Science.gov

Sample records for emitted airborne noise

  1. A new noise reduction method for airborne gravity gradient data

    NASA Astrophysics Data System (ADS)

    Jirigalatu; Ebbing, Jörg; Sebera, Josef

    2016-09-01

    Airborne gravity gradient (AGG) measurements offer an increased resolution and accuracy compared to terrestrial measurements. But interpretation and processing of AGG data are often challenging as levelling errors and survey noise affect the data, and these effects are not easily recognised in the gradient components. We adopted the classic method of upward continuation in the noise reduction using the noise level estimates by the AGG system. By iteratively projecting the survey data to a lower level and upward continuing the data back to the survey height, parts of the high-frequency signal are suppressed. The filter, which is defined by this approach, is directly dependent on the noise level of the AGG data, the maximum number of iterations and the iterative step. We demonstrate the method by applying it to both synthetic data and real AGG data over Karasjok, Norway, and compare the results to the directional filtering method. The results show that the iterative filter can effectively reduce high-frequency noise in the data.

  2. New specific indicators for qPCR monitoring of airborne microorganisms emitted by composting plants

    NASA Astrophysics Data System (ADS)

    Le Goff, Olivier; Godon, Jean-Jacques; Steyer, Jean-Philippe; Wéry, Nathalie

    2011-09-01

    Bioaerosols emitted from composting plants are an issue because of their potential harmful impact on public or workers' health. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants and the consequent potential exposure of nearby residents. This inadequate knowledge is partly due to the fact that there is currently no method for specifically tracing these microorganisms in the air. The objective of this study was to validate the use of microbial groups as indicators of composting bioaerosols by comparing their concentration in air samples, whether impacted by composting activity or not. Three potential microbial indicators were chosen among the core species of composting bioaerosols. They belong to the genus Saccharopolyspora, to the Thermoactinomycetaceae and to the fungus Thermomyces. Quantitative PCR systems using TaqMan probes were designed to quantify each of the three phylotypes in air samples collected outdoors in natural environments and at composting plants. Compost-turning operations at industrial plants resulted in an increase in the concentration of the three phylotypes of at least 2 orders of magnitude when compared to the concentration measured in control samples collected upwind, and of at least 1 order of magnitude compared to the background concentration measured in natural environments unaffected by industrial activity. In conclusion, these three thermophilic phylotypes can be used as indicators of airborne microorganisms emitted by industrial composting plants. They may be particularly relevant in studying the dispersal of bioaerosols around composting plants and the exposure of nearby residents. This is the first time that indicators of compost bioaerosols have been validated by comparing their concentrations in impacted samples to their background levels in natural environments.

  3. Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

    DTIC Science & Technology

    2012-01-01

    25 4.3 Super Kraft Monocoupe 90A RC airplane. . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Access panel for fuselage of...begin clipping. This is an important consideration for airborne acoustic sensing, as the sound level aboard a UAV must not cause saturation of the...specifications of the Monocoupe used for this experiment are in Table 4.3. 26 Figure 4.3: Super Kraft Monocoupe 90A RC airplane. Figure 4.4: Access panel for

  4. Characterization of the noise emitted by a washing-machine due to the pump

    NASA Astrophysics Data System (ADS)

    Sanchez Tabuenca, Beatriz; Llado Paris, Juan

    2002-11-01

    The noise sources during the pump operation of a washing machine are: the electric motor, the water-air impulsion, and the structural radiation of the pump-housing, hose, and cabinet. The determination of the sound power level under different working conditions let us identify that the noise emitted by the cabinet vibration was the more noticeable, being irrelevant the noise emitted by the other elements. In order to know which part of the cabinet is the noisiest, the standard ISO-TR 7849 was applied to calculate the contribution of the noise emitted by the structural radiation of each part of the cabinet to the total sound power level. This experimental procedure relates the noise radiated by a structure with its vibration velocity, and it was found that the kick plate was the more relevant element. Once the noise transmission paths have been characterized, the proposals to reduce noise are focused on a new design of the kick plate to make it more flexible and the modification of the join zone of the pump to the kick plate to reduce the force transmitted between both elements. (To be presented in Spanish.)

  5. Airborne urban/suburban noise measurements at 121.5/243 MHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1977-01-01

    An airborne measurement of the terrestrial, radio-frequency (RF) noise environment over U.S. metropolitan urban/suburban areas has been made at the 121.5/243 MHz emergency-distress search and rescue (S&R) communications frequencies. Profile contour plots of antenna-noise temperature for U.S.A. East Coast and mid-west urban/suburban areas is presented for daytime/nighttime observations at 121.5/243 MHz. These plots are helpful for compiling radio-noise environment maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems.

  6. Interaction of airborne and structure-borne noise radiated by plates

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1987-01-01

    The interaction of airborne and structure-borne noise radiated by aircraft structures is studied analytically and experimentally for the case of noise radiating from thin, isotropic, rectangular aluminum plates as a result of fully coherent, combined acoustic and vibrational inputs. Attention is given to the great influence of the relative phase between inputs on the combined noise radiation characteristics of the plates; these phase-dependent effects, which are manifest as cross-terms in both the dynamic and acoustic portions of the analysis, can radically alter the combined sound power radiated by airframe structure plates. Such interactive effects have heretofore been neglected in analyses of results from analytical and experimental studies of propeller-driven aircraft interior noise.

  7. Interaction of airborne and structureborne noise radiated by plates. Volume 1: Analytical study

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The interaction of airborne and structureborne noise radiated by aircraft materials was examined. The theory and results of several computer simulations of the noise radiated by thin, isotropic, rectangular aluminum plates due to fully coherent combined acoustic and vibrational inputs is presented. The most significant finding was the extremely large influence that the relative phase between inputs has on the combined noise radiation of the plates. Phase dependent effects manifest themselves as cross terms in both the dynamic and acoustic portions of the analysis. Computer simulations show that these cross terms can radically alter the combined sound power radiated by plates constructed of aircraft-type materials. The results suggest that airborne-structureborne interactive effects could be responsible for a significant portion of the overall noise radiated by aircraft-type structures in the low frequency regime. This implies that previous analytical and experimental studies may have neglected an important physical phenomenon in the analayses of the interior noise of propeller dirven aircraft.

  8. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    SciTech Connect

    Djidjou, T. K.; Basel, Tek; Rogachev, A.; Chen, Ying; Shinar, J.

    2015-03-21

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitude of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.

  9. Phase Noise Investigation of Maximum Likelihood Estimation Method for Airborne Multibaseline SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Magnard, C.; Small, D.; Meier, E.

    2015-03-01

    The phase estimation of cross-track multibaseline synthetic aperture interferometric data is usually thought to be very efficiently achieved using the maximum likelihood (ML) method. The suitability of this method is investigated here as applied to airborne single pass multibaseline data. Experimental interferometric data acquired with a Ka-band sensor were processed using (a) a ML method that fuses the complex data from all receivers and (b) a coarse-to-fine method that only uses the intermediate baselines to unwrap the phase values from the longest baseline. The phase noise was analyzed for both methods: in most cases, a small improvement was found when the ML method was used.

  10. The analysis of signal-to-noise ratio of airborne LIDAR system under state of motion

    NASA Astrophysics Data System (ADS)

    Hao, Huang; Lan, Tian; Zhang, Yingchao; Ni, Guoqiang

    2010-11-01

    This article gives an overview of airborne LIDAR (laser light detection and ranging) system and its application. By analyzing the transmission and reception process of laser signal, the article constructs a model of echo signal of the LIDAR system, and gives some basic formulas which make up the relationship of signal-to-noise ratio, for example, the received power, the dark noise power and so on. And this article carefully studies and analyzes the impact of some important parameters in the equation on the signal-to-noise ratio, such as the atmospheric transmittance coefficient, the work distance. And the matlab software is used to simulate the detection environment, and obtains a series values of signal-to-noise (SNR) ratio under different circumstances such as sunny day, cloudy day, day, night. And the figures which describe how the SNR of LIDAR system is influenced by the critical factors are shown in the article. Finally according to the series values of signal-to-noise ratio and the figures, the SNR of LIDAR system decreases as the distance increases, and the atmospheric transmittance coefficient caused by bad weather, and also high work temperature drops the SNR. Depending on these conclusions, the LIDAR system will work even better.

  11. A new measurement method for separating airborne and structureborne noise radiated by aircraft type panels

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    The theoretical basis for and experimental validation of a measurement method for separating airborne and structure borne noise radiated by aircraft type panels are presented. An extension of the two microphone, cross spectral, acoustic intensity method combined with existing theory of sound radiation of thin shell structures of various designs, is restricted to the frequency range below the coincidence frequency of the structure. Consequently, the method lends itself to low frequency noise problems such as propeller harmonics. Both an aluminum sheet and two built up aircraft panel designs (two aluminum panels with frames and stringers) with and without added damping were measured. Results indicate that the method is quick, reliable, inexpensive, and can be applied to thin shell structures of various designs.

  12. Acoustic confort at home: Noise emitted by house installations. Recommendations in order to avoid such noise

    NASA Astrophysics Data System (ADS)

    Jimenez, Santiago

    2002-11-01

    The present survey consists of the analysis and the study of the solutions used at present in the installations of water supply and elevators. It has been carried out from the acoustic point of view. In order to achieve a thorough study a pilot plant was built in the Laboratory of Acoustics of the School of Industrial Engineering of Terrassa. This pilot plant reproduced different kinds of installations of the water supply in houses. And it has allowed us to systematize the measures and also to determine the optimum solutions from the acoustic perspective. In accordance with the objectives and the process of the survey, the solutions regularly employed in the facilities of water supply and elevators in houses have been analyzed, and levels of noise associated to these facilities have been also presented. A summary of the results obtained in the plant has been included, according to diverse variables. Both the conclusions of the analysis of the data obtained in the laboratory and those of the installations of the houses have been also compared, which has allowed us to describe a series of suggestions with the purpose of reducing the acoustic emission of this type of installations, and increase the acoustic comfort at home. (To be presented in Spanish.)

  13. Probability characteristics of electrical noise in heterojunction light-emitting diodes

    SciTech Connect

    Sergeev, V. A. Frolov, I. V.; Shirokov, A. A.; Shcherbatyuk, Yu. N.

    2011-12-15

    A hardware-software complex for measurements of the characteristics of electrical and optical noise in light-emitting diodes (LEDs) in the frequency range from 1 to 40 kHz is described. The electrical noise of several types of heterojunction-based LEDs are studied; these types include red-emission LEDs with AlInGaP/GaAs quantum wells and the green- and blue-emission LEDs with AlInGaN/SiC quantum wells are studied by the method of discrete samples. The spectra of all studied LEDs in the frequency range from 1 to 10 kHz have the form 1/f{sup {gamma}}. It is noteworthy that, for red-emission LEDs, the exponent {gamma} is significantly smaller than unity; this index is close to unity for the green- and blue-emission LEDs. The characteristic time of correlation of the noise of red-emission LEDs by several times exceeds the correlation times for the blue- and green-emission LEDs. It is shown that reduced functions of the amplitude distribution of the noise voltage are close to Gaussian functions with almost the same dispersion for all LED types.

  14. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  15. Characterization and Control of Airborne Particles Emitted During Production of Epoxy / Carbon Nanotube Nanocomposites

    PubMed Central

    Cena, Lorenzo G.; Peters, Thomas M.

    2016-01-01

    This work characterized airborne particles that were generated from the weighing of bulk, multi-wall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratiô1). The particles generated during sanding were predominately micron-sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator’s breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m3) compared to those with no LEV (GM = 2.68 μg/m3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m3; p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  16. Noise performance of high-speed radio over fiber links employing vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Bakry, A.; Mahmoud, S. W. Z.

    2015-05-01

    This study investigates the intensity noise in high-speed vertical-cavity surface-emitting lasers (VCSELs) and its contribution to the noise performance of radio over fiber (RoF) links. We evaluate the sinusoidal modulation of VCSELs in terms of the second-order harmonic distortion (2HD) and third-order intermodulation distortion (IMD3) in additions to the relative intensity noise (RIN). The spurious-free dynamic range of the proposed VCSEL is estimated. The noise performance of the RoF link is assessed by the noise figure. The modulation characteristics of the VCSEL and the gain and noise factor (NF) of the fiber link are compared under conventional and high-speed modulations of VCSELs. Also, we present comparison of the NF between short (300 m) and relatively long (2 km) fibers.

  17. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  18. A Guide to Airborne, Impact, and Structure Borne Noise--Control in Multifamily Dwellings.

    ERIC Educational Resources Information Center

    Berendt, Raymond D.; And Others

    The control of noise on buildings is discussed extensively in this document, incorporating a broad range of criteria appropriate for isolating air borne, impact, and structure-borne noise associated with residential construction. Subject areas include--(1) noise types, sources, and transmission, (2) general principles of noise control, (3)…

  19. Noise emitted from road, rail and air traffic and their effects on sleep

    NASA Astrophysics Data System (ADS)

    Griefahn, Barbara; Marks, Anke; Robens, Sibylle

    2006-08-01

    This study compared the effects of road, rail, and aircraft noise and tested the applicability of the equivalent noise level for the evaluation of sleep disturbances. Sixteen women and 16 men (19-28 years) slept during 3 consecutive weeks in the laboratory. Eight persons slept in quiet throughout. Twenty-four persons were exposed to road, rail, or aircraft noise with weekly permuted changes. Each week consisted of a random sequence of a quiet night (32 dBA) and 3 nights with equivalent noise levels of 39, 44, and 50 dBA and maximum levels of 50-62, 56-68, and 62-74 dBA, respectively. The polysomnogram was recorded during all nights, sleep quality was assessed and performance tests were completed in the morning. Subjectively evaluated sleep quality decreased and reaction time increased gradually with noise levels, whereas most physiological variables revealed the same reactions to both the lower and considerably stronger reactions to the highest noise load. Aircraft noise, rail and road traffic noise caused similar after-effects but physiological sleep parameters were most severely affected by rail noise. The equivalent noise level seems to be a suitable predictor for subjectively evaluated sleep quality but not for physiological sleep disturbances.

  20. Experimental study of noise emitted by circular cylinders with large roughness

    NASA Astrophysics Data System (ADS)

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas

    2014-12-01

    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  1. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode.

    PubMed

    Garcia-Sucerquia, Jorge

    2013-01-01

    By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

  2. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  3. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  4. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    PubMed

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  5. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  6. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  7. Auditory and Subjective Effects of Airborne Noise from Industrial Ultrasonic Sources

    PubMed Central

    Acton, W. I.; Carson, M. B.

    1967-01-01

    This investigation was undertaken primarily to examine the possibility of hearing damage from industrial ultrasonic equipment. In the factory concerned, ultrasonic washers and drills were used at a number of different locations, and girls working 12 ft (3·6 m.) away from one bank of three small washers complained of unpleasant subjective effects which included fatigue, persistent headaches, nausea, and tinnitus. As personnel working in the vicinity of similar washers in other parts of the factory did not complain of these effects, it seemed possible that the noise had been transmitted along a column of air in a bank of dryboxes. Enclosure of these washers by a sliding screen of Perspex had completely abated the trouble. Sound pressure level measurements taken in the positions occupied by the operators indicated that, when the effects occur, they are probably caused by high sound levels at the upper audio-frequencies present with the ultrasonic noise, and this was supported by a limited laboratory investigation. Audiometric investigation showed that hearing damage due to noise from these industrial ultrasonic devices is unlikely. However, extrapolations of currently accepted hearing damage risk criteria may be valid in predicting the occurrence of these subjective effects. Images PMID:6073088

  8. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  9. Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Coronel, Juan; Varón, Margarita; Rissons, Angélique

    2016-09-01

    The optical injection locking (OIL) technique is proposed to reduce the phase noise of a carrier generated for a vertical-cavity surface-emitting laser (VCSEL)-based optoelectronic oscillator. The OIL technique permits the enhancement of the VCSEL direct modulation bandwidth as well as the stabilization of the optical noise of the laser. A 2-km delay line, 10-GHz optical injection-locked VCSEL-based optoelectronic oscillator (OILVBO) was implemented. The internal noise sources of the optoelectronic oscillator components were characterized and analyzed to understand the noise conversion of the system into phase noise in the oscillator carrier. The implemented OILVBO phase noise was -105.7 dBc/Hz at 10 kHz from the carrier; this value agrees well with the performed simulated analysis. From the computed and measured phase noise curves, it is possible to infer the noise processes that take place inside the OILVBO. As a second measurement of the oscillation quality, a time-domain analysis was done through the Allan's standard deviation measurement, reported for first time for an optoelectronic oscillator using the OIL technique.

  10. Sampling for Airborne Radioactivity

    DTIC Science & Technology

    2007-10-01

    compared to betas, gammas and neutrons. For an airborne radioactivity detection system, it is most important to be able to detect alpha particles and... Airborne radioactive particles may emit alpha, beta, gamma or neutron radiation, depending on which radioisotope is present. From a health perspective...

  11. Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton

    2002-08-01

    This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2 x104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2 x103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2 x10-4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrument is applied during exercise to measure the changes of blood volume and deoxygenation, which provides important information about muscle metabolism. We find that the primary source of noise encountered during exercise experiment is from the random motion of muscle. The results demonstrate that the LED cw imager is ideal for the noninvasive study of muscle metabolism.

  12. Size distribution of airborne particulate matter emitted by the front-end processing of municipal solid waste feed material for large-scale anaerobic digesters

    SciTech Connect

    Gerrish, H.P.; Narasimhan, R.; Daly, E.L. Jr.; Sengupta, S.; Nemerow, N.L.; Wong, K.V.

    1984-07-01

    A 100-ton/day proof-of-concept facility has been constructed in Pompano Beach, Florida, to examine the feasibility of producing methane-rich gas from the anaerobic digestion of municipal solid waste. One of the possible environmental impacts is from the particulate matter emitted into the atmosphere by the secondary shredding and conveying of light fraction feed material to the digesters. It has been found that the amount of particulate matter emitted into the atmosphere by the front-end processing is an order of magnitude higher when the plant is operating compared to when it is not operating. It has been found that the particle size distribution is bimodal both when the plant is operating as well as when it is not operating. Particle concentrations of episodic nature were found in July 1981 which were four times the concentration found during normal plant operation.

  13. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  14. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes.

  15. A Low Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Stewart, M. F.; Blakeslee, R. J.; Podgorny, s. J.; Christian, H. J.; Mach, D. M.; Bailey, J. C.; Daskar, D.

    2006-01-01

    This paper reports on a new generation of aircraft-based rotating-vane style electric field mills designed and built at NASA's Marshall Spaceflight Center. The mills have individual microprocessors that digitize the electric field signal at the mill and respond to commands from the data system computer. The mills are very sensitive (1 V/m per bit), have a wide dynamic range (115 dB), and are very low noise (+/-1 LSB). Mounted on an aircraft, these mills can measure fields from +/-1 V/m to +/-500 kV/m. Once-per-second commanding from the data collection computer to each mill allows for precise timing and synchronization. The mills can also be commanded to execute a self-calibration in flight, which is done periodically to monitor the status and health of each mill.

  16. Airborne ultraviolet imaging system for oil slick surveillance: oil-seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model.

    PubMed

    Shi, Zhenhua; Yu, Lei; Cao, Diansheng; Wu, Qingwen; Yu, Xiangyang; Lin, Guanyu

    2015-09-01

    The airborne ultraviolet imaging system, which assesses oil slick areas better than visible and infrared optical systems, was designed to monitor and track oil slicks in coastal regions. A model was built to achieve the upwelling radiance distribution of oil-covered sea and clean seawater, based on the radiance transfer software. With this model, the oil-seawater contrast, which affects the detection of oil-covered coastal areas, was obtained. The oil-seawater contrast, fundamental imaging concept, analog calculation of SNR, optical design, and optomechanical configuration of the airborne ultraviolet imaging system are illustrated in this paper. The study of an airborne ultraviolet imaging system with F-number 3.4 and a 40° field of view (FOV) in near ultraviolet channel (0.32-0.38 μm) was illustrated and better imaging quality was achieved. The ground sample distance (GSD) is from 0.35 to 0.7 m with flight height ranges from 0.5 to 1 km. Comparisons of detailed characteristics of the airborne ultraviolet imaging system with the corresponding characteristics of previous ultraviolet systems were tabulated, and these comparisons showed that this system can achieve a wide FOV and a relative high SNR. A virtual mechanical prototype and tolerances analysis are illustrated in this paper to verify the performance of fabrication and assembly of the ultraviolet system.

  17. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  18. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  19. Airborne Imagery

    NASA Technical Reports Server (NTRS)

    1983-01-01

    ATM (Airborne Thematic Mapper) was developed for NSTL (National Space Technology Companies) by Daedalus Company. It offers expanded capabilities for timely, accurate and cost effective identification of areas with prospecting potential. A related system is TIMS, Thermal Infrared Multispectral Scanner. Originating from Landsat 4, it is also used for agricultural studies, etc.

  20. Principal Component Noise Filtering for NAST-I Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L., Sr.

    2011-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.

  1. Review of recent research of interior noise of propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Powell, C. A.

    1984-01-01

    Publications on the topics of propeller source noise, airborne noise transmission, and passenger comfort response to noise and vibration are reviewed. Of the 187 publications referenced, 140 have appeared since 1978. Examples of research accomplishments are presented to illustrate the state of the art. Emphasis is on comparisons of theoretical and measured results, but the description of the theories is left to the references. This review shows that substantial progress has been made in understanding the characteristics of propeller noise, airborne noise, and passenger response, and in the development of prediction methods. Application of the technology to cabin noise control and possible future research directions are discussed.

  2. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  3. Magnetic characterization of airborne particulates

    NASA Astrophysics Data System (ADS)

    Kim, W.; Doh, S.; Yu, Y.

    2010-12-01

    Burning fossil fuels from vehicles, domestics, industries and power plants in the large urban or industrial areas emit significant quantity of anthropogenic particulates which become a potential threat to human health. Here, we present temporal variability of particulate pollution associated with compositional differences, using magnetic measurements and electron microscopic observations. Six different grain-sizes of airborne particulates have been collected by filtering from 10 precipitation events in Seoul, Korea from February 2009 to June 2009. Magnetic concentration proxies show relatively better (R2 >0.6) and poorer correlations (R2 <0.3) with the masses of samples filtered by >0.45 μm and <0.45 μm sizes, respectively, suggesting the usefulness of magnetic characterization for the >0.45 μm particulates. Temporally, magnetic concentrations are higher in the cold season than the warm season. In particular, a significant increase of magnetic concentration is observed in 3 μm and 1 μm filters after the Chinese wind-blown dust events, indicating additional influx of fine-grained anthropogenic particulates into Seoul. Microscopic observations identify that increase of magnetic concentration is highly linked with the frequent occurrence of combustion derived particulates (i.e., carbon and/or sulfur mixed particles) than natural alumino-silicates. Overall, the present study demonstrates that magnetic measurements efficiently reflect the concentration of particulates produced from fossil-fuel combustion among the airborne particles from various sources.

  4. Airborne Gravimetry and Downward Continuation (Invited)

    NASA Astrophysics Data System (ADS)

    Jekeli, C.; Yang, H.; Kwon, J.

    2009-12-01

    Measuring the Earth’s gravity field using airborne instrumentation is fully operational and has been widely practiced for nearly three decades since its official debut in the early 1980s (S. Hammer: “Airborne Gravity is Here!”) coinciding with the precision kinematic positioning capability of GPS. Airborne gravimetry is undertaken for both efficient geophysical exploration purposes, as well as the determination of the regional geoid to aid in the modernization of height systems. Especially for the latter application, downward continuation of the data and combination with existing terrestrial gravimetry pose theoretical as well as practical challenges, which, on the other hand, create multiple processing possibilities. Downward continuation may be approached in various ways from the viewpoint of potential theory and the boundary-value problem to using gradients either estimated locally or computed from existing models. Logistical constraints imposed by the airborne survey, instrumental noise, and the intrinsic numerical instability of downward continuation all conspire to impact the final product in terms of achievable resolution and accuracy. In this paper, we review the theory of airborne gravimetry and the methodology of downward continuation, and provide a numerical comparison of possible schemes and their impact on geoid determination.

  5. Noise and vibration control for HVAC and piping systems

    SciTech Connect

    Yerges, J.F.; Yerges, J.R.

    1997-10-01

    This article offers engineering advice on how to avoid noise and vibration problems through good mechanical engineering design and strategic communication with other members of the construction team. The design of ducted HVAC systems must address six distinct but related issues--airborne equipment noise, equipment vibration, ductborne fan noise, duct breakout noise, flow generated noise, and ductborne crosstalk. Each and every one of these issues must be addressed, or the design will fail.

  6. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  7. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  8. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  9. Light-emitting Diodes

    PubMed Central

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  10. Investigation of noise sources and propagation in external gear pumps

    NASA Astrophysics Data System (ADS)

    Opperwall, Timothy J.

    Oil hydraulics is widely accepted as the best technology for transmitting power in many engineering applications due to its advantages in power density, control, layout flexibility, and efficiency. Due to these advantages, hydraulic systems are present in many different applications including construction, agriculture, aerospace, automotive, forestry, medical, and manufacturing, just to identify a few. Many of these applications involve the systems in close proximity to human operators and passengers where noise is one of the main constraints to the acceptance and spread of this technology. As a key component in power transfer, displacement machines can be major sources of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of applying fluid power systems to a wider range of applications, as well as improving the performance of current hydraulic systems. The present research aims to leverage previous efforts and develop new models and experimental techniques in the topic of noise generation caused by hydrostatic units. This requires challenging and surpassing current accepted methods in the understanding of noise in fluid power systems. This research seeks to expand on the previous experimental and modeling efforts by directly considering the effect that system and component design changes apply on the total sound power and the sound frequency components emitted from displacement machines and the attached lines. The case of external gear pumps is taken as reference for a new model to understand the generation and transmission of noise from the sources out to the environment. The lumped parameter model HYGESim (HYdraulic GEar machine Simulator) was expanded to investigate the dynamic forces on the solid bodies caused by the pump operation and to predict interactions with the attached system. Vibration and sound radiation were then predicted using a combined finite element and boundary

  11. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  12. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  13. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    structures since its employment on a large scale during World War II. It is puzzling to consider how little airborne organizational structures and employment...future potential of airborne concepts by rethinking traditional airborne organizational structures and employment concepts. Using a holistic approach in... structures of airborne forces to model a “small and many” approach over a “large and few” approach, while incorporating a “swarming” concept. Utilizing

  14. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  15. Airborne ultrasound enters the ear through the eyes

    NASA Astrophysics Data System (ADS)

    Lenhardt, Martin

    2005-09-01

    Musical spectrum above 20000 Hz has been demonstrated to influence human judgments and physiology. Moreover airborne ultrasonic noise has been implicated in hearing loss, tinnitus, and other subjective effects such as headaches and fullness in the ear. Contact ultrasound, i.e., with a transducer affixed to the skin of the head/neck, is audible; assumed by bone conduction. However, lightly touching the soft tissues of the head, avoiding bone, can also produce audibility. When contact ultrasound is applied to the head, energy from 25 to ~60 kHz can be recorded from the closed eyelid, with care to avoid sensor contact with the orbit. If the same frequency band of noise is passed through a transducer in from of the eye, with just air coupling, the same response is again recordable on the head. An acrylic barrier between the eye and the transducer eliminates the response. Once airborne ultrasound exceeds the impedance mismatch of the eye it readily propagates through the soft tissues of the eye and brain via one of the fluid windows (end lymphatic, perilymphatic or vascular) to the cochlea. The eye fenestration explains how people can detect airborne ultrasonic components in music and develop ear effects from airborne ultrasonic noise.

  16. A Brief History of Airborne Self-Spacing Concepts

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2009-01-01

    This paper presents a history of seven of the more significant airborne and airborne-assisted aircraft spacing concepts that have been developed and evaluated during the past 40 years. The primary focus of the earlier concepts was on enhancing airport terminal area productivity and reducing air traffic controller workload. The more recent efforts were designed to increase runway throughput through improved aircraft spacing precision at landing. The latest concepts are aimed at supporting more fuel efficient and lower community noise operations while maintaining or increasing runway throughput efficiency.

  17. Light-Emitting Pickles

    ERIC Educational Resources Information Center

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  18. Red Emitting VCSEL

    NASA Astrophysics Data System (ADS)

    Jetter, Michael; Roßbach, Robert; Michler, Peter

    This chapter describes the progress in development of vertical-cavity surface-emitting lasers (VCSEL) emitting in the red spectral region around 650 nm for data transmission over polymer optical fibers (POF). First, growth issues of red VCSEL using two different material systems, namely AlGaAs and AlGaInP, are introduced. In particular, the optical and electrical state-of-the-art characteristics as low threshold currents ({≤} 1 mA) and high output powers (several mW) are presented with a special focus on emission wavelength. Also the thermal budget and heat removal in the devices are pointed out with regard to the geometry of the VCSEL. Small-signal modulation response in terms of maximum resonance frequency in dependance on temperature behavior are discussed. Applications of these devices in optical interconnects are described and digital data transmission at data rates up to 2.1 Gbit/s over step-index POF is reported. These properties make red emitting VCSEL perfectly suited for high-speed low power consuming light sources for optical data communication via POF. By introducing InP quantum dots as gain material in red emitting VCSEL nearly temperature independent record low threshold current densities of around 10 A/cm2 could be observed.

  19. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  20. Marine Mammals and Noise-Progress Since 1995

    DTIC Science & Technology

    2015-09-30

    and sounds produced by marine mammals. Underwater noise emitted by anthropogenic activities will be summarised. The four co-PIs are leading various...review. We have started drafting sections of the review, including noise impacts, underwater noise emission, sound production and hearing. RESULTS

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  3. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  4. Airborne asbestos in buildings.

    PubMed

    Lee, R J; Van Orden, D R

    2008-03-01

    The concentration of airborne asbestos in buildings nationwide is reported in this study. A total of 3978 indoor samples from 752 buildings, representing nearly 32 man-years of sampling, have been analyzed by transmission electron microscopy. The buildings that were surveyed were the subject of litigation related to suits alleging the general building occupants were exposed to a potential health hazard as a result the presence of asbestos-containing materials (ACM). The average concentration of all airborne asbestos structures was 0.01structures/ml (s/ml) and the average concentration of airborne asbestos > or = 5microm long was 0.00012fibers/ml (f/ml). For all samples, 99.9% of the samples were <0.01 f/ml for fibers longer than 5microm; no building averaged above 0.004f/ml for fibers longer than 5microm. No asbestos was detected in 27% of the buildings and in 90% of the buildings no asbestos was detected that would have been seen optically (> or = 5microm long and > or = 0.25microm wide). Background outdoor concentrations have been reported at 0.0003f/ml > or = 5microm. These results indicate that in-place ACM does not result in elevated airborne asbestos in building atmospheres approaching regulatory levels and that it does not result in a significantly increased risk to building occupants.

  5. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  6. Photoreactivation in Airborne Mycobacterium parafortuitum

    PubMed Central

    Peccia, Jordan; Hernandez, Mark

    2001-01-01

    Photoreactivation was observed in airborne Mycobacterium parafortuitum exposed concurrently to UV radiation (254 nm) and visible light. Photoreactivation rates of airborne cells increased with increasing relative humidity (RH) and decreased with increasing UV dose. Under a constant UV dose with visible light absent, the UV inactivation rate of airborne M. parafortuitum cells decreased by a factor of 4 as RH increased from 40 to 95%; however, under identical conditions with visible light present, the UV inactivation rate of airborne cells decreased only by a factor of 2. When irradiated in the absence of visible light, cellular cyclobutane thymine dimer content of UV-irradiated airborne M. parafortuitum and Serratia marcescens increased in response to RH increases. Results suggest that, unlike in waterborne bacteria, cyclobutane thymine dimers are not the most significant form of UV-induced DNA damage incurred by airborne bacteria and that the distribution of DNA photoproducts incorporated into UV-irradiated airborne cells is a function of RH. PMID:11526027

  7. Structure-borne noise at hotels

    NASA Astrophysics Data System (ADS)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  8. Simulation calculation and characteristics analysis of coil motion noise

    NASA Astrophysics Data System (ADS)

    Meng, Yang; Peng, Cong; Fu, MingYe; Lu, Yiming; Yu, Zining; Zhu, Kaiguang

    2017-01-01

    Coil motion noise is one of the largest noises in airborne electromagnetic exploration, which results from the variations of magnetic flux in the Earth's magnetic accompanied by the receiver coil's movement during the flight. On the assumption of attitude measurements, coil motion noise is calculated according to roll, pitch and yaw of the receiver coils. Therefore, the characteristics of coil motion noise are analyzed in time domain, frequency domain and time-frequency domain. And the Gaussianity of coil motion noise is also discussed using the histogram of data and its estimated Gaussian function, and another method termed normal probability paper. All of these are to lay the foundation for removal of coil motion noise in airborne electromagnetic detection.

  9. White light emitting diodes

    NASA Astrophysics Data System (ADS)

    Baur, J.; Schlotter, P.; Schneider, J.

    Using blue-emitting GaN LEDs on SiC substrate chips as primary light sources, we have fabricated green, yellow, red and white light emitting diodes (LUCOLEDs). The generation of mixed colors, as turquoise and magenta, is also demonstrated. The underlying physical principle is that of luminescence downconversion (Stokes shift), as typical for organic dye molecules and many inorganic phosphors. For white light generation via the LUCOLED principle, the phosphor Y3Al5O12:Ce3+(4f1) is ideally suited. The optical characteristics of Ce3+(4f1) in Y3Al5O12(YAG) are discussed in detail. Possibilities to "tune" the white color by various substitutions in the garnet lattice are shortly outlined.

  10. Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar

    PubMed Central

    Cuesta, Juan; Chazette, Patrick; Allouis, Tristan; Flamant, Pierre H.; Durrieu, Sylvie; Sanak, Joseph; Genau, Pascal; Guyon, Dominique; Loustau, Denis; Flamant, Cyrille

    2010-01-01

    We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ∼500 × 500 m2 with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ∼1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols. PMID:22163608

  11. Observing the forest canopy with a new ultra-violet compact airborne lidar.

    PubMed

    Cuesta, Juan; Chazette, Patrick; Allouis, Tristan; Flamant, Pierre H; Durrieu, Sylvie; Sanak, Joseph; Genau, Pascal; Guyon, Dominique; Loustau, Denis; Flamant, Cyrille

    2010-01-01

    We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ≈ 500 × 500 m(2) with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ≈ 1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols.

  12. Absolute airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  13. On the suitability of ISO 16717-1 reference spectra for rating airborne sound insulation.

    PubMed

    Mašović, Draško B; Pavlović, Dragana S Šumarac; Mijić, Miomir M

    2013-11-01

    A standard proposal for rating airborne sound insulation in buildings [ISO 16717-1 (2012)] defines the reference noise spectra. Since their shapes influence the calculated values of single-number descriptors, reference spectra should approximate well typical noise spectra in buildings. There is, however, very little data in the existing literature on a typical noise spectrum in dwellings. A spectral analysis of common noise sources in dwellings is presented in this paper, as a result of an extensive monitoring of various noisy household activities. Apart from music with strong bass content, the proposed "living" reference spectrum overestimates noise levels at low frequencies.

  14. LF radio noise from the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frankel, M. S.

    1973-01-01

    Gyro-synchrotron radio noise emitted by electrons trapped in the earth's magnetosphere has been a subject of extensive research. Previous efforts, which considered frequencies greater than 1 MHz, have shown that this noise should not be detectable in the MF to HF range because its intensity is below the cosmic background noise level. The author has investigated the LF range and has found that appreciable noise is generated at these frequencies. In fact, the theoretical results for this LF noise agree very well with experimental data obtained by a radio astronomy experiment aboard the IMP 6 spacecraft. A comparison showed that the model predicted both variation in the observed noise intensity with Kp and the noise spectral characteristics. Consequently, it is concluded that detectable LF radio noise is emitted, by means of the cyclotron-synchrotron mechanism, by electrons trapped in the earth's magnetosphere, and that this noise is observable only for frequencies below about 300 kHz. For higher frequencies, the theoretical model and the experimental data reconfirm that this noise is below that of cosmic origin.

  15. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  16. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Astrophysics Data System (ADS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-03-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  17. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  18. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  19. Airborne Infrared Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2017-01-01

    A unique program of infrared astronomical observations from aircraft evolved at NASA’s Ames Research Center, beginning in the 1960s. Telescopes were flown on a Convair 990, a Lear Jet, and a Lockheed C-141 - the Kuiper Airborne Observatory (KAO) - leading to the planning and development of SOFIA: a 2.7 m telescope now flying on a Boeing 747SP. The poster describes these telescopes and highlights of some of the scientific results obtained from them.

  20. Airborne Compositae dermatitis: monoterpenes and no parthenolide are released from flowering Tanacetum parthenium (feverfew) plants.

    PubMed

    Christensen, L P; Jakobsen, H B; Paulsen, E; Hodal, L; Andersen, K E

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted from the aerial parts of feverfew plants and collected by the dynamic headspace technique a total of 41 compounds, mainly monoterpenes, were identified and quantified by GC and GC-MS. Alpha-Pinene, camphene, limonene, gamma-terpinene, (E)-beta-ocimene, linalool, p-cymene, (E)-chrysanthenol, camphor and (E)-chrysanthenyl acetate were the predominant monoterpenes accounting for nearly 88% of the total volatiles emitted. The average total yield of volatiles emitted over 24 h was 18,160 ng/g fresh weight of leaves and flowers, corresponding to the emission of approximately 8 mg volatiles per day from one full-grown feverfew plant. No parthenolide or other sesquiterpene lactones were detected. The present investigation does not support the theory of airborne sesquiterpene lactone-containing plant parts or of direct release of sesquiterpene lactones from living plants as the only explanations for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed.

  1. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  2. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  3. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  4. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  5. Photon-pair shot noise in electron shot noise

    NASA Astrophysics Data System (ADS)

    Simoneau, Jean Olivier; Virally, Stéphane; Lupien, Christian; Reulet, Bertrand

    2017-02-01

    We report the measurement of the statistics of photons in the nonclassical radiation emitted by a tunnel junction. This is obtained by measuring up to the fourth cumulant of the voltage fluctuations generated by the sample. When the electron shot noise generates a squeezed electromagnetic field, the measurement provides a strong signature of the presence of photon pairs, characterized by a Fano factor of the photon flux above unity.

  6. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  7. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  8. An evaluation of reaction wheel emitted vibrations for space telescope

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Emitted forces and moments characteristics of the Space Telescope Reaction Wheel Assembly (ST RWA) were measured under room temperature and pressure, thermal extremes, and vibratory conditions. The RWA/Emitted Vibration Measurement Fixture was calibrated statically and dynamically, and background noise was measured with ST RWA not operating. A base line set of forces and moments of the ST RWA along and about three mutually perpendicular axes were recorded at room ambient. The temperature vibration sensitivites shown are those which were concluded to be a function of rotor unbalance changes and not associated with either spin motor nor rotor electronic changes.

  9. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  10. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  11. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  12. The New Airborne Disease

    PubMed Central

    Goldsmith, John R.

    1970-01-01

    Community air pollution is the new airborne disease of our generation's communities. It is caused by the increasing use of fuel, associated with both affluence and careless waste. Photochemical air pollution of the California type involves newly defined atmospheric reactions, is due mostly to motor vehicle exhaust, is oxidizing, and produces ozone, plant damage, impairment of visibility and eye and respiratory symptoms. Aggravation of asthma, impairment of lung function among persons with chronic respiratory disease and a possible causal role, along with cigarette smoking in emphysema and chronic bronchitis, are some of the effects of photochemical pollution. More subtle effects of pollution include impairment of oxygen transport by the blood due to carbon monoxide and interference with porphyrin metabolism due to lead. Carbon monoxide exposures may affect survival of patients who are in hospitals because of myocardial infarction. While many uncertainties in pollution-health reactions need to be resolved, a large number of people in California have health impairment due to airborne disease of this new type. PMID:5485227

  13. Shot noise in radiobiological systems.

    PubMed

    Datesman, A

    2016-11-01

    As a model for human tissue, this report considers the rate of free radical generation in a dilute solution of water in which a beta-emitting radionuclide is uniformly dispersed. Each decay dissipates a discrete quantity of energy, creating a large number of free radicals in a short time within a small volume determined by the beta particle range. Representing the instantaneous dissipated power as a train of randomly-spaced pulses, the time-averaged dissipated power p¯ and rate of free radical generation g¯ are derived. The analogous result in the theory of electrical circuits is known as the shot noise theorem. The reference dose of X-rays Dref producing an identical rate of free radical generation and level of oxidative stress is shown a) to increase with the square root of the absorbed dose, D, and b) to be far larger than D. This finding may have important consequences for public health in cases where the level of shot noise exceeds some noise floor corresponding to equilibrium biological processes. An estimate of this noise floor is made using the example of potassium-40, a beta-emitting radioisotope universally present in living tissue.

  14. Airport-related air pollution and noise.

    PubMed

    Cohen, Beverly S; Bronzaft, Arline L; Heikkinen, Maire; Goodman, Jerome; Nádas, Arthur

    2008-02-01

    To provide quantitative evidence of the impact on people of a neighboring metropolitan airport, La Guardia Airport (LGA) in New York City, (1) airborne particulate matter (PM) was measured to determine whether concentration differences could be detected between homes that are upwind and downwind of the airport; (2) 24-hr noise measurements were made in 12 homes near the airport; and (3) the impact of noise was assessed by a Community Wellness and Health Promotion Survey. Particulate matter concentrations were higher during active airport operating hours than during nonoperating hours, and the percent increase varied inversely with distance from the airport. Hourly differences between paired upwind and downwind sites were not remarkable. Residents living near the airport were exposed to noise levels as much as four times greater than those experienced by residents in a quiet, comparison home. Impulse noise events were detected from both aircraft and vehicular traffic. More than 55% of the people living within the flight path were bothered by aircraft noise, and 63% by highway noise; these were significantly higher percentages than for residents in the nonflight area. The change in PM concentrations with distance during operating compared with nonoperating hours; traffic-related impulse noise events; and the elevated annoyance with highway noise, as well as aircraft noise among residents in the flight path area, show airport-related motor vehicle traffic to be a major contributor to the negative impact of airports on people in the surrounding communities.

  15. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500).

  16. Mitigation of structureborne noise nuisance

    NASA Astrophysics Data System (ADS)

    Ko, Wing P.

    2005-09-01

    This paper presents a noise complaint case which was solved by me a few years ago in Hong Kong. A newlywed couple in the residential unit complained to the Government that the noise emitted from the pump room directly beneath their unit was very annoying, especially in the night-time period. The owner of the building was then required by the Government to mitigate the noise to the night-time statutory noise requirement within 30 days, otherwise he would be prosecuted. Ideally, the structureborne noise from the pump room could be effectively mitigated by installation of floating slab and vibration isolators under the pumps. Also, the water tanks and water pipes were required to be isolated from the walls and floor. However, this work was impossible to be completed within 30 days to stop the prosecution. Water supply to the above residents would be seriously interrupted during the construction period. As the only noise parameter of the statutory requirement was 30 minute A-weighted Leq, the most effective and practical way in this exigent situation was to reduce the pump operation time within any 30 minute period to decrease the Leq values. In addition, the water pipes and pumps were also required to be isolated from the walls and floor with resilient materials to break the vibration channels. These noise mitigation measures were successfully applied to the pump room before the end of the 30 days. Finally, the noise levels inside the complainant's unit were found to meet the statutory requirement. The noise complaint case was then closed by the Government.

  17. Instrument description of the airborne microwave temperature profiler

    SciTech Connect

    Denning, R.F.; Guidero, S.L.; Parks, G.S.; Gary, B.L. )

    1989-11-30

    The microwave temperature profiler (MTP) is a passive microwave radiometer installed in the NASA ER-2 aircraft and used to measure profiles of air temperature versus altitude. It operates at 57.3 and 58.8 GHz, where oxygen molecules emit thermal radiation. Brightness temperature is measured at a selection of viewing elevation angles every 14 s. MTP was the only remote sensing experiment aboard the ER-2 during the Airborne Antarctic Ozone Experiment. This paper describes hardware, calibration, and performance aspects of the MTP.

  18. Instrument description of the airborne microwave temperature profiler

    NASA Technical Reports Server (NTRS)

    Denning, Richard F.; Guidero, Steven L.; Parks, Gary S.; Gary, Bruce L.

    1989-01-01

    The microwave temperature profiler (MTP) is a passive microwave radiometer installed in the NASA ER-2 aircraft and used to measure profiles of air temperature versus altitude. It operates at 57.3 and 58.8 GHz, where oxygen molecules emit thermal radiation. Brightness temperature is measured at a selection of viewing elevation angles every 14 s. MTP was the only remote sensing experiment aboard the ER-2 during the Airborne Antarctic Ozone Experiment. This paper describes hardware, calibration, and performance aspects of the MTP.

  19. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  20. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  1. Light Emitting Diode (LED)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  2. Light Emitting Diodes (LEDs)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  3. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  4. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  5. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  6. CHARM-F: the Airborne MERLIN Demonstrator

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Amediek, A.; Büdenbender, C.; Fix, A.; Quatrevalet, M.; Wirth, M.

    2013-12-01

    A common and efficient method for demonstration of the usefulness of new remote sensing instruments in space science is to test them on airborne platforms prior to fly them on space-borne platform. CHARM-F comprises a new IPDA lidar sensor for the simultaneous measurement of the greenhouse gases carbon dioxide (CO2) and methane (CH4). This instrument is regarded to serve as an MERLIN demonstrator when operated on an airborne platform measuring the differential atmospheric optical depth (DAOD) of CH4 beneath the aircraft. The data products of the French-German climate mission MERLIN are DAOD and XCH4 that will be measured by a small OPO-based IPDA lidar at 1.64 μm. Similar to the MERLIN transmitter, the transmitter of CHARM-F emits two frequency-controlled, spectrally narrow-band OPO pulses into the atmosphere serving for the on- and off-line measurements. The ground echoes are measured by means of fast IR sensors in the direct detection mode. A special feature of CHARM-F comprises its weighting function which is quite similar to the one considered for MERLIN since the on- and off-line frequencies can be selected to be identically. Moreover, CHARM-F is designed for operation on the German HALO aircraft that can cruise at an altitude as high as 15 km. Thus a large portion of the MERLIN DAOD will be measured by CHARM-F offering the unique possibility to validate DAOD of MERLIN which is not possible by any other means. In our presentation we will introduce the CHARM-F instrument as a demonstrator for MERLIN. Further we report on results of the qualification tests of the subsystems which are required prior to fly the instrument on the HALO aircraft. Finally, we present first results from ground-based long-path absorption measurements of CH4 employing topographic targets.

  7. Space-time adaptive processing with sum and multiple difference beams for airborne radars

    NASA Astrophysics Data System (ADS)

    Maher, John E.; Zhang, Yuhong; Wang, Hong

    1999-07-01

    This paper describes some new results on a signal processing approach for airborne surveillance radars. This is a space- time adaptive processing technique that simultaneously processes temporal data from sum and difference ((Sigma) (Delta) ) beams to suppress clutter returns. The approach also includes employing spatial adaptive pre- suppression to suppress wideband noise jammers in a two- stage processor.

  8. An airborne infrared spectrometer for solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; Cheimets, Peter; DeLuca, Edward; Galeros, John; Gauron, Thomas; Golub, Leon; Guth, Giora; Hertz, Edward; Judge, Philip; Koutchmy, Serge; Marquez, Vanessa

    2016-08-01

    This paper presents the design of an innovative solar spectrometer that will y on the NSF/NCAR Gulfstream V High-Performance Instrumented Airborne Platform for Environmental Research (GV HIAPER) during the 2017 solar eclipse. The airborne infrared spectrometer (AIR-Spec) is groundbreaking in two aspects: it will image infrared coronal emission lines that have never been measured, and it will bring high resolution imaging to GV HIAPER. The instrument development faces the challenges of achieving adequate resolution and signal-to-noise ratio in a compact package mounted to a noisy moving platform. To ensure that AIR-Spec meets its research goals, the instrument is undergoing pre-flight modeling and testing. The results are presented with reference to the instrument requirements.

  9. An airborne system for detection of volcanic surface deformations

    NASA Technical Reports Server (NTRS)

    Lunine, J.

    1980-01-01

    A technique is proposed for measuring volcanic deformation on the order of centimeters per day to centimeters per year. An airborne multifrequency pulsed radar, tracking passive ground reflectors spaced at 1 kilometer intervals over a 50 square kilometer area is employed. Identification of targets is accomplished by Doppler and range resolution techniques, with final relative position measurements accomplished by phase comparison of multifrequency signals. Atmospheric path length errors are corrected by an airborne refractometer, meteorological instruments, or other refractive index measuring devices. Anticipated system accuracy is 1-2 cm, with measuring times on the order of minutes. Potential problems exist in the high intrinsic data assimilation rate required of the system to overcome ground backscatter noise.

  10. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  11. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  12. Subsonic and transonic propeller noise

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Gounet, H.

    Models for the noise levels from propellers are discussed, with results compared to in-flight measurements. Methods originally applied to noise from light aircraft are modified and extended to high speed passenger aircraft. Noise emitted from propellers has three components: a monopolar emission due to the air displaced by a blade; a bipolar form from average and fluctuating forces exerted by the blades; and a quadripolar component produced by deformation of the streamlines around the blade profile and defined by the Lighthill tensor. The latter is not a factor in the subsonic regime and can be neglected. Attention is given to a formalism which accounts for the sound level along each band, the frequency harmonics at each blade passage, the number of blades, and the rotation rate. The measured directivities of the two components are described. It is found that the radiated noise levels can be reduced in slow aircraft by lowering the peripheral velocity while keeping the same power with more blades. Calculations including the quadripolar term are necessary for modeling noise levels in transonic propellers.

  13. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  14. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  15. Improving Gabor noise.

    PubMed

    Lagae, Ares; Lefebvre, Sylvain; Dutré, Philip

    2011-08-01

    We have recently proposed a new procedural noise function, Gabor noise, which offers a combination of properties not found in the existing noise functions. In this paper, we present three significant improvements to Gabor noise: 1) an isotropic kernel for Gabor noise, which speeds up isotropic Gabor noise with a factor of roughly two, 2) an error analysis of Gabor noise, which relates the kernel truncation radius to the relative error of the noise, and 3) spatially varying Gabor noise, which enables spatial variation of all noise parameters. These improvements make Gabor noise an even more attractive alternative for the existing noise functions.

  16. Combustion generated noise in gas turbine combustors. [engine noise/noise reduction

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.; Shivashankara, B. N.

    1974-01-01

    Experiments were conducted to determine the noise power and spectra emitted from a gas turbine combustor can exhausting to the atmosphere. Limited hot wire measurements were made of the cold flow turbulence level and spectra within the can. The fuels used were JP-4, acetone and methyl alcohol burning with air at atmospheric pressure. The experimental results show that for a fixed fuel the noise output is dominated by the airflow rate and not the fuel/air ratio. The spectra are dominated by the spectra of the cold flow turbulence spectra which were invariant with airflow rate in the experiments. The effect of fuel type on the noise power output was primarily through the heat of combustion and not the reactivity. A theory of combustion noise based upon the flame radiating to open surroundings is able to reasonably explain the observed results. A thermoacoustic efficiency for noise radiation as high as .00003 was observed in this program for JP-4 fuel. Scaling rules are presented for installed configurations.

  17. Dual channel airborne hygrometer for climate research

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Gulyas, Gabor; Bozoki, Zoltan; Szabo, Gabor

    2015-04-01

    Airborne hygrometry has an increasing role in climate research and nowadays the determination of cloud content especially of cirrus clouds is gaining high interest. The greatest challenges for such measurements are being used from ground level up to the lower stratosphere with appropriate precision and accuracy the low concentration and varying environment pressure. Such purpose instrument was probably presented first by our research group [1-2]. The development of the system called WaSUL-Hygro and some measurement results will be introduced. The measurement system is based on photoacoustic spectroscopy and contains two measuring cells, one is used to measure water vapor concentration which is typically sampled by a sideward or backward inlet, while the second one measures total water content (water vapor plus ice crystals) after evaporation in a forward facing sampler. The two measuring cells are simultaneously illuminated through with one distributed feedback diode laser (1371 or 1392 nm). Two early versions have been used within the CARIBIC project. During the recent years, efforts were made to turn the system into a more reliable and robust one [3]. The first important development was the improvement of the wavelength stabilization method of the applied laser. As a result the uncertainty of the wavelength is less than 40fm, which corresponds to less than 0.05% of PA signal uncertainty. This PA signal uncertainty is lower than the noise level of the system itself. The other main development was the improvement of the concentration determination algorithm. For this purpose several calibration and data evaluation methods were developed, the combination of the latest ones have made the system traceable to the humidity generator applied during the calibration within 1.5% relative deviation or within noise level, whichever is greater. The improved system was several times blind tested at the Environmental Simulation Facility (Forschungszentrum Jülich, Germany) in

  18. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  19. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  20. The NASA enhanced MODIS airborne simulator

    NASA Astrophysics Data System (ADS)

    Ellis, Thomas A.; Myers, Jeffrey; Grant, Patrick; Platnick, Steven; Guerin, Daniel C.; Fisher, John; Song, Kai; Kimchi, Joseph; Kilmer, Louis; LaPorte, Daniel D.; Moeller, Christopher C.

    2011-10-01

    The new NASA Enhanced MODIS Airborne Simulator (eMAS) is based on the legacy MAS system, which has been used extensively in support of the NASA Earth Observing System program since 1995. eMAS consists of two separate instruments designed to fly together on the NASA ER-2 and Global Hawk high altitude aircraft. The eMAS-IR instrument is an upgraded version of the legacy MAS line-scanning spectrometer, with 38 spectral bands in the wavelength range from 0.47 to 14.1 μm. The original LN2-cooled MAS MWIR and LWIR spectrometers are replaced with a single vacuum-sealed, Stirling-cooled assembly, having a single MWIR and twelve LWIR bands. This spectrometer module contains a cold optical bench where both dispersive optics and detector arrays are maintained at cryogenic temperatures to reduce infrared background noise, and ensure spectral stability during high altitude airborne operations. The EMAS-HS instrument is a stand-alone push-broom imaging spectrometer, with 202 contiguous spectral bands in the wavelength range from 0.38 to 2.40 μm. It consists of two Offner spectrometers, mated to a 4-mirror anastigmatic telescope. The system has a single slit, and uses a dichroic beam-splitter to divide the incoming energy between VNIR and SWIR focal plane arrays. It will be synchronized and bore-sighted with the IR line-scanner, and includes an active source for monitoring calibration stability. eMAS is intended to support future satellite missions including the Hyperspectral Infrared Imager ( HyspIRI,) the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP,) and the follow-on Joint Polar Satellite System (JPSS.)

  1. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  2. Airborne Crowd Density Estimation

    NASA Astrophysics Data System (ADS)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  3. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  4. Infrared emitting device and method

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  5. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  6. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  7. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  8. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  9. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes

    PubMed Central

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G.; Shelton, Betsy L.; Peters, Thomas M.

    2012-01-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm3) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded. PMID:23204914

  10. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes.

    PubMed

    Huang, Guannan; Park, Jae Hong; Cena, Lorenzo G; Shelton, Betsy L; Peters, Thomas M

    2012-10-01

    The emission of the airborne particles from epoxy resin test sticks with different CNT loadings and two commercial products were characterized while sanding with three grit sizes and three disc sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4670 particles/cm(3)) were produced with coarse sandpaper, 2% (by weight) CNT test sticks and medium disc sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm(3)) were produced with medium sandpaper, 2% CNT test sticks and slow disc sander speed. Respirable mass concentrations were highest (arithmetic mean = 1.01 mg/m(3)) for fine sandpaper, 2% CNT test sticks and medium disc sander speed and lowest (arithmetic mean = 0.20 mg/m(3)) for medium sandpaper, 0% CNT test sticks and medium disc sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4% CNT epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded.

  11. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  12. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  13. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  14. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.

  15. Airborne transmission of Bordetella pertussis.

    PubMed

    Warfel, Jason M; Beren, Joel; Merkel, Tod J

    2012-09-15

    Pertussis is a contagious, acute respiratory illness caused by the bacterial pathogen Bordetella pertussis. Although it is widely believed that transmission of B. pertussis occurs via aerosolized respiratory droplets, no controlled study has ever documented airborne transmission of pertussis. We set out to determine if airborne transmission occurs between infected and naive animals, utilizing the baboon model of pertussis. Our results showed that 100% of exposed naive animals became infected even when physical contact was prevented, demonstrating that pertussis transmission occurs via aerosolized respiratory droplets.

  16. Noise Abatement

    NASA Technical Reports Server (NTRS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  17. Blue light emitting thiogallate phosphor

    DOEpatents

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  18. Metals in dust fractions emitted at mechanical workstations.

    PubMed

    Kondej, Dorota; Gawęda, Ewa

    2012-01-01

    Workers at metal machining workstations are exposed to airborne dust particles containing metals and their compounds. Their harmful impact on the workers' health depends on both their chemical composition and their distribution. The aim of this study was to determine the content of metals in dust fractions emitted in the process of mechanical machining of products made of brass, steel and cast iron. Samples taken during grinding, turning and drilling were tested. The concentration of metals in dust fractions was determined with atomic absorption spectrometry. The content of iron, manganese, chromium, zinc, lead, copper and nickel in the dust fractions was highly differentiated depending on the size of the particles, the material and the processes used.

  19. Photon Counting Airborne Laser Swath Mapping

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Shrestha, R. L.; Slatton, K. C.

    2004-05-01

    During the past decade airborne laser swath mapping (ALSM) has brought topographic mapping to the forefront of geodesy. ALSM has made it possible, for the first time, to study natural geo-surficial processes on spatial scales extending from meters to hundreds of kilometers, all in a consistent geodetic frame of reference. The conventional approach to ALSM has been to use lasers with enough energy per pulse, and optics with large enough collecting areas, to obtain returns of thousands of photons per shot. This approach minimizes the impact of spurious range values caused by noise, such as background solar radiation and sensor thermal noise, but also constrains the minimum size, weight and power consumption of the hardware. Current systems typically operate at rates approaching 100,000 pulses per second, and another order of magnitude increase would be needed to provide contiguous coverage with a spatial resolution of 30 cm or better. This high signal-to-noise ratio approach affords little scalability for significantly downsizing the hardware, or reducing the costs. University of Florida (UF) researchers are developing an ALSM unit based on a different paradigm, which we refer to as photon counting ALSM, or simply PC-ALSM. The approach is to transmit relatively low energy laser pulses, and to illuminate a surface `patch' about an order of magnitude larger than the typical footprint of a conventional ALSM system. The returning signal will have far fewer photons per unit area of the receive optics, making it more difficult to discriminate between return signal and noise. If a single channel detector were used, the spatial resolution would also be degraded. However, by using a multi-channel photomultiplier tube to detect the returns, the surface patch can be divided into an array of groundals, and by using a multi-stop timing system false ranges can be filtered out of the data during post flight processing. Researchers at NASA GSFC have already tested a first generation

  20. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  1. Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing

    PubMed Central

    Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun

    2014-01-01

    Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125

  2. Three years of practical use of airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    van Leeuwen, E.

    2003-04-01

    BHP Billiton has successfully built and deployed three airborne gravity gradiometer (AGG) systems, (Newton, Einstein and Galileo) based upon the Bell Airspace (now Lockheed Martin) Gravity Gradient Instruments developed for the United States Department of Defense. A second-generation gradiometer (Feynman) is presently nearing completion. The GGI technology is based on groups of four (4) accelerometers where the accelerometers are equi-spaced on a circle. The configuration successfully rejects both common mode accelerations and rotations about the axis perpendicular to the plane of the complement. The GGI is mounted within an aircraft in a specially designed, inertially stabilized platform, which significantly reduces sensitivity to noise and turbulence. The BHP Billiton AGG Technology provides high quality gravity maps with a resolution and sensitivity to map gravity anomalies associated with both minerals and hydrocarbon deposits. To date the purpose built and designed hardware and data processing algorithms, in conjunction with several other geophysical survey instruments, have been deployed against a broad range of mineral and hydrocarbon targets, a total of over 300,000km of operational flights having been made. Data will also be presented on the in-flight sensitivity of a gravity gradiometer to the airborne environment. It will also outline some of the many unexpected problems that were encountered in the 18-month flight trials required to achieve satisfactory airborne operation.

  3. Broadband light-emitting diode

    DOEpatents

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  4. Broadband light-emitting diode

    DOEpatents

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  5. Infrared emitting device and method

    DOEpatents

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  6. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  7. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  8. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  9. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  10. Effects of Underwater Turbine Noise on Crab Larval Metamorphosis.

    PubMed

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2016-01-01

    The development of marine tidal turbines has advanced at a rapid rate over the last decade but with little detailed understanding of the potential noise impacts on invertebrates. Previous research has shown that underwater reef noise plays an important role in mediating metamorphosis in many larval crabs and fishes. New research suggests that underwater estuarine noise may also mediate metamorphosis in estuarine crab larvae and that the noise emitted from underwater tidal and sea-based wind turbines may significantly influence larval metamorphosis in estuarine crabs.

  11. Control of absolute negative mobility via noise recycling procedure

    NASA Astrophysics Data System (ADS)

    Zeng, C. H.; Wang, H.; Qing, S.; Hu, J. H.; Li, K. Z.

    2012-10-01

    Absolute negative mobility (ANM) is investigated in a spatially-periodic symmetric system under the influence of noise consisting of the superposition of a white Gaussian noise with the same noise delayed by time τ. The effects of the noise intensity σ, the time delay τ and feedback intensity ɛ in the noise recycling are discussed. It is found that the noise intensity σ and time delay τ can induce the phenomenon of ANM, while the feedback intensity ɛ can not induce it. This phenomenon of ANM can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device by using a vertical cavity surface emitting laser to generate the noise recycling procedure.

  12. Two applications of HTS technology on an airborne platform

    SciTech Connect

    Robertson, M.A.

    1994-12-31

    This paper describes two applications for HTS technology on an airborne platform. The first application is a RF front-end for an 8 to 40 GHz microwave/ millimeter-wave ESM system. The second application is a 2 to 4 GHz HTS Spiral Antenna Array System. The HTS microwave front-end unit consists of an HTS diplexer, and two low noise preamplifiers. The design demonstrates the benefits of HTS technology while providing a near-term insertion on a military airborne platform. The HTS Spiral Antenna Array System utilizes a 4 element conical spiral array (conventional technology) and a beamforming network consisting of a HTS power combiner, a HTS bandpass filter, HTS coupler, and a conventional technology low noise preamplifier. Both applications utilize low insertion loss HTS devices coupled with the cryogenic cooling of conventional low noise preamplifiers to lower the overall noise figure of the systems. The HTS Spiral Antenna Array System provides a 3 dB improvement in SNR over the best available conventional technology system. A 3 dB improvement in SNR can be compared to the doubling of the antenna aperture which provides a 3 dB gain increase, but at the expense of a decreased field of view. A 3 dB increase in SNR can also be viewed as a 41% increase in usable target range. The HTS antenna system maintains a wide field of view with a performance that approaches a steerable beam antenna. This is a cost effective approach for improving the collection capability of a system without the expense of developing a steerable beam antenna and the associated beam control hardware (tracker) and software.

  13. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  14. Enhancement of TEM Data and Noise Characterization by Principal Component Analysis

    DTIC Science & Technology

    2010-05-01

    lated signals: IRE Transactions on Information Theory, IT-2, 41–46. Minty, B., and J. Hovgaard, 2002, Reducing noise in gamma - ray spectrometry using...spectral component analysis: Exploration Geophysics, 33, 172–176. Minty, B., and P. McFadden, 1998, Improved NASVD smoothing of airborne gamma - ray ... Airborne Electromagnetic GCV - Generalized Cross Validation m - meter mV - millivolt PCA - Principal Component Analysis RF - Radio Frequency RGB - Red

  15. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  16. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  17. UHB demonstrator interior noise control flight tests and analysis

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Druez, P. M.; Kimbrough, A. J.; Brock, M. P.; Burge, P. L.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.

    1989-01-01

    The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels.

  18. Aerosols emitted by the combustion of polymers containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Chivas-Joly, C.; Guillaume, E.; Ducourtieux, S.; Saragoza, L.; Lesenechal, D.; Macé, T.; Lopez-Cuesta, J.-M.; Longuet, C.

    2012-03-01

    The fire behavior and the characterization of solid and gaseous fire effluents of polymers [polymethyl methacrylate (PMMA) and polyamide-6 (PA-6)] filled with nanoparticles (silica, alumina, and carbon nanotubes) used to improve their flame retardancy were investigated. To determine the impact of these composites on the emission of airborne particles produced during their combustion in accidental fire scenarios, an experimental setup was developed to measure the mass distribution in the 30 nm-10 μm range, and the concentrations of submicrometric particles in the aerosol. Comparisons were made between unfilled and filled polymers, and the influence of filler surface treatments (silane-based), as well as combinations with a flame retardant [ammonium polyphosphate (APP)], was investigated. The presence of nano-oxides in PMMA shows a significant effect on the rate of particle emission with a decrease in the concentration of the emitted submicrometric particles. APP in PMMA led to a decrease in the mass fraction of ultrafine particles and an increase in the rate of submicrometric particle emission compared to filled compositions with nano-oxides. Atomic force microscopy was used as a complementary tool for the characterization of the particles emitted during combustion, allowing direct observation of nanoparticle morphology, detection of carbon nanotubes in the aerosol, and visualization of the effect of APP on nanoparticle morphology.

  19. Characterization of aerosol emitted by the combustion of nanocomposites

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Chivas-Joly, C.; Guillaume, E.; Ducourtieux, S.; Saragoza, L.; Lesenechal, D.; Macé, T.

    2011-07-01

    Day after day, new applications using nanoparticles appear in industry, increasing the probability to find these particles in the workplace as well as in ambient air. As epidemiological studies have shown an association between increased particulate air pollution and adverse health effects in susceptible members of the population, it is particularly important to characterize aerosols emitted by different sources of emission, during the combustion of composites charged with nanoparticles for example. The present study is led in the framework of the NANOFEU project, supported by the French Research Agency (ANR), in order to characterize the fire behaviour of polymers charged with suitable nanoparticles and make an alternative to retardant systems usually employed. To determine the impact of these composites on the emission of airborne particles produced during their combustions, an experimental setup has been developed to measure the mass distribution in the range of 30 nm - 10 μm and the number concentration of submicrometric particles of the produced aerosol. A comparison is performed on the aerosol emitted during the combustion of several polymers alone (PMMA, PA-6), polymers containing nanofillers (silica, alumina, and carbon nanotubes) and polymers containing both nanofillers and a conventional flame retardant system (ammonium polyphosphate). The results on the morphology of particles were also investigated using AFM.

  20. Porous light-emitting compositions

    SciTech Connect

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  1. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    PubMed Central

    Goossens, Dirk

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g-1 in topsoil and bedrock, and more than 0.03 μg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually. PMID:25897667

  2. Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA.

    PubMed

    Goossens, Dirk; Buck, Brenda J; Teng, Yuanxin; McLaurin, Brett T

    2015-01-01

    Elevated concentrations of arsenic, up to 7058 μg g(-1) in topsoil and bedrock, and more than 0.03 μg m(-3) in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 μg m(-3). The results of this study are important because the NDRA is visited by more than 300,000 people annually.

  3. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  4. White light-emitting organic electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  5. Turbomachinery noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-08-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  6. Turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-01-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  7. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  8. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  9. Detection of airborne polyoma virus.

    PubMed Central

    McGarrity, G. J.; Dion, A. S.

    1978-01-01

    Polyoma virus was recovered from the air of an animal laboratory housing mice infected with the virus. Air samples were obtained by means of a high volume air sampler and further concentrated by high speed centrifugation. Total concentration of the air samples was 7.5 x 10(7). Assay for polyoma virus was by mouse antibody production tests. Airborne polyoma virus was detected in four of six samples. PMID:211163

  10. The Future of Airborne Reconnaissance

    DTIC Science & Technology

    1996-01-01

    biplanes to the worldwide Cold War missions of the U - 2 and SR-71, airborne reconnaissance has become an indispensable tool to the intelligence community...Reconnaissance Operations (SRO) procedures, such as the U - 2 , RC- 135, and the EP-3, and traditional theater/fleet tactical reconnaissance systems like...upgraded sensor package on the U -2.14 The Army Staffs argument centers around command and control of the asset. The Army agreed that the U - 2 ’s

  11. FET Noise Studies.

    DTIC Science & Technology

    1981-03-01

    The predominant sources of nonlinearity in the FET, relevant to oscillator analysis, are the transconductance gm and the source-gate capacitance C sg...two general categories of noise mechanisms in an FET: intrinsic sources, i.e., noise associated with the FET operation itself, and extrinsic noise...very high drain voltages, also produces white noise. Noise produced by para- sitic resistance, one of the extrinsic noise sources, is also flat. These

  12. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  13. Noise and blast

    NASA Technical Reports Server (NTRS)

    Hodge, D. C.; Garinther, G. R.

    1973-01-01

    Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.

  14. High Energy 2-Micron Solid-State Laser Transmitter for NASA's Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Bai, Yingxin

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  15. Visible light emitting vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Lott, James A.; Schneider, Jr., Richard P.

    1995-01-01

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  16. Visible light emitting vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  17. Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation.

    PubMed

    Courault, D; Albert, I; Perelle, S; Fraisse, A; Renault, P; Salemkour, A; Amato, P

    2017-08-15

    Reclamation of wastewater (WW) for irrigation, after treatment represents a challenge that could alleviate pressure on water resources and address the increasing demand for agriculture. However, the risks to human health must be assessed, particularly those related to human enteric viruses that resist standard treatments in most wastewater treatment plants (WWTP). The risks associated with exposure to viral bioaerosols near WWTP and near agricultural plots irrigated with WW are poorly documented. The objectives of this study were to 1) better characterize human enteric viruses found in bioaerosols near a "standard WWTP" and over fields irrigated with treated WW and 2) propose a numeric model to assess the health risk to populations located close to the irrigated areas, with particular attention to norovirus, which is responsible for most viral gastroenteritis in France. Water and air samples were collected at various locations in the largest French WW-irrigated site near Clermont-Ferrand, at the WWTP entrance and after treatment, in the air above activated sludge basins, and above fields irrigated with WW. Various enteric viruses were found in the water samples collected both before and after treatment. Norovirus was the most abundant with >10e4 genome copies/l (GC/L) before treatment and ~10e3 GC/L after treatment. Low quantities (<10e3GC/m(3)) were detected in the air above active sludge pools and irrigated plots. Hepatitis E virus was detected in all sampled compartments. A quantitative microbial risk assessment (QMRA) approach, including a simplified atmospheric dispersion model, allowed assessment of norovirus infection risk. The Bayesian QMRA approach considered wind speed measurements over 21years, and the variability and uncertainty of all measurements throughout the chain up to the risk. The probability of infection within one year for the most exposed WWTP employees was >10e-4 for strong wind speed (≥3m/s) and a constant emission rate of 8e3 GC/m(3)/s. This probability decreases by 3 log when the distance to the emission source is doubled. This information can aid development of safe water reuse policies in terms of local setback distance and wind conditions for wastewater reuse.

  18. Screening procedure for airborne pollutants emitted from a high-tech industrial complex in Taiwan.

    PubMed

    Wang, John H C; Tsai, Ching-Tsan; Chiang, Chow-Feng

    2015-11-01

    Despite the modernization of computational techniques, atmospheric dispersion modeling remains a complicated task as it involves the use of large amounts of interrelated data with wide variability. The continuously growing list of regulated air pollutants also increases the difficulty of this task. To address these challenges, this study aimed to develop a screening procedure for a long-term exposure scenario by generating a site-specific lookup table of hourly averaged dispersion factors (χ/Q), which could be evaluated by downwind distance, direction, and effective plume height only. To allow for such simplification, the average plume rise was weighted with the frequency distribution of meteorological data so that the prediction of χ/Q could be decoupled from the meteorological data. To illustrate this procedure, 20 receptors around a high-tech complex in Taiwan were selected. Five consecutive years of hourly meteorological data were acquired to generate a lookup table of χ/Q, as well as two regression formulas of plume rise as functions of downwind distance, buoyancy flux, and stack height. To calculate the concentrations for the selected receptors, a six-step Excel algorithm was programmed with four years of emission records and 10 most critical toxics were screened out. A validation check using Industrial Source Complex (ISC3) model with the same meteorological and emission data showed an acceptable overestimate of 6.7% in the average concentration of 10 nearby receptors. The procedure proposed in this study allows practical and focused emission management for a large industrial complex and can therefore be integrated into an air quality decision-making system.

  19. Airborne HCl - CO sensing system

    NASA Technical Reports Server (NTRS)

    Bartle, E. R.; Hall, G.

    1977-01-01

    A system for measuring air pollutants in-situ using an aircraft was designed, fabricated, and tested. The system is based upon a technique called Gas Filter Correlation (GFC) which provides for high sensitivity and specificity in the presence of interfering species. This particular system was designed for measuring hydrochloric acid and carbon monoxide gases emitted from rocket exhaust effluents.

  20. Noise, Health, and Architecture.

    ERIC Educational Resources Information Center

    Beranek, Leo L.

    There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…

  1. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  2. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  3. Modeling Airborne Gravity Data with Local Functions for Regional Geoid Enhancement ---- A Case Study in Puerto Rico Area

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2016-04-01

    Airborne gravimetry has been used as the primary method to quickly and economically obtain updated gravity field information over a region, targeted specifically. Thus, unlike the satellite missions that provide global or near global data coverage, the observables from airborne campaigns are apparently space limited. Moreover, they are also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques have to be applied to overcome the low signal to noise ratio problem that are presented in the airborne systems due to mechanical and mathematical limitations in computing the accelerations, both the kinematic one and the dynamic one. As a result, in this study, a band-limited local function system based on the point mass model is used to process these airborne gravity data that have both a limited frequency domain and a limited space domain in the target area: Puerto Rico Island and its nearby ocean areas. The resulting geoid model show obvious middle to short wavelength geoid changes due to airborne gravity data contribution. In the land area, these changes improved the geoid precision from 3.27cm to 2.09cm at the local GNSS/Leveling bench marks. More importantly, the error trend in the geoid models is largely reduced if not completely removed. Various oceanographic models will be used to validate the geoid changes in the nearby open sea areas.

  4. Airborne radioactive effluent study at the Savannah River Plant

    SciTech Connect

    Blanchard, R.L.; Broadway, J.A.; Sensintaffar, E.L.; Kirk, W.P.; Kahn, B.; Garrett, A.J.

    1984-07-01

    Under the Clean Air Act, Sections 112 and 122 as amended in 1977, the Office of Radiation Programs (OPR) of the United States Environmental Protection Agency is currently developing standards for radionuclides emitted to the air by several source categories. In order to confirm source-term measurements and pathway calculations for radiation exposures to humans offsite, the ORP performs field studies at selected facilities that emit radionuclides. This report describes the field study conducted at the Savannah River Plant (SRP), a laboratory operated by E.I. du Pont de Nemours and Company for the US Department of Energy. This purpose of the study at ARP was to verify reported airborne releases and resulting radiation doses from the facility. Measurements of radionuclide releases for brief periods were compared with measurements performed by SRP staff on split samples and with annual average releases reported by SRP for the same facilities. The dispersion model used by SRP staff to calculate radiation doses offsite was tested by brief environmental radioactivity measurements performed simultaneously with the release measurements, and by examining radioactivity levels in environmental samples. This report describes in detail all measurements made and data collected during the field study and presents the results obtained. 34 references, 18 figures, 49 tables.

  5. General Aviation Interior Noise. Part 1; Source/Path Identification

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    There were two primary objectives of the research effort reported herein. The first objective was to identify and evaluate noise source/path identification technology applicable to single engine propeller driven aircraft that can be used to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken to identify the contributions of each of these possible sources was first to conduct a Principal Component Analysis (PCA) of an in-flight noise and vibration database acquired on a Cessna Model 182E aircraft. The second objective was to develop and evaluate advanced technology for noise source ranking of interior panel groups such as the aircraft windshield, instrument panel, firewall, and door/window panels within the cabin of a single engine propeller driven aircraft. The technology employed was that of Acoustic Holography (AH). AH was applied to the test aircraft by acquiring a series of in-flight microphone array measurements within the aircraft cabin and correlating the measurements via PCA. The source contributions of the various panel groups leading to the array measurements were then synthesized by solving the inverse problem using the boundary element model.

  6. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    NASA Astrophysics Data System (ADS)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (< 1 μm). The statistical analysis combines with the particle mass-size distribution analysis could provide useful source identification information. In airborne particles with the size of 0.32 μm, Ga could be a useful pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  7. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  8. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  9. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  10. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  11. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  12. Geophex airborne unmanned survey system

    SciTech Connect

    Won, I.J.; Taylor, D.W.A.

    1995-03-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected.

  13. A simulator for airborne laser swath mapping via photon counting

    NASA Astrophysics Data System (ADS)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  14. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  15. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  16. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  17. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  18. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  19. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  20. Airborne Global Positioning System Antenna System

    DTIC Science & Technology

    2004-10-14

    GLOBAL POSITIONING SYSTEM ANTENNA SYSTEM DISTRIBUTION: SMC/ GP (3 cys); AFFSA...standard that airborne Global Positioning System ( GPS ) antenna system must meet to be identified with the applicable MSO marking. The similarity of...UNCLASSIFIED DOCUMENT NO. DATE NO. MSO-C144 14 Oct 04 Initial Release REV: REV: SHEET 1 OF 16 TITLE: AIRBORNE GLOBAL POSITIONING SYSTEM

  1. Quantum properties of light emitted by dipole nano-laser

    NASA Astrophysics Data System (ADS)

    Ghannam, Talal

    Recent technological advances allow entire optical systems to be lithographically implanted on small silicon chips. These systems include tiny semiconductor lasers that function as light sources for digital optical signals. Future advances will rely on even smaller components. At the theoretical limit of this process, the smallest lasers will have an active medium consisting of a single atom (natural or artificial). Several suggestions for how this can be accomplished have already been published, such as nano-lasers based on photonic crystals and nano wires. In particular, the "dipole nanolaser" consists of a single quantum dot functioning as the active medium. It is optically coupled to a metal nanoparticles that form a resonant cavity. Laser light is generated from the near-field optical signal. The proposed work is a theoretical exploration of the nature of the resulting laser light. The dynamics of the system will be studied and relevant time scales described. These will form the basis for a set of operator equations describing the quantum properties of the emitted light. The dynamics will be studied in both density matrix and quantum Langevin formulations, with attention directed to noise sources. The equations will be linearized and solved using standard techniques. The result of the study will be a set of predicted noise spectra describing the statistics of the emitted light. The goal will be to identify the major noise contributions and suggest methods for suppressing them. This will be done by studying the probability of getting squeezed light from the nanoparticle for the certain scheme of parameters.

  2. The measurement and interpretation of Br/Pb ratios in airborne particles

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Sturges, W. T.

    Concentrations of bromide in atmospheric particles have commonly been used as an indicator of vehicle-emitted lead, since the two elements are associated in auto exhaust. A depression in the Br/Pb ratio from that in fresh auto exhaust has generally been interpreted in terms of an industrial contribution to airborne lead, despite the known loss of bromine from airborne particles during ageing processes in the atmosphere. In this article the available analytical techniques for determination of Br/Pb ratios are critically evaluated, and the reported values of Br/Pb ratios in ambient air are reviewed. The possible reasons for variability in Br/Pb ratios are discussed and recommendations made for the evaluation of Br/Pb ratio data.

  3. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  4. DEM sourcing guidelines for computing 1 Eö accurate terrain corrections for airborne gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Annecchione, Maria; Hatch, David; Hefford, Shane W.

    2017-01-01

    In this paper we investigate digital elevation model (DEM) sourcing requirements to compute gravity gradiometry terrain corrections accurate to 1 Eötvös (Eö) at observation heights of 80 m or more above ground. Such survey heights are typical in fixed-wing airborne surveying for resource exploration where the maximum signal-to-noise ratio is sought. We consider the accuracy of terrain corrections relevant for recent commercial airborne gravity gradiometry systems operating at the 10 Eö noise level and for future systems with a target noise level of 1 Eö. We focus on the requirements for the vertical gradient of the vertical component of gravity (Gdd) because this element of the gradient tensor is most commonly interpreted qualitatively and quantitatively. Terrain correction accuracy depends on the bare-earth DEM accuracy and spatial resolution. The bare-earth DEM accuracy and spatial resolution depends on its source. Two possible sources are considered: airborne LiDAR and Shuttle Radar Topography Mission (SRTM). The accuracy of an SRTM DEM is affected by vegetation height. The SRTM footprint is also larger and the DEM resolution is thus lower. However, resolution requirements relax as relief decreases. Publicly available LiDAR data and 1 arc-second and 3 arc-second SRTM data were selected over four study areas representing end member cases of vegetation cover and relief. The four study areas are presented as reference material for processing airborne gravity gradiometry data at the 1 Eö noise level with 50 m spatial resolution. From this investigation we find that to achieve 1 Eö accuracy in the terrain correction at 80 m height airborne LiDAR data are required even when terrain relief is a few tens of meters and the vegetation is sparse. However, as satellite ranging technologies progress bare-earth DEMs of sufficient accuracy and resolution may be sourced at lesser cost. We found that a bare-earth DEM of 10 m resolution and 2 m accuracy are sufficient for

  5. The Effect of Road Traffic Noise on Reaction Time

    PubMed Central

    Alimohammadi, Iraj; Zokaei, Mojtaba; Sandrock, Stephan

    2015-01-01

    Background: Traffic noise is one of the main important sources in urban noise pollution, which causes various physiological and psychological effects that can cause disturbs in performance, sleep disturbances, hearing loss and impact on job performance. This study was conducted to verify the impact of road traffic noise on reaction time in terms of extraversion and sex. Methods: Traffic noise was measured and recorded in 10 arterial streets in Tehran, and then the recorded noise was emitted towards participants in an acoustic room. The participants were 80 (40 cases and 40 controls) students. Personality type was determined by Eysenck Personality Inventory (EPI) questioner. Reaction time before and after exposure to traffic noise was measured. Results: Reaction time before exposure to traffic noise did not differ (P=0.437) significantly between introverts and extraverts. However, it was increased significantly in both groups after exposure to traffic noise (P<0.01). Introvert’s reaction time was more increased than that of extraverts. Conclusion: Traffic noise augmented reaction time of both males and females. This study also revealed that exposure to traffic noise leads to increase in reaction time. PMID:26634199

  6. ISMAR: an airborne submillimetre radiometer

    NASA Astrophysics Data System (ADS)

    Fox, Stuart; Lee, Clare; Moyna, Brian; Philipp, Martin; Rule, Ian; Rogers, Stuart; King, Robert; Oldfield, Matthew; Rea, Simon; Henry, Manju; Wang, Hui; Chawn Harlow, R.

    2017-02-01

    The International Submillimetre Airborne Radiometer (ISMAR) has been developed as an airborne demonstrator for the Ice Cloud Imager (ICI) that will be launched on board the next generation of European polar-orbiting weather satellites in the 2020s. It currently has 15 channels at frequencies between 118 and 664 GHz which are sensitive to scattering by cloud ice, and additional channels at 874 GHz are being developed. This paper presents an overview of ISMAR and describes the algorithms used for calibration. The main sources of bias in the measurements are evaluated, as well as the radiometric sensitivity in different measurement scenarios. It is shown that for downward views from high altitude, representative of a satellite viewing geometry, the bias in most channels is less than ±1 K and the NEΔT is less than 2 K, with many channels having an NEΔT less than 1 K. In-flight calibration accuracy is also evaluated by comparison of high-altitude zenith views with radiative-transfer simulations.

  7. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  8. Luminescence conversion of blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Schlotter, P.; Schmidt, R.; Schneider, J.

    Using blue-emitting GaN/6HSiC chips as primary light sources, we have fabricated green, yellow, red and white emitting LEDs. The generation of mixed colors, as turquoise and magenta is also demonstrated. The underlying physical principle is that of luminescence down-conversion (Stokes shift), as typical for organic luminescent dye molecules. A white emitting LED, using an inorganic converter, Y3Al5O12:Ce3+( ), has also been realized.

  9. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  10. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  11. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  12. Examples of Radiation-Emitting Products

    MedlinePlus

    Examples of Radiation-Emitting Electronic Products Radiation Use Medical: Diagnostic Medical: Therapeutic Medical: Surgical Medical: Other Scientific, Other Industrial Business, Commercial, Security Consumer (household, entertainment, ...

  13. The use of data turning in airborne radars

    NASA Astrophysics Data System (ADS)

    Lightstone, L.; Faubert, D.

    Data turning is a digital signal processing method that achieves good signal-to-noise ratio and target/interference resolution while reducing the number of pulses processed in the discrete Fourier transform/fast Fourier transform operation. A mathematical description is provided of data turning, along with a mathematical example of the impact of data turning on a bank of discrete Fourier transform filters. Data turning is discussed from the frequency domain and time domain perspectives, and a simulated performance example is taken from an airborne pulse doppler radar system. It is shown that data turning can, with a proper choice of signal processing parameters, approximate the integration improvement of non-coherent integration. Data turning can be significantly faster than either full coherent processing or non-coherent processing.

  14. Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces

    NASA Astrophysics Data System (ADS)

    Xie, Boyang; Cheng, Hua; Tang, Kun; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    We present the design, characterization, and theoretical and experimental demonstration of multiband asymmetric transmission of airborne sound using an ultrathin coded metasurface formed by an alternating arrangement of the coding elements 0 and 1. The asymmetric transmission effect can be easily controlled to selectively achieve off and on by coding different patterns. Both frequency- and angle-selective transmission is discussed. The proposed multiband asymmetric transmission stems from the constructive and destructive interferences of acoustic-wave coupling between the coded elements. The experimental results are in relative agreement with numerical simulations. This work opens an alternative path for ultrathin acoustic-device design and shows promise for application in acoustic rectification and noise control.

  15. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  16. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration.

    PubMed

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-17

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m², 35.6 kHz, and 13.3 nV/m², respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness.

  17. [Subjective sensitivity to noise].

    PubMed

    Belojević, G

    1991-01-01

    It is likely that individual variations in subjectively estimated noise sensitivity influence different social and psychophysiological reactions of people exposed to noise. Subjective noise sensitivity might be a relatively stable personal characteristic. A correlation have been found between high sensitiveness to noise and some medical symptoms (sleep disturbance, nervousness, depression), and worse work performance in noisy environments. An introvert person with neurotic symptoms is more frequently found in people highly sensitive to noise. Testing for subjective sensitivity to noise might be helpful in professional selection and orientation for noisy work-places as well as in housing advising.

  18. Noise reduction techniques in the design of a pneumatic-driven hand held power tool

    NASA Astrophysics Data System (ADS)

    Skinner, Christian M.

    2005-09-01

    Pneumatic-driven hand-held power tools generate noise in the workplace. Current legislation in Europe and the USA aims at protecting workers against noise exposure. In the United States, the Occupational Safety and Health Administration (OSHA) requires that employers create a hearing conservation program if the noise exposure exceeds 85 dB(A). In the European Community under the Directive 2003/10/EC, employers are required to provide hearing protection if the noise exposure within the working environment exceeds 80 dB(A) and must require hearing protection to be worn if the noise exposure exceeds 85 dB(A). This paper examines the sources of noise which contribute to the overall noise from a hand-held power tool. A test plan was developed to identify these individual sources of noise and to determine if structure-borne noise or airborne noise is the dominant source relative to the overall noise level. The measurements were performed per International Standards Organization (ISO) 15744. This paper will describe the methodology used to identify the noise sources and reduce the overall noise of a hand-held power tool.

  19. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-11-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be leased to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 in, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01- 0.02 nT/m, is equivalent to only about 50-100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a {open_quotes}sensitive hydrologic setting.{close_quotes} We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  20. Clean enough for industry? An airborne geophysical case study

    SciTech Connect

    Nyquist, J.E.; Beard, L.P.

    1996-02-01

    Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

  1. Exposure of highway maintenance workers to fine particulate matter and noise

    EPA Science Inventory

    In this study we assessed the mixed exposure of highway maintenance workers to airborne particles, noise and gaseous co-pollutants. The aims were to provide a better understanding of the workers exposure to facilitate the evaluation of short-term effects on cardiovascular health ...

  2. Empirical Measurements of Filtered Light Emitting Diode (FLED) Replacements

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.

    2016-05-01

    Low pressure sodium (LPS) public lighting, long favored by astronomers and dark sky advocates, is in decline due to a variety of economic issues. Light emitting diode (LED) technology is a rapidly ascendant mode of lighting in everything from residential to commercial applications. The resulting transition from LPS to LED has been accompanied by great angst in the environmental community, but very little has been done in the way of empirical measurement of LEDs in the field and their actual impacts on communities. The community of Waikoloa Village, Hawaii is located on the western slopes of Mauna Kea, within direct line of sight view of the major astronomical observatories on the mountain summit. Waikoloa has been rigorously illuminated almost exclusively by LPS for many years in acknowledgement of the importance of the Mauna Kea Observatories to the Big Island of Hawaii. As LPS ceases to be a viable alternative for local government support, a decision has been made to experimentally retrofit all of the Waikoloa street lighting with filtered light emitting diode (FLED) fixtures. This action has rendered Waikoloa Village a unique laboratory for evaluating the effects of such a change. STEM Laboratory has been awarded a research grant to make a variety of measurements of the light at night environment of Waikoloa Village both before and after the street light retrofit program. Measurements were conducted using a combination of techniques: Satellite Data Surveys (SDS), Ground Static Surveys (GSS photometry), Ground Mobile Surveys (GMS photometry), Airborne Surveys (ABS photography), and Spectroscopic Surveys (SpecS). The impact of the changes in lighting sources was profound, and the preliminary results of this extensive program are discussed in this presentation.

  3. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  4. Airborne spectrometry: extraction of low energy γ-rays using two or three spectral windows.

    PubMed

    Martin-Burtart, Nicolas; Guillot, Ludovic; Nourreddine, Abdel-Mjid

    2012-08-01

    Airborne γ-ray spectrometry with NaI(Tl) is a recognized tool for emergency mapping. The maps produced usually look for natural isotopes ((40)K, (238)U, (232)Th) and (137)Cs due to the Chernobyl accident. Nowadays a new thematic emerges as nuclear materials tracking. Such materials emitting at low energies require new algorithms and a new method is presented here based on counts observed in two or three spectral windows. Since altitude is an important factor to be taken into account, an improvement is proposed to follow flight altitude changes. An extension to medium energies is proposed and compared to windows methods and to peak detection.

  5. Computerized Mathematical Models of Spray Washout of Airborne Contaminants (Radioactivity) in Containment Vessels.

    SciTech Connect

    TAM, P. S.

    2003-05-23

    Version 01 Distribution is restricted to the United States Only. SPIRT predicts the washout of airborne contaminants in containment vessels under postulated loss-of-coolant accident (LOCA) conditions. SPIRT calculates iodine removal constants (lambdas) for post-LOCA containment spray systems. It evaluates the effect of the spectrum of drop sizes emitted by the spray nozzles, the effect of drop coalescence, and the precise solution of the time-dependent diffusion equation. STEAM-67 routines are included for calculating the properties of steam and water according to the 1967 ASME Steam Tables.

  6. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  7. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  8. Long Persistent Light Emitting Diode Indicators

    ERIC Educational Resources Information Center

    Jia, Dongdong; Ma, Yiwei; Hunter, D. N.

    2007-01-01

    An undergraduate laboratory was designed for undergraduate students to make long persistent light emitting diode (LED) indicators using phosphors. Blue LEDs, which emit at 465 nm, were characterized and used as an excitation source. Long persistent phosphors, SrAl[subscript 2]O[subscript 4]:Eu[superscript 2+],Dy[superscript 3+] (green) and…

  9. Green emitting phosphors and blends thereof

    SciTech Connect

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  10. Airborne thermography or infrared remote sensing.

    PubMed

    Goillot, C C

    1975-01-01

    Airborne thermography is part of the more general remote sensing activity. The instruments suitable for image display are infrared line scanners. A great deal of interest has developed during the past 10 years in airborne thermal remote sensing and many applications are in progress. Infrared scanners on board a satellite are used for observation of cloud cover; airborne infrared scanners are used for forest fire detection, heat budget of soils, detecting insect attack, diseases, air pollution damage, water stress, salinity stress on vegetation, only to cite some main applications relevant to agronomy. Using this system it has become possible to get a 'picture' of our thermal environment.

  11. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  12. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  13. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  14. Noise Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  15. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  16. Light emitting device having peripheral emissive region

    DOEpatents

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  17. Short-wavelength bottom-emitting VCSELs

    NASA Astrophysics Data System (ADS)

    Choquette, Kent D.; Barton, Jonathon S.; Geib, Kent M.; Allerman, Andrew A.; Hindi, Jana J.

    1999-04-01

    The fabrication and performance of selectively oxidized 850 nm vertical cavity surface emitting laser (VCSEL) diodes which emit through transparent GaP substrates is reported. Emission through the substrate is advantageous for many VCSEL configurations, such as for the incorporation of optical elements in the substrate or flip-chip integration to microelectronic circuitry. The short wavelength bottom- emitting VCSELs are fabricated by wafer fusion using an inert gas low temperature annealing process. The electrical characteristics of n- and p-type GaAs/GaAs and GaAs/GaP wafer bonded interfaces have been examined to optimize the annealing temperature. A significant reduction of the current-voltage characteristics of the VCSELs bonded to GaP substrates has been achieved whereby the bottom-emitting VCSELs show similar threshold voltage as compared to top- emitting lasers.

  18. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  19. Dragline noise survey

    NASA Astrophysics Data System (ADS)

    Vipperman, Jeffrey S.; Bauer, Eric R.

    2002-05-01

    It is estimated that 70%-90% of miners have enough noise induced hearing loss (NIHL) to be classified as a disability (NIOSH, Publication No. 76-172, 1976; Franks, NIOSH Internal Report, 1996). In response, NIOSH is conducting a cross-sectional survey of the mining industry in order to determine the sources of mining noise and offer recommendations on how to mitigate high noise levels, and bring mining operations into compliance with the recent mining noise regulation: 30CFR, Part 62. This paper will outline the results from noise surveys of eight draglines which operate in above-ground coal mining operations. The data recorded include noise dosimetry in conjunction with time-at-task studies and 1/3-octave sound level (Leq, Lmin, and Lmax) measurements. The 1/3-octave band readings were used to create noise contour maps which allowed the spatial and frequency information of the noise to be considered. Comparison of Lmin and Lmax levels offer insight into the variability of the noise levels inside the dragline. The potential for administrative controls is limited due to consistently high noise levels throughout the deck. Implementation of engineering controls is also hindered by the size and number of the noise sources and the frequency content of the noise.

  20. Characteristics of USB noise

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Searle, N.

    1976-01-01

    An extensive series of noise measurements, for a variety of geometric and operational parameters, was made on models of upper surface blowing (USB) powered lift systems. The data obtained were analyzed and the effects and trends of parametric variation defined. The behavior and nature of USB noise and the design of USB systems with low noise characteristics is examined.

  1. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  2. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  3. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  4. Coherence and indistinguishability of single electrons emitted by independent sources.

    PubMed

    Bocquillon, E; Freulon, V; Berroir, J-M; Degiovanni, P; Plaçais, B; Cavanna, A; Jin, Y; Fève, G

    2013-03-01

    The on-demand emission of coherent and indistinguishable electrons by independent synchronized sources is a challenging task of quantum electronics, in particular regarding its application for quantum information processing. Using two independent on-demand electron sources, we triggered the emission of two single-electron wave packets at different inputs of an electronic beam splitter. Whereas classical particles would be randomly partitioned by the splitter, we observed two-particle interference resulting from quantum exchange. Both electrons, emitted in indistinguishable wave packets with synchronized arrival time on the splitter, exited in different outputs as recorded by the low-frequency current noise. The demonstration of two-electron interference provides the possibility of manipulating coherent and indistinguishable single-electron wave packets in quantum conductors.

  5. [Cardiovascular effects of noise].

    PubMed

    Vacheron, A

    1992-03-01

    The circulatory response to noise is dominated by a peripheral blood vessels vasoconstriction, of greater magnitude when asleep than awake. Noise of lower frequency seems more able to produce this response. With repetition of the noise, adaptation and tolerance to it quickly appears. Meanwhile prolonged high level noise exposition induces an increasing prevalence of arterial hypertension among industrial workers. This increase is also clearly found in residential communities living near airports. Long-term exposure to noise is a dangerous nuisance, that can lead to an increase in arterial blood pressure and favour coronary artery disease development.

  6. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  7. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  8. Interpreting Transistor Noise

    NASA Astrophysics Data System (ADS)

    Pospieszalski, M. W.

    2010-10-01

    The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.

  9. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  10. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  11. Airborne Gamma-Spectrometry in Switzerland

    NASA Astrophysics Data System (ADS)

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-01

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of 137Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  12. Airborne Gamma-Spectrometry in Switzerland

    SciTech Connect

    Butterweck, Gernot; Bucher, Benno; Rybach, Ladislaus

    2008-08-07

    Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.

  13. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  14. Toolsets for Airborne Data Web Application

    Atmospheric Science Data Center

    2014-09-17

    ... relevant issues. Features Include Select data based on mission, date and/or scientific parameter Output original data ... Details:  Toolsets for Airborne Data (TAD) Web Application Category:  Instrument Specific Search, ...

  15. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  16. Polarimetric sensor systems for airborne ISR

    NASA Astrophysics Data System (ADS)

    Chenault, David; Foster, Joseph; Pezzaniti, Joseph; Harchanko, John; Aycock, Todd; Clark, Alex

    2014-06-01

    Over the last decade, polarimetric imaging technologies have undergone significant advancements that have led to the development of small, low-power polarimetric cameras capable of meeting current airborne ISR mission requirements. In this paper, we describe the design and development of a compact, real-time, infrared imaging polarimeter, provide preliminary results demonstrating the enhanced contrast possible with such a system, and discuss ways in which this technology can be integrated with existing manned and unmanned airborne platforms.

  17. Comparison of airborne and spaceborne TIR data for studying volcanic geothermal areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Heasler, H.; Jaworowski, C.; Bergfeld, D.; Evans, W.

    2015-12-01

    -resolution airborne nighttime TIR imaging. Most of the thermal radiance contrast in the Landsat 8 TIR image is due to slope, surface cover type, and albedo, but there are some very subtle variations in thermally emitted radiance that are spatially coincident with the thermally anomalous areas identified with the airborne data.

  18. Downscaling of Airborne Wind Energy Systems

    NASA Astrophysics Data System (ADS)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  19. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  20. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  1. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  2. Organic light emitting devices for illumination

    DOEpatents

    Hack, Michael [Lambertville, NJ; Lu, Min-Hao Michael [Lawrenceville, NJ; Weaver, Michael S [Princeton, NJ

    2012-01-24

    An organic light emitting device an a method of obtaining illumination from such a device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient than an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  3. Organic light emitting devices for illumination

    SciTech Connect

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.

    2010-02-16

    An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  4. Wheat Under LED's (Light Emitting Diodes)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants, and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  5. Jet Noise Research at NASA

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2008-01-01

    A presentation outlining current jet noise work at NASA was given at the NAVAIR Noise Workshop. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.

  6. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  7. Users guide for an Airborne Windshear Doppler Radar Simulation (AWDRS) program

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.

    1990-01-01

    A description is provided of the Airborne Windshear Doppler Radar Simulation (AWDRS) program developed for NASA-Langley by the Research Triangle Institute. The radar simulation program is a comprehensive calculation of the signal characteristics and expected outputs of an airborne coherent pulsed Doppler radar system viewing a low level microburst along or near the approach path of the aircraft. The detailed nature of the simulation permits the quick evaluation of proposed trade-offs in radar system parameters and the evaluation of the performance of proposed configurations in various microburst/clutter environments. The simulation also provides a test bed for various proposed signal processing techniques for minimizing the effects of noise, phase jitter, and ground clutter and maximizing the useful information derived for avoidance of microburst windshear by aircraft.

  8. Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin

    2015-02-01

    A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.

  9. Firefighter noise exposure during training activities and general equipment use.

    PubMed

    Root, Kyle S; Schwennker, Catherine; Autenrieth, Daniel; Sandfort, Delvin R; Lipsey, Tiffany; Brazile, William J

    2013-01-01

    Multiple noise measurements were taken on 6 types of fire station equipment and 15 types of emergency response vehicle-related equipment used by firefighters during routine and emergency operations at 10 fire stations. Five of the six types of fire station equipment, when measured at a distance of one meter and ear level, emitted noise equal to or greater than 85 dBA, including lawn maintenance equipment, snow blowers, compressors, and emergency alarms. Thirteen of 15 types of equipment located on the fire engines emitted noise levels equal to or greater than 85 dBA, including fans, saws, alarms, and extrication equipment. In addition, noise measurements were taken during fire engine operations, including the idling vehicle, vehicle sirens, and water pumps. Results indicated that idling fire-engine noise levels were below 85 dBA; however, during water pump and siren use, noise levels exceeded 85 dBA, in some instances, at different locations around the trucks where firefighters would be stationed during emergency operations. To determine if the duration and use of fire fighting equipment was sufficient to result in overexposures to noise during routine training activities, 93 firefighter personal noise dosimetry samples were taken during 10 firefighter training activities. Two training activities per sampling day were monitored during each sampling event, for a mean exposure time of 70 min per day. The noise dosimetry samples were grouped based on job description to compare noise exposures between the different categories of job tasks commonly associated with fire fighting. The three job categories were interior, exterior, and engineering. Mean personal dosimetry results indicated that the average noise exposure was 78 dBA during the training activities that lasted 70 min on average. There was no significant difference in noise exposure between each of the three job categories. Although firefighters routinely use equipment and emergency response vehicles that

  10. Airborne Interferometry using GNSS Reflections for Surface Level Estimation

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Beyerle, Georg; Schön, Steffen; Stosius, Ralf; Gerber, Thomas; Beckheinrich, Jamila; Markgraf, Markus; Ge, Maorong; Wickert, Jens

    2013-04-01

    The interferometric use of GNSS reflections for ocean altimetry can fill the gap in coverage of ocean observations. Today radar altimeters are used for large scale ocean observations to monitor e.g. global sea level change or circulation processes like El Niño. Spacial and temporal resolution of a single radar altimeter, however, is insufficient to observe mesoscale ocean phenomena like large oceanic eddies that are important indicators of climate change. The high coverage expected for a spaceborne altimeter based on GNSS reflections stimulated investigations on according interferometric methods. Several airborne experiments have been conducted using code observations. Carrier observations have a better precision but are severely affected by noise and have mostly been used in ground-based experiments. A new interferometric approach is presented using carrier observations for airborne application. Implementing a spectral retrieval noise reduction is achieved. A flight experiment was conducted with a Zeppelin airship on 2010/10/12 over Lake Constance at the border between Austria, Germany and Switzerland. The lake surface with an area of 536km2 is suitable for altimetric study as its decimeter range Geoid undulations are well-known. Three GNSS receiver were installed on the airship. A Javad Delta receiver recording direct signals for navigation. The DLR G-REX receiver recording reflected signals for scatterometry and the GORS (GNSS Occultation Reflectometry Scatterometry) receiver recording direct and reflected signals for interferometry. The airship's trajectory is determined from navigation data with a precision better than 10cm using regional augmentation. This presentation focuses on the interferometric analysis of GORS observations. Ray tracing calculations are used to model the difference of direct and reflected signals' path. Spectral retrieval is applied to determine Doppler residuals of modelled path difference and interferometric observations. Lake level

  11. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  12. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  13. Noise Mapping and Annoyance.

    PubMed

    Knauss, D.

    2002-01-01

    The EC has published a Green Paper on noise policy in the EU and has issued a directive on the assessment and reduction of environmental noise. This directive will make noise mapping mandatory for cities with at least 250.000 inhabitants. Due to the development in computer technology it is possible to calculate noise maps for large urban areas using the available data on buildings, ground profile, road and rail traffic. Examples for noise mapping are Birmingham (GB), Linz (A) and various German cities. Based on noise maps and empirical data on the correlation between annoyance and noise levels annoyance maps for different sources (rail, road, aircraft) can be calculated. Under the assumption that the annoyance for the different sources are only weakly correlated, a combined annoyance map can be calculated. In a second step using the distribution of the population the actual number of annoyed people can be evaluated. This analysis can be used, for example, to identify noise hot spots and to assess the impact of major traffic projects - roads, airports- on the noise situation as well as the impact on the population. Furthermore, the combined annoyance maps can be used to investigate on health effects and to check whether or not empirical correlations between annoyance and noise levels are sufficiently correct.

  14. The assessment of particulate matter emitted from stone-crushing industry by correlating rock textures with particles generated after comminution and dispersed in air environment.

    PubMed

    Belardi, Girolamo; Vignaroli, Gianluca; Plescia, Paolo; Passeri, Luciano

    2013-07-01

    The generation and emission of particulate matter from abrasion industry are subjects of the pollution monitoring by multidisciplinary study involving earth sciences and engineering disciplines. This work investigates the correlation between textural properties of in situ rock with class size distribution and morphology of particles generated after rock comminution and particles emitted in the air. A special comminution-dust sampling architecture was realised. The combined use of scanning electron microscopy and particle size analyser was considered in performing digital image analysis on both crushed products and airborne particles collected onto membrane filters. The results show that the size and morphology of crushed particles are linked to the petrographic rock properties. In particular, particles with fibrous morphology are prominent in rocks showing foliated textures where elongated minerals occurred, with implication for asbestos-bearing rocks. For what concerns the airborne particles, the results show that their aerodynamic diameters are independent of the crusher operating conditions. External parameters probably intervene in the distribution of the airborne particles emission, including the dynamic air fluxes, or environmental conditions. By applying mathematical models, the morphology and size range of airborne particles following the comminution processes can be predicted, and results has implication for pollutants contamination due to particulate matters emitted by crush stone industry.

  15. Blue whales respond to anthropogenic noise.

    PubMed

    Melcón, Mariana L; Cummins, Amanda J; Kerosky, Sara M; Roche, Lauren K; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood.

  16. Blue Whales Respond to Anthropogenic Noise

    PubMed Central

    Melcón, Mariana L.; Cummins, Amanda J.; Kerosky, Sara M.; Roche, Lauren K.; Wiggins, Sean M.; Hildebrand, John A.

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood. PMID:22393434

  17. Performance Basis for Airborne Separation

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2008-01-01

    Emerging applications of Airborne Separation Assistance System (ASAS) technologies make possible new and powerful methods in Air Traffic Management (ATM) that may significantly improve the system-level performance of operations in the future ATM system. These applications typically involve the aircraft managing certain components of its Four Dimensional (4D) trajectory within the degrees of freedom defined by a set of operational constraints negotiated with the Air Navigation Service Provider. It is hypothesized that reliable individual performance by many aircraft will translate into higher total system-level performance. To actually realize this improvement, the new capabilities must be attracted to high demand and complexity regions where high ATM performance is critical. Operational approval for use in such environments will require participating aircraft to be certified to rigorous and appropriate performance standards. Currently, no formal basis exists for defining these standards. This paper provides a context for defining the performance basis for 4D-ASAS operations. The trajectory constraints to be met by the aircraft are defined, categorized, and assessed for performance requirements. A proposed extension of the existing Required Navigation Performance (RNP) construct into a dynamic standard (Dynamic RNP) is outlined. Sample data is presented from an ongoing high-fidelity batch simulation series that is characterizing the performance of an advanced 4D-ASAS application. Data of this type will contribute to the evaluation and validation of the proposed performance basis.

  18. Visualizing Airborne and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Bierwirth, Victoria A.

    2011-01-01

    Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.

  19. Organic emitters: Light-emitting fabrics

    NASA Astrophysics Data System (ADS)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  20. Radioimmunotherapy with alpha-emitting nuclides.

    PubMed

    McDevitt, M R; Sgouros, G; Finn, R D; Humm, J L; Jurcic, J G; Larson, S M; Scheinberg, D A

    1998-09-01

    This review discusses the application of alpha particle-emitting radionuclides in targeted radioimmunotherapy. It will outline the production and chemistry of astatine-211, bismuth-212, lead-212, actinium-225, bismuth-213, fermium-255, radium-223 and terbium-149, which at present are the most promising alpha-emitting isotopes available for human clinical use. The selective cytotoxicity offered by alpha particle-emitting radioimmunoconstructs is due to the high linear energy transfer and short particle path length of these radionuclides. Based upon the pharmacokinetics of alpha particle-emitting radioimmunoconstructs, both stochastic and conventional dosimetric methodology is discussed, as is the preclinical and initial clinical use of these radionuclides conjugated to monoclonal antibodies for the treatment of human neoplasia.

  1. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    SciTech Connect

    Grasty, R.L.

    1997-09-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping.

  2. Noise tube sources for the far IR and millimeter region

    NASA Technical Reports Server (NTRS)

    Moller, K. D.; Zoeller, R. G.; Ugras, N. G.; Zablocky, P.; Heaney, James B.; Stewart, K. P.; Boucarut, R. A.

    1988-01-01

    The radiant output of a noise tube designed for the 90-140-GHz (3.3-2.1-mm) frequency range has been compared with that from mercury lamps over the wavelength region from 0.4 to about 6 mm. Lamellar grating and Michelson Fourier transform spectrometers were used in conjunction with He cooled bolometers of NEP from 10 to the -12th to 10 to the -14th W/sq rt H2 to measure relative spectral irradiance. With this instrumental arrangement, the radiant power emitted by the noise tube was observed to be less than that from a mercury lamp, at least to a 3-mm wavelength, but it produced less source noise than an ac operated mercury lamp. When the noise tube operating current was reduced, the spectral irradiance peak shifted to longer wavelengths.

  3. Stable blue phosphorescent organic light emitting devices

    SciTech Connect

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  4. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R. O.; Kratwurst, S.; Krings, T.; Luna, B.; Thorpe, A. K.

    2015-10-01

    Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s-1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.

  5. Commercial aircraft noise

    NASA Astrophysics Data System (ADS)

    Smith, M. J.

    The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.

  6. Poultry Plant Noise Control

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  7. Synthesis of information on the effects of noise and disturbance on major haulout concentrations of Bering Sea pinnipeds. Final report

    SciTech Connect

    Johnson, S.R.; Burns, J.J.; Malme, C.I.; Davis, R.A.

    1989-02-17

    The study investigated the use of terrestrial haulout sites in the eastern Bering Sea by four species of pennipeds, northern fur seal, northern sea lion, harbor seal and pacific walrus. Historical information on the use of each site was summarized. Available information on the effects of airborne and waterborne noise, and human disturbance (from stationary and moving sources) was reviewed. The authors also conducted a detailed analysis of the acoustic environment of eight haulout sites that were representative of others used by each of the four species studied. The analyses included investigations of (1) characteristics airborne and underwater ambient noise, (2) characteristics of industrial noise sources, including aircraft, small boats, fishing trawlers and commercial cargo traffic, and (3) sound transmission loss in air, water, and through the air-water surface. As a means to evaluate the potential vulnerability of each haulout site to noise and disturbance, a quantitative rating system (IPSI) whereby an index of sensitivity was assigned to each site.

  8. Aviation Noise Effects,

    DTIC Science & Technology

    1985-03-01

    demonstrated little tolerance of aircraft noise and have shown few signs of adapting to it. Since no well-established guidelines concerning noise and animals ...vary from almost no reaction to virtually no tolerance of the sound. The question of how adaptable animals are remains largely unanswered. Both wild...report include"the-folowing:- Annoyance, --Effects of Noise on Wild and Domesticated Animal Hearing and Hearing Loss) Low .Fequency Pcoustical oEhergy

  9. Identification and classification of noise sources in a chain conveyor

    NASA Astrophysics Data System (ADS)

    Homer, John P.; Vipperman, Jeffrey S.; Reeves, Efrem R.

    2002-05-01

    Noise induced hearing loss (NIHL) is one of the most significant disabilities of workers in the mining industry. In response, the National Institute of Occupational Safety and Health (NIOSH) is conducting a study associated with mining equipment. This study outlines the analysis of a chain conveyor. Band-limited accelerometer, sound-intensity, far-field and near-field microphone measurements were taken along the conveyor section. The sound intensity measurements were used to identify areas with high noise as well as to calculate and 1/3-octave sound power levels. The total sound power results were used to classify the dominant noise sources where the 1/3-octave sound power results were used to identify the most contributive frequency bands to the overall noise of the system. Coherence analysis was performed between accelerometer and microphone measurements to identify structure-borne and air-borne noise paths of the system. Summary results from the analysis include recommendations for transmission control and damping devices and their ability to reduce noise to regulatory acceptable levels.

  10. [Occurrence and evaluation of a law frequency noise in residential buildings].

    PubMed

    Koszarny, Z; Jankowska, D

    1998-01-01

    Low-frequency noise emitted into the environment by technical equipment in the residential buildings, including equipment of workshops for services or production near these buildings, was measured. In the spectrum of noise derived from installations and equipment in residential buildings and shops low frequency (20-125 Hz) sounds and infrasounds (below 20 Hz) were detected. Their sources were mainly pumps in hydrophors, lifts, cooling machinery, central heating, air conditioning and ventilating installations. The analysed noise was in a small degree only damped by partitions in buildings and penetrated more easily than higher-frequency noise, without exceeding usually the permitted levels. Noises with dominating low-frequency sounds are regarded by the inhabitants as troublesome and causing various adverse psychosomatic effects, such as pulsation feeling, somnolence, headaches, nausea etc. The present system of noise assessment leaves low-frequency noise aside and fails to protect sufficiently the inhabitants against this nuisance.

  11. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  12. Structureborne noise in aircraft

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Metcalf, V. L.

    1987-01-01

    The amount of noise reaching an aircraft's interior by structureborne paths, when high levels of other noises are present, involves the measurement of transfer functions between vibrating levels on the wing and interior noise. The magnitude of the structureborne noise transfer function is established by exciting the aircraft with an electrodynamic shaker; a second transfer function is measured using the same sensor locations with the aircraft engines operating. Attention is given to the case of a twin-turboprop OV-10A aircraft; the resulting transfer function values at the discrete frequencies corresponding to the propeller blade passage frequency and its first four harmonics are tabulated and illustrated.

  13. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  14. Real-time and online screening method for materials emitting volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Changhyuk; Sul, Yong Tae; Pui, David Y. H.

    2016-09-01

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption-gas chromatography-mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  15. Wave propagation in tyres and the resultant noise radiation

    NASA Astrophysics Data System (ADS)

    Gi-Jeon, Kim

    Tyre noise has become an increasingly important road traffic noise source. This is because other sources on the vehicle, such as the air intake system, the exhaust system and the engine, have tended to become relatively quieter. This situation forces the tyre noise component to be reduced in order to achieve a reduction in the overall traffic noise level. In the research reported here, vibration, sound radiation and sound transmission of a passenger car radial tyre were investigated. The first half of this thesis discusses the vibration characteristics using two methods; (1)FEM to analysis modal behaviour in detail, (2)Analytical models to interpret the FEM results. These methods have both advantages and disadvantages in investigating tyre vibration. Combining the two methods is necessary in order to a fully understand the vibration behaviour of a tyre. Dispersion relationships and the related frequency of tyre modes is analysed by FEM and the flexural wave propagation in the tyre shell and the sound radiation of the tyre wall by flexural modes is analyzed using plate and shell theory. The second part of this thesis discusses the radiation and transmission of tyre noise. To predict the radiation of sound with only a knowledge of the surface vibration velocity, the experimental Green's functions were estimated by using the acoustic reciprocity principle. This technique was also applied to separate airborne structure borne noise for identification of the transmission path of tyre noise into a vehicle cabin and quantification of the relative contribution of various regions of the vibrating tyre surface to vehicle interior noise. The application of acoustic reciprocity for the tyre noise problem was verified and compared with BEM analysis.

  16. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  17. Tram Squealing Noise and Its Impact on Human Health

    PubMed Central

    Panulinová, Eva; Harabinová, Slávka; Argalášová, Lubica

    2016-01-01

    Introduction: Tramway has become a serious urban noise source in densely populated areas. The disturbance from squealing noise is significant. Curve squeal is the very loud, tonal noise emitted by tram operation in tight radius curves. Studies had reported a relationship between noise levels and health effects, such as annoyance, sleep disturbance, and elevated systolic and diastolic blood pressure. Materials and Methods: This study aimed to analyze the wheel squeal noise along the tramway line in Košice, Slovakia, review the effects on human health, and discuss its inclusion in the design method. To observe the influence of a track curve on noise emission, several measurement points were selected, and the noise emission was measured both in the curve and in the straight lines employing the same type of permanent way. Results: The results in the sections with the radius below 50 m were greatly affected by the presence of a squeal noise, while the resulting noise level in the sections with the radius above 50 m depended on their radius. The difference between the average values of LAeq with and without the squeal in the measurement points with the radius below 50 m was 9 dB. The difference between the measurements in the curve sections with the radius below 50 m and those in the straight line was 2.7 dB. Conclusion: The resulting noise level in general was influenced by the car velocity and the technical shape of the permanent way. These results can be used in noise prognoses and in the health effect predictions. PMID:27991464

  18. Regular Wave Propagation Out of Noise in Chemical Active Media

    SciTech Connect

    Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.; Sancho, J. M.; Sagues, F.

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  19. Regular wave propagation out of noise in chemical active media.

    PubMed

    Alonso, S; Sendiña-Nadal, I; Pérez-Muñuzuri, V; Sancho, J M; Sagués, F

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  20. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  1. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  2. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  3. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  4. Using special functions to model the propagation of airborne diseases

    NASA Astrophysics Data System (ADS)

    Bolaños, Daniela

    2014-06-01

    Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.

  5. Method and apparatus for reducing microwave oscillator output noise

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Saunders, Jonathan E. (Inventor)

    1991-01-01

    Microwave oscilltors incorporate r.f. feedback with carrier suppression to reduce phase noise. In a direct feedback oscillator arrngement a circulator is interposed between the r.f. amplifier and the high-Q resonator. The amplifier output is applied to the slightly over-coupled input port of the resonator so that the resultant net return signal is the vectorial difference between the signals emitted and reflected from the resonator. The gain of the r.f. amplifier is chosen to regenerate the forward signal from the net return signal. In a STALO-type arrangement, the resonator is critically coupled and an r.f. amplifier added to the path of the net return signal. The sensitivity of the STALO-type feedback loop is thereby enhanced while added amplifier noise is minimized by the superposition of the signals emitted by and reflected from the resonator.

  6. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    NASA Astrophysics Data System (ADS)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  7. Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.; Vargas, R.; Hein, R.; Sobel, H.; Eastwood, M.

    2010-01-01

    PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.

  8. A new technique for processing airborne gamma ray spectrometry data for mapping low level contaminations.

    PubMed

    Aage, H K; Korsbech, U; Bargholz, K; Hovgaard, J

    1999-12-01

    A new technique for processing airborne gamma ray spectrometry data has been developed. It is based on the noise adjusted singular value decomposition method introduced by Hovgaard in 1997. The new technique opens for mapping of very low contamination levels. It is tested with data from Latvia where the remaining contamination from the 1986 Chernobyl accident together with fallout from the atmospheric nuclear weapon tests includes 137Cs at levels often well below 1 kBq/m2 equivalent surface contamination. The limiting factors for obtaining reliable results are radon in the air, spectrum stability and accurate altitude measurements.

  9. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    PubMed Central

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-01-01

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557

  10. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle.

    PubMed

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  11. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  12. Sounding Off about Noise

    ERIC Educational Resources Information Center

    Crumpton, Michael A.

    2005-01-01

    Noise in a community college library can be part of the nature of the environment. It can also become a huge distraction for those who see the library as their sanctuary for quiet study and review of resources. This article describes the steps that should be taken by library staff in order to be proactive about noise and the library environment,…

  13. Speech communications in noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  14. Speech communications in noise

    NASA Astrophysics Data System (ADS)

    1984-07-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  15. Noise Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  16. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  17. Nondestructive testing using air-borne ultrasound.

    PubMed

    Hsu, David K

    2006-12-22

    Over the last two decades, more efficient transducers were developed for the generation and reception of air-borne ultrasound, thus enabling the non-contact, non-contaminating inspection of composite laminates and honeycomb structures widely used in the aerospace industry. This paper presents the fundamentals of making air-borne ultrasonic measurement, and point out special considerations unique to propagating ultrasound in air and through solids. Transducer beam profile characterization, thickness dependence and resonance effects in the transmission of air-coupled ultrasound through plates, and the detection and imaging of defects and damage in solid laminates and honeycomb sandwich will be discussed and illustrated with examples. Finally, a manual scan system developed for implementing air-borne ultrasonic imaging in the field and on aircraft will be introduced.

  18. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  19. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  20. Low frequency noise distributed-feedback ytterbium fibre laser

    SciTech Connect

    Nikulin, M A; Babin, S A; Kablukov, S I; Dmitriev, Aleksandr K; Dychkov, Aleksandr S; Lugovoy, Aleksei A; Pecherskii, Yu Ya

    2009-10-31

    We report a single-frequency 1-W fibre laser source emitting at 1093 nm, composed of a distributed-feedback ytterbium fibre laser and fibre-optic amplifier. The laser frequency was stabilised by side-locking to a transmission peak of a Fabry - Perot interferometer, and the residual frequency noise spectrum of the laser was measured. Our results indicate that the laser linewidth can be narrowed down below 1 kHz. (lasers)

  1. Noise in coevolving networks

    NASA Astrophysics Data System (ADS)

    Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi

    2015-09-01

    Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetization and dynamic fragmentation. Noise targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogeneous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.

  2. Jet Noise Research at NASA

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Huff,Dennis

    2009-01-01

    A presentation outlining current jet noise work at NASA was given to the Naval Research Advisory Committee. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.

  3. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  4. Side-emitting fiber optic position sensor

    SciTech Connect

    Weiss, Jonathan D.

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  5. Assessing inhalation exposure from airborne soil contaminants

    SciTech Connect

    Shinn, J.H.

    1998-04-01

    A method of estimation of inhalation exposure to airborne soil contaminants is presented. this method is derived from studies of airborne soil particles with radioactive tags. The concentration of contaminants in air (g/m{sup 3}) can be derived from the product of M, the suspended respirable dust mass concentration (g/m{sup 3}), S, the concentration of contaminant in the soil (g/g), and E{sub f}, an enhancement factor. Typical measurement methods and values of M, and E{sub f} are given along with highlights of experiences with this method.

  6. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  7. Monitoring airborne alpha-emitter contamination

    SciTech Connect

    Kerr, P.L.; Koster, J.E.; Conaway, J.G.; Bounds, J.A.; Whitley, C.W.; Steadman, P.A.

    1998-02-01

    Facilities that may produce airborne alpha emitter contamination require a continuous air monitoring (CAM) system. However, these traditional CAMs have difficulty in environments with large quantities of non-radioactive particulates such as dust and salt. Los Alamos has developed an airborne plutonium sensor (APS) for the REBOUND experiment at the Nevada Test Site which detects alpha contamination directly in the air, and so is less vulnerable to the problems associated with counting activity on a filter. In addition, radon compensation is built into the detector by the use of two measurement chambers.

  8. National center for airborne laser mapping proposed

    NASA Astrophysics Data System (ADS)

    Carter, Bill; Shrestha, Ramesh L.; Dietrich, Bill

    Researchers from universities, U.S. government agencies, U.S. national laboratories, and private industry met in the spring to learn about the current capabilities of Airborne Laser Swath Mapping (ALSM), share their experiences in using the technology for a wide variety of research applications, outline research that would be made possible by research-grade ALSM data, and discuss the proposed operation and management of the brand new National Center for Airborne Laser Mapping (NCALM).The workshop successfully identified a community of researchers with common interests in the advancement and use of ALSM—a community which strongly supports the immediate establishment of the NCALM.

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  10. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  11. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  12. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  14. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  16. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  18. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  19. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  20. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  1. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  2. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  4. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  5. Simulated high speed flight effects on supersonic jet noise

    NASA Technical Reports Server (NTRS)

    Norum, Thomas D.; Brown, Martha C.

    1993-01-01

    A free jet is utilized to investigate the changes in the noise received from supersonic jets in high speed subsonic flight. Flight Mach numbers to 0.9 are simulated for supersonic jets with fully expanded Mach numbers between 1 and 2. Plume pressure measurements show only minor changes in the shock structure of off-design jets up to a Mach number of 0.6. Correspondingly, far-field noise measurements indicate little change to the broadband shock noise emitted at right angles to the jet. However, measurements within the free jet show that convection effects on the noise are substantial, and that the point source convective amplification that is proportional to the fourth power of the Doppler factor may apply for broadband shock noise in flight. Measurements of jet mixing noise for an on-design supersonic jet show that the current predictions of mixing noise in flight can be extended to flight Mach numbers of at least 0.5.

  6. Jet engine noise and infrared plume correlation field campaign

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  7. Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films.

    PubMed

    Thomschke, Michael; Reineke, Sebastian; Lüssem, Björn; Leo, Karl

    2012-01-11

    White top-emitting organic light-emitting diodes (OLEDs) attract much attention, as they are optically independent from the substrate used. While monochrome top-emitting OLEDs can be designed easily to have high-emission efficiency, white light emission faces obstacles. The commonly used thin metal layers as top electrodes turn the device into a microresonator having detrimental narrow and angular dependent emission characteristics. Here we report on a novel concept to improve the color quality and efficiency of white top-emitting OLEDs. We laminate a refractive index-matched microlens film on the top-emitting device. The microlens film acts both as outcoupling-enhancing film and an integrating element, mixing the optical modes to a broadband spectrum.

  8. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  9. Visible light surface emitting semiconductor laser

    DOEpatents

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  10. Shot noise startup of the 6 NM SASE FEL at the Tesla Test Facility

    SciTech Connect

    Pierini, P.; Fawley, W.M.

    1995-12-31

    We present here an analysis of the shot noise startup of the 6 nm SASE FEI proposal at the TESLA Test Facility in DESY The statistical of the saturation length and output power due to the intrinsic randomness of the noise startup are investigated with the use of the 2D time dependent code GINGER, that takes into account propagation effects and models shot noise. We then provide estimates for the spectral contents and linewidth of the emitted radiation and describe its spiking characteristics. The output radiation will develop superradiant spikes seeded by the shot noise in the electron beam, which can entrance the average emitted power at the expense of some spectral broadening.

  11. Low-frequency noise in single electron tunneling transistor

    NASA Astrophysics Data System (ADS)

    Tavkhelidze, A. N.; Mygind, J.

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHzemitted by the 4.2 K environment from reaching the sample, allows us to study a given background charge configuration for many hours below ≈100 mK. The noise at relatively high frequencies originates from internal (presumably thermal equilibrium) charge fluctuations. For f⩾10 Hz, we find the same input charge noise, typically QN=5×10-4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends on the background charge configuration resulting from the cooling sequence and eventual radio frequency (rf) irradiation. The measured noise spectra which show both 1/f and 1/f1/2 dependencies and saturation for f<100 mHz can be fitted by two-level fluctuators with Debye-Lorentzian spectra and relaxation times of order seconds. In some cases, the positive and negative slopes of the V(Vg) curve have different overlaid noise patterns. For fixed bias on both slopes, we measure the same noise spectrum, and believe that the asymmetric noise is due to dynamic charge trapping near or inside one of the junctions induced when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage.

  12. Noise and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  13. Analyzing nocturnal noise stratification.

    PubMed

    Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel; Gómez Escobar, Valentín

    2014-05-01

    Pollution associated to traffic can be considered as one of the most relevant pollution sources in our cities; noise is one of the major components of traffic pollution; thus, efforts are necessary to search adequate noise assessment methods and low pollution city designs. Different methods have been proposed for the evaluation of noise in cities, including the categorization method, which is based on the functionality concept. Until now, this method has only been studied (with encouraging results) for short-term, diurnal measurements, but nocturnal noise presents a behavior clearly different on respect to the diurnal one. In this work 45 continuous measurements of approximately one week each in duration are statistically analyzed to identify differences between the proposed categories. The results show that the five proposed categories highlight the noise stratification of the studied city in each period of the day (day, evening, and night). A comparison of the continuous measurements with previous short-term measurements indicates that the latter can be a good approximation of the former in diurnal period, reducing the resource expenditure for noise evaluation. Annoyance estimated from the measured noise levels was compared with the response of population obtained from a questionnaire with good agreement. The categorization method can yield good information about the distribution of a pollutant associated to traffic in our cities in each period of the day and, therefore, is a powerful tool for town planning and the design of pollution prevention policies.

  14. Nature of orchestral noise.

    PubMed

    O'Brien, Ian; Wilson, Wayne; Bradley, Andrew

    2008-08-01

    Professional orchestral musicians are at risk of exposure to excessive noise when at work. This is an industry-wide problem that threatens not only the hearing of orchestral musicians but also the way orchestras operate. The research described in this paper recorded noise levels within a professional orchestra over three years in order to provide greater insight to the orchestral noise environment; to guide future research into orchestral noise management and hearing conservation strategies; and to provide a basis for the future education of musicians and their managers. Every rehearsal, performance, and recording from May 2004 to May 2007 was monitored, with the woodwind, brass, and percussion sections monitored in greatest detail. The study recorded dBALEQ and dBC peak data, which are presented in graphical form with accompanying summarized data tables. The findings indicate that the principal trumpet, first and third horns, and principal trombone are at greatest risk of exposure to excessive sustained noise levels and that the percussion and timpani are at greatest risk of exposure to excessive peak noise levels. However, the findings also strongly support the notion that the true nature of orchestral noise is a great deal more complex than this simple statement would imply.

  15. Noise contaminated transmittance

    SciTech Connect

    Zardecki, A.; McVey, B.D.; Nelson, D.H.

    1997-09-01

    The authors compare the efficiency of a classifier based on probabilistic neural networks and the general least squares method. Both methods must accommodate noise due to uncertainty in the measured spectrum at each wavelength. The evaluation of both methods is based on a simulated transmittance spectrum, in which the received signal is supplemented by an additive admixture of noise. To obtain a realistic description of the noise model, they generate several hundred laser pulses for each wavelength under consideration. These pulses have a predetermined correlation matrix for different wavelengths; furthermore, they are composed of three components accounting for the randomness of the observed spectrum. The first component is the correlated 1/f noise; the second component is due to uncorrelated 1/f noise; the third one is the uncorrelated white noise. The probabilistic neural network fails to retrieve the species concentration correctly for large noise levels; on the other hand, its predictions being confined to a fixed number of concentration bins, the network produces relatively small variances. To a large extent, the general least square method avoids the false alarms. It reproduces the average concentrations correctly; however, the concentration variances can be large.

  16. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing

    PubMed Central

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing. PMID:26473881

  17. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    PubMed

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  18. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  19. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  20. Airborne Hyperspectral Infrared Imaging Survey of the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Tratt, D. M.; Buckland, K. N.; Johnson, P. D.

    2014-12-01

    The San Andreas Fault (SAF) between Desert Hot Springs and Bombay Beach has been surveyed with Mako, an airborne hyperspectral imager operating across the wavelength range 7.6-13.2 μm in the thermal-infrared (TIR) spectral region. The data were acquired with a 4-km swath width centered on the SAF, and many tectonic features are recorded in the imagery. Spectral analysis using diagnostic features of minerals can identify rocks, soils and vegetation. Mako imagery can also locate rupture zones and measure slip distances. Designed and built by The Aerospace Corporation, the innovative and highly capable airborne imaging spectrometer used for this work enables low-noise performance (NEΔT ≲ 0.1 K @ 10 μm) at small pixel IFOV (0.55 mrad) and high frame rates, making possible an area-coverage rate of 20 km2 per minute with 2-m ground resolution from 12,500 ft (3.8 km) above-ground altitude. Since its commissioning in 2010, Mako has been used in numerous studies involving other earthquake fault systems (Hector Mine, S. Bristol Mts.), mapping of surface geology, geothermal sources (fumaroles near the Salton Sea), urban surveys, and the detection, quantification, and tracking of natural and anthropogenic gaseous emission plumes. Mako is available for airborne field studies and new applications are of particular interest. It can be flown at any altitude below 20,000 ft to achieve the desired GSD.

  1. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  2. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  3. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  4. Blown flap noise prediction

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1978-01-01

    Theoretical and experimental developments of flow-surface interaction noise with a particular emphasis on blown-flap noise were reviewed. Several blown-flap noise prediction methods were evaluated by comparing predicted acoustic levels, directivity, and spectra with a recently obtained data base. A prediction method was selected and a detailed step-by-step description of this method was provided to develop a computer module to calculate one-third octave band frequency spectra at any given location in the far-field for under-the-wing and upper surface blown configurations as a function of geometric and operational parameters.

  5. Hypermedicalization in White Noise.

    PubMed

    Benson, Josef

    2015-09-01

    The Nazis hijacked Germany's medical establishment and appropriated medical language to hegemonize their ideology. In White Noise, shifting medical information stifles the public into docility. In Nazi Germany the primacy of language and medical authority magnified the importance of academic doctors. The muddling of identities caused complex insecurities and the need for psychological doubles. In White Noise, Professor Gladney is driven by professional insecurities to enact a double in Murray. Through the manipulation of language and medical overreach the U.S., exemplified in the novel White Noise, has become a hypermedicalized society where the spirit of the Hippocratic Oath has eroded.

  6. Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.

    2015-05-01

    Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.

  7. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    SciTech Connect

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  8. Development in Source Modeling and Sound Propagation for Jet Noise Predictions

    NASA Technical Reports Server (NTRS)

    Leib, Steward

    2004-01-01

    The purpose of the research carried out under this cooperative agreement was to develop tools that could be used to improve upon the current state of the art in the prediction of noise emitted by turbulent exhaust jets. Both the source modeling and sound propagation aspects of the prediction of jet noise by acoustic analogy were examined with a view toward the development of methods which yield improved predictions over a wider range of operating conditions.

  9. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    SciTech Connect

    Mietz, D.; Archuleta, B.; Archuleta, J.

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  10. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  11. Reduction of propeller noise by active noise control

    NASA Astrophysics Data System (ADS)

    Bschorr, O.; Kubanke, D.

    1992-04-01

    Active noise control, a method of cancelling noise by means of interference with a secondary anti-noise source, is now in full development. The first commercial application of this technique is in the case of active electronically controlled head sets. The next step will be the active noise cancellation in air ducts and in passenger cabins. The aim of this paper is to assess the possibilities of the anti-noise technique for reducing propeller noise. First, by a mathematical simulation the theoretical noise reduction on the ground was calculated and found to be promising for further investigations. In the case of the periodic engine and propeller noise, for example, with only a single anti-noise source, the noise foot prints of the lower propeller harmonics can be reduced by up to 10 dB. In laboratory tests the theoretical values will be confirmed experimentally. For cancellation of the periodic noise one can use synchronous anti-noise generators. Compared with the engine and propeller noise the reduction of jet noise by the anti-noise technique is much more difficult. Therefore a sensor and controlling unit are necessary because of the stochastic nature of jet noise. Since aircraft noise is a severe problem, all methods are to be considered.

  12. Cochlear implant optimized noise reduction.

    PubMed

    Mauger, Stefan J; Arora, Komal; Dawson, Pam W

    2012-12-01

    Noise-reduction methods have provided significant improvements in speech perception for cochlear implant recipients, where only quality improvements have been found in hearing aid recipients. Recent psychoacoustic studies have suggested changes to noise-reduction techniques specifically for cochlear implants, due to differences between hearing aid recipient and cochlear implant recipient hearing. An optimized noise-reduction method was developed with significantly increased temporal smoothing of the signal-to-noise ratio estimate and a more aggressive gain function compared to current noise-reduction methods. This optimized noise-reduction algorithm was tested with 12 cochlear implant recipients over four test sessions. Speech perception was assessed through speech in noise tests with three noise types; speech-weighted noise, 20-talker babble and 4-talker babble. A significant speech perception improvement using optimized noise reduction over standard processing was found in babble noise and speech-weighted noise and over a current noise-reduction method in speech-weighted noise. Speech perception in quiet was not degraded. Listening quality testing for noise annoyance and overall preference found significant improvements over the standard processing and over a current noise-reduction method in speech-weighted and babble noise types. This optimized method has shown significant speech perception and quality improvements compared to the standard processing and a current noise-reduction method.

  13. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    ploration Method. CIMM Bulletin, May, pp. 1-12. terpretation of Airborne Electromagnetic Data. Turnross, J., H. F. Morrison, and A. Becker (1984...System. CIMM Bulletin, v. 66, pp. 104-109. Fraser. D. C. (1978). Resistivity Mapping with an Air- report, Office of Naval Research, Washington, DC

  14. Tandem mass spectrometry of individual airborne microparticles

    SciTech Connect

    Reilly, P.T.A.; Gieray, R.A.; Yang, M.; Whitten, W.B.; Ramsey, J.M.

    1997-01-01

    An apparatus for real-time MS/MS analysis of individual airborne microparticles by laser ablation in an ion trap is described. The performance has been demonstrated by the detection of tributyl phosphate and bis(2-ethylhexyl) phosphate on silicon carbide and kaolin microparticles. 28 refs., 5 figs.

  15. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  16. Temporal variability in airborne pollen concentrations.

    PubMed

    Raynor, G S; Hayes, J V; Ogden, E C

    1976-06-01

    Tests were conducted to determine the relationship between concentrations of airborne pollens and sampling time, using sequential rotoslide samplers at urban and rural locations. Short-period data showed an increase in variability with time between samples. Two-hour data showed a stronger trend for the first 12 hours but better agreement as the time between samples approached one day.

  17. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  18. Airborne Forcible Entry Operations: USAF Airlift Requirements

    DTIC Science & Technology

    1994-06-03

    34Urgent Fury." U.S. military forces would land in Grenada at 5:00 A.M. on 25 October 1983. 35 Admiral Wesley MacDonald, C~ munder -in-CMief, Atlantic...The airdrop of the 82nd Airborne Division troopers at Torri- jos/Tocwmen Airport, although successful, encountered sae problems. Bad weather in the U.S

  19. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  20. AN AIRBORNE COLLISION-WARNING DEVICE,

    DTIC Science & Technology

    A simplified airborne collision- warning device is suggested in which each aircraft transmits its barometric altitude by radio. The likelihood of...signals into ’near’ and ’far’ categories would have to be determined by flight tests, it is felt that the low cost and early availability of the system justifies its consideration. (Author)

  1. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  2. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  3. Noise and Hearing Protection

    MedlinePlus

    ... when using power tools, noisy yard equipment, or firearms, or riding a motorcycle or snowmobile. Hearing protectors ... Sandblasting, loud rock concert, auto horn: – 115 dB Gun muzzle blast, jet engine (such noise can cause ...

  4. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  5. Occupational Noise Exposure

    MedlinePlus

    ... is pervasive. It is also preventable. More Exposure & Controls Exposure to loud noise kills the nerve endings ... endorse, takes no responsibility for, and exercises no control over the linked organization or its views, or ...

  6. Mako airborne thermal infrared imaging spectrometer: performance update

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; Boucher, Richard H.; Buckland, Kerry N.; Gutierrez, David J.; Keim, Eric R.; Tratt, David M.; Warren, David W.

    2016-09-01

    The Aerospace Corporation's sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to +/-56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.

  7. The Beginnings of Airborne Astronomy, 1920 - 1930: an Historical Narrative

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1984-01-01

    The emergence of airborne astronomy in the early twentieth century is recounted. The aerial expedition to observe the solar eclipse on September 10, 1923, is described. Observation of the total solar eclipse of January 24, 1925, is discussed. The Honey Lake aerial expedition to study the solar eclipse of April 28, 1930, is also described. Four major accomplishments in airborne astronomy during the period 1920 to 1930 are listed. Airborne expeditions were undertaken at every logical opportunity, starting a continuous sequence of airborne astronomical expeditions which was to remain unbroken, except by World War II, to the present day. Although the scientific returns of the first ten years were modest, they did exist. Interest in, and support for, airborne astronomy was generated not only among astronomers but also among the public. Albert Stevens, arguably the true father of airborne astronomy, was to become interested in applying his considerable skill and experience to the airborne acquisition of astronomical data.

  8. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, R.V.

    1993-03-16

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.

  9. Quantitative method for measuring heat flux emitted from a cryogenic object

    DOEpatents

    Duncan, Robert V.

    1993-01-01

    The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.

  10. Discovery of Polarized Emission from Two Soft X-ray-emitting Intermediate Polars: UU Col and NY Lup

    NASA Astrophysics Data System (ADS)

    Katajainen, S.; Butters, O.; Norton, A. J.; Lehto, H. J.; Piirola, V.; Berdyugin, A.

    2010-11-01

    We aim to investigate the magnetic field strengths and cyclotron emission of the two soft X-ray-emitting intermediate polars (IPs) UU Col and NY Lup. We study the connection between polars and soft X-ray-emitting IPs by searching for evidence of circularly polarized light in these two systems, which may be examples of progenitors of polars. We carried out photopolarimetric observations of our targets using the Very Large Telescope (UT2) and FORS1 at Paranal. Imaging polarimetry with good signal-to-noise and relatively high time resolution is possible for these targets using such a large telescope. Detection of circular polarization, modulated according to a white dwarf (WD) spin period, is clear evidence of cyclotron emission processes near the WD surface. The color dependence of the polarization allows us to make estimates of the magnetic field strength. We found that both UU Col and NY Lup emit circularly polarized light in the B and I bands, modulated at the spin period of the WD in each case. We add further confirmation to the idea that soft X-ray-emitting IPs emit circularly polarized light and that cyclotron emission plays an important role in these systems. This also suggests that some soft X-ray-emitting IPs might be progenitors of polars.

  11. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  12. Refraction of Sound Emitted Near Solid Boundaries from a Sheared Jet

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Oyedrian, Ayo A.; Krejsa, Eugene A.

    1998-01-01

    A mathematical model is developed to describe the sound emitted from an arbitrary point within a turbulent flow near solid boundaries. A unidirectional, transversely sheared mean flow is assumed, and the cross-section of the cold jet is of arbitrary shape. The analysis begins with Lilley's formulation of aerodynamic noise and, depending upon the specific model of turbulence used, leads via Fourier analysis to an expression for the spectral density of the intensity of the far-field sound emitted from a unit volume of turbulence. The expressions require solution of a reduced Green's function of Lilley's equation as well as certain moving axis velocity correlations of the turbulence. Integration over the entire flow field is required in order to predict the sound emitted by the complete flow. Calculations are presented for sound emitted from a plugflow jet exiting a semi-infinite flat duct. Polar plots of the far-field directivity show the dependence upon frequency and source position within the duct. Certain model problems are suggested to investigate the effect of duct termination, duct geometry, and mean flow shear upon the far-field sound.

  13. Underwater noise emissions from a drillship in the Arctic.

    PubMed

    Kyhn, Line A; Sveegaard, Signe; Tougaard, Jakob

    2014-09-15

    Wideband sound recordings were made of underwater noise emitted by an active drillship, Stena Forth, working in 484 m of water in Baffin Bay, western Greenland. The recordings were obtained at thirty and one-hundred meters depth. Noise was recorded during both drilling and maintenance work at ranges from 500 m to 38 km. The emitted noise levels were highest during maintenance work with estimated source levels up to 190 dB re 1 μPa (rms), while the source level during drilling was 184 dB re 1 μPa (rms). There were spectral peaks discernible from the background noise to ranges of at least 38 km from the drillship with the main energy below 3 kHz. M-weighted sound pressure levels were virtually identical to broadband levels for low-frequency cetaceans and about 5 dB lower for high-frequency cetaceans. Signals from the dynamic positioning system were clearly detectable at ranges up to two km from the drillship.

  14. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  15. Noise Abatement Materials

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.

  16. Television noise reduction device

    NASA Technical Reports Server (NTRS)

    Gordon, B. L.; Stamps, J. C. (Inventor)

    1975-01-01

    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.

  17. Fragranced consumer products: Chemicals emitted, ingredients unlisted

    SciTech Connect

    Steinemann, Anne C.; MacGregor, Ian C.; Gordon, Sydney M.; Gallagher, Lisa G.; Davis, Amy L.; Ribeiro, Daniel S.; Wallace, Lance A.

    2011-04-15

    Fragranced consumer products are pervasive in society. Relatively little is known about the composition of these products, due to lack of prior study, complexity of formulations, and limitations and protections on ingredient disclosure in the U.S. We investigated volatile organic compounds (VOCs) emitted from 25 common fragranced consumer products-laundry products, personal care products, cleaning supplies, and air fresheners-using headspace analysis with gas chromatography/mass spectrometry (GC/MS). Our analysis found 133 different VOCs emitted from the 25 products, with an average of 17 VOCs per product. Of these 133 VOCs, 24 are classified as toxic or hazardous under U.S. federal laws, and each product emitted at least one of these compounds. For 'green' products, emissions of these compounds were not significantly different from the other products. Of all VOCs identified across the products, only 1 was listed on any product label, and only 2 were listed on any material safety data sheet (MSDS). While virtually none of the chemicals identified were listed, this nonetheless accords with U.S. regulations, which do not require disclosure of all ingredients in a consumer product, or of any ingredients in a mixture called 'fragrance.' Because the analysis focused on compounds emitted and listed, rather than exposures and effects, it makes no claims regarding possible risks from product use. Results of this study contribute to understanding emissions from common products, and their links with labeling and legislation.

  18. Collection and Analysis of Aircraft Emitted Particles

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.

  19. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  20. Light-Emitting Diodes: Solving Complex Problems

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…

  1. Light-Emitting Diodes: Learning New Physics

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2015-01-01

    This is the third paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide the readers with the description of experiments and pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper, published…

  2. Light-Emitting Diodes: A Hidden Treasure

    ERIC Educational Resources Information Center

    Planinšic, Gorazd; Etkina, Eugenia

    2014-01-01

    LEDs, or light-emitting diodes, are cheap, easy to purchase, and thus commonly used in physics instruction as indicators of electric current or as sources of light (Fig. 1). In our opinion LEDs represent a unique piece of equipment that can be used to collect experimental evidence, and construct and test new ideas in almost every unit of a general…

  3. Demonstrating the Light-Emitting Diode.

    ERIC Educational Resources Information Center

    Johnson, David A.

    1995-01-01

    Describes a simple inexpensive circuit which can be used to quickly demonstrate the basic function and versatility of the solid state diode. Can be used to demonstrate the light-emitting diode (LED) as a light emitter, temperature sensor, light detector with both a linear and logarithmic response, and charge storage device. (JRH)

  4. Optical Physics of Microcavity Surface Emitting Lasers

    DTIC Science & Technology

    2007-11-02

    in confinement factor balances the change in mirror reflectance. For TM and HEM modes, no minima exists since the mirror reflectance is approximately...Noble. "Model of Intra and Extracavity Photodetection for Planar Resonant Cavity Light Emitting Diodes." 24th International Symposium on Compound

  5. [Noise in intensive care units. Noise reduction by modification of gas humidification].

    PubMed

    Berg, P W; Stuttmann, R; Doehn, M

    1997-10-01

    Today, noise pollution is an evident and ubiquitous problem even in intensive care units. Noise can disturb the physiological and psychological balance in patients and staff. Especially intubated patients and those breathing spontaneously through a T-piece are exposed to the noise emitted by the nebuliser used to humidity the respiratory gas. This may make patients feel uncomfortable. To reduce noise pollution in the ICU a modified T-piece has been developed and investigated. In order to heat and humidity the respiratory gas a Conchaterm III unit (Kendall company) and a thermo flow cylinder (De Vilbiss company) is necessary. While respiratory gas is flowing, water is sucked out of the heated thermoflow cylinder and nebulised according to the Venturi-Bernoulli principle. To adjust the oxygen concentration of the respiratory gas a plastic ring must be turned to either close (98% oxygen) or open a valve allowing room air to mix (40% oxygen). Noise pollution of the unit varies with admixture of room air. With a new device--a special oxygen-air mixing chamber--the oxygen concentration of the respiratory gas can be adjusted outside the thermoflow cylinder, hardly producing any noise pollution. Therefore the principle of nebulisation could be changed to humidification. A thermoflow cylinder without the nebulisation unit allows the respiratory gas to flow through the thermoflow cylinder over heated and evaporating water, hardly causing any noise pollution. In both types of T-pieces the temperature of the respiratory gas is controlled and corrected by the Conchaterm unit. As the result of these modifications, noise pollution has been reduced from 70 dB(A) to 55 dB(A). In the modified T-piece, the quality of humidification has been evaluated with a fresh gas flow of 22 l/min and at a gas temperature of 37 degrees C, not only collecting condensed water but also lost water. The modified T-piece allows a physiological humidification of the respiratory gas. The modified T

  6. The potential of a new air cleaner to reduce airborne microorganisms in pig house air: preliminary results.

    PubMed

    Schulz, Jochen; Bao, Endong; Clauss, Marcus; Hartung, Jörg

    2013-01-01

    There is a need for technical solutions to reduce the concentrations of bioaerosols in the air and in the exhaust air of livestock buildings. A prototype of an air washer combined with a UV-irradiation system was positioned in a commercial pig fattening unit to test its efficiency of reducing culturable airborne microorganisms. No significant reduction in airborne bacteria and fungi was observed when untreated air passed through the device. However, when the air washer or the UV-irradiation system was activated, the concentrations of mesophilic aerobic bacteria, methicillin resistant Staphylococcus aureus and mesophilic aerotolerant cocci were reduced significantly (p < 0.01). Washing the air reduced bacteria by 84 to 96% and the relative reduction due to UV-irradiation ranged between 55 and 90%. The highest relative reduction in airborne bacteria (90 to 99%) was detected when the air washer and the UV-irradiation systems were in simultaneous operation. The concentration of total airborne fungi was reduced significantly (p < 0.05) only when the air was washed and UV-irradiated. Although these preliminary results provided significant and comprehensible findings, long-term studies are required to assess the efficiency of the device in more detail.The combination of air washing and UV-irradiation seem to be a useful technique for abating airborne microorganisms within or emitting from piggery buildings. However, some technical problems remain, such as the deposition of particulate matter on the surface of UV-irradiators and the consumption of fresh water by the air washer. These issues must be resolved before the system may be implemented for general practice.

  7. Si-based blue light emitting diode

    NASA Astrophysics Data System (ADS)

    Namavar, Fereydoon

    1994-05-01

    Phase 1 results demonstrated for the first time a strong, stable blue-green emission from C-implanted red-emitting porous silicon. The objective of Phase 1 was to obtain blue-green emission from porous Si structure either by increasing the bandgap of the substrate by growth of Si-C random alloys prior to forming nanostructures with quantum confined properties, or by increasing the confinement energy of red-emitting Si nanostructures. Porous structures fabricated from group 4 alloys epitaxially grown by chemical vapor deposition (CVD) resulted in an enhancement in light emission of about one order of magnitude after incorporation of a very small amount of carbon in the epitaxial grown films. Strong blue-green light emission was observed by the naked eye from C-implanted and annealed porous Si. Using AlGaAs as a reference, we observed that the intensity of blue-green emission was one order of magnitude higher than that of the original red-emitting porous Si. Catholuminescence measurements of our samples performed at the University of Colorado show blue emission at 1.80 eV and 2.80 eV. Fourier transform infrared (FTIR) spectra of a blue-green emitting porous structure shows an IR absorption line identical to that of SiC and electron diffraction studies clearly show reflections corresponding to beta-SiC. Phase 1 results indicate that blue-green light is from SiC nanostructures with quantum confined properties. This material may be used to fabricate blue light-emitting Si-based devices which can be easily integrated into Si technology.

  8. Auger Emitting Radiopharmaceuticals for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.

    Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.

  9. Quantitative interpretation of airborne gravity gradiometry data for mineral exploration

    NASA Astrophysics Data System (ADS)

    Martinez, Cericia D.

    In the past two decades, commercialization of previously classified instrumentation has provided the ability to rapidly collect quality gravity gradient measurements for resource exploration. In the near future, next-generation instrumentation are expected to further advance acquisition of higher-quality data not subject to pre-processing regulations. Conversely, the ability to process and interpret gravity gradiometry data has not kept pace with innovations occurring in data acquisition systems. The purpose of the research presented in this thesis is to contribute to the understanding, development, and application of processing and interpretation techniques available for airborne gravity gradiometry in resource exploration. In particular, this research focuses on the utility of 3D inversion of gravity gradiometry for interpretation purposes. Towards this goal, I investigate the requisite components for an integrated interpretation workflow. In addition to practical 3D inversions, components of the workflow include estimation of density for terrain correction, processing of multi-component data using equivalent source for denoising, quantification of noise level, and component conversion. The objective is to produce high quality density distributions for subsequent geological interpretation. I then investigate the use of the inverted density model in orebody imaging, lithology differentiation, and resource evaluation. The systematic and sequential approach highlighted in the thesis addresses some of the challenges facing the use of gravity gradiometry as an exploration tool, while elucidating a procedure for incorporating gravity gradient interpretations into the lifecycle of not only resource exploration, but also resource modeling.

  10. Dynamic Range of Vertical Cavity Surface Emitting Lasers in Multimode Links

    SciTech Connect

    Lee, H.L.T.; Dalal, R.V.; Ram, R.J.; Choquette, K.D.

    1999-07-07

    The authors report spurious free dynamic range measurements of 850nm vertical cavity surface emitting lasers in short multimode links for radio frequency communication. For a 27m fiber link, the dynamic range at optimal bias was greater than 95dB-Hz{sup 2/3} for modulation frequencies between 1 and 5.5 GHz, which exceeds the requirements for antenna remoting in microcellular networks. In a free space link, they have measured the highest dynamic range in an 850nm vertical cavity surface emitting laser of 113dB-Hz{sup 2/3} at 900MHz. We have also investigated the effects of modal noise and differential mode delay on the dynamic range for longer lengths of fiber.

  11. Detection of temporal order of noise-like luminance functions.

    PubMed

    Snippe, H P; Koenderink, J J

    1994-01-01

    We study the capacities of human observers to time order light sources that emit dynamic noise, identical for the different light sources, except for an adjustable delay. There is a range of temporal delays for which human observers are perfectly able to perform this task, using the direction of the motion percept that is evoked by the stimulus as a cue. An optimal delay between light sources at which the observers are most robust against any deterioration of the stimulus is defined. We claim that optimal delays (15-25 msec) correspond to the time delay of a putative Reichardt correlation mechanism in human motion vision. Contrary to the ability of human observers to sense temporal correlations in noise sequences, observers are totally unable to detect anticorrelation between noise sequences. This inability rules out motion opponency as a viable model for human front-end ("early") motion vision.

  12. Detector noise statistics in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1992-01-01

    The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.

  13. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  14. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  15. Environmental issues: noise, rail noise, and high-speed rail

    SciTech Connect

    Hall, F.L.; Welland, J.D.; Bragdon, C.R.; Houtman, J.W.; Immers, B.H.

    1987-01-01

    The six papers in the report deal with the following areas: the effect of noise barriers on the market value of adjacent residential properties; control of airport- and aircraft-related noise in the United States; a traffic-assignment model to reduce noise annoyance in urban networks; a survey of railroad occupational noise sources; a prediction procedure for rail transportation ground-borne noise and vibration; and high-speed rail in California: the dream, the process, and the reality.

  16. Noise Hazard Evaluation Sound Level Data on Noise Sources

    DTIC Science & Technology

    1975-01-01

    AD-A021 465 NOISE HAZARD EfALUATION SOUND LEVEL DATA ON NOISE SOURCES Jeffrey Goldstein Army Environmental Hygiene Agency Prepared for: Army Health ...A. Noise Hazard Evaluation. B. Engineering Noise Control. C. Health Education. D. Audiometry. E. Hearing Protection. This technical guide concerns the...SOUND LEVEL DATA OF NOISE SOURCES Approved for public release, distribution unlimited. jGI4A C4C SENTINEL HEALTH I 5 US ARMY ENVIROIN.MENTAL HYGIENE

  17. Noise and Signal for Spectra of Intermittent Noiselike Emission

    NASA Astrophysics Data System (ADS)

    Gwinn, C. R.; Johnson, M. D.

    2011-05-01

    We show that intermittency of noiselike emission, after propagation through a scattering medium, affects the distribution of noise in the observed correlation function. Intermittency also affects correlation of noise among channels of the spectrum, but leaves the average spectrum, average correlation function, and distribution of noise among channels of the spectrum unchanged. Pulsars are examples of such sources: intermittent and affected by interstellar propagation. We assume that the source emits Gaussian white noise, modulated by a time envelope. Propagation convolves the resulting time series with an impulse-response function that represents effects of dispersion, scattering, and absorption. We assume that this propagation kernel is shorter than the time for an observer to accumulate a single spectrum. We show that rapidly varying intermittent emission tends to concentrate noise near the central lag of the correlation function. We derive mathematical expressions for this effect, in terms of the time envelope and the propagation kernel. We present examples, discuss effects of background noise, and compare our results with observations.

  18. How to Evaluate the Electric Noise in a Cell Membrane?

    NASA Astrophysics Data System (ADS)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  19. Noise action plan of agglomerations: sustainable hypothesis or utopy?

    PubMed

    Magri, S L; Masera, S; Fogola, J

    2009-12-01

    European and Italian laws establish that agglomerations of more than 100 000 inhabitants must adopt an action plan in order to manage noise issues and effects. The plan aim is to reduce population exposure to environmental noise, which is defined as the outdoor sound created by human activities, including noise emitted by road traffic, rail traffic and air traffic, and noise from sites of industrial activity. Although acoustic pollution represents one of the main causes of annoyance for inhabitants of urban areas, the political agenda does not acknowledge it among the main environmental issues. Thus, acoustic reclamation is often considered a duty to be accomplished rather than a way to improve quality of life for citizens. Furthermore, financial resources are generally very poor while the acoustic critical situations are numerous and serious in terms of exceeding the limit. In this situation, what is the meaning of an urban area noise action plan? What are the concrete actions that municipalities can realise to reduce urban noise pollution? This study tries to answer these questions, starting from the analysis carried out for the action plan of the city of Turin.

  20. NOISE AND SIGNAL FOR SPECTRA OF INTERMITTENT NOISELIKE EMISSION

    SciTech Connect

    Gwinn, C. R.; Johnson, M. D. E-mail: michaeltdh@physics.ucsb.edu

    2011-05-20

    We show that intermittency of noiselike emission, after propagation through a scattering medium, affects the distribution of noise in the observed correlation function. Intermittency also affects correlation of noise among channels of the spectrum, but leaves the average spectrum, average correlation function, and distribution of noise among channels of the spectrum unchanged. Pulsars are examples of such sources: intermittent and affected by interstellar propagation. We assume that the source emits Gaussian white noise, modulated by a time envelope. Propagation convolves the resulting time series with an impulse-response function that represents effects of dispersion, scattering, and absorption. We assume that this propagation kernel is shorter than the time for an observer to accumulate a single spectrum. We show that rapidly varying intermittent emission tends to concentrate noise near the central lag of the correlation function. We derive mathematical expressions for this effect, in terms of the time envelope and the propagation kernel. We present examples, discuss effects of background noise, and compare our results with observations.

  1. Disturbance caused by aircraft noise

    NASA Technical Reports Server (NTRS)

    Josse, R.

    1980-01-01

    Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.

  2. Mapping of noise impact provoked by the execution of foundation piles at high rise building sites.

    PubMed

    de Araújo, Adolpho Guido; Gusmão, Alexandre Duarte; Rabbani, Emilia Rahnemay Kohman; Fucale, Stela Paulino

    2012-01-01

    The objective of this work is to map, in a limited area inside and outside of the worksite, the environmental impact generated by sound pollution coming from the driving of foundation piles for high rise buildings, as well as to observe and check if the noise levels produced by the emitting source are tolerable in the urban environment. The methodology of the work includes a survey of technical references about the subject; measurement of noises surrounding the worksite during the foundation phase for four distinct buildings, with different types of piles: prefabricated piles, continuous helical displacement piles , traditional compaction piles and Terra Probe compaction piles. A grid of points was built due to the time of driving and after that the measurements of environmental noises were performed emitted by the execution of each type of pile using a sound level meter. The interpretation of the measurements and their impacts on the neighborhood of the building were performed using the computational tool Suffer for creating noise level contours. The X and Y axes of the grid represent the distances in meters of the area studied and the Z axis represents the noise measured in dB. The contours developed represent the mapping of the noise at the worksites and their surroundings. The mapping of the urban impact of noise, the measurement of its dimensions, and the examination of its propagation around the building are important subsides to adequate individual and collective protection procedures. Seventy one points were measured at four building sites with different types of piles, and the results showed that at only three points was the noise within the limits of the Municipal Law of Recife of 70 dB, which proves the relevance of the research. Finally, the comparative analysis between the four types of piles shows that the continuous helical displacement pile emits the lowest noise level among the four pile types studied.

  3. Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power.

    PubMed

    Höfer, S; Liem, A; Limpert, J; Zellmer, H; Tünnermann, A; Unger, S; Jetschke, S; Müller, H R; Freitag, I

    2001-09-01

    We report a master-oscillator fiber power-amplifier system consisting of a diode-pumped monolithic nonplanar ring laser as the master oscillator and a Yb-doped large-mode-area double-clad fiber as the power amplifier. The system emits up to 20.1 W of single-frequency radiation at a wavelength of 1064 nm with diffraction-limited beam quality (M(2)noise behavior are investigated. Furthermore, the power-scaling possibilities are discussed.

  4. Aircraft noise synthesis system

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.; Grandle, Robert E.

    1987-02-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  5. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  6. The inversion method in measuring noise emitted by machines in opencast mines of rock material.

    PubMed

    Pleban, Dariusz; Piechowicz, Janusz; Kosała, Krzysztof

    2013-01-01

    The inversion method was used to test vibroacoustic processes in large-size machines used in opencast mines of rock material. When this method is used, the tested machine is replaced with a set of substitute sources, whose acoustic parameters are determined on the basis of sound pressure levels and phase shift angles of acoustic signals, measured with an array of 24 microphones. This article presents test results of a combine unit comprising a crusher and a vibrating sieve, for which an acoustic model of 7 substitute sources was developed with the inversion method.

  7. Noise Mitigation During Pile Driving Efficiently Reduces Disturbance of Marine Mammals.

    PubMed

    Nehls, Georg; Rose, Armin; Diederichs, Ansgar; Bellmann, Michael; Pehlke, Hendrik

    2016-01-01

    Acoustic monitoring of harbor porpoises (Phocoena phocoena L., 1758) indicated a strongly reduced disturbance by noise emitted by pile driving for offshore wind turbine foundations insulated by a big bubble curtain (BBC). This newly developed noise mitigation system was tested during construction of the offshore wind farm Borkum West II (North Sea). Because porpoise activity strongly corresponded to the sound level, operation of the new system under its most suitable configuration reduced the porpoise disturbance area by ~90%. Hence, for the first time, a positive effect of a noise mitigation system during offshore pile driving on an affected marine mammal species could be demonstrated.

  8. Echolocating bats emit terminal phase buzz calls while drinking on the wing.

    PubMed

    Griffiths, Stephen R

    2013-09-01

    Echolocating bats are known to produce terminal buzz calls during pursuit and capture of airborne prey, however the use of buzz calls while drinking on the wing has not been previously investigated. In this study I recorded the first empirical evidence that bats produce terminal phase buzz calls while drinking on the wing. Every drinking pass recorded during this study was characterised by a terminal buzz which bats emitted immediately prior to touching the water surface with their mouth. The characteristic frequency (the frequency at the end or flattest portion of the pulse) of echolocation call sequences containing drinking buzzes varied from 25kHz to 50kHz, suggesting multiple bat species present at the study site emit buzzes while drinking on the wing. As feeding buzz calls appear to be ubiquitous among echolocating bat taxa, the prevalence of drinking buzzes clearly warrants further investigation. Drinking buzzes could potentially be used to document rates of drinking by bats in the same way that feeding buzzes are used to infer foraging activity.

  9. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  10. Train noise reduction scenarios for compliance with future noise legislation

    NASA Astrophysics Data System (ADS)

    Leth, S.

    2003-10-01

    The Technical Specification for Interoperability (TSI) for high-speed trains on the European market includes limits on noise emission. These and other future restrictions on exterior noise of high-speed and intercity trains will require that train manufacturers implement noise control measures early in the design phase. A fundamental problem faced by manufacturers during the design process is determining how much noise reduction is required for each of the various noise sources on the train in order to achieve an optimal balance. To illustrate this process, estimates are presented of the contributions from different sources on existing Bombardier trains, based on measured data, numerical calculations and empirical formulae. In addition, methods of achieving the required noise reductions for different sources are briefly discussed along with targets for future exterior noise emission. Measurement results presented demonstrate the importance of track quality in noise emission. Noise restrictions, including future legislation, must give proper recognition to this important parameter.

  11. The Callaway Plant's airborne tritium sampling cart

    SciTech Connect

    Graham, C.C.; Roselius, R.R. )

    1986-07-01

    The water vapor condensation method for sampling airborne tritium offers significant advantages over other methods, including minimal sample preparation, high sensitivity, and independence from collection efficiency and sample flow rate. However, it does have disadvantages that must be overcome in the design of a sampler. This article describes a cart-mounted, portable airborne tritium sampler used at the Callaway Nuclear Plant that incorporates the advantages of the condensation technique while minimizing its shortcomings. The key elements in the design of the sampler are the use of a refrigerated bath to cool a series of three water vapor collection traps and the use of an optical condensation dew point hygrometer to measure the moisture content of the sample. Design considerations for the proper operation of dew point hygrometers are presented, and the method used to convert due point readings to water vapor content is described.

  12. Airborne Infrared Spectroscopy of 1994 Western Wildfires

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07/ cm resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  13. Airborne Wind Measurements at Cape Blanco, Oregon.

    SciTech Connect

    Lin, Jung-Tai Lin; Veenhuizen, Scott D.

    1983-12-01

    The airborne wind measuring system using a fixed wing airplane and a Loran-C navigation unit was proven to be feasible to provide the large scale background wind flow for initialization of numerical wind modeling. The rms errors in the airborne wind measuring system were +- 2 mph in wind speed and +- 12 degrees in wind direction. The advantages of this method were that wind speeds over a large area (5 miles x 14 miles, or 18 miles x 30 miles) may be determined rapidly, economically and at altitudes above the normal altitudes of TALA kite mesurements. The disadvantages were that the spatial resolution of the measurements was poor and near surface measurements were not feasible using a fixed wing aircraft. 1 reference, 10 figures, 1 table.

  14. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  15. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  16. Airborne Laser/GPS Mapping of Beaches

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Swift, R. N.; Fredrick, E. B.; Manizade, S. S.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark

    1999-01-01

    Results are presented from topographic surveys of the Assateague National Seashore Park using recently developed airborne laser and Global Positioning System (GPS) technology. During November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the NASA Goddard Space Flight Center's Wallops Flight Facility conducted surveys as a part of technology enhancement activities or warm-up missions prior to conducting elevation measurements of the Greenland Ice Sheet as part of NASA's Global Climate Change program. The resulting data are compared to surface surveys using standard techniques. The goal of these projects is to make these measurements to an accuracy of 10 cm. The measurements were made from NASA's 4-engine P-3 Orion aircraft using the Airborne Topographic Mapper (ATM), a scanning laser system. The necessary high accuracy vertical as well as horizontal positioning are provided by Global Positioning System (GPS) receivers located both on board the aircraft and at a fixed site at Wallops Island.

  17. Airborne infrared spectroscopy of 1994 western wildfires

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Beer, Reinhard; Rinsland, Curtis P.

    1997-01-01

    In the summer of 1994 the 0.07 cm-1 resolution infrared Airborne Emission Spectrometer (AES) acquired spectral data over two wildfires, one in central Oregon on August 3 and the other near San Luis Obispo, California, on August 15. The spectrometer was on board a NASA DC-8 research aircraft, flying at an altitude of 12 km. The spectra from both fires clearly show features due to water vapor, carbon dioxide, carbon monoxide, ammonia, methanol, formic acid, and ethylene at significantly higher abundance and temperature than observed in downlooking spectra of normal atmospheric and ground conditions. Column densities are derived for several species, and molar ratios are compared with previous biomass fire measurements. We believe that this is the first time such data have been acquired by airborne spectral remote sensing.

  18. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Performance metrics for an airborne imaging system

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Gonglewski, John D.

    2004-11-01

    A series of airborne imaging experiments have been conducted on the island of Maui and at North Oscura Peak in New Mexico. Two platform altitudes were considered 3000 meters and 600 meters, both with a slant range to the target up to 10000 meters. The airborne imaging platform was a Twin Otter aircraft, which circled ground target sites. The second was a fixed platform on a mountain peak overlooking a valley 600 meters below. The experiments were performed during the day using solar illuminated target buildings. Imaging system performance predictions were calculated using standard atmospheric turbulence models, and aircraft boundary layer models. Several different measurement approaches were then used to estimate the actual system performance, and make comparisons with the calculations.

  20. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  1. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  2. Method of making organic light emitting devices

    SciTech Connect

    Shiang, Joseph John; Janora, Kevin Henry; Parthasarathy, Gautam; Cella, James Anthony; Chichak, Kelly Scott

    2011-03-22

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  3. Principles of phosphorescent organic light emitting devices.

    PubMed

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  4. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized.

  5. Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  6. Video noise reduction

    NASA Astrophysics Data System (ADS)

    Drewery, J. O.; Storey, R.; Tanton, N. E.

    1984-07-01

    A video noise and film grain reducer is described which is based on a first-order recursive temporal filter. Filtering of moving detail is avoided by inhibiting recursion in response to the amount of motion in a picture. Motion detection is based on the point-by-point power of the picture difference signal coupled with a knowledge of the noise statistics. A control system measures the noise power and adjusts the working point of the motion detector accordingly. A field trial of a manual version of the equipment at Television Center indicated that a worthwhile improvement in the quality of noisy or grainy pictures received by the viewer could be obtained. Subsequent trials of the automated version confirmed that the improvement could be maintained. Commercial equipment based on the design is being manufactured and marketed by Pye T.V.T. under license. It is in regular use on both the BBC1 and BBC2 networks.

  7. Road Traffic Noise

    NASA Astrophysics Data System (ADS)

    Beckenbauer, Thomas

    Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.

  8. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  9. Surface emitting lasers with combined output

    NASA Technical Reports Server (NTRS)

    Carlin, Donald B. (Inventor)

    1990-01-01

    Surface emitting lasers are laterally aligned and coupled together and also have their light output signals combined. This results in greater phase and frequency coherency and narrower and reduced amplitude sidelobes. Preferably, not more than two lasers are longitudinally aligned along the same axis for still greater coherency compared with adding the light output signals of more than two longitudinally aligned lasers. The lasers can be of the DH-LOC type or of the QW type.

  10. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  11. Airborne Chemical Sensing with Mobile Robots

    PubMed Central

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  12. A new tool for sampling airborne isocyanates

    SciTech Connect

    Sesana, G.; Nano, G.; Baj, A. )

    1991-05-01

    A new sampling system is presented that uses solid sorbent media contained in a tube for the determination of airborne isocyanates (2.4-2.6 toluene diisocyanate, hexamethylene diisocyanate, and 4.4' diaminodiphenylmethane diisocyanate). The method is compared with the National Institute for Occupational Safety and Health (NIOSH) Method P CAM 5505 (Revision {number sign}1). Experimental tests yielded results that were highly concordant with the NIOSH method.

  13. Airborne Nanostructured Particles and Occupational Health

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  14. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  15. Image Based Synthesis for Airborne Minefield Data

    DTIC Science & Technology

    2005-12-01

    applications of image synthesis include artificial texture generation [1], image repairing [2], photometric image rendering [3] and ultrasound imaging...1999. 4. M. Song, R. M. Haralick, F.H. Sheehan, " Ultrasound imaging simulation and echocardiographic image synthesis ", Proceedings of the IEEE...Night Vision and Electronic Sensors Directorate AMSRD-CER-NV-TR-246I Image Based Synthesis for Airborne Minefield Data December 2005 Approved for

  16. DC-8 Airborne Laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 17-second clip shows air-to-air shots of the NASA DC-8 airborne laboratory as it passes over the NASA Dryden Flight Research Center at Edwards, California, and the foothills of the Sierra Nevada mountains. On December 29, 1997, NASA Dryden Flight Research Center, Edwards, California, received a DC-8 airborne laboratory from NASA Ames Research Center, Moffett Field, California, where it had flown missions related to airborne science and earth science for many years. This airplane has continued to be used from Dryden for basic research about the Earth's surface and atmosphere as well as sensor development and satellite sensor verification. In mid-February 1998, the DC-8 resumed flying its medium-altitude, science-gathering missions following maintenance and upgrades of its satellite communications system. It flew a variety of missions over widely scattered geographic regions during the rest of the calendar year and beyond to gather data about earth science, including weather and climate. Built by Douglas Aircraft Company, Long Beach, California, in 1966, the DC-8 flew for 20 years with two major airlines before being acquired by NASA and converted to its present role as an airborne laboratory. The four-engine former jetliner was capable of flying extended-duration missions as long as 12 hours over a range of 5,400 nautical miles at cruise altitudes up to 41,000 feet. It was also capable of carrying a payload of multiple experiments weighing up to 30,000 pounds. On some of its missions, up to 30 scientists have worked on as many as 14 different experiments.

  17. DC-8 airborne laboratory in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this 26-second clip the NASA DC-8 airborne laboratory is shown making turns over the Sierra Nevada foothills, NASA Dryden Flight Research Center, and Rogers Dry Lakebed at Edwards Air Force Base, California. On December 29, 1997, NASA Dryden Flight Research Center, Edwards, California, received a DC-8 airborne laboratory from NASA Ames Research Center, Moffett Field, California, where it had flown missions related to airborne science and earth science for many years. This airplane has continued to be used from Dryden for basic research about the Earth's surface and atmosphere as well as sensor development and satellite sensor verification. In mid-February 1998, the DC-8 resumed flying its medium-altitude, science-gathering missions following maintenance and upgrades of its satellite communications system. It flew a variety of missions over widely scattered geographic regions during the rest of the calendar year and beyond to gather data about earth science, including weather and climate. Built by Douglas Aircraft Company, Long Beach, California, in 1966, the DC-8 flew for 20 years with two major Airlines before being acquired by NASA and converted to its present role as an airborne laboratory. The four-engine former jetliner was capable of flying extended-duration missions for as long as 12 hours over a range of 5,400 nautical miles at cruise altitudes of up to 41,000 feet. It was also capable of carrying a payload of multiple experiments weighing up to 30,000 pounds. On some of its missions, up to 30 scientists have worked on as many as 14 different experiments.

  18. Does antimatter emit a new light?

    NASA Astrophysics Data System (ADS)

    Santilli, Ruggero Maria

    1997-08-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out.

  19. Airborne Tactical Free-Electron Laser

    SciTech Connect

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  20. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  1. Airborne SAR imagery to support hydraulic models

    NASA Astrophysics Data System (ADS)

    Castiglioni, S.

    2009-04-01

    Satellite images and airborne SAR (Synthetic Aperture Radar) imagery are increasingly widespread and they are effective tools for measuring the size of flood events and for assessment of damage. The Hurricane Katrina disaster and the tsunami catastrophe in Indian Ocean countries are two recent and sadly famous examples. Moreover, as well known, the inundation maps can be used as tools to calibrate and validate hydraulic model (e.g. Horritt et al., Hydrological Processes, 2007). We carry out an application of a 1D hydraulic model coupled with a high resolution DTM for predicting the flood inundation processes. The study area is a 16 km reach of the River Severn, in west-central England, for which, four maps of inundated areas, obtained through airborne SAR images, and hydrometric data are available. The inundation maps are used for the calibration/validation of a 1D hydraulic model through a comparison between airborne SAR images and the results of hydraulic simulations. The results confirm the usefulness of inundation maps as hydraulic modelling tools and, moreover, show that 1D hydraulic model can be effectively used when coupled with high resolution topographic information.

  2. Cryospheric Applications of Modern Airborne Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  3. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  4. Optical Communications Link to Airborne Transceiver

    NASA Technical Reports Server (NTRS)

    Regehr, Martin W.; Kovalik, Joseph M.; Biswas, Abhijit

    2011-01-01

    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground.

  5. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  6. ICESat-2 Simulated Data from Airborne Altimetery

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Neumann, T. A.; Markus, T.; Brenner, A. C.; Barbieri, K. A.; Field, C. T.; Sirota, J. M.

    2010-01-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  7. Emergency communications via airborne communications node

    NASA Astrophysics Data System (ADS)

    Niessen, Charles W.

    1997-02-01

    Natural disasters such as floods, hurricanes, and earthquakes invariably result in disruption of the commercial communications infrastructure and can severely impede the delivery of emergency services by local and federal agencies. In addition, the public's inability to communicate with commercial service providers can substantially slow the recovery process. Since wide-spread destruction of communications plant and distribution systems takes a long time to rebuild, an attractive alternative would be to provide communications connectivity through an airborne platform configured as a communication node. From a high altitude, a single aircraft could provide line of sight connectivity between users that are not within line of sight of each other, and could relay communications through ground or satellite gateways to the national PSTN. This capability could be used to substitute for multiple base stations for fire and police as well as military relief workers using their normal mobile communications gear. The airborne platform could also serve as a wide area base station to replace cellular phone towers that have been destroyed; this would enable civilian access to communications services from existing cellular phones, but could also be used by relief workers carrying low-cost commercial handsets. This paper examines the technical methods for achieving these goals, identifies the equipment needed on the airborne platform, and discusses the performance that could be expected.

  8. Methods for Sampling of Airborne Viruses

    PubMed Central

    Verreault, Daniel; Moineau, Sylvain; Duchaine, Caroline

    2008-01-01

    Summary: To better understand the underlying mechanisms of aerovirology, accurate sampling of airborne viruses is fundamental. The sampling instruments commonly used in aerobiology have also been used to recover viruses suspended in the air. We reviewed over 100 papers to evaluate the methods currently used for viral aerosol sampling. Differentiating infections caused by direct contact from those caused by airborne dissemination can be a very demanding task given the wide variety of sources of viral aerosols. While epidemiological data can help to determine the source of the contamination, direct data obtained from air samples can provide very useful information for risk assessment purposes. Many types of samplers have been used over the years, including liquid impingers, solid impactors, filters, electrostatic precipitators, and many others. The efficiencies of these samplers depend on a variety of environmental and methodological factors that can affect the integrity of the virus structure. The aerodynamic size distribution of the aerosol also has a direct effect on sampler efficiency. Viral aerosols can be studied under controlled laboratory conditions, using biological or nonbiological tracers and surrogate viruses, which are also discussed in this review. Lastly, general recommendations are made regarding future studies on the sampling of airborne viruses. PMID:18772283

  9. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  10. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterized at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130, and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimeter wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurements campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography alitmetery.

  11. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigtsen, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2011-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterised at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130 and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimetre wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  12. Rocket Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul

    1999-01-01

    A comprehensive, automated, and user-friendly software program was developed to predict the noise and ignition over-pressure environment generated during the launch of a rocket. The software allows for interactive modification of various parameters affecting the generated noise environment. Predictions can be made for different launch scenarios and a variety of vehicle and launch mount configurations. Moreover, predictions can be made for both near-field and far-field locations on the ground and any position on the vehicle. Multiple engine and fuel combinations can be addressed, and duct geometry can be incorporated efficiently. Applications in structural design are addressed.

  13. Experience with airborne detection of radioactive pollution (ENMOS, IRIS).

    PubMed

    Pavlik, Bohuslav; Engelsmann, Jan

    2004-01-01

    This paper discusses the advantages of airborne monitoring of radioactive pollution and shows example maps indicating manmade pollution from different sources. The sensitivity of airborne radioactive detection is discussed. Comparisons of airborne and different ground measurements are presented. New instrumentation for airborne or ground moving vehicles is briefly described. Airborne footprinting provides rapid, well-defined spatial images of natural and manmade radioactive contamination. Data acquisition integrated with GPS navigation provides consistent data and guarantees proper data location. Real-time airborne measurements are re-calculated, with the use of special algorithms, into absolute units for individual radioactive nuclei contamination of the ground together with dose calculation. Raw records and calculated data are provided after enhanced post-flight processing. Dose rates and detection of different radioactive elements are presented. (ENMOS is a product of Picodas Group Inc. and IRIS is the product of Pico Envirotec Inc.)

  14. Preliminary assessment of night vision goggles in airborne forest fire suppression

    NASA Astrophysics Data System (ADS)

    Jennings, Sion; Craig, Greg; Erdos, Rob; Filiter, Don; Crowell, Bob; Macuda, Todd

    2007-04-01

    Helicopters are widely used in daytime forest fire suppression, conducting diverse tasks such as spotting, re-supply, medical evacuation and airborne delivery. However, they are not used at night for forest fire suppression operations. There would be many challenges when operating in the vicinity of forest fires at night, including scene obscuration from smoke and dynamic changes in lighting conditions. There is little data on the use of Night Vision Goggles (NVGs) for airborne forest fire suppression. The National Research Council of Canada (NRC), in collaboration with the Ontario Ministry of Natural Resources (OMNR), performed a preliminary flight test to examine the use of NVGs while operating near forest fires. The study also simulated limited aspects of night time water bucketing. The preliminary observations from this study suggest that NVGs have potential to improve the safety and efficiency of airborne forest fire suppression, including forest fire perimeter mapping and take-off and landing in the vicinity of open fires. NVG operations at some distance from the fire pose minimal risk to flight, and provide an enhanced capability to identify areas of combustion at greater distances and accuracy. Closer to the fire, NVG flight becomes more risk intensive as a consequence of a reduction in visibility attributable to the adverse effects on NVG performance of the excess radiation and smoke emitted by the fire. The preliminary results of this study suggest that water bucketing at night is a difficult operation with elevated risk. Further research is necessary to clarify the operational limitations and implementation of these devices in forest fire suppression.

  15. Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Morrison, Robert B; Torremorell, Montserrat

    Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system "off" and "on." Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system "on," but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.

  16. Channel-noise-induced stochastic facilitation in an auditory brainstem neuron model

    NASA Astrophysics Data System (ADS)

    Schmerl, Brett A.; McDonnell, Mark D.

    2013-11-01

    Neuronal membrane potentials fluctuate stochastically due to conductance changes caused by random transitions between the open and closed states of ion channels. Although it has previously been shown that channel noise can nontrivially affect neuronal dynamics, it is unknown whether ion-channel noise is strong enough to act as a noise source for hypothesized noise-enhanced information processing in real neuronal systems, i.e., “stochastic facilitation”. Here we demonstrate that biophysical models of channel noise can give rise to two kinds of recently discovered stochastic facilitation effects in a Hodgkin-Huxley-like model of auditory brainstem neurons. The first, known as slope-based stochastic resonance (SBSR), enables phasic neurons to emit action potentials that can encode the slope of inputs that vary slowly relative to key time constants in the model. The second, known as inverse stochastic resonance (ISR), occurs in tonically firing neurons when small levels of noise inhibit tonic firing and replace it with burstlike dynamics. Consistent with previous work, we conclude that channel noise can provide significant variability in firing dynamics, even for large numbers of channels. Moreover, our results show that possible associated computational benefits may occur due to channel noise in neurons of the auditory brainstem. This holds whether the firing dynamics in the model are phasic (SBSR can occur due to channel noise) or tonic (ISR can occur due to channel noise).

  17. Monitoring marine pollution by airborne remote sensing techniques

    SciTech Connect

    Yuanfu, S.; Quanan, Z.

    1982-06-01

    In order to monitor marine pollution by airborne remote sensing techniques, some comprehensive test of airborne remote sensing, involving monitoring marine oil pollution, were performed at several bay areas of China. This paper presents some typical results of monitoring marine oil pollution. The features associated with the EM spectrum (visible, thermal infrared, and microwave) response of marine oil spills is briefly analyzed. It has been verified that the airborne oil surveillance systems manifested their advantages for monitoring the oil pollution of bay environments.

  18. Range Corrections for Airborne Radar - A Joint STARS Study

    DTIC Science & Technology

    1984-05-01

    ESD-TR-84-169 MTR-9055 RANGE CORRECTIONS FOR AIRBORNE RADAR - A JOINT STARS STUDY By • _,.G. A. ROBERTSHAW MAY 1984 - Prepared for DEPUTY COMMANDER...NO NO Hanscom AFB, MA 01731 6460 11. TITLE •Include securi,•,cleaficatton) Range Corrections Tor Airborne Radar - A Joint STARS Study 12. PERSONAL...SUPPLEMENTARY NOTATION 17 COSATI CODES 18. SUBJECT TERMS (Continue on reuera if necemary and identify by block number) FIELD GROUP SUB GR. Airborne Radar

  19. Results of airborne measurements in the plume near and far from the 2014 Bardarbunga-Holuhraun eruption.

    NASA Astrophysics Data System (ADS)

    Arnason, Gylfi; Eliasson, Jonas; Weber, Konradin; Boehlke, Christoph; Palsson, Thorgeir; Rognvaldsson, Olafur; Thorsteinsson, Throstur; Platt, Ulrich; Tirpitz, Lukas; Jones, Roderic L.; Smith, Paul D.

    2015-04-01

    The Volcanic Ash Research (VAR) group is focused on airborne measurement of ash contamination to support safe air travel. In relations to the recent eruption, the group measured ash and several gaseous species in the plume 10-300 km from the volcano. The eruption emitted ash turned out to be mostly in the fine aerosol range (much less than 10 micrometers in diameter). Our highest measured concentrations were lower than 1 mg/m3 indicating that commercial air traffic was not threatened (greater than 2 mg/m3) by the ash contamination. But we measured sulfur dioxide (SO2 ) up to 90 mg/m3, which presented a potentially dangerous pollution problem. However, airborne measurements indicate that the sulfur concentration decays (probably due to scavenging) as the plume is carried by the wind from the volcano, which limits the area of immediate danger to the public. Here we present size distribution for particulate matter collected during flights, near and far from the crater at various times. The particle data is then compared with simultaneously collected sulfur dioxide data and the rate of decay of is estimated. Sulfur and particle concentration variations with height in the far plume are presented. Some airborne measurements for H2S, NO, NO2 and CO2 will also be presented. This includes correlation matrices for simultaneous measurements of these gases and comparison to National Air Quality Standards and background values.

  20. Detecting noise with shot noise using on-chip photon detector.

    PubMed

    Jompol, Y; Roulleau, P; Jullien, T; Roche, B; Farrer, I; Ritchie, D A; Glattli, D C

    2015-01-27

    The high-frequency radiation emitted by a quantum conductor presents a rising interest in quantum physics and condensed matter. However, its detection with microwave circuits is challenging. Here, we propose to use the photon-assisted shot noise for on-chip radiation detection. It is based on the low-frequency current noise generated by the partitioning of photon-excited electrons and holes, which are scattered inside the conductor. For a given electromagnetic coupling to the radiation, the photon-assisted shot noise response is shown to be independent on the nature and geometry of the quantum conductor used for the detection, up to a Fano factor, characterizing the type of scattering mechanism. Ordered in temperature or frequency range, from few tens of mK or GHz to several hundred of K or THz respectively, a wide variety of conductors can be used like Quantum Point Contacts (this work), diffusive metallic or semi-conducting films, graphene, carbon nanotubes and even molecule, opening new experimental opportunities in quantum physics.

  1. Radiative heating rates during AAOE and AASE. [Airborne Antarctic Ozone Experiment and Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1990-01-01

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  2. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  3. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  4. Raytheon low temperature RSP2 cryocooler airborne testing

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2013-09-01

    The Raytheon Cryocooler Product Line tested the Low Temperature Stirling / Pulse Tube Hybrid 2-Stage (LTRSP2) cryocooler for an airborne application during 2012. Several tests were carried out to verify the ability of the machine to operate in an airborne environment. The vacuum level and heat rejection surface temperatures were varied to determine the performance over the excursions. Vibration testing was performed to prove that the LT-RSP2 cryocooler can operate on an airborne platform. This paper will present the results of the airborne characterization testing.

  5. Absorption-Desorption Compressor for Spaceborne/Airborne Cryogenic Refrigerators.

    DTIC Science & Technology

    Refrigerant compressors, *Refrigeration systems), Spaceborne, Airborne, Cryogenics, Gases, Absorption, Desorption, Hydrogen, Hydrides, Lanthanum compounds, Nickel alloys, Joule Thomson effect , Heat transfer

  6. Toolsets for Airborne Data - URS and New Documentation

    Atmospheric Science Data Center

    2015-03-23

    ... missions, documentation, and EOSDIS User Registration System (URS) authentication. This web application features an intuitive user interface for variable selection across different airborne field studies and ...

  7. Noise: A Health Problem.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Noise Abatement and Control.

    This booklet contains nine sections describing ways in which noise may endanger health and well-being. Secions are included on: (1) hearing loss; (2) heart disease; (3) other reactions by the body; (4) effects on the unborn; (5) special effects on children; (6) intrusion at home and work; (7) sleep disruption; (8) mental and social well-being; and…

  8. Noise Assessment Guidelines.

    ERIC Educational Resources Information Center

    Schultz, Theodore J.; McMahon, Nancy M.

    The Department of Housing and Urban Development (HUD), in its efforts to provide decent housing and a suitable living environment, is concerned with noise as a major source of environmental pollution. To this end, these guidelines are presented to provide site screening techniques. The procedures described have been developed so that people…

  9. Noise Control through Education.

    ERIC Educational Resources Information Center

    Pennino, Martha

    1979-01-01

    Discussed are the public education and information programs on noise pollution control currently in operation within the Metropolitan Washington, D.C. area that have been either developed or implemented under the auspices of the Metropolitan Washington Council of Governments. (BT)

  10. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  11. Curing the noise epidemic

    NASA Astrophysics Data System (ADS)

    Mazer, Susan

    2005-09-01

    The argument is made that design does not stop when the fixed architectural and acoustical components are in place. Spaces live and breathe with the people who reside in them. Research and examples are presented that show that noise, auditory clutter, thrives on itself in hospitals. Application of the Lombard reflex studies fit into the hospital setting, but do not offer solutions as to how one might reduce the impact. In addition, the basis for looking at the noise component as a physical as well cultural dynamic will be addressed. Whether the result of the wrong conversation in the wrong place or the right conversation in an unfortunate place, talk mixed with sounds of technology is shown to cause its own symptoms. From heightened anxiety and stress to medical errors, staff burnout, or HIPAA violations, the case is made that noise is pandemic in hospitals and demands financial and operational investment. An explanation of how to reduce noise by design of the dynamic environment - equipment, technology, staff protocols is also provided.

  12. JET Noise Prediction

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.

    2007-01-01

    Aerodynamic noise prediction has been an important and challenging research area since James Lighthill first introduced his Acoustic Analogy Approach over fifty years ago. This talk attempts to provide a unified framework for the subsequent theoretical developments in this field. It assumes that there is no single approach that is optimal in all situations and uses the framework as a basis for discussing the strengths weaknesses of the various approaches to this topic. But the emphasis here will be on the important problem of predicting the noise from high speed air jets. Specific results will presented for round jets in the 0.5 to 1.4 Mach number range and compared with experimental data taken on the Glenn SHAR rig. It is demonstrated that non-parallel mean flow effects play an important role in predicting the noise at the supersonic Mach numbers. The results explain the failure of previous attempts based on the parallel flow Lilley model (which has served as the foundation for most jet noise analyses during past two decades).

  13. Jet Screech Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.

    2003-01-01

    The near-field screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle is simulated numerically. The self-sustained feedback loop is automatically established in the simulation. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels in the near field are in good agreement with existing experimental results.

  14. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  15. Microwatt shot-noise measurement

    NASA Astrophysics Data System (ADS)

    Bacon, A. M.; Zhao, H. Z.; Wang, L. J.; Thomas, J. E.

    1995-08-01

    We report a simple scheme for sensitive measurements of optical-noise spectra. Optical noise is separated from electronic noise when the output of an analog spectrum analyzer is real-time squared and then lock-in detected. This method directly yields the desired mean-square noise voltage, i.e., the power spectrum of the optical noise on a linear scale. To demonstrate this technique, the mean-square shot noise of a laser beam is measured and found to vary linearly with the laser power from several milliwatts down to one microwatt, in excellent quantitative agreement with predictions.

  16. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise.

  17. Implications of surface noise for the motional coherence of trapped ions

    NASA Astrophysics Data System (ADS)

    Talukdar, I.; Gorman, D. J.; Daniilidis, N.; Schindler, P.; Ebadi, S.; Kaufmann, H.; Zhang, T.; Häffner, H.

    2016-04-01

    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50 μ m above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both the observed heating as well as the measured dephasing satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.

  18. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  19. Bats perceptually weight prey cues across sensory systems when hunting in noise.

    PubMed

    Gomes, D G E; Page, R A; Geipel, I; Taylor, R C; Ryan, M J; Halfwerk, W

    2016-09-16

    Anthropogenic noise can interfere with environmental information processing and thereby reduce survival and reproduction. Receivers of signals and cues in particular depend on perceptual strategies to adjust to noisy conditions. We found that predators that hunt using prey sounds can reduce the negative impact of noise by making use of prey cues conveyed through additional sensory systems. In the presence of masking noise, but not in its absence, frog-eating bats preferred and were faster in attacking a robotic frog emitting multiple sensory cues. The behavioral changes induced by masking noise were accompanied by an increase in active localization through echolocation. Our findings help to reveal how animals can adapt to anthropogenic noise and have implications for the role of sensory ecology in driving species interactions.

  20. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.