conflicts.
Bonanni, Roberto; Natoli, Eugenia; Cafazzo, Simona; Valsecchi, Paola
2011-01-01
In conflicts between social groups, the decision of competitors whether to attack/retreat should be based on the assessment of the quantity of individuals in their own and the opposing group. Experimental studies on numerical cognition in animals suggest that they may represent both large and small numbers as noisy mental magnitudes subject to scalar variability, and small numbers (≤4) also as discrete object-files. Consequently, discriminating between large quantities, but not between smaller ones, should become easier as the asymmetry between quantities increases. Here, we tested these hypotheses by recording naturally occurring conflicts in a population of free-ranging dogs, Canis lupus familiaris, living in a suburban environment. The overall probability of at least one pack member approaching opponents aggressively increased with a decreasing ratio of the number of rivals to that of companions. Moreover, the probability that more than half of the pack members withdrew from a conflict increased when this ratio increased. The skill of dogs in correctly assessing relative group size appeared to improve with increasing the asymmetry in size when at least one pack comprised more than four individuals, and appeared affected to a lesser extent by group size asymmetries when dogs had to compare only small numbers. These results provide the first indications that a representation of quantity based on noisy mental magnitudes may be involved in the assessment of opponents in intergroup conflicts and leave open the possibility that an additional, more precise mechanism may operate with small numbers.
A COMPREHENSIVE STUDY OF THE NEUTRON ACTIVATION ANALYSIS OF URANIUM BY DELAYED-NEUTRON COUNTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, F.F.; Emery, J.F.; Leddicotte, G.W.
The method of neutron activation analysis of U by delayed-neutron counting was investigated in order to ascertain if the method would be suitable for routine application to such analyses. It was shown that the method can be used extensively and routinely for the determination of U. Emphasis was placed on the determination of U in the types of sample materials encountered in nuclear technology. Determinations of U were made on such materials as ores, granite, sea sediments, biological tissue, graphite, and metal alloys. The method is based upon the fact that delayed neutrons are emitted from fission products from themore » interaction of neutrons with U/sup 235/. Since the U/sup 235/ component of U undergoes most of the fissions when a sample is in a neutron flux, the method is predominately one for the determination of U/sup 235/. The total U in a sample or the isotopic composition of the U in a sample can be determined provided there is a prior knowledge of one of these quantities. The U/sup 235/ content of a test sample is obtained by comparing its delayed-neutron count to that obtained with a comparator sample containing a known quantity of U/sup 235/. (auth)« less
How Things Work: A Light Brighter Than the Sun.
ERIC Educational Resources Information Center
Crane, H. Richard
1996-01-01
Describes the construction of a new lighting system that uses a sulfur light source no bigger than a golf ball that emits enough light for an entire large room. Discusses the theory behind the system. (JRH)
Automatic measurements and computations for radiochemical analyses
Rosholt, J.N.; Dooley, J.R.
1960-01-01
In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.
NASA Astrophysics Data System (ADS)
Xia, Jinan; Hoan O, Beom; Gol Lee, Seung; Hang Lee, El
2005-03-01
High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with InGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 μm. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does.
Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K
2018-06-26
The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.
Splitting of the weak hypercharge quantum
NASA Astrophysics Data System (ADS)
Nielsen, H. B.; Brene, N.
1991-08-01
The ratio between the weak hypercharge quantum for particles having no coupling to the gauge bosons corresponding to the semi-simple component of the gauge group and the smallest hypercharge quantum for particles that do have such couplings is exceptionally large for the standard model, considering its rank. To compare groups with respect to this property we propose a quantity χ which depends on the rank of the group and the splitting ratio of the hypercharge(s) to be found in the group. The quantity χ has maximal value for the gauge group of the standard model. This suggests that the hypercharge splitting may play an important rôle either in the origin of the gauge symmetry at a fundamental scale or in some kind of selection mechanism at a scale perhaps nearer to the experimental scale. Such a selection mechanism might be what we have called confusion which removes groups with many (so-called generalized) automorphisms. The quantity χ tends to be large for groups with few generalized automorphisms.
Quantities of Arsenic-Treated Wood in Demolition Debris Generated by Hurricane Katrina
Dubey, Brajesh; Solo-Gabriele, Helena M.; Townsend, Timothy G.
2008-01-01
The disaster debris from Hurricane Katrina is one of the largest in terms of volume and economic loss in American history. One of the major components of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures such as electrical poles, fences, decks, and homes a considerable amount of treated wood and consequently arsenic will be disposed as disaster debris. In this study an effort was made to estimate the quantity of arsenic disposed through demolition debris generated in the Louisiana and Mississippi area through Hurricane Katrina. Of the 72 million cubic meters of disaster debris generated, roughly 12 million cubic meters were in the form of construction and demolition wood resulting in an estimated 1740 metric tons of arsenic disposed. Management of disaster debris should consider the relatively large quantities of arsenic associated with pressure-treated wood. PMID:17396637
Large trees losing out to drought
Michael G. Ryan
2015-01-01
Large trees provide many ecological services in forests. They provide seeds for reproduction and food, habitat for plants and animals, and shade for understory vegetation. Older trees and forests store large quantities of carbon, tend to release more water to streams than their more rapidly growing younger counterparts, and provide wood for human use. Mature...
NASA Astrophysics Data System (ADS)
Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.
2015-07-01
In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
Automated astatination of biomolecules – a stepping stone towards multicenter clinical trials
Aneheim, Emma; Albertsson, Per; Bäck, Tom; Jensen, Holger; Palm, Stig; Lindegren, Sture
2015-01-01
To facilitate multicentre clinical studies on targeted alpha therapy, it is necessary to develop an automated, on-site procedure for conjugating rare, short-lived, alpha-emitting radionuclides to biomolecules. Astatine-211 is one of the few alpha-emitting nuclides with appropriate chemical and physical properties for use in targeted therapies for cancer. Due to the very short range of the emitted α-particles, this therapy is particularly suited to treating occult, disseminated cancers. Astatine is not intrinsically tumour-specific; therefore, it requires an appropriate tumour-specific targeting vector, which can guide the radiation to the cancer cells. Consequently, an appropriate method is required for coupling the nuclide to the vector. To increase the availability of astatine-211 radiopharmaceuticals for targeted alpha therapy, their production should be automated. Here, we present a method that combines dry distillation of astatine-211 and a synthesis module for producing radiopharmaceuticals into a process platform. This platform will standardize production of astatinated radiopharmaceuticals, and hence, it will facilitate large clinical studies focused on this promising, but chemically challenging, alpha-emitting radionuclide. In this work, we describe the process platform, and we demonstrate the production of both astaine-211, for preclinical use, and astatine-211 labelled antibodies. PMID:26169786
234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2018-01-01
Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.
NASA Astrophysics Data System (ADS)
MacDougall, Andrew
2013-04-01
Understandably, most climate modelling studies of future climate have focused on the affects of carbon emissions in the present century or the long-term fate of anthropogenically emitted carbon. These studies make an assumption: that once net anthropogenic carbon emissions cease, that humanity will make no further effort to intervene in atmospheric composition. There is a case to be made, however, that there will be a desire to return to a "safe" atmospheric concentration of CO2. Realistically this implies synthetically removing CO2 from the atmosphere and storing it is some geologically stable form. For this study experiments were conducted using the University of Victoria Earth System Climate Model (UVic ESCM) forced with novel future atmospheric trace-gas concentration pathways to explore a gradual return to pre-industrial radiative forcing. The concentration pathways follow each RCP (2.6, 4.5, 6.0, and 8.5) exactly until the peak CO2 concentration of that RCP is reached, at which point atmospheric CO2 is reduced at the same rate it increased until the 1850 concentration of CO2 is reached. Non-CO2 greenhouse gas forcing follows the prescribed RCP path until the year of peak CO2, then is subsequently linearly reduced to pre-industrial forcing. Pasture and crop areas are also gradually reduced to their pre-industrial extent. Under the middle two concentration pathways (4.5 and 6.0) a climate resembling the 20th century climate can be restored by the 25th century, although surface temperature remains above the pre-industrial temperature until at least the 30th century. Due to carbon-cycle feedbacks the quantity of carbon that must be removed from the atmosphere is larger than the quantity that was originally emitted. For concentration pathways 2.6, 4.5, and 6.0 the sequestered CO2 is 115-190% of the original cumulative carbon emissions. These results suggest that even with monumental effort to remove CO2 from the atmosphere, humanity will be living with the consequences of fossil fuel emissions for a very long time.
Birdwell, Justin E.
2017-01-01
Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.
A Semi-Vectorization Algorithm to Synthesis of Gravitational Anomaly Quantities on the Earth
NASA Astrophysics Data System (ADS)
Abdollahzadeh, M.; Eshagh, M.; Najafi Alamdari, M.
2009-04-01
The Earth's gravitational potential can be expressed by the well-known spherical harmonic expansion. The computational time of summing up this expansion is an important practical issue which can be reduced by an efficient numerical algorithm. This paper proposes such a method for block-wise synthesizing the anomaly quantities on the Earth surface using vectorization. Fully-vectorization means transformation of the summations to the simple matrix and vector products. It is not a practical for the matrices with large dimensions. Here a semi-vectorization algorithm is proposed to avoid working with large vectors and matrices. It speeds up the computations by using one loop for the summation either on degrees or on orders. The former is a good option to synthesize the anomaly quantities on the Earth surface considering a digital elevation model (DEM). This approach is more efficient than the two-step method which computes the quantities on the reference ellipsoid and continues them upward to the Earth surface. The algorithm has been coded in MATLAB which synthesizes a global grid of 5â²Ã- 5â² (corresponding 9 million points) of gravity anomaly or geoid height using a geopotential model to degree 360 in 10000 seconds by an ordinary computer with 2G RAM.
Foster, Stephen P; Anderson, Karin G; Casas, Jérôme
2018-05-10
Moths are exemplars of chemical communication, especially with regard to specificity and the minute amounts they use. Yet, little is known about how females manage synthesis and storage of pheromone to maintain release rates attractive to conspecific males and why such small amounts are used. We developed, for the first time, a quantitative model, based on an extensive empirical data set, describing the dynamical relationship among synthesis, storage (titer) and release of pheromone over time in a moth (Heliothis virescens). The model is compartmental, with one major state variable (titer), one time-varying (synthesis), and two constant (catabolism and release) rates. The model was a good fit, suggesting it accounted for the major processes. Overall, we found the relatively small amounts of pheromone stored and released were largely a function of high catabolism rather than a low rate of synthesis. A paradigm shift may be necessary to understand the low amounts released by female moths, away from the small quantities synthesized to the (relatively) large amounts catabolized. Future research on pheromone quantity should focus on structural and physicochemical processes that limit storage and release rate quantities. To our knowledge, this is the first time that pheromone gland function has been modeled for any animal.
Sequential monitoring of beach litter using webcams.
Kako, Shin'ichiro; Isobe, Atsuhiko; Magome, Shinya
2010-05-01
This study attempts to establish a system for the sequential monitoring of beach litter using webcams placed at the Ookushi beach, Goto Islands, Japan, to establish the temporal variability in the quantities of beach litter every 90 min over a one and a half year period. The time series of the quantities of beach litter, computed by counting pixels with a greater lightness than a threshold value in photographs, shows that litter does not increase monotonically on the beach, but fluctuates mainly on a monthly time scale or less. To investigate what factors influence this variability, the time derivative of the quantity of beach litter is compared with satellite-derived wind speeds. It is found that the beach litter quantities vary largely with winds, but there may be other influencing factors. (c) 2010 Elsevier Ltd. All rights reserved.
Seafood prices reveal impacts of a major ecological disturbance
Smith, Martin D.; Oglend, Atle; Kirkpatrick, A. Justin; Asche, Frank; Bennear, Lori S.; Craig, J. Kevin; Nance, James M.
2017-01-01
Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem worldwide that threatens marine ecosystem services, but little is known about economic effects on fisheries. Here, we provide evidence that hypoxia causes economic impacts on a major fishery. Ecological studies of hypoxia and marine fauna suggest multiple mechanisms through which hypoxia can skew a population’s size distribution toward smaller individuals. These mechanisms produce sharp predictions about changes in seafood markets. Hypoxia is hypothesized to decrease the quantity of large shrimp relative to small shrimp and increase the price of large shrimp relative to small shrimp. We test these hypotheses using time series of size-based prices. Naive quantity-based models using treatment/control comparisons in hypoxic and nonhypoxic areas produce null results, but we find strong evidence of the hypothesized effects in the relative prices: Hypoxia increases the relative price of large shrimp compared with small shrimp. The effects of fuel prices provide supporting evidence. Empirical models of fishing effort and bioeconomic simulations explain why quantifying effects of hypoxia on fisheries using quantity data has been inconclusive. Specifically, spatial-dynamic feedbacks across the natural system (the fish stock) and human system (the mobile fishing fleet) confound “treated” and “control” areas. Consequently, analyses of price data, which rely on a market counterfactual, are able to reveal effects of the ecological disturbance that are obscured in quantity data. Our results are an important step toward quantifying the economic value of reduced upstream nutrient loading in the Mississippi Basin and are broadly applicable to other coupled human-natural systems. PMID:28137850
Seafood prices reveal impacts of a major ecological disturbance.
Smith, Martin D; Oglend, Atle; Kirkpatrick, A Justin; Asche, Frank; Bennear, Lori S; Craig, J Kevin; Nance, James M
2017-02-14
Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem worldwide that threatens marine ecosystem services, but little is known about economic effects on fisheries. Here, we provide evidence that hypoxia causes economic impacts on a major fishery. Ecological studies of hypoxia and marine fauna suggest multiple mechanisms through which hypoxia can skew a population's size distribution toward smaller individuals. These mechanisms produce sharp predictions about changes in seafood markets. Hypoxia is hypothesized to decrease the quantity of large shrimp relative to small shrimp and increase the price of large shrimp relative to small shrimp. We test these hypotheses using time series of size-based prices. Naive quantity-based models using treatment/control comparisons in hypoxic and nonhypoxic areas produce null results, but we find strong evidence of the hypothesized effects in the relative prices: Hypoxia increases the relative price of large shrimp compared with small shrimp. The effects of fuel prices provide supporting evidence. Empirical models of fishing effort and bioeconomic simulations explain why quantifying effects of hypoxia on fisheries using quantity data has been inconclusive. Specifically, spatial-dynamic feedbacks across the natural system (the fish stock) and human system (the mobile fishing fleet) confound "treated" and "control" areas. Consequently, analyses of price data, which rely on a market counterfactual, are able to reveal effects of the ecological disturbance that are obscured in quantity data. Our results are an important step toward quantifying the economic value of reduced upstream nutrient loading in the Mississippi Basin and are broadly applicable to other coupled human-natural systems.
Combined calculi for photon orbital and spin angular momenta
NASA Astrophysics Data System (ADS)
Elias, N. M.
2014-08-01
Context. Wavelength, photon spin angular momentum (PSAM), and photon orbital angular momentum (POAM), completely describe the state of a photon or an electric field (an ensemble of photons). Wavelength relates directly to energy and linear momentum, the corresponding kinetic quantities. PSAM and POAM, themselves kinetic quantities, are colloquially known as polarization and optical vortices, respectively. Astrophysical sources emit photons that carry this information. Aims: PSAM characteristics of an electric field (intensity) are compactly described by the Jones (Stokes/Mueller) calculus. Similarly, I created calculi to represent POAM characteristics of electric fields and intensities in an astrophysical context. Adding wavelength dependence to all of these calculi is trivial. The next logical steps are to 1) form photon total angular momentum (PTAM = POAM + PSAM) calculi; 2) prove their validity using operators and expectation values; and 3) show that instrumental PSAM can affect measured POAM values for certain types of electric fields. Methods: I derive the PTAM calculi of electric fields and intensities by combining the POAM and PSAM calculi. I show how these quantities propagate from celestial sphere to image plane. I also form the PTAM operator (the sum of the POAM and PSAM operators), with and without instrumental PSAM, and calculate the corresponding expectation values. Results: Apart from the vector, matrix, dot product, and direct product symbols, the PTAM and POAM calculi appear superficially identical. I provide tables with all possible forms of PTAM calculi. I prove that PTAM expectation values are correct for instruments with and without instrumental PSAM. I also show that POAM measurements of "unfactored" PTAM electric fields passing through non-zero instrumental circular PSAM can be biased. Conclusions: The combined PTAM calculi provide insight into mathematically modeling PTAM sources and calibrating POAM- and PSAM-induced measurement errors.
NASA Astrophysics Data System (ADS)
Roşu, M. M.; Tarbă, C. I.; Neagu, C.
2016-11-01
The current models for inventory management are complementary, but together they offer a large pallet of elements for solving complex problems of companies when wanting to establish the optimum economic order quantity for unfinished products, row of materials, goods etc. The main objective of this paper is to elaborate an automated decisional model for the calculus of the economic order quantity taking into account the price regressive rates for the total order quantity. This model has two main objectives: first, to determine the periodicity when to be done the order n or the quantity order q; second, to determine the levels of stock: lighting control, security stock etc. In this way we can provide the answer to two fundamental questions: How much must be ordered? When to Order? In the current practice, the business relationships with its suppliers are based on regressive rates for price. This means that suppliers may grant discounts, from a certain level of quantities ordered. Thus, the unit price of the products is a variable which depends on the order size. So, the most important element for choosing the optimum for the economic order quantity is the total cost for ordering and this cost depends on the following elements: the medium price per units, the stock cost, the ordering cost etc.
Towards large-scale plasma-assisted synthesis of nanowires
NASA Astrophysics Data System (ADS)
Cvelbar, U.
2011-05-01
Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.
Zhu, Yuyang; Yan, Maomao; Lasanajak, Yi; Smith, David F; Song, Xuezheng
2018-07-15
Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space
Thomas Hilker; Nicholas C. Coops; Forest G. Hall; Caroline J. Nichol; Alexei Lyapustin; T. Andrew Black; Michael A. Wulder; Ray Leuning; Alan Barr; David Y. Hollinger; Bill Munger; Compton J. Tucker
2011-01-01
Terrestrial ecosystems absorb about 2.8 Gt C yrâ1, which is estimated to be about a quarter of the carbon emitted from fossil fuel combustion. However, the uncertainties of this sink are large, on the order of ±40%, with spatial and temporal variations largely unknown. One of the largest factors contributing to the uncertainty is photosynthesis,...
Ruhoff, J.R.; Winters, C.E.
1957-11-12
A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.
NASA Technical Reports Server (NTRS)
Boccio, Dona
2003-01-01
Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.
The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry
NASA Astrophysics Data System (ADS)
Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.
2014-08-01
Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.
Lee, Ya-Ju; Chou, Chun-Yang; Huang, Chun-Ying; Yao, Yung-Chi; Haung, Yi-Kai; Tsai, Meng-Tsan
2017-10-31
The coefficient of thermal expansion (CTE) is a physical quantity that indicates the thermal expansion value of a material upon heating. For advanced thermal management, the accurate and immediate determination of the CTE of packaging materials is gaining importance because the demand for high-power lighting-emitting diodes (LEDs) is currently increasing. In this study, we used optical coherence tomography (OCT) to measure the CTE of an InGaN-based (λ = 450 nm) high-power LED encapsulated in polystyrene resin. The distances between individual interfaces of the OCT images were observed and recorded to derive the instantaneous CTE of the packaged LED under different injected currents. The LED junction temperature at different injected currents was established with the forward voltage method. Accordingly, the measured instantaneous CTE of polystyrene resin varied from 5.86 × 10 -5 °C -1 to 14.10 × 10 -5 °C -1 in the junction temperature range 25-225 °C and exhibited a uniform distribution in an OCT scanning area of 200 × 200 μm. Most importantly, this work validates the hypothesis that OCT can provide an alternative way to directly and nondestructively determine the spatially resolved CTE of the packaged LED device, which offers significant advantages over traditional CTE measurement techniques.
C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential
Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai
2013-01-01
Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129
Gall volatiles defend aphids against a browsing mammal
2013-01-01
Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365
The synthesis and luminescence properties of a novel red-emitting phosphor: Eu3+-doped Ca9La(PO4)7
NASA Astrophysics Data System (ADS)
Liang, Zehui; Mu, Zhongfei; Wang, Qiang; Zhu, Daoyun; Wu, Fugen
2017-10-01
A series of novel red-emitting phosphors Ca9La1- x (PO4)7: xEu3+ were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O2--Eu3+ charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu3+-doped Ca9La(PO4)7, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of 5D0 → 7F2 of Eu3+ in this lattice can emit bright red light. Ca9La(PO4)7 could accommodate a large amount of Eu3+ with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu3+ is the dominant mechanism for concentration quenching of Eu3+. The calculated color coordinates lie in red region ( x = 0.64, y = 0.36), which is close to Y2O3: 0.05Eu3+ ( x = 0.65, y = 0.34). The integral emission intensity of Ca9La0.4(PO4)7: 0.6Eu3+ is 1.9 times stronger than that of widely used commercial red phosphor Y2O3: 0.05Eu3+. All these results indicate that Eu3+-doped Ca9La(PO4)7 is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes.
NASA Astrophysics Data System (ADS)
Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.
2006-11-01
In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.
NASA Astrophysics Data System (ADS)
Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2016-02-01
Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.
Production of a large, quiescent, magnetized plasma
NASA Technical Reports Server (NTRS)
Landt, D. L.; Ajmera, R. C.
1976-01-01
An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.
NASA Astrophysics Data System (ADS)
Sparks, A. M.; Yokelson, R. J.; Smith, A. M.; Marshall, J. D.; Tinkham, W.
2013-12-01
The importance of wildland fire as a source of trace gas emissions to the atmosphere has been demonstrated in the scientific literature and through numerous NASA funded campaigns to further understand the drivers and impacts of these emissions (e.g., SAFARI 1992, SAFARI 2000, TRACE A, etc). Most studies quantify emissions using remotely sensed data through multiplying the area burned, the quantity of fuel combusted, and the emission factors of a given gas species (EFX, grams of gas, X, emitted per kilogram of fuel consumed). The latter is known to exhibit considerable uncertainty and indeed a prior study as part of NASA's SAFARI 2000 campaign highlighted a seasonal dependence of carbonaceous gas species emissions. In this study, rangeland grass and shrub species were collected periodically from northern Great Basin shrub-steppe ecosystems during the typical burn season and burned in a small-scale laboratory setup where major carbonaceous and nitrogenous emission species were monitored and measured. Preliminary results indicate that emission factors of several major gas species, including carbon monoxide and nitrogen oxides, vary considerably over the course of a season. Large differences in emission apportionment between the rangeland species also suggests that shifting vegetation composition (via replacement of native with invasive species) can have a significant influence on emissions from semi-arid ecosystems. Further development of this data could lead to an enhanced understanding of how emission factors vary seasonally and how total emissions change with major vegetation shifts in other ecosystems.
NASA Astrophysics Data System (ADS)
Proctor, J.; Hsiang, S. M.; Burney, J. A.; Burke, M.; Schlenker, W.
2017-12-01
Solar radiation management (SRM) is increasingly considered an option for managing global temperatures, yet the economic impacts of ameliorating climatic changes by scattering sunlight back to space remain largely unknown. Though SRM may increase crop yields by reducing heat stress, its impacts from concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern SRM proposals as natural experiments to provide the first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of El Chichon and Pinatubo altered the quantity and quality of global sunlight, how those changes in sunlight impacted global crop yields, and the total effect that SS may have on yields in an SRM scenario when the climatic and sunlight effects are jointly considered. We find that the sunlight-mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geoengineering scenario using SS-based SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling. This suggests that SRM - if deployed using SS similar to those emitted by the volcanic eruptions it seeks to mimic - would attenuate little of the damages from climate change to global agriculture on net. Our approach could be extended to study SRM impacts on other global systems, such as human health or ecosystem function.
Mortality of coke plant workers in The Netherlands.
Swaen, G M; Slangen, J J; Volovics, A; Hayes, R B; Scheffers, T; Sturmans, F
1991-01-01
During the production of coke, large quantities of coke oven gas are emitted. People who work on the top or on the sides of coke ovens are exposed to this oven gas, which contains a range of carcinogenic chemicals. To investigate the cancer risks under these work conditions, a retrospective study was undertaken. In total 11,399 former workers were enrolled in the study. Of these, 5639 had worked in the coke plant for at least six months between 1945 and 1969. The other 5740 had worked in another plant during the same period and formed a non-exposed group for comparison. The study group was followed up until 1984 for mortality. The causes of death were obtained from the Central Bureau of Statistics. Among the coke oven workers significantly higher death rates were found for lung cancer and non-malignant respiratory disease. Mortality in the byproduct section was similar to that expected. Among workers in the tar distillery the rate for lung cancer was higher than expected. The risk for gastric cancer and non-malignant respiratory disease among the workers of the coke shipping department was increased but the SMRs did not reach statistical significance. No data were collected about individual smoking habits or socioeconomic state of the study subjects and the possibility that the risk found could be attributed to these factors cannot be ruled out. It has been stated by other investigators, however, that the effect of not controlling for smoking tends to be modest. PMID:1998607
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
Cryogenic characterization of LEDs for space application
NASA Astrophysics Data System (ADS)
Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu
2017-09-01
In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.
Availability of yttrium-90 from strontium-90: a nuclear medicine perspective.
Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A
2012-12-01
Yttrium-90 (T(½) 64.1 hours, E(βmax)=2.28 MeV) is a pure β⁻ particle emitting radionuclide with well-established applications in targeted therapy. There are several advantages of ⁹⁰Y as a therapeutic radionuclide. It has a suitable physical half-life (∼64 hours) and decays to a stable daughter product ⁹⁰Zr by emission of high-energy β⁻ particles. Yttrium has a relatively simple chemistry and its suitability for forming complexes with a variety of chelating agents is well established. The ⁹⁰Sr/⁹⁰Y generator is an ideal source for the long-term continuous availability of no-carrier-added ⁹⁰Y suitable for the preparation of radiopharmaceuticals for radionuclide therapy. The parent radionuclide ⁹⁰Sr, which is a long-lived fission product, is available in large quantities from spent fuel. Several useful technologies have been developed for the preparation of ⁹⁰Sr/⁹⁰Y generators. There are several well-established radiopharmaceuticals based on monoclonal antibodies, peptides, and particulates labeled with ⁹⁰Y, that are in regular use for the treatment of some forms of primary cancers and arthritis. At present, there are no generators for the elution of ⁹⁰Y that can be set up in a hospital radiopharmacy. The radionuclide is procured from manufacturers and the radiopharmaceuticals are formulated on site. This article reviews the development of ⁹⁰Sr/⁹⁰Y generator and the development of ⁹⁰Y radiopharmaceuticals.
Nonconservative and reverse spectral transfer in Hasegawa-Mima turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry, P.W.; Newman, D.E.
1993-01-01
The dual cascade is generally represented as a conservative cascade of enstrophy to short wavelengths through an enstrophy similarity range and an inverse cascade of energy to long wavelengths through an energy similarity range. This picture, based on a proof due to Kraichnan [Phys. Fluids 10, 1417 (1967)], is found to be significantly modified for a spectra of finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa-Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the conserved quantity is accompanied by a nonconservative transfer of the other quantity. The decrease of a givenmore » invariant (energy or enstrophy) in the nonconservative transfer in one similarity range is balanced by the increase of that quantity in the other similarity range, thus maintaining net invariance. The increase or decrease of a given invariant quantity in one similarity range depends on the injection scale and is consistent with that quantity being carried in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of finite size, to some energy being carried to small scales and some enstrophy being carried to large scales.« less
Nonconservative and reverse spectral transfer in Hasegawa--Mima turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry, P.W.; Newman, D.E.
1993-07-01
The dual cascade is generally represented as a conservative cascade of enstrophy to short wavelengths through an enstrophy similarity range and an inverse cascade of energy to long wavelengths through an energy similarity range. This picture, based on a proof due to Kraichnan [Phys. Fluids [bold 10], 1417 (1967)], is found to be significantly modified for spectra of finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa--Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the conserved quantity is accompanied by a nonconservative transfer of the other quantity. The decrease of a givenmore » invariant (energy or enstrophy) in the nonconservative transfer in one similarity range is balanced by the increase of that quantity in the other similarity range, thus maintaining net invariance. The increase or decrease of a given invariant quantity in one similarity range depends on the injection scale and is consistent with that quantity being carried in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of finite size, to some energy being carried to small scales and some enstrophy being carried to large scales.« less
Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W
2012-07-01
An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.
Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin
2017-08-01
Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju
2010-05-21
We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.
NASA Astrophysics Data System (ADS)
Kim, D.-H.; Sandanayaka, A. S. D.; Zhao, L.; Pitrat, D.; Mulatier, J. C.; Matsushima, T.; Andraud, C.; Ribierre, J. C.; Adachi, C.
2017-01-01
We report on the photophysical, amplified spontaneous emission (ASE), and electroluminescence properties of a blue-emitting octafluorene derivative in spin-coated films. The neat film shows an extremely low ASE threshold of 90 nJ/cm2, which is related to its high photoluminescence quantum yield of 87% and its large radiative decay rate of 1.7 × 109 s-1. Low-threshold organic distributed feedback semiconductor lasers and fluorescent organic light-emitting diodes with a maximum external quantum efficiency as high as 4.4% are then demonstrated, providing evidence that this octafluorene derivative is a promising candidate for organic laser applications.
NASA Astrophysics Data System (ADS)
Oh, Kyonghwan; Kwon, Oh-Kyong
2012-03-01
A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.
Quantum dots for GaAs-based surface emitting lasers at 1300 nm
NASA Astrophysics Data System (ADS)
Grundmann, M.; Ledentsov, N. N.; Hopfer, F.; Heinrichsdorff, F.; Guffarth, F.; Bimberg, D.; Ustinov, V. M.; Zhukov, A. E.; Kovsh, A. R.; Maximov, M. V.; Musikhin, Yu. G.; Alferov, Zh. I.; Lott, J. A.; Zhakharov, N. D.; Werner, P.
InGaAs quantum dots (QD's) on GaAs substrate have been fabricated using metal-organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) for the use in vertical cavity surface emitting laser diodes. Similar recombination spectra are obtained by employing the two different approaches of seeding and overgrowth with a quantum well. Despite the shift to larger wavelengths a large separation (=80 meV) between excited states is maintained. The introduction of such QD's into a vertical cavity leads to strong narrowing of the emission spectrum. Lasing from a 1300 nm InGaAs quantum dot VCSEL is reported.
MODELING TRANSPORT AND TRANSFORMATION OF HG COMPOUNDS IN CONTINENTAL AIR MASSES
The global mercury cycle involves both continental and marine environments. However, there are special considerations for modeling atmospheric mercury over continents. Most anthropogenic sources of atmospheric mercury are on continents and they emit a large fraction in oxidized ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, A.A.; McCarthy, P.G.; Edl, J.W.
1975-05-01
Elemental tritium is shipped at low pressure in a stainless steel container (LP-50) surrounded by an aluminum vessel and Celotex insulation at least 4 in. thick in a steel drum. Each package contains a large quantity (greater than a Type A quantity) of nonfissile material, as defined in AECM 0529. This report provides the details of the safety analysis performed for this type container.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... S = Concentration of SS from a user above a base level. Pc = O&M cost for treatment of a unit of any...(B)=Sc(S)=Pc(P)]Vu (3) Model No. 3. This model is commonly called the “quantity/quality formula”: Cu = Vc Vu=Bc Bu=Sc Su=Pc Pu (h) Other considerations. (1) Quantity discounts to large volume users will...
Forecasting Science and Technology for the Department of Defense
2009-12-01
Watson and Francis Crick announced that they had elucidated the structure of DNA and had therefore “discovered the secret of life.” While this was a...an organic chemist, figured out a process by which very small quantities of DNA could be amplified with high fidelity. This process, known as...polymerase chain reaction (PCR), for the first time, allowed scientists to produce DNA in large quantities. Roughly during this period, Leroy Hood and
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1993-01-01
A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.
High-flexibility, noncollapsing lightweight hose
Williams, David A.
1993-01-01
A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.
High-flexibility, noncollapsing lightweight hose
Williams, D.A.
1993-04-20
A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.
Karasawa, Satoshi; Araki, Toshio; Nagai, Takeharu; Mizuno, Hideaki; Miyawaki, Atsushi
2004-07-01
GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.
NASA Technical Reports Server (NTRS)
Atwater, J. E.; Michalek, W. F.; Wheeler, R. R. Jr; Dahl, R.; Lunsford, T. D.; Garmon, F. C.; Sauer, R. L.
2001-01-01
Novel methods and apparatus that employ the rapid heating characteristics of microwave irradiation to facilitate the aseptic transfer of nutrients, products, and other materials between microbially sensitive systems and the external environment are described. The microwave-sterilizable access port (MSAP) consists of a 600-W magnetron emitting at a frequency of 2.45 GHz, a sterilization chamber with inlet and outlet flow lines, and a specimen transfer interface. Energy is routed to the sterilization chamber via a coaxial transmission line where small quantities of water couple strongly with the incident radiation to produce a superheated vapor phase. The efficiency of energy transfer is enhanced through the use of microwave susceptors within the sterilization chamber. Mating surfaces are thermally sterilized through direct contact with the hot gas. Efficacy has been demonstrated using the thermophile Bacillus stearothermophilus.
Greene, Ernest; Ogden, R. Todd
2013-01-01
Shape patterns were displayed with simultaneous brief flashes from a light-emitting diode array. Flash durations in the microsecond range and luminous intensities were adjusted to vary the degree of successful shape recognition. Four experiments were conducted to test whether Bloch's law would apply in this task. Bloch's law holds that for very brief flashes the perceptual threshold is determined by the total number of photons being delivered, i.e., there is reciprocity of intensity and duration. The present results did not find that effectiveness of flashes was based on the total quantity of photons, as predicted by Bloch's law. Additionally, the evidence points to a visual mechanism that has ultra-high temporal precision that either registers the rate of photon flux or the duration of flashes. PMID:24349700
Advances in measuring techniques for turbine cooling test rigs
NASA Technical Reports Server (NTRS)
Pollack, F. G.
1972-01-01
Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.
Organic plasmon-emitting diodes for detecting refractive index variation.
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-06-28
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10-3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor.
Estimation of gloss from rough surface parameters
NASA Astrophysics Data System (ADS)
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Huili; Liu, Zhifang; Yang, Jiaqin
2014-09-15
Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{submore » 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.« less
Current databases on biological variation: pros, cons and progress.
Ricós, C; Alvarez, V; Cava, F; García-Lario, J V; Hernández, A; Jiménez, C V; Minchinela, J; Perich, C; Simón, M
1999-11-01
A database with reliable information to derive definitive analytical quality specifications for a large number of clinical laboratory tests was prepared in this work. This was achieved by comparing and correlating descriptive data and relevant observations with the biological variation information, an approach that had not been used in the previous efforts of this type. The material compiled in the database was obtained from published articles referenced in BIOS, CURRENT CONTENTS, EMBASE and MEDLINE using "biological variation & laboratory medicine" as key words, as well as books and doctoral theses provided by their authors. The database covers 316 quantities and reviews 191 articles, fewer than 10 of which had to be rejected. The within- and between-subject coefficients of variation and the subsequent desirable quality specifications for precision, bias and total error for all the quantities accepted are presented. Sex-related stratification of results was justified for only four quantities and, in these cases, quality specifications were derived from the group with lower within-subject variation. For certain quantities, biological variation in pathological states was higher than in the healthy state. In these cases, quality specifications were derived only from the healthy population (most stringent). Several quantities (particularly hormones) have been treated in very few articles and the results found are highly discrepant. Therefore, professionals in laboratory medicine should be strongly encouraged to study the quantities for which results are discrepant, the 90 quantities described in only one paper and the numerous quantities that have not been the subject of study.
Panthani, Matthew G; Korgel, Brian A
2012-01-01
Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.
ACIDIC PRECIPITATION EFFECTS ON TERRESTRIAL VEGETATION
Acid precipitation is a significant air pollution problem in North America and Europe. Here, large amounts of sulfur and nitrogen oxides and many other substances are emitted into the atmosphere from the combustion of fossil fuels, the smelting of sulfide metal ores, and other in...
Reddening and extinction towards H II regions
NASA Technical Reports Server (NTRS)
Caplan, James; Deharveng, Lise
1989-01-01
The light emitted by the gas in H II regions is attenuated by dust. This extinction can be measured by comparing H alpha, H beta, and radio continuum fluxes, since the intrinsic ratios of the Balmer line and thermal radio continuum emissivities are nearly constant for reasonable conditions in H II regions. In the case of giant extragalactic H II regions, the extinction was found to be considerably greater than expected. The dust between the Earth and the emitting gas may have an optical thickness which varies. The dust may be close enough to the source that scattered light contributes to the flux, or the dust may be actually mixed with the emitting gas. It is difficult to decide which configuration is correct. A rediscussion of this question in light of recent observations, with the Fabry-Perot spectrophotometers, of the large Galactic H II region is presented. The color excesses are compared for stars embedded in these H II regions with those derived (assuming the standard law) from the nebular extinction and reddening.
[Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].
Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju
2010-10-01
The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.
NASA Technical Reports Server (NTRS)
Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia; Tyson, Daniel S.; Leventis, Nicholas
2005-01-01
A large bathochromic shift (50 nm) and emission in the near infrared is observed by attaching arylethynyl groups at the 3,8-positions of the 1,10-phenanthroline ligand (phen) of [Os(bipy)2(phen)]2+ (where bipy = 2,2'-bipyridine). Thus [Os(bipy)2(3,8-di-4-methoxyphenylethynyl-1,10-phenathroline)]2+ emits at 795 nm, while [Os(bipy)2(3,8-diphenylethynyl-1,10-phenanthroline)]2+ emits at 815 nm. According to this trend it would have been expected that [Os(bipy)2(3,8-di-4-nitrophenylethynyl-1,10-phenathroline)]2+ emits farther in the near infrared. Nevertheless, this complex is not photoluminescent because of intramolecular electron transfer quenching of the MLCT excited state by the nitroaromatic group. These results set structural and redox potential standards in the design of near infrared emitters based on [Os(bipy)2(phen)]2+ type complexes.
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Processing of materials for uniform field emission
Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung
1999-01-01
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
An Evaluation of Reaction Wheel Emitted Vibrations for Large Space Telescope
NASA Technical Reports Server (NTRS)
1976-01-01
Emitted force and torque vibration were measured in three axes for three Sperry reaction wheels. Data were taken for both hard and soft mounts; tests were conducted at constant speeds and during runup-rundown over a 0 to 5000 rpm range. A FSC, 7 ft-lb-sec and HEAO, 30 ft-lb-sec ball bearing reaction wheel and a model magnetic bearing were tested. Data analysis was conducted to identify the principal resonances in the 10 to 120 Hz region. Although some particular phenomena remain unexplained, in general good agreement is attained between the analytical predictions and test data. Predictions were also made of the expected emitted vibrations for an LST sized ball bearing and magnetic bearing reaction wheel using engineering judgment and the test data obtained. Additional tests were also run on the 101H duplex bearing pairs used in the reaction wheel suspension to determine bearing stiffness characteristics in the pre-breakaway zero speed region.
17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO ...
17. CUPOLA TENDERS FILLED THE LARGE LADLES WORKERS USED TO POUR MOLDS ON THE CONVEYORS FROM BULL LADLES THAT WERE USED TO STORE BATCH QUANTITIES OF IRON TAPPED FROM THE CUPOLA, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Uher, Jana; Call, Josep
2008-05-01
We tested 6 chimpanzees (Pan troglodytes), 3 orangutans (Pongo pygmaeus), 4 bonobos (Pan paniscus), and 2 gorillas (Gorilla gorilla) in the reversed reward contingency task. Individuals were presented with pairs of quantities ranging between 0 and 6 food items. Prior to testing, some experienced apes had solved this task using 2 quantities while others were totally naïve. Experienced apes transferred their ability to multiple-novel pairs after 6 to 19 months had elapsed since their initial testing. Two out of 6 naïve apes (1 chimpanzee, 1 bonobo) solved the task--a proportion comparable to that of a previous study using 2 pairs of quantities. Their acquisition speed was also comparable to the successful subjects from that study. The ratio between quantities explained a large portion of the variance but affected naïve and experienced individuals differently. For smaller ratios, naïve individuals were well below 50% correct and experienced ones were well above 50%, yet both groups tended to converge toward 50% for larger ratios. Thus, some apes require no procedural modifications to overcome their strong bias for selecting the larger of 2 quantities. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.
1963-01-01
The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.
A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument
NASA Technical Reports Server (NTRS)
Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.
2016-01-01
Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.
Fe(0) Nanomotors in Ton Quantities (10(20) Units) for Environmental Remediation.
Teo, Wei Zhe; Zboril, Radek; Medrik, Ivo; Pumera, Martin
2016-03-24
Despite demonstrating potential for environmental remediation and biomedical applications, the practical environmental applications of autonomous self-propelled micro-/nanorobots have been limited by the inability to fabricate these devices in large (kilograms/tons) quantities. In view of the demand for large-scale environmental remediation by micro-/nanomotors, which are easily synthesized and powered by nontoxic fuel, we have developed bubble-propelled Fe(0) Janus nanomotors by a facile thermally induced solid-state procedure and investigated their potential as decontamination agents of pollutants. These Fe(0) Janus nanomotors, stabilized by an ultrathin iron oxide shell, were fuelled by their decomposition in citric acid, leading to the asymmetric bubble propulsion. The degradation of azo-dyes was dramatically increased in the presence of moving self-propelled Fe(0) nanomotors, which acted as reducing agents. Such enhanced pollutant decomposition triggered by biocompatible Fe(0) (nanoscale zero-valent iron motors), which can be handled in the air and fabricated in ton quantities for low cost, will revolutionize the way that environmental remediation is carried out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Developing a national stream morphology data exchange: needs, challenges, and opportunities
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-01-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
Developing a national stream morphology data exchange: Needs, challenges, and opportunities
NASA Astrophysics Data System (ADS)
Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.
2012-05-01
Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karch, Andreas; Robinson, Brandon
Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. Here, we show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large N gauge theory only depend on the number of colors, N, via an overall factor of N 2.
Exposure assessment through realistic laboratory simulation of a soccer stadium fire.
van Belle, N J C; van Putten, E M; de Groot, A C; Meeussen, V J A; Banus, S
2010-10-01
On Sunday April 13, 2008 a fire broke out on a grandstand in the Euroborg soccer stadium in Groningen The Netherlands. The polyamide chairs on the grandstand were set on fire and supporters were exposed to the emitted smoke which induced mild health effects. The Dutch government was concerned about potential health risks that such fires could have to exposed fans. Especially the exposure to toxic fumes was considered a risk because prior research has proven that large amounts of chemical compounds are emitted during the burning of chemical substances such as polyamide. Among these emitted compounds are HCN, CO, NO(x), NH(3) and volatile organic compounds. To study if supporters were exposed to hazardous chemical compounds we designed a laboratory controlled replica of a part of the grandstand of the Euroborg stadium to perform fire-experiments. This simulation of the fire under controlled circumstances proved that a wide variety of chemicals were emitted. Especially the emission of CO and NO(x) were high, but also the emission of formaldehyde might be toxicologically relevant. The emission of HCN and NH(3) were less than expected. Exposure assessment suggests that the exposure to NO(x) is the main health risk for the supporters that were present at the Euroborg fire. Copyright © 2010 Elsevier Ltd. All rights reserved.
Collective synthesis of natural products by means of organocascade catalysis
Jones, Spencer B.; Simmons, Bryon; Mastracchio, Anthony; MacMillan, David W. C.
2012-01-01
Organic chemists are now able to synthesize small quantities of almost any known natural product, given sufficient time, resources and effort. However, translation of the academic successes in total synthesis to the large-scale construction of complex natural products and the development of large collections of biologically relevant molecules present significant challenges to synthetic chemists. Here we show that the application of two nature-inspired techniques, namely organocascade catalysis and collective natural product synthesis, can facilitate the preparation of useful quantities of a range of structurally diverse natural products from a common molecular scaffold. The power of this concept has been demonstrated through the expedient, asymmetric total syntheses of six well-known alkaloid natural products: strychnine, aspidospermidine, vincadifformine, akuammicine, kopsanone and kopsinine. PMID:21753848